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Abstract

This work studies two Pickup-and-Delivery Problems with transfers and time hori-

zon, and provides models, theoretical results, and methods for handling them.

The first problem is a Relocation Problem which can be seen as a one-commodity

many-to-many Capacitated Pickup-and-Delivery Problem with unpaired pickups

and deliveries, transfers, and time horizon. We introduce a 2-commodity flow model

on a Time-Expanded network and we propose a “Project-and-Lift” approach for

handling that model. First, we derive a “Projected Model” that manages the time

constraints in an implicit way and that provide us with a lower bound for the optimal

solution cost of a Relocation Problem instance. We strengthen the Projected Model

by adding specific “Extended-Subtour” constraints (related to the time horizon) and

“Feasible-Path” constraints (related to a path decomposition property that must be

verified by the item flow), and we solve it efficiently by branch-and-cut. Finally we

deal with the “Lift” problem, which consists in computing good quality solutions

starting from solutions of the Projected Model. We manage several levels of flexibil-

ity for constructing those solutions, and propose mixed integer linear programming

models and a decomposition approach for handling the problem in a flexible way.

The second problem is a one-to-one Capacitated Pickup-and-Delivery Problem

with paired demands, transfers, and time horizon. We start by introducing the

Virtual Path Problem which consists in the modification of an acyclic digraph which

involves an underlying constraint system. The aim is to construct a directed path

connecting two given vertices, while minimizing a cost function and maintaining

a feasible constraint system. We propose an A*-like algorithm (called virtual A*)

for solving this problem in an exact way. Next we study the problem of the exact

insertion of a single request into a Pickup-and-Delivery Problem with Transfers

schedule. We show this problem can be seen as a particular case of the Virtual Path

Problem and so we can use the virtual A* algorithm to solve this problem in an

exact way. We also propose a fast heuristic based on Dijkstra’s algorithm. Finally

we combine those single request algorithms with some classical metaheuristics for

handling the insertion of multiple requests into a Pickup-and-Delivery Problem with

Transfers schedule.

v



Models and Algorithms for Problems of Scheduling/Routing with Synchronizations

Key words: Combinatorial Optimization, Integer Programming, Vehicle Rout-

ing Problem, Pickup-and-Delivery Problem with transfers, Constrained Shortest

Path Problem, A* Algorithm, Relocation Problem, Multicommodity Flows, Branch-

and-Cut Algorithm, Column Generation Algorithm, Time-Expanded Networks.

vi



Contents

I Introduction 1

Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1 State of the Art 13

1.1 Vehicle Routing Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1.1 Pickup-and-Delivery Problem . . . . . . . . . . . . . . . . . . . . 16

1.1.2 Dial-A-Ride Problem . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.1.3 Relocation Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.1.4 Combined Vehicle Routing and Scheduling Problem . . . . . . 39

1.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.2.1 The A* Search Algorithm . . . . . . . . . . . . . . . . . . . . . . 40

1.2.2 Methods Based in Branch-and-Bound . . . . . . . . . . . . . . 45

1.2.3 Layered Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

1.2.4 Flows and Multicommodity Flows . . . . . . . . . . . . . . . . . 58

II The Item Relocation Problem with Transfers and Time

Horizon 63

2 The Projected Item Relocation Problem 65

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.2 The Item Relocation Problem . . . . . . . . . . . . . . . . . . . . . . . . 69

2.3 A TEN 2-Commodity Flow Formulation . . . . . . . . . . . . . . . . . . 72

2.3.1 A Characterization of the IRP Feasibility . . . . . . . . . . . . . 74

2.4 The Projected IRP Model . . . . . . . . . . . . . . . . . . . . . . . . . . 75

vii



Models and Algorithms for Problems of Scheduling/Routing with Synchronizations

2.4.1 Projected Cost and Extended-Subtour Constraints . . . . . . . 76

2.4.2 Separating the Extended-Subtour Constraints . . . . . . . . . . 79

2.5 The Lift Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

2.5.1 Two Lift Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 90

2.5.2 Feasibility of the Partial Lift Problem . . . . . . . . . . . . . . . 93

2.5.3 Enhancing the PIRP Model with Feasible-Path Constraints . . 94

2.6 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3 Lifting Projected IRP Solutions 103

3.1 A MILP Model for the Strong Lift Problem . . . . . . . . . . . . . . . . 103

3.2 Dealing with the Partial Lift Problem . . . . . . . . . . . . . . . . . . . 115

3.2.1 The Digraphs Weak(G, f) and Cover(G, f) . . . . . . . . . . . 116

3.2.2 The Weak/Cover Decomposition Scheme . . . . . . . . . . . . . 118

3.2.3 Weak-Lift-Consistency . . . . . . . . . . . . . . . . . . . . . . . . 121

3.3 Handling the Weak/Cover Decomposition . . . . . . . . . . . . . . . . . 126

3.3.1 An Exact MILP Weak/Cover Reformulation . . . . . . . . . . . 127

3.3.2 A Simple Monotonic Cover Algorithm . . . . . . . . . . . . . . . 128

3.3.3 A More Efficient Path-Concatenate Algorithm . . . . . . . . . . 141

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

III The Pickup-and-Delivery Problem with Transfers and

Time Horizon 149

4 The Virtual Path Problem: Application to the PDPT 151

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

4.2 The Virtual Path Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 154

4.3 Application to the PDPT . . . . . . . . . . . . . . . . . . . . . . . . . . 168

4.3.1 The PDPT Problem . . . . . . . . . . . . . . . . . . . . . . . . . 168

4.3.2 Formal Description of a PDPT Feasible Solution . . . . . . . . 170

4.3.3 The 1-Request Insertion PDPT Model . . . . . . . . . . . . . . . 173

viii Contents



Models and Algorithms for Problems of Scheduling/Routing with Synchronizations

4.3.4 An Empirical Dijkstra-Like Algorithm . . . . . . . . . . . . . . . 178

4.3.5 Controlling Transfer-Arcs Number . . . . . . . . . . . . . . . . . 180

4.3.6 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . 181

4.3.7 Possible Extensions of the Algorithms . . . . . . . . . . . . . . . 187

4.4 Handling Multiple Requests . . . . . . . . . . . . . . . . . . . . . . . . . 188

4.4.1 Deletion of an Inserted Request . . . . . . . . . . . . . . . . . . . 190

4.4.2 Search Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

4.4.3 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . 196

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

IV Conclusions 205

Appendix 211

A Basic Theory and Notation 211

A.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

A.2 Matrices and Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . 213

A.3 Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

A.4 Algorithms and Complexity . . . . . . . . . . . . . . . . . . . . . . . . . 223

A.5 Some Data Structures and Algorithms . . . . . . . . . . . . . . . . . . . 233

A.5.1 Indexed Priority Queue . . . . . . . . . . . . . . . . . . . . . . . . 233

A.5.2 Topological Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . 240

A.5.3 Dijkstra’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 240

A.5.4 Ford-Fulkerson Algorithm . . . . . . . . . . . . . . . . . . . . . . 241

B Detailed computational results 242

References 268

Index 284
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Context

According to a recent report [210] of the World Meteorological Organization, a spe-

cialized agency of United Nations (UN), the years from 2015 to 2022 are likely to be

the hottest ever reported, and despite La Niña conditions, which have contributed to

keep global temperature low during the last two years, the global mean temperature

in 2022 is expected to be the fifth or the sixth warmest ever recorded.

Independent global surface temperature datasets (see [121, 141, 147, 162, 185,

223] and Figure 1) agree that the average global temperature on Earth has increased

by at least 1.1° Celsius since 1880, and that the majority of the warming has occurred

since 1975, at a rate of roughly 0.15 to 0.20°C per decade [165].

Te
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Year
Figure 1: Global annual mean temperature difference from the pre-industrial
reference period (1850–1900) for six global temperature datasets (1850–2022, 2022
based on an average to September)[210].

It has been estimated that more than 50% of the observed increase in global

mean surface temperatures from 1950 to 2010 is very likely due to anthropogenic

increase in greenhouse gases (GHG) concentrations in the atmosphere [9]. GHGs

cause a positive radiative imbalance at the top of the atmosphere, and lead to an

accumulation of heat in the oceans. In 2021, the atmosphere concentrations of

carbon dioxide, methane, and nitrous oxide reached record highs [210].

The main source of those anthropogenic GHG emissions is the combustion of

fossil fuels (like coal, petroleum, and natural gas), and is highly influenced by some

demographic phenomena like the accelerated rates of population growth and urban-

ization.
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The most ancient fossils of Homo sapiens allow to estimate that modern humans

appeared on earth around 300,000-200,000 years ago [120, 125] and since then, their

population have tended to grow in the long term [76]. Recent demographic estima-

tions show that world population has been growing year by year in an uninterrupted

way since the end of the Black Death around 1350 [126]. The world population began

growing more rapidly since the Industrial Revolution due to the reduction in mor-

tality achieved with sanitation and technological advances that improved medical

treatments and agricultural productivity.

The growth rate of the world’s population peaked in 1965-1970 [207] but the

population is still growing. For the year 2019, the United Nations estimated the

global population at 7.7 billion people and this number is expected to reach the 8.0

billion mark by the end of 2022 or within 2023. Figure 2 shows estimates of the

total population from 1950 to 2019. It also shows the probabilistic median, the 95

per cent prediction interval of the probabilistic population projections, and the high

and low variants (+/- 0.5 child) for the period from 2020 to 2100 (source data were

retrieved from [209] and plotted with the R programming language [202]).

World: Total Population
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Figure 2: Estimates and probabilistic projections of the total population.

In the last decades, there has been a migratory tendency from rural to urban

areas. According to the UN reports [206] and [208], in 1950, about 30% of world’s

population was living in urban areas, whilst in 2018, this percentage was increased

until 55%. The urbanization process still continues and by 2030, urban areas are

projected to house 60% of people globally and one third of humans will live in cities

with at least half a million inhabitants. By 2050, 68% of the world’s population is

projected to be urban.
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Here, it is worth to note that there is no global homogeneity in population

distribution or urbanization rates. Figure 3 was extracted from [206] and shows

estimations for the percentages of population living in rural and urban areas in 2018

and the corresponding projections for 2030, classified by population size of human

settlements and geographical region.
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Figure 3: Percentages of population distribution estimated in 2018 and projec-
tions for 2030, classified by population size of human settlements and geographical
region. The number of cities with 500,000 inhabitants or more are also displayed.

The phenomenon of urbanization has also led to a gradual emergence of megaci-

ties. A megacity is an urban agglomeration with more than ten million inhabitants.

Globally, in 2021, there were 36 megacities in the world and a total of 90 urban ar-

eas with five million or more population [63], the number of megacities is projected

to rise to 43 in 2030. Figure 4 was taken from [206] and shows the geographical

distribution of cities projected to have one million inhabitants or more in 2030.

●
●
●

City population

10 million or more

5 million to 10 million

1 million to 5 million

Figure 4: Map of cities with one million inhabitants or more projected for 2030.
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The excessive growth of urban agglomerations may potentiate some environmen-

tal, economical, and social issues. These problematics are usually very complex and

keep some relation with other human activities like, for example, the transport.

Urban transport problems are not particularly recent, in 1977 Michael Thomson

[203] published a study about traffic in big cities and coined the phrase “the larger

the city, the greater the problems and the higher the costs of providing transport”.

In that pioneer work, Thomson also identified the seven subproblems of the urban

transport problem that are shown in Figure 5. One year later, Banister [20] published

another study about transport problems in global cities, and revisited the work of

Thomson.

Accidents

Traffic mouvement
and congestion

Difficulties for
pedestrians

Peak-hour crowding
on public transport

Off-peak inadequacy
of public transport

Environmental impactParking difficulties

The urban

transport problem

Figure 5: The seven subproblems of the urban transport problem according to
Thomson [203].

Nowadays, those subproblems still persists and some of them have become of

greater concern. For example, the “2019 Traffic Scorecard” published by INRIX,

Inc. [127] points out that traffic congestion continues to grow across the world. It

also contains estimations of the average number of hours lost by each driver during

the year, and one ranking of the most congested cities in the World. The ten first

cities of this ranking are presented in Table 1.

Traffic congestion has also a negative impact on the economy due to fuel con-

sumption and delays. The American Transportation Research Institute estimates

that between 2015 and 2016, the additional operational costs incurred by the truck-

ing industry due to traffic congestion were $74.5 billion, with $66.1 billion of it

occurring in urban areas [123].

Countermeasures to diminish congestion include improving road infrastructure,

urban planning and design, increasing road capacity, limiting the number of vehicles

in circulation (within a particular area or during a period of time), use of intelligent

transportation systems, etc.
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Urban Area Impact Rank Hours Lost in Congestion
Bogota 1 191
Rio de Janeiro 2 190
Mexico City 3 158
Istanbul 4 153
São Paulo 5 152
Rome 6 166
Paris 7 165
London 8 149
Boston 9 149
Chicago 10 145

Table 1: The ten most congested cities in the world in 2019 according to [127].
Impact rank captures the aggregate impact of congestion’s impact relative to
population, whereas hours lost in congestion captures exclusively the intensity of
traffic in a given city.

Initiatives that involve changes in road infrastructure are usually expensive, and

its viability depends mainly on the particular characteristics of a city. Also, it has

been observed that adding road capacity sometimes results in attracting more traffic,

and making congestion worse [72]. For these reasons, several large cities in the world

prefer to limit the number of vehicles in circulation [213], and encourage the use of

alternative ways of transport (like bike-sharing or carpooling).

In a bike-sharing system, users are able to access bicycles for use when required.

Those bicycles can be retrieved from a set of bike-sharing stations that are strategi-

cally scattered over an urban area. Bike-sharing stations are typically unattended,

and the majority of bike-sharing operators cover the costs of maintenance, storage,

and parking [152]. Users generally join bike-sharing organizations on an annual,

monthly, daily, or per-trip basis, and trips of less than 30 minutes are included

within the membership fees [196]. According to [221], in 2021 there were approxi-

matively 2,000 active bike-sharing systems distributed in 85 countries.

Carpooling is the sharing of car journeys for allowing that more than one person

travels in a car, and prevents the need for others to have to drive to a location

themselves. Carpooling has some economic benefits because by having more people

using one vehicle, the average travel cost per capita is reduced. Also, carpooling

is environmentally more beneficial than driving alone, because it diminishes the

number of vehicles in circulation, and this in turn reduces air pollution, and carbon

emissions.

Despite the above-mentioned benefits, carpooling in the US reduced from 19.7%

in 1980 to 7.8% in 2021, and the percentage of workers in the US who drove alone

during their commute increased from 64.4% in 1980 to 67.8% in 2021 [84, 211].

7
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In the last decades, the maintained tendency of people to continue driving alone,

the aggravation of environmental issues, and the increase of oil prices have turned the

development of cleaner alternative fuels into a high priority for many governments

and vehicle manufacturers around the world.

In France, the “Contrats de plan État-Région” (CPER) are regional plans for

programming and financing the major development projects, such as the creation

of infrastructure and the support of key sectors for the future. The CPERs of the

Auvergne-Rhône-Alpes region [175, 176, 177] including the finance of operations

related to ecology and energy transition.

With regard to renewable energies, one of the objectives of the CPER-Auvergne-

Rhône-Alpes 2021-2027 is to increase the use of alternatives energies from 19% to

36% by 2030. Also, this CPER considers that hydrogen is a key technology for

environmental transition and industrial growth prospects because meet three major

challenges: energy and environmental transition, air quality (thanks to zero-emission

mobility solutions), and job creation (the Region aims to deploy an “Auvergne-

Rhône-Alpes Hydrogen HUB” for hydrogen production). To complete successfully

the development of hydrogen technologies, the CPER sets the following challenges.

1. The industry’s transition to clean hydrogen.

2. Mobility, distribution infrastructure, and vehicles (specially for heavy vehi-

cles).

3. Hydrogen energy, production from electrolysis at a competitive price, stor-

age and transport infrastructure, stationary applications, network and market

services.

The use of clean hydrogen (and other alternative fuels or energies) brings some

new difficulties related to transport because the infrastructure for recharging or

refueling vehicles is still scarce, the availability of those alternative fuels or energies

may fluctuate, and the vehicles’ efficiency vary a lot from one technology to another.

This thesis contributes to face the third above challenge by providing models to

solve vehicle routing problems with transfers and time horizon, and strengthening

informed decision-making on transport network management.

Transfers may contribute to diminish the number of vehicles in circulation be-

cause sometimes it is possible to satisfy more transportation requests with the same

number vehicles; they also may contribute to save fuel by reducing the total travel

distance. However, a careful handling of time constraints is required to guarantee

that a transfer will take place.

8
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In contrast, by imposing a time horizon we can conceive transportation schedules

to be executed within a particular period of time where resources may be available

(e.g., a sunny or windy day, surplus of hydrogen or other alternative fuels).

Main Contributions

The main topic of this work are the Vehicle Routing Problems (VRP), which are

mathematical abstractions of real-world transportation problems. VRPs began to

be studied formally around 1950 for optimizing truck routes to deliver gasoline to

service stations, and since then the number of applications and mathematical models

has been increasing gradually. Nowadays, many variants of vehicle routing problems

can be distinguished according to the type of constraints involved (e.g., capacity,

time windows, transfers of loads, synchronization of visits), their objective functions

(e.g., minimize riding costs of vehicles or loads, waiting time of passengers, number

of vehicles used, maximize total profit or number of requests satisfied), or even their

applications (e.g., transportation of goods or people, pickup and delivery, relocation

of objects).

Given the computational complexity of many of those problems, the use of com-

puters has been necessary since the early studies and this situation has determined

indirectly the type of addressed problems. For example, due to the existing limita-

tions of computing power, most of the early papers were focused on single vehicle

problems and small instances. Then, the development of the transportation industry

brought soon more challenging problems and the use of increasingly sophisticated

electronic computers, mathematical models, and algorithms became necessary.

Some real-world transportation problems such as congestion traffic and air pollu-

tion have made it desirable to reduce both the number of vehicles in circulation and

the total traveled distance. For some transportation problems, these factors can be

meet by allowing transfers of loads between vehicles or by limiting the circulation

of vehicles to occur within a given time horizon that avoids rush hours traffic.

The content of this thesis may contribute to optimize transportation systems

that allow transfers between vehicles and that are constrained by a time horizon. In

particular, two Pickup-and-Delivery Problems (PDP) are examined: a Relocation

Problem which can be seen as a one-commodity many-to-many Capacitated PDP

with unpaired pickups and deliveries, transfers, and time horizon; and a one-to-one

Capacitated PDP with paired demands, transfers, and time horizon.

In Part I (Chapter 1) we survey the related literature and we briefly describe

some of the methods that will be used later.

9
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Part II (Chapters 2 and 3) describes a Relocation Problem with transfers and

time horizon and proposes a “Project-and-Lift” approach for handling it.

In Chapter 2 we propose a 2-commodity flow model on a Time-Expanded net-

work, and we derive a “Projected Model” that manages the time constraints in an

implicit way. We strengthen that Projected Model by adding specific “Extended-

Subtour” constraints related to the time horizon and “Feasible-Path” constraints

related to a path decomposition property that must be verified by the item flow.

The main result of this chapter is an efficient branch-and-cut algorithm for com-

puting a lower bound for the optimal cost of a Relocation Problem instance. Such

a bound can be used as a reference point for evaluating the quality of solutions

obtained with heuristic methods.

Chapter 3 deals with the problem of computing “good” quality solutions start-

ing from a “Projected Model” solution. We propose several levels of flexibility for

constructing those solutions and propose several mixed integer linear programming

(MILP) models. We also propose a novel decomposition approach for handling the

problem in a more flexible way.

The results of this part were presented at the 7th International Symposium on

Combinatorial Optimization (ISCO 2022), the 2023 congress of the French Opera-

tions Research and Decision Support Society (ROADEF 2023), the 19th Cologne-

Twente Workshop on Graphs and Combinatorial Optimization (CTW 2023), and

the XII Latin-American Algorithms, Graphs and Optimization Symposium (LAGOS

2023). Parts of this work were published in Lecture Notes in Computer Science [87]

(Springer), Graphs and Combinatorial Optimization: from Theory to Applications

[89] (AIRO Springer Series 13), and Procedia Computer Science [88] (Elsevier).

Part III (Chapter 4) introduces the Virtual Path Problem and provides an ap-

plication to the one.to-one Capacitated Pickup-and-Delivery Problem with paired

demands, transfers, and time horizon.

We start the by describing the “Virtual Path Problem” and we present the “Vir-

tual A*” algorithm for solving this problem in an exact way. Next, we show that

the problem of inserting a single request into a Pickup-and-Delivery Problem with

Transfers schedule is a particular case of the Virtual Path Problem. So, we propose

the Virtual A* algorithm to solve it in an exact way, and a Dijkstra-like algorithm

for handling the problem in a heuristic way. Then we combine those single request

algorithms with some metaheuristics, for handling the insertion of multiple requests

into a Pickup-and-Delivery Problem with Transfers schedule.

10
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The results of this part were presented for the first time in the 2021 congress of

the French Operations Research and Decision Support Society (ROADEF 2021), and

in the 11th International Conference on Operations Research and Enterprise Systems

(ICORES 2022). Two works were published: one in the ICORES 2022 proceedings

[85] and the other in Operations Research and Enterprise Systems (CCIS Springer

Series 1985)[86].

Part IV is the last part of this work. It contains the conclusions and provides

future lines of research.

A summary of the basic theory and notation used in this work can be found in

the Appendix A.

A remark about writing style. This document follows some of the mathematical

writing conventions suggested by Knuth et al. (1989) [140]. So, the word “we” is

used instead of “I” and should be understood as a kind of “joint reading” between

author and reader.
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Chapter 1

State of the Art

In this chapter we survey the scientific literature about Vehicle Routing Problems

and some of the methods for handling those problems. In Section 1.1 we discuss

two seminal works about Vehicle Routing Problems and then we examine in more

detail the Pickup-and-Delivery variants. We synthesize the main ideas of the most

influential papers (according to reference surveys) and provide a classification of the

published works related to Pickup-and-Delivery Problems involving transfers. In

Section 1.2 we discuss briefly some of the methods related to the topics that will be

used in subsequent chapters.

1.1 Vehicle Routing Problems

We start this section with the discussion of two pioneer works about Vehicle Routing

Problems and then we provide a classification perspective of these problems.

The Vehicle Routing Problem (VRP) has roots in the work of Dantzig and

Ramser (1959) [59] for solving a problem concerned with the optimum routing of a

fleet of gasoline delivery trucks to serve a set of stations. In this paper, the authors

introduced the VRP as a generalization of the Traveling Salesperson Problem (TSP)

obtained by adding new types of constraints. Some of these constraints are related

to the capacity of the trucks, which is supposed to be small in comparison with

the total amount of demands, and as a result, every truck is constrained to make a

limited number of deliveries on each trip and then return to the depot to replenish;

furthermore, each demand must be satisfied in a single trip.

Mathematically, this situation can be posed as a graph problem. The graph has

one vertex for each station to be served and one distinguished vertex, the depot,

which is linked to every station by two edges; also, every pair of stations is linked by

13
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a single edge. The graph has vertices costs corresponding to the station demands,

and edge costs corresponding to the distance between the stations. The aim is to

find a vertex cover of cycles, they all sharing only the depot vertex, and such that,

the sum of vertices costs in every cycle does not exceed the truck’s capacity, and

the sum of the costs in the edges of the cycles is minimum. Due to the shape of

solutions, the authors suggested initially the name “Clover Leaf Problem”, but this

name did not catch on.

For solving the above mathematical problem, Dantzig and Ramser gave a linear

programming formulation; note that, in those years there was no general method for

solving discrete variable linear programming problems, and so the authors allowed

variables to take fractional values. Then, the solutions with fractional values were

converted into feasible integer solutions by using a set of ad hoc heuristics. The

general process presented by Dantzig and Ramser is designed in two stages. In

the first stage, the authors solve a linear programming problem whose solution is

heuristically converted into an integer solution. From this solution, we can obtain

a partition of the non-depot vertices which is composed of singletons and pairs

of vertices that can be served in a single trip. Then, these sets are successively

combined and merged in pairs in a heuristic way to build a maximal-coarse partition

of the non-depot vertices. Each member of the partition (together with the depot) is

solved as an instance of the Traveling Salesperson Problem to obtain a final solution

which is a cover of cycles. The authors remark that this solution process does not

guarantee to find the true optimal value.

Some years later Clarke and Wright (1964) [98] proposed a greedy heuristic for

improving the work of Dantzig and Ramser on more realistic contexts. In their

work, the authors suppose that there is a fleet of vehicles with distinct capacities

C1,C2, . . . ,CN , with C1 < C2 < . . . < CN , and to avoid infeasible instances, they

consider that there is available an unlimited number of vehicles with capacity C1.

Furthermore, the load required by each customer is considered to be less than C1.

In the first step of the heuristic, Clarke and Wright construct an initial solution by

assigning one vehicle to each single customer. Then, they compute the “savings”

that can be obtained by assigning some customer to the route of another customer.

These computed savings are used to exchange some customers from one route to

another while using a greedy strategy for maximizing the savings. By following this

strategy, the number of customers on a single route tends to increase, and on the

opposite, the mileage covered by the fleet and the number of assigned vehicles tends

to decrease. In the subsequent steps, the heuristic continues computing savings and

performing exchanges of customers until arriving to a situation where is not possible

to obtain more savings. During the algorithm, the sum of the loads required by the
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customers on a same route does not have to exceed CN , and also, if there are only

k vehicles of capacity Ci, i > 1, it must avoided to assign more than k vehicles of

capacity Ci to satisfy the resulting routes. The authors conclude that the solutions

obtained with this heuristic can have good quality but they are not guaranteed to

be optimal.

After these two seminal papers, the VRP and its variants were gradually attract-

ing more interest, and due to their difficulty and economic importance, hundreds of

algorithms (exact and heuristics) have been developed. Nowadays, the VRP con-

stitute still an active field of research. The book by Toth and Vigo (2014) [205]

contains an overview of the most important problems, techniques, and algorithms

related to these optimization problems.

It is difficult to give an exhaustive classification of all the VRP variants because

the terminology is not completely standardized and some problems can be classified

in more than one variant. Also, from time to time, the use of new technologies

give rise to applications of VRP with new characteristics that make necessary the

introduction of new variants (e.g., the Vehicle Routing Problem with Drones [215]).

Hence, following Irnich et al. (2014) [130], we give a classification perspective

and we only mention that the VRP can be classified according to:

● the network characteristics (e.g., dynamic VRP: some data become available

during operation, stochastic VRP: unknown data can be modeled by random

variables, deterministic static VRP: all data is completely known in advance),

● the type of transportation requests (e.g., a pickup request, a delivery request,

or a simple visit to a customer),

● the intra-route constraints (e.g., capacity constraints, time windows, route

duration, use of multiple vehicles),

● the fleet composition and location (e.g., homogeneous fleet, heterogeneous

fleet, multiple depots, vehicle depending routing costs),

● the inter-route constraints (e.g., synchronizations, difference between maxi-

mum and minimum route duration, transshipments, transfers), and

● the optimization objectives (e.g., single objective, hierarchical objective, multi-

objective).

In this work we study a variant of VRP which is known by the name of Pickup-

and-Delivery Problem (PDP).
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1.1.1 Pickup-and-Delivery Problem

The Pickup-and-Delivery Problem (PDP) is a variant of VRP that was introduced

around 1980; two early references are Psaraftis (1980) [178] and Kalantari et al.

(1985) [15]. In the PDP, a transportation request usually consists in picking up

people or objects from their origin locations and deliver them in their corresponding

destination locations. Battarra et al. (2014) [23] classify the PDP into the following

three categories (see Figure 1.1).

● Many-to-many (M-M): each commodity may have multiple origins and desti-

nations, and any location may be the origin or destination of multiple com-

modities. (e.g., repositioning of inventory, bicycle or car sharing systems),

● One-to-many-to-one (1-M-1): some commodities have to be delivered from a

depot to many customers, and other commodities have to be collected at the

customers and transported back to the depot (e.g., distribution of beverages

and collection of empty cans and bottles).

● One-to-one (1-1): each commodity has a single origin and a single destination

between which it must be transported (e.g., urban courier operations)

+

−

+

−

+A

+B

-A

-B

A

B     A

B

M-M 1-M-1 1-1

Figure 1.1: Three types of PDP according to Battarra et al. (2014) [23].

In the literature, the PDP for people transportation may include some constraints to

ensure a good quality of service to users, and is also known as Dial-A-Ride Problem

(DARP) (c.f. Section 1.1.2). Surveys for general Pickup-and-Delivery Problems can

be found, for example, in [27, 28, 170, 205]; a more recent survey about DARP is

Ho et al. (2018) [122].

Depending on context, two main types of PDP are distinguished. A PDP is

static (or offline) if all the requests are completely known before the beginning of

the transportation process. On the other hand, a PDP is dynamic (or online) if

the set of transportation requests is gradually revealed during the transportation

process.
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We say that a PDP is vehicle preemptive if requests can change of vehicle on their

way to their destination (e.g., passengers taking flights with connections). Similarly,

a PDP is load preemptive if vehicles can serve other requests before the current one

is delivered (e.g., shared taxis).

The Pickup-and-Delivery Problem with Time Windows (PDPTW) is a PDP vari-

ant where each request has to be picked up and delivered within a given time interval

specified by a release time and a deadline. In Dumas et al. (1991) [75] is presented an

exact model, based on integer programming, for solving some Pickup-and-Delivery

problems with time windows. The model contains three types of variables: contin-

uous time variables, continuous load variables, and triple-indexed binary decision

variables xv
i,j, indicating whether or not the vehicle v goes from vertex i to vertex j

in its route. The model also contains 17 types of constraints for modeling the flows

of vehicles and requests, while respecting the time and capacity requirements. The

authors solve some instances of this problem ranged from 19 to 55 requests, by using

a column generation scheme that contains a Constrained Shortest Path Problem as

a subproblem, and in turn, the subproblem is handled with a dynamic programming

algorithm.

A more recent work that surveys the PDPTW putting the focus on metaheuris-

tics is, for example, Buriol and Sartori (2020) [42].

PDP Involving Transfers

Most of the PDP models consider that the pickup and delivery of an object or person

must be performed by the same vehicle, if it is not the case, we talk about problems

with transfers. In this section we provide a review of some works related to the PDP

with transfers. Then in Table 1.1 we classify those works into exact, heuristic, and

metaheuristic approaches.

A transfer represents the change of a load from one vehicle to another at some

specific vertex called transfer point. Depending on the nature of the transfer points,

we may distinguish the following three types of transfers.

• Transshipment: vehicles can drop loads for other vehicles only at a specific set

of vertices called transshipment points.

• Transfer without detours: vehicles can drop loads for other vehicles at any

vertex of the network.
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• Transfer with detours: it is possible to modify the transportation network by

introducing new vertices and arcs. Vehicles can drop loads for other vehicles

at those new vertices. In this context, some authors speak about dynamic

transfer points when the new transfer points are generated as they are needed

(see Deleplanque and Quilliot (2013) [61]).

Also, we may distinguish the following two types of vehicle synchronizations to

perform a transfer.

• Weak synchronization: Vehicles are not required to be at the same time in

a transfer point for performing a transfer, but if the receiving vehicle arrives

first to the transfer point, it has to wait for the arriving of the emitting vehicle

with the load.

• Strong synchronization: Vehicles have to meet at the same place and time to

perform a transfer.

The notion of transfer in the PDP was introduced by Mitrović-Minić and La-

porte (2006) [160] in the so-called Pickup-and-Delivery Problem with Time Windows

and Transshipment, which is a PDP characterized for the presence of transshipment

points, where the vehicles can drop some objects or split their loads to allow other

vehicles to pick them up later. The motivation for this problem was a courier com-

pany, based in San Francisco (US), that allowed transshipment of loads between

vehicles to keep the drivers in their home areas. The authors present an empiri-

cal study to identify circumstances under which transshipment may be beneficial,

they consider applications where the requests are completely known in advance and

their loads are relatively small in comparison with the vehicle’s capacity. The main

contributions of this paper are a construction-improvement heuristic to solve some

random clustered instances, and an analysis of the impact in costs and fleet size of

several policies to locate the transshipment points.

One year later, Thangiah et al. (2007) [201] addressed the Split-Delivery Pickup-

and-Delivery Time Window Problem with transfers (SDPDTWP), which is a PDP

where split-delivery is allowed (i.e., the same origin or destination of a request can be

served by more than one vehicle), each request has a service time window that must

be respected (i.e., hard time windows), and requests can be transferred between

vehicles. The authors developed insertion heuristics and solved both static and real-

time instances. Because the heuristics were focused on low running times, they can

be used in real-time applications although without any guarantee of quality.
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Nakao and Nagamochi (2008) [164] is a theoretical paper that analyzes the max-

imum travel cost that can be saved by introducing a single transshipment point to

the Pickup-and-Delivery Problem. The authors obtained bounds that are propor-

tional to the square root of the number of cycles in an optimal solution and also to

the square root of the number of requests. They also constructed an instance that

achieves tightly one of the bounds.

An exact model for the Pickup-and-Delivery Problem with Time Windows and

Transshipment was proposed by Deschamps et al. (2012) [64]. This exact model is a

complex mixed integer linear programming formulation, and it was validated on a set

of ten particular instances whose optimal solution was alternatively computed by an

ad hoc method. The authors confirm that the introduction of transshipment points

can improve cost savings and give more flexibility for solving the problem because in

some instances there is no solution at all if we do not include transshipment points.

The price to pay for these attractive features is an even larger solution space that

makes the exact problem harder to solve; the authors bear out some prohibitive

computation times from just five transportation requests.

The first exact method for solving some instances of the PDPT was presented

by Cortés et al. (2010) [50]. In their paper, the authors construct a complex mixed

integer linear programming formulation, and they confirm that works correctly by

solving one example instance with a method based on Benders decomposition.

In Bouros et al. (2011) [36], the authors addressed a dynamic Pickup-and-

Delivery Problem with Transfers (that they abbreviate as dPDPT). They proposed

a graph-based formulation that treats each request independently as a Constrained

Shortest Path Problem. One of the main difficulties of the problem considered is

that the cost of the paths does not exhibit the so-called subpath optimality, this

is, subpaths of an optimal path are not necessarily optimal subpaths. Due to this

limitation, it is not possible to use some fast shortest paths algorithms. Hence,

the authors build a graph that they call the “dynamic plan graph” and propose a

label-setting algorithm to explore the solutions space. They compare this approach

against a relatively conventional local search algorithm based on insertion heuristics

and tabu search, and conclude that their method is significantly faster with the

inconvenience that solutions quality is marginally lower.

Masson et al. (2013) [157] developed an adaptative large neighborhood search

(ALNS) algorithm for the Pickup-and-Delivery Problem with Transfers. The ALNS

uses destruction heuristics, insertion heuristics, and a simulated annealing accepting

criterion. The insertion heuristics were developed with the objective of efficiently

inserting requests through transfer points. The adaptative aspect of the ALNS algo-
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rithm consists in associating scores with neighborhoods, and use those scores within

a roulette wheel selection procedure for choosing neighborhoods: at the beginning

all the neighborhoods start with the same weight, and each time a neighborhood

is called, its score is updated depending on its performance. The score of a neigh-

borhood is incremented: in a quantity σ1 if it leads to a new best solution, in a

quantity σ2 if the generated solution is better than the current accepted solution,

and in a quantity σ3 if the new solution is accepted and appears for the first time.

The authors evaluated the algorithm on a set of ten real-life instances and on the

set of instances proposed by Mitrović-Minić and Laporte [160]. The use of transfers

improved up to 9% the solutions of real-life instances, and the ALNS algorithm

improved the results of Mitrović-Minić and Laporte [160].

The computational complexity of checking the feasibility for the insertion of one

request in the PDPT was studied by Masson et al. (2013) [156]. In this work, the

authors determined that if we perform some preprocessing of the current state of a

PDPT network, we can test the feasibility of insertions in constant time, and that

the complexity to update the preprocessed information after insertion/deletion of

one request is quadratic in the size of the network.

Coltin and Veloso (2014)[48] proposed a very large neighborhood search with

transfers (VLNS-T) algorithm for solving the PDPT. The algorithm is based on

the VLNS algorithm for the PDP introduced by Ropke and Pisinger [186], but

allows multiple transfers for items at arbitrary locations, and is not restricted to

a set of predefined transfer points. The VLNS-T uses simulated annealing in its

main loop. It starts by choosing a random current schedule, and uses deletion/

insertion heuristics to generate “neighboring” schedules, and search for a better

current schedule. The best times for those schedules are computed by using the

second step of the algorithm proposed by Cordeau and Laporte in [56], and its

time-feasibility is checked by constraint propagation. Coltin and Veloso applied the

VLNS-T algorithm over some benchmark PDP problems to verify how the use of

transfers improves the best known solution costs, and tested the algorithm over

instances constructed from real world taxi data in New York City.

The Selective Pickup-and-Delivery Problem with Time Windows and Paired De-

mands (SPDPTWPD)[6] is a version of the classical PDP with time windows with

a selective aspect that arises when it is not possible to honor all the requests (e.g., a

company with a small fleet of vehicles). Each request is then associated with some

profit, and the aim of the problem is to maximize the total profit with a minimal

routing cost.
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Peng et al. (2019)[8] studied the Selective Pickup-and-Delivery Problem with

Transfers (SPDPT) which is a PDP that results from a combination of the Se-

lective Pickup-and-Delivery Problem with Time Windows and Paired Demands

(SPDPTWPD) and the Pickup-and-Delivery with Transfers (PDPT). For dealing

with the SPDPT the authors elaborated a strategy for encoding solutions and de-

veloped a particle swarm optimization (PSO)♣ algorithm with local search and in-

sertion heuristics. The authors generated a set of 25 new instances, and modified

the instances proposed by Al Chami et al. (2017) [7] by adding transfer points.

The proposed algorithm obtained good quality solutions (in comparison with the

solutions without transfers) in a relatively small solving time.

Applications of transfers have been mainly related to transportation of people

with limited mobility (see [154, 158, 184, 191]). But there are also some works

related to the impact of transport on the environment, for example, Andini et al.

(2019) [10] analyzed empirically the utility of introducing a single transfer point to

reduce traffic congestion.

A more recent application of transfers to reduce carbon emissions in a Pickup-

and-Delivery network can be found in Xue (2022) [220]. This paper proposes a

two-stage heuristic framework to model the problematic and generate high-quality

delivery routes. It also provides a case study from Dalian (China).

♣The PSO is an algorithm introduced by Eberhart and Kennedy [77] that improves a candidate
solution by having a population of candidate solutions (particles), and moving these particles
around in the space of variables according to simple mathematical formula over the particle’s
position and velocity. It was first intended for simulating the movement of organisms in a bird
flock or fish school.
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Table 1.1: Overview of some papers about PDP with transshipment or
transfers. Abbreviations: CAP=finite capacity, ST=static, DY=dynamic,
SEL=selective, TRSH= transhipment, TRSF=transfers, SPL=split-load, FS
= fleet size, TPR=total profit (requests), SR=satisfied requests, RC=routing
cost, RTV=ride time vehicles, RTR=ride time (requests), WTR=waiting time
(requests), TWV=time windows violations, STW=soft time windows, and
HTW=hard time windows.

Reference Type Objective Constraints Algorithm Size

Theoretical papers

Nakao and Nag-
amochi (2008) [164]

TRSH,
ST

RC 1 tran-
shipment
point

Upper bounds on travel
cost that can be saved
by introducing a single
transshipment point

–

Masson et al.
(2013)[156]

TRSF,
ST

– HTW, 1
transfer
at most

Computational
complexity of checking
the feasibility for the
insertion of one request

–

Exact methods

Contardo et al.
(2010)[50]

TRSF,
ST

FS,
RTV+
RTR+
WTR,
TWV

STW A MILP formulation, a
branch-and-cut +
Benders decomposition
algorithm

≤6
req.

Deschamps et al.
(2012)[64]

TRSH,
SPL, ST

RC HTW A MILP formulation ≤7
req.

Heuristics

Mitrović-Minić and
Laporte (2006)
[160]

TRSH,
SPL, ST

RC HTW Construction-
improvement heuristic

≤100
req.

Thangiah et al.
(2007)[201]

TRSF,
SPL, ST
and DY

FS, RC HTW Insertion and reactive
heuristics

–

Bouros et al.
(2011)[36]

TRSF,
DY

RTV+
RTR+
WTR

– BFS with label-setting
over an auxiliary graph

–

Xue (2022)[220] TRSF,
ST

RTV+
RTR

– Two-stage heuristic
(clustering + local
search)

≤100
req.

Metaheuristics

Masson et al.
(2013) [157]

TRSF,
ST

– CAP,
HTW

An ALNS algorithm
with insertion/remotion
heuristics and a simu-
lated annealing accept-
ing criterion

≤193
req.

Coltin and Veloso
(2014)[48]

TRSF,
ST

RC+
RTV+
SR

CAP,
HTW

A VLNS algorithm (sim-
ulated annealing + re-
motion/insertion heuris-
tics + time constraint
propagation)

≤144
req.

Peng et al (2019)[8] TRSF,
ST, SEL

max TPR
and min
RC

HTW A hybrid particle swarm
optimization (PSO + lo-
cal search and insertion
heuristics)

≤57
req.

22 State of the Art



Models and Algorithms for Problems of Scheduling/Routing with Synchronizations

1.1.2 Dial-A-Ride Problem

In previous section, we have seen Pickup-and-Delivery Problems that are usually

related with goods transportation; for people transportation the name Dial-A-Ride

Problem (DARP) is preferred. The main difference between PDP and DARP is that

the later usually takes user inconvenience into consideration. There exists several

ways of modeling the user inconvenience in a DARP, but the most common ones

consist in the introduction of new terms in the objective function or the incorpora-

tion of additional sets of constraints. This type of problems arises commonly from

situations related to the transportation of handicapped or elderly persons; but there

are also other applications like, e.g., transportation of perishable goods, that require

maximum ride time limits.

Historically, the Dial-A-Ride Problems received more attention long before Pickup-

and-Delivery Problems for goods transportation. The first references about DARP

in the literature date back to the late 1960s and the 1970s (cf. Wilson and Weiss-

berg (1967) [219], Wilson et al. (1971) Wilson et al. [218], Rebibo (1974) [183], and

Wilson and Colvin (1977).

Since the early literature, PDP and DARP have used different terminology and

notation (e.g., in DARPs we usually speak of clients or customers instead of trans-

portation requests). A first attempt to generalize Pickup-and-Delivery Problems

in unified notation was proposed in Savelsbergh and Sol [189]. In this paper, the

authors introduce a more general problem called the General Pickup-and-Delivery

Problem (GPDP) and survey the related problems and the solution methods pub-

lished until 1995.

The Single Vehicle Case

In the literature the single vehicle DARP is sometimes referred as SDARP (see

Parragh et al. [170]), and it can be seen as an extension of the classical Travel-

ing Salesperson Problem (TSP). An early reference related to the incorporation of

precedence constraints into the TSP is Lokin (1979) [150]. In this paper, the author

analyzes some situations that occur in real-life transportation problems, and that

impose some precedence relations between the visits of some cities (e.g., a cluster

of cities must be visited contiguously, some cities must be visited first than others,

etc). The author proposes several sets of constraints that can be included into MILP

formulations of the TSP to impose those precedence constraints, and propose some

branch-and-bound methods for solving the resulting formulations.
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Around 1980, Psaraftis [178] introduced the first exact algorithm for solving

a SDARP. The considered problem involves a generalized objective function that

consists of a weighted combination of the time to service all customers, and the wait

and ride times of each customer (to model the degree of “dissatisfaction” experienced

by each customer). The author proposes a dynamic programming algorithm based

in a backward recursion, and uses that algorithm to solve SDARP instances with

up to nine requests. Three years later, in Psaraftis [179], the same author proposed

a modified version of the above algorithm to solve a SDARP with time windows

and with the objective of minimizing the time needed to service all customers. This

algorithm is based in a forward recursion and requires the same computational effort

as the previous one (namely O(n23n) for n customers). Furthermore, it is capable

to detect infeasible problem instances.

Another forward dynamic programming algorithm for a SDARP was proposed

by Desrosiers et al. (1986) [67]. The considered problem includes time windows

to model user inconvenience, and aims to minimize the total distance traversed by

the vehicle. The authors use the two dimensional (time, cost) labeling that they

had previously used in Desrosiers et al. (1983) [65], and introduce some criteria to

eliminate infeasible states (i.e., states which are incompatible with vehicle capacity,

precedence, or time window constraints). The proposed algorithm achieve running

times that in practice increase linearly with the number of considered requests. The

largest instance solved by the authors comprises 40 requests.

Sexton and Bodin (1985) [193, 194] proposed several heuristics for the SDARP

in a two parts paper. In the first part [193], the authors presented a mathematical

programming formulation of the problem, and proposed a Benders decomposition

procedure to attack the problem through an alternation between a routing compo-

nent and a scheduling component. In the second part [194], the authors proposed

two heuristics: one for building an initial route, and one for improving the route

sequence. They also describe results of some computational experiments on problem

instances with up to 20 requests.

Kubo and Kasugai (1990) [145] provide a comparative survey about early local

search heuristics for the SDARP. They also proposed three heuristic algorithms: a

sequential insertion algorithm based on the algorithm proposed by Jaw et al. in [131],

an adaptation of the classical nearest neighbor method with a randomized routine,

and a space-filling curve heuristic which is a simplified version of an asymptotically

optimal heuristic developed by Stein in [200].

Now we proceed to discuss the literature related to multi-vehicle DARP.
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The Multi-Vehicle Case

In 1984, Kikuchi [138] addressed a DARP related to a demand-responsive trans-

portation system with the objective of minimizing empty vehicle travel and idle

time. The author proposes a methodology that uses a linear programming Trans-

portation Problem whose supply and demand vectors contain both location and

time elements. This Transportation Problem is used to minimize the empty vehicle

travel and idle time. The methodology also yields the minimum fleet size to serve

the passenger trip requests.

In the early 2000s, Cordeau [54] proposed a complex 3-index mixed integer linear

programming formulation for a static DARP with a homogeneous fleet. The author

introduced some sets of valid constraints and used them to develop a branch-and-cut

algorithm for solving the proposed formulation. That branch-and-cut algorithm was

used for solving to optimality problem instances with up to 36 requests. Later, the

formulation was extended to handle a DARP with heterogeneous fleet and passen-

gers.

Around 2007, Ropke et al. [187] proposed two 2-index integer formulations and

additional valid inequalities (called the Strengthened Capacity constraints and the

Fork constraints) for a static DARP. Those formulations can be adapted to handle

problems with either a homogeneous fleet or a heterogeneous fleet. The authors

designed two branch-and-cut algorithms for solving the proposed formulations, and

solved to optimality some problem instances with up to 96 requests.

One of the first heuristics developed for static multi-vehicle DARP was published

around 1981 by Cullen et al. [58]. The authors propose a cluster-first-route-second

approach: they first obtain a collection of “good” clusters which represent promis-

ing segments of a vehicle route, and then those clusters are “chained” into complete

vehicles routes. The authors proposed two partitioning models (one for generating

improving clusters, and one for identifying better chains), and used column genera-

tion approaches for dealing with them.

Around 1986, Jaw et al. [131] proposed a heuristic based on a sequential inser-

tion procedure to assign customers to vehicles and to determine a time schedule

of pickups and deliveries for each vehicle. The authors describe also the results of

computational experiences with the algorithm. This can be considered one of the

first works dealing with large-scale DARP instances, because the authors worked on

an instance with 20 vehicles and 2617 customers.

Ioachim et al. [129] developed a two phase method involving a clustering heuris-

tic and a column generation algorithm for solving a DARP related to a door-to-door
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handicapped transportation problem. In the first phase of the method, the authors

build an auxiliary network and set a Pickup-and-Delivery Problem with Time Win-

dows with multiple vehicles (m-PDPTW). That m-PDPTW is solved by adapting

the column generation exact algorithm from Dumas et al. (1991) [75]. As a re-

sult, they obtain a set of mini-clusters. In the second phase, those mini-clusters

are used to set a Traveling Salesperson Problem with Time Windows with multiple

vehicles (m-TSPTW). The m-TSPTW is also solved by using the column generation

algorithm from [75]. The solutions of this last problem yield the itineraries for the

vehicles. The authors compared the resulting mini-clustering algorithm of the first

phase against a relatively standard parallel insertion heuristic for mini-clustering,

and concluded the column generation based method outperforms the parallel inser-

tion heuristic on the internal traveling time (i.e., the travel time necessary to cover

the internal distance within the mini-clusters) by an average of 9.7%. The authors

used the two phase method for handling instances with up to 2,545 requests.

Potvin and Rousseau [173] proposed a parallel route building heuristic for a

DARP. In this problem, the number of vehicle is not predetermined, and the over-

all objective is to service the customers while minimizing total travel distance and

waiting time. To determine an initial number of routes, the authors used a sequen-

tial insertion algorithm from Solomon (1987) [198]. Then, the parallel routes are

initialized by selecting the farthest customer from the depot in each route created

by the Solomon insertion algorithm, and the remaining customers are inserted once

at time by computing its best feasible insertion place. The next customer to be in-

serted is selected by using a “generalized regret measure” (see Tillman et al. (1972)

[204]) over all routes. The regret measure chosen by the authors is based on the

gap between the best insertion place for a customer and its best insertion places on

other routes. The main idea of the heuristic is that the unrouted customers with

large regrets must be considered first (because the number of interesting alternative

routes for inserting them is small) and the customers with small regret measures can

be considered later for insertion (because they can be easily inserted into alternative

routes without loosing much). The authors tested the heuristic over the Solomon’s

instances [198] and concluded the parallel insertion performs better on not purely

clustered instances.

Madsen et al. [153] proposed an insertion based algorithm for solving a DARP

with a multiobjective function involving fleet size, total driving time, total waiting

time, and penalties related to soft time windows and to vehicles with unutilized

capacity. The proposed algorithm is called REBUS, and was focused on an effi-

cient insertion for dynamic environments (e.g., requests are treated in less than one

second).
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Healy and Moll [116] proposed an local search algorithm for Dial-A-Ride Prob-

lem. The authors developed a “sacrificing” algorithm which is an extension of the

classical local search algorithm. The main idea is to use an additional cost function

to obtain a broader view of solution quality. The proposed algorithm alternates

between both cost functions. When the algorithm uses the secondary cost function,

it may visit solutions which are better with respect to the secondary cost, but that

may be poorer with respect to the original cost function (the authors call this a

“sacrifice move”).

Bondörfer et al. (1999) [35] proposed a cluster-first-route-second approach for

solving a DARP. The clustering problem is modeled and solved optimally as a Set

Partitioning Problem (see Balas and Padberg (1976) [18]). The routing subproblems

are also modeled as Set Partition Problems, but they are solved approximatively by

a branch-and-bound algorithm that uses only a subset of all possible tours.

Surveys about DARP can be found, for example, in Cordeau and Laporte (2003)

[55], Cordeau and Laporte (2007) [57], Agatz et al. (2012) [1], Doerner and Salazar-

González (2014) [71], Molenbruch et al. (2017) [161], and Ho et al. (2018) [122].

Now we provide a review of some works related to the DARP with transfers.

DARP with Transfers

Transfers were mentioned for the first time in the DARP literature around 1978 by

Stein [199, 200]. These pioneer articles contain only theoretical results. In [199],

the author develops an asymptotic probabilistic analysis of some vehicle routing

problems to estimate the length of an optimal solution that picks up and delivers n

passengers from random locations to random destinations within a planar bounded

region R with area a, and when n goes to infinity. The study considers a uniform

probability distribution over R to generate the random points. The author denotes

by Yn the length of an optimal tour and concludes that limn→∞
Yn√

n
= c√a almost

everywhere♢, with
√

2b ≤ c ≤ 2b, taking b as the Traveling Salesperson constant♡ (cf.

Beardwood et al. [24]). In the case which there are k vehicles that travel at unit

speed, the author proves that the minimal total distance travelled by all k vehicles

converges almost everywhere to c
√

a

k
. If transfers are allowed, then the minimal time-

to-delivery the final passenger also converges almost everywhere to c
√

a

k
. In [200],

Stein describes a class of heuristic algorithms for solving some DARPs, and proves

those algorithms are asymptotically optimal in a probabilistic sense.

♢The convergence almost everywhere is a concept from Measure Theory. It means pointwise
convergence on a subset of the domain whose complement has measure zero.
♡The precise value of b has not been determined mathematically yet. Some experimental results

point toward an ultimate value around 0.712 . . . (see [171, 132]).

State of the Art 27



Models and Algorithms for Problems of Scheduling/Routing with Synchronizations

Exact methods. Hou et al. (2016) [124] presented a MILP formulation for a

DARP with transfers related to an application for electric taxis. The authors called

such a problem the Transfer-Allowed Shared eTaxis (TASeT). The objective of the

TASeT problem is to maximize the number of passengers that can be served by a

given taxi fleet during a given period of time. Each passenger is allowed to make at

most one transfer between taxis per trip at the charging stations that are scattered

throughout the city. The need for recharging eTaxis is also considered: an eTaxi

will be send to charge its battery while waiting for a transfer passenger or when its

battery level is too low to serve the next passenger. The MILP model was used to

solve a set of small instances with up to four vehicles and nine requests.

Pierotti and Theresia van Essen (2021) [172] proposed two very complex MILP

formulations of a Dial-A-Ride Problem with transfers. One formulation is based on

continuous time, whilst the other one uses a discrete time. Both formulations rely

on a 2-commodity flow (one for requests and one for vehicles), and rely on the idea

of tracking request flow and forcing vehicle flow to be compatible with that request

flow. The objective function aims at minimizing a generalized costs involving eight

terms: travel cost, penalty for every passenger time travel, penalty for early and late

departure, penalty for early and late arrival, penalty related to loss of quality every

time there is a transfer, penalty of passenger waiting time at transfer nodes, parking

costs for vehicles, and penalty for every unserved request. The MILP formulations

are very general, but they contain 13 types of variables and 37 types of constraints.

The authors tested the formulations for solving real-life instances involving twenty

cities (from the Netherlands), up to four vehicles, and up to eight requests. Due

to the difficulty of the proposed formulations some of the small instances were not

solved to optimality.

Heuristics. Shang and Cuff (1996) [197] developed a heuristic for a Pickup-and-

Delivery Problem♠. The problem involves time windows and a multiobjective func-

tion that aims to minimize routing cost, tardiness and travel time. A particularity

of this problem is that it does not consider a predetermined fleet size. The proposed

heuristic either receives the number of vehicles as a parameter or starts by estimat-

ing an appropriate number of vehicles necessary to satisfy the requests. Items are

clustered according to their due times and then ordered in increasing order of their

ready times. Then, during the main loop, a new item is selected and the algorithm

tries to incorporate the current item into existing schedules. The algorithm tries

first to incorporate the item into a single vehicle route and if it is not possible, then

seeks to incorporate it using a transfer between vehicles. If those incorporations are

♠The problem studied in this article involves service time windows and a multiobjective function
for reducing the tardiness of the system. For those reasons, the authors mention that the problem
can be classified as a DARP.
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not possible, then the procedure selects the next k items in the current cluster (k is

a parameter) and proceed to construct a miniroute. For constructing a miniroute,

the algorithm integrates the current item with the next k items (one at time), while

using three different integration strategies. After the integration, a list of alternative

miniroutes is constructed, those routes are evaluated and the best cost miniroute is

assigned to any vacant vehicle for creating a new schedule. The algorithm continues

until no more integrations are possible. The authors analyzed the behaviour of the

heuristic (evaluating the decrease of tardiness, travel time, and number of vehicles

needed) over instances with up to 300 requests

Deleplanque and Quilliot (2013) [61] studied the Dial-A-Ride Problem with time

windows, transshipments, and dynamic transfer points, which is a DARP including

the possibility of one transfer from a dynamic transfer point by request (such a

transfer point is computed at the same time as the request is included in a vehicle

planning). The authors proposed an algorithm based on techniques of insertion and

constraint propagation.

Hou et al. (2016) Hou et al. [124] presented a greedy heuristic for the previously

defined TASeT problem, and used the heuristic to perform a large-scale evalua-

tion over a set of instances with up to 350 requests. They also presented a case

study in the city of Shanghai, China. The study concluded that TASeT solutions

can significantly improve the number of passengers served by eTaxis by 118% in

comparison with non-shared taxis, and by 35% in comparison with a no-transfers

system. Additionally, the number of taxis can be reduced by up to 41%.

Andini et al (2019)[10] performed an empirical analysis about the importance

of introducing a single transfer point to reduce traffic congestion. They consider a

dynamic PDP (which can also be classified as a DARP) where customer location

and service time are random variables that are realized dynamically during the plan

execution, and use an insertion heuristic for solving some problem instances. The

numerical results they obtained show the transfer point allows to fulfill on average

16.7% more requests.

Metaheuristics. Masson et al. (2011) [154] proposed a tabu search metaheuristic

for solving the Dial-A-Ride Problem with Transfers (DARPT) that was motivated

by a practical case of school bus routing for handicapped children in France. Later,

the same authors proposed in [155, 158] an adaptive large neighborhood search

(ALNS) metaheuristic and explained how to check the feasibility for the insertion of

one request. They also evaluated the proposed method on a set of real-life instances,

and on a modified set of DARP instances from Cordeau and Laporte (2003) [56].
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Shönberger (2017) [191] studied a Dial-A-Ride Problem involving two fleets of

vehicles operating over two distinct regions and with a central transfer hub where all

the passenger have to pass when they travel from a pickup location on one region to

a destination location on the other region. This paper introduced a set of “transfer

scheduling” constraints for maintaining changing times on an acceptable level. The

author proposed a memetic algorithm (a kind of genetic algorithm) that uses a

procedure for sampling the search space, and then combine the sampled individuals

to obtain a set of routes. The genetic search is then enhanced by a schedule building

procedure that postpones waiting times at selected locations (if necessary) in order

to meet the transfer scheduling constraints.

Table 1.2: Overview of papers about DARP with transfers. Abbreviations:
CAP=finite capacity, ST=static, DY=dynamic, SEL=selective, TRSH= trans-
shipment, TRSF=transfers, SPL=split-load, FS = fleet size, TPR=total profit
(requests), SR=satisfied requests, RC=routing cost, RTV=ride time vehicles,
RTR=ride time (requests), WTR=waiting time (requests), TWV=time windows
violations, STW=soft time windows, and HTW=hard time windows.

Reference Type Objective Constraints Algorithm Size

Exact methods

Hou et al. (2016)
[124]

TRSF,
ST

SR HTW A MILP formulation ≤9
req.

Pierotti and
Theresia van Essen
(2020) [172]

TRSF,
ST, SEL

TPR+
RC+
RTV+
RTR+
WTR

CAP,
HTW

Two MILP fomulations ≤8
req.

Heuristics

Shang and Cuff
(1996) [197]

ST,
TRSF

FS, RC
+ RTR +
WTR

HTW A heuristic (item clus-
tering and integration of
items in miniroutes)

≤300
req.

Deleplanque and
Quilliot (2013) [61]

TRSF,
static

SR, RTV
+ RTR

HTW,
1 transfer
at most

Insertion heuristics with
constraint propagation

≤96
req.

Hou et al. (2016)
[124]

TRSF,
ST

SR HTW Greedy insertion heuris-
tic

≤350
req.

Metaheuristics

Masson, Lehuedé,
and Péton
(2011)[154]

TRSF,
ST

RC HTW A tabu search algorithm –

Masson, Lehuedé,
and Péton
(2012)[158]

TRSF,
ST

RC HTW An ALNS algorithm ≤144
req.

Schönberger
(2017)[191]

TRSH,
ST

RC CAP,
HTW

A memetic algorithm ≤200
req.

Hamouda et al.
(2020) [114]

TRSH,
ST

RC CAP,
HTW

A simulated annealing
algorithm

≤200
req.
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More recently, Hamouda et al. (2020) [114] proposed a simulated annealing al-

gorithm combined with four neighborhood search methods for handling the same

DARP introduced in Shönberger (2017) [191]. The authors tested the algorithm on

the set of instances proposed by Shang et al. (1996) [197] and concluded their algo-

rithm performs slightly better than the memetic algorithm proposed by Shönberger

in [191].

1.1.3 Relocation Problem

The Relocation Problem is a VRP involving the transportation of identical objects

on a transit network. Typical applications of this problem occur in the context of

vehicle rental (e.g., bike/car sharing networks) or inventory repositioning. However,

the problem arises naturally in any situation involving the redeployment of non-

consumable resources from places where they are not being used to places where

they are needed. It can be set in the following way.

In the initial state of the problem, a graph is given, and each vertex of the

graph may contain a multiset of objects of a unique type. A final state, specifying

the multisets of objects desired at each vertex, is also given. A fleet of vehicles is

available for shipping objects among the vertices. The Relocation Problem consists

in computing an optimal set of routes for the vehicles in the fleet (with respect to

certain objective function that may involve the number of used vehicles, the length

of vehicle/objects routes, etc). The computed routes must allow the fleet vehicles

to accomplish the rearrangement of the objects while following the assigned routes.

Note that, because this problem may involve the transportation of a single type

of identical objects between multiple stations, it can be seen as a one-commodity

many-to-many Pickup-and-Delivery Problem with unpaired pickups and deliveries.

For this reason, in the literature this problem is also known by the name Pickup-

and-Delivery Vehicle Routing Problem (PDVRP) with unpaired pickup and delivery

points (see Parragh et al. [170]). In the case of a single vehicle, the problem is usu-

ally referred as the Capacitated Traveling Salesperson Problem with Pickups and

Deliveries (CTSP-PD) (see Anily and Bramel [11]), the One-Commodity Pickup

and Delivery Traveling Salesperson Problem (1-PDTSP) (see Hernández-Pérez and

Salazar-González [117]), the Traveling Salesperson Problem with Pickup and Deliv-

ery (see Hernández-Pérez and Salazar-González [118]), or the Pickup and Delivery

Traveling Salesperson Problem (PDTSP) (see Parragh et al. [170]).

We describe next some works related to Relocation Problems, and we survey the

solution methods that have been used to tackle those problems. We classify those

solution methods into exact, heuristic, and metaheuristic approaches. Because some
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articles contain several of those approaches, we also provide a comparative overview

in Table 1.3 (single vehicle case) and Table 1.4 (multi-vehicle case).

Exact methods. The first exact method proposed for a single vehicle Relocation

Problem was introduced by Hernández-Pérez and Salazar-González (2003, 2004)

[117, 118]. It is a branch-and-cut algorithm that uses a construction-improvement

heuristic to obtain feasible solutions from the LP relaxations at each node of the

branch-and-bound tree. The construction phase is an adaptation of the nearest

insertion algorithm for the TSP, and the improvement phase consists in applications

of 2-opt and 3-opt exchanges. The authors tested their algorithms on adaptations

of the instances used in Mosheiov (1994) [163] and Gendreau et al. (1999) [102],

which contain up to 75 customers.

Raviv et al. (2013) [182] proposed MILP formulations for a static multi-vehicle

Relocation Problem (vehicle non-preemptive and load preemptive) with the objec-

tive of scheduling vehicle routes for balancing the system while minimizing routing

costs and user dissatisfaction.

Contardo et al. (2012) [51] addressed a load preemptive/vehicle non-preemptive

Relocation Problem for balancing a dynamic public bike-sharing system during peak-

hours. The authors proposed an arc-flow formulation on a Time-Expanded network,

and applied Dantzig-Wolfe decomposition for deriving two MILP formulations. The

authors solved one of the formulations using a column generation algorithm and

used the other formulation in a primal heuristic to find good solutions. As a re-

sult, the authors provided a methodology for computing lower and upper bounds

in short computing times. The authors tested their methodology on a set of ran-

dom/clustered instances with up to 100 stations distributed in a plane, with integral

coordinates between 0 and 60 (inclusive). They also considered a time horizon of

two hours, discretized with two different granularities (24 periods of five minutes,

and 60 periods of two minutes). The experiments confirmed that the algorithm

based on column generation can find better bounds in shorter computing times in

comparison to solve the arc-flow formulation directly with a MILP solver. They also

showed that the optimality gaps are usually bigger for random instances than for

clustered instances.

Chemla et al. (2013) [45] studied the dynamic C-delivery TSP, which is a static

Relocation Problem involving a single vehicle of capacity C. They proposed an

exact algorithm based on column generation where columns represent feasible vehicle

routes together with sequences of pickup/delivery actions. The proposed algorithm

involves a pricing problem that is solved by dynamic programming.
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Heuristics. One of the early works involving a Relocation Problem is Anily and

Hassin [12]†. This paper introduces a Vehicle Routing Problem called “The Swap-

ping Problem” which is stated over a weighted graph and consists in the computation

of a shortest route for a single vehicle with unitary capacity. In the initial state, each

vertex of the graph may contain an object of a known type, and it is also given a final

state specifying the type of object desired at each vertex. The vehicle should attain

the rearrangement of the objects from the initial state to the final state, shipping

and dropping objects while following the computed route, and without exceeding its

capacity. Anily and Hassin proved the Swapping Problem is NP-hard by providing

a polynomial reduction to the Taveling Salesperson Problem (TSP), exhibited some

structural properties of the shortest routes, and developed polynomial approxima-

tion algorithms with a guarantee ratio of 2.5 (established by using the heuristic of

Christofides (1976) [47] for the TSP). Those approximation algorithms are based on

the “patching algorithm” of Gilmore and Gomory (1964) [104] for the TSP, which is

a two-step heuristic where we first solve a set of Assignment Problems to construct

a collection of subpaths, and then we “patch” those paths to produce a single route.

The first work that considered a Relocation Problem for multiple vehicles is Dror

et al. (1998) [73]. The authors studied a vehicle/load preemptive problem (involving

a weak synchronization mechanism) in the context of self-service electric cars. They

proposed a MILP formulation of the problem (with a pseudo-polynomial size) and

used both constraint programming and Lagrangian relaxation methods for solving

small instances in an exact way. For solving practical size applications the authors

developed a heuristic based on the A* algorithm of Hart et al. (1968) [115].

Chalasani and Motwani (1999) [43] studied Relocation Problems that can be seen

as instances of the following k-delivery TSP: given n source points and n sink points

in a metric space, with exactly one item at each source, find a tour by a vehicle with

finite capacity k to pickup the items from the source points and deliver exactly one

item to each sink point. The authors start by studying the unit capacity case (i.e.,

1-delivery TSP) and show that the problem of “finding a tour with at most twice the

cost of an optimal tour” is equivalent to the problem of “finding a minimum-weight

bipartite spanning tree such that the vertices of one part have degree at most two”

and in turn, this last problem can be seen as the problem of “finding a minimum-

weight maximum-cardinality independent set that is common to the matroid‡ of all

bipartite forests and to the matroid of all bipartite subgraphs having a part that

consists of vertices with degree at most two”. This problem, in turn, is a partic-

ular case of the matroid intersection problem (see Edmonds (1970) [79]). Because

†Unfortunately the official digital sources of this article contain an incomplete document. Page
432 appears duplicated in place of page 423.

‡Oxley [169] provides a gentle introduction to matroids.
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Brezovec et al. (1988) [38] proved that there exist polynomial-time independence

oracles, for the above-mentioned matroids, a 2-approximation algorithm is deduced.

The authors use the algorithm for the unit capacity case together with lower bound

arguments to obtain a 9.5-approximation algorithm for the general case.

Anily and Bramel (1999) [11] also studied the k-delivery TSP and improved the

work of Chalasani and Motwani [43] to obtain a (7- 3
k
)-Approximation algorithm.

They also developed a heuristic called MATCHk that provides a better worst-case

bound for many practical values of k (for example, for k ≤ 385, they obtain approx-

imation algorithms with worst-case bounds that are less than or equal to seven).

Hernández-Pérez and Salazar-González (2004) [119] studied the One-Commodity

Pickup-and-Delivery Traveling Salesperson Problem (1-PDTSP). They developed

a construction-improvement heuristic that uses a greedy construction procedure,

that is followed by applications of 2-opt, and 3-opt exchanges. The authors also

proposed a second heuristic which is based on incomplete optimization: they apply

the algorithm proposed in [119] over a reduced set of variables associated with

“promising” edges.

Lim et al. (2005) [149] studied the Capacitated Traveling Salesman Problem

with Pickups and Deliveries (CTSP-PD) over trees and proved that is NP-hard.

They also developed a 2-approximation algorithm with a worst time complexity of

O[n2/min(n, k)]. The algorithm consists of a recurrent construction process that

builds a series of route sets for all vertices, from the leaves to the root of the tree

instance.

Benchimol et al. (2011) [26] is a study motivated by the installation of the Vélib

system (a “bike hire” system) in Paris with 1,500 stations, almost 20,000 bicycles,

and more than 70,000 travels each day. The authors addressed a static Relocation

Problem, called the C-delivery TSP, which involves a single vehicle of finite capacity

C. They proved the problem is NP-hard by providing a reduction to the Partition

Problem (see Karp (1972) [136]), and adapted the 9.5-approximation algorithm of

Chalasani and Motwani (1999) [43] to obtain also a 9.5-approximation algorithm

for the C-delivery TSP. They also proposed a 2-approximation algorithm for the

particular case of a complete graph with unit costs, and a polynomial algorithm for

solving the problem in the case of a tree graph.

Dell’Amico et al. (2014) [62] studied a bike-sharing rebalancing problem (load

preemptive/vehicle non-preemptive) where a fleet of capacitated vehicles is employed

to relocate the bikes while minimizing routing cost. They proposed four MILP

,An independence oracle of a matroid is any subroutine that takes as its input a subset of the
ground set of the matroid, and returns as output a Boolean value: true if the given set is an
independent set of the matroid, and false otherwise.
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formulations (with an exponential number of constraints) of the problem. In order to

handle those formulations, the authors proposed several branch-and-cut algorithms

involving the separation of two new types of clique inequalities, a directed version of

the infeasible path constraints proposed by Hernández-Pérez and Salazar-González

(2004) [118], and an extension of the tournament constraints proposed by Ascheuer

et al. (2000) [16]. The authors tested the proposed algorithms in real data sets

of twenty-two bike sharing systems from Italy, Ireland, the USA, Canada, Mexico,

Argentina, and Brazil; and they also tested a set of random instances The largest

instances involved up to 116 stations.

Krumke et al. (2014) [144] studied a Relocation Problem in the context of a

carsharing system, where the cars are partly autonomous. The authors considered

an online problem (vehicle and load preemptive) and proposed a 2-commodity flow

MILP model based on a Time-Expanded network (TEN). The model is solved ap-

proximatively with a two-phase heuristic. In the first phase the authors compute

the arcs of the Time-Expanded network which are likely to be used in an optimal

solution (this is done by solving two linear programs: one for carrier flow and the

other for car flow). Then, in the second phase, they construct a reduced Time-

Expanded network (keeping only the arcs computed in the phase one), and compute

an optimal solution on this reduced network. Note that the considered problem has

a selective aspect because the objective is to decide which customers requests can be

satisfied without spending more costs in the relocation process than gaining profit

by satisfying them. The authors analyzed 1,080 randomly generated instances with

50-99 stations; 550-990 cars; 5-15 carriers with capacity 20; time horizons between

60 and 240 time units; and 500-8,000 customers requests.

Zhang et al. (2017) [222] examined a dynamic bicycle repositioning problem

(load preemptive and vehicle non-preemptive) that considers inventory level fore-

casting, user arrival forecasting, bicycle repositioning, and vehicle routing using a

multicommodity Time-Expanded network flow model with a non-linear objective

function. They also proposed a methodology for linearizing that model and obtain

an equivalent MILP model. The resulting MILP is solved with a heuristic algorithm:

the authors solve the LP relaxation of the MILP to detect a subset of “potential”

arcs (arcs carrying a positive amount of flow in the LP solution), then they enu-

merate all the potential routes involving those potential arcs and assign loading

sequences to each route. Some of those routes are fixed and assigned to vehicles,

and then the LP relaxation is solved iteratively while discarding the routes already

fixed. The authors tested the proposed methodology on three data sets with up to

200 stations.
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Bsaybes et al. (2018, 2019) [40, 41] analyzed a Relocation Problem motivated

by the managing of a fleet of individual public autonomous vehicles that operate

in a closed site for supplying an internal transportation service. They addressed

the offline/online and preemptive/non-preemptive versions of the problem. For the

offline problem they proposed an exact MILP formulation involving multicomodity

coupled flows in a Time-Expanded network. Because such a formulation is difficult

to solve in the practice, the authors reduced the Time-Expanded network to contain

only promising arcs and then solved the formulations resulting from such reduced

networks. For solving the online version of the problem, the authors propose three

heuristics. The first one constructs tours in an incremental way, and the other two

use one of two strategies while solving a sequence of offline problems for certain time

intervals and on adapted Time-Expanded networks. They also provided a compet-

itive analysis of the online problem, and tested the offline algorithms over two sets

of 180 random instances each, and with up to 290 requests.

Metaheuristics. Chemla et al. (2012) [44] addressed the C-delivery TSP. They

proposed a branch-and-cut algorithm for solving a relaxation of the problem and

obtain a lower bound for the optimal cost of the problem. They also proposed a

tabu search algorithm for obtaining an upper bound for the optimal cost of the

problem. The authors tested the algorithms on a set of instances with up to 100

stations with demands between -10 and 10.

Rainer-Harbach et al. (2013) [181] studied a static Relocation Problem (vehicle

and load preemptive) related to a bike sharing system. They proposed a general

variable neighborhood search (VNS) algorithm that generates candidate routes for

vehicles to visit unbalanced stations. Then, the number of bikes to be loaded or

unloaded at each station are derived by using one of three alternative methods: a

greedy heuristic, a maximum flow calculation, and a linear programming model.

The authors tested the proposed algorithms over a set of real world instances from

the Vienna Citybike system (involving up to five vehicles and 90 stations).

Di Gaspero et al. (2013) [68] studied a static Relocation Problem (without trans-

fers) in the context of bike sharing systems. They proposed a constraint program-

ming formulation and a hybrid approach which combines constraint programming

techniques with an ant colony optimization algorithm. The authors validated the

proposed approach over a set of real world instances from the Vienna Citybike sys-

tem (involving up to five vehicles and 90 stations). The authors concluded that the

performance of the proposed approach is not as good as those achieved by other

metaheuristic approaches.
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Table 1.3: A comparative overview of papers about Relocation Problems involv-
ing a single vehicle.

Reference Type Objective Constraints Algorithm Size

Anily and Hassin
(1994)[12]

– routing
cost

capacity 1 A 2.5-approximation
algorithm

–

Chalasani and Mot-
wani (1999)[43]

– routing
cost

capacity κ, N

items, n stations
A 9.5-approximation
algorithm (with
respect to
O(κ + n log N))

-

Anily and Bramel
(1999)[11]

– routing
cost

capacity κ Two approximation
algorithms

-

Hernández-Pérez
and Salazar-
Gómez (2003,
2004)[117, 118]

– routing
cost

capacity κ An exact
branch-and-cut
algorithm

≤75
req.

Hernández-Pérez
and Salazar-Gómez
(2004)[119]

– routing
cost

capacity κ Two heuristics:
construction-
improvement, and
branch-and-cut over
a set of promising
arcs

≤75
req.

Lim, Wang, and Zu
(2005)[149]

for
tree
graphs

routing
cost

capacity κ A 2-approximation
algorithm.

–

Benchimol et al.
(2011) [26]

- routing
cost

capacity κ, N

items, n stations
A 9.5-approximation
algorithm (with
respect to
O(log κ + n log N))

–

Chemla et al.
(2012) [44]

- routing
cost

capacity κ, n

stations
A branch-and-cut
heuristic and a tabu
search algorithm

n≤100

Chemla et al.
(2013) [45]

dynamic routing
cost

capacity κ, n

stations
A column generation
algorithm

n≤250
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Table 1.4: A comparative overview of papers about Relocation Problems involv-
ing multiple vehicles.

Reference Type Objective Constraints Algorithm Size

Dror, Fortin,
and Roucairol
(1998)[73]

static, vehi-
cle and load
preemptive

routing
cost

capacity κ A pseudopolynomial
MILP formulation,
an A* algorithm

≤25
req

Contardo et
al. (2012) [51]

dynamic,
load pre-
emptive,
vehicle non-
preemptive

minimize
unmet
demands

heterogeneous
fleet, n sta-
tions

An arc-flow and two
MILP formulations;
a branch-and-cut and
a heuristic algorithm

n≤100

Raviv et al.
(2013)[182]

static, load
preemptive,
vehicle non-
preemptive

routing
cost +
users’
dissatisfac-
tion

heterogeneous
fleet, n sta-
tions

Two MILP formula-
tions

n≤104

Rainer-
Harbach
et al. (2013)
[181]

static, vehi-
cle and load
preemptive

min im-
balance +
number
of loads/
unloads
+ routing
cost

capacity κ,
n stations

A variable neigh-
borhood search
algorithm

n≤90

Di Gaspero et
al. (2013) [68]

static, load
preemptive,
vehicle non-
preemptive

max bal-
ance with
min rout-
ing cost

capacity κ,
n stations

A CP formulation
and a hybrid algo-
rithm (CP + ant
colony optimization)

n≤90

Dell’Amico et
al. (2014) [62]

static, load
preemptive,
vehicle non-
preemptive

routing
cost

capacity κ,
n stations

Four MILP formula-
tions and a branch-
and-cut algorithm

n≤116

Krumke et al.
(2014) [144]

online, selec-
tive, vehicle
and load pre-
emptive

total profit capacity κ,
n stations

A two-phase heuris-
tic (a 2-commodity
flow MILP over a re-
duced TEN)

n≤ 99

Zhang et al.
(2017) [222]

dynamic,
load pre-
emptive,
vehicle non-
preemptive

routing
cost + user
dissatisfac-
tion

capacity κ,
n stations

A Time-Expanded
network flow model,
a MILP formulation,
and a heuristic

n≤200

Bsaybes et al.
(2018) [40]

offline/
online,
vehicle pre-
emptive/
load non-
preemptive

maximize
(profit -
cost)

capacity k A 2-commodity flow
MILP in a Time-
Expanded network,
three online heuris-
tics

≤290
req.

Bsaybes et al.
(2019) [41]

dynamic,
vehicle and
load non-
preemptive

minimize
unmet
demands

capacity 1 A MILP involving
a flow in a Time-
Expanded network

n≤100
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1.1.4 Combined Vehicle Routing and Scheduling Problem

In the Combined Vehicle Routing and Scheduling Problem with Time Windows

(VRSP-TW) there is a given fleet of vehicles in a depot, and a set of customers

to be serviced. Each customer has associated a time window for the arrival time,

and a duration for the visit. The objective is usually to optimize a function which

evaluates service quality and economical cost.

Typical applications occur when two vehicles must meet at a point at the same

time (strong synchronization) or when a vehicle cannot pick up a load before another

vehicle has delivered the same load.

For example, Fagerholt and Christiansen (2000) [82] used a single vehicle variant

of the VRSP-TW to solve a ship scheduling application. The solution method con-

sisted of two phases. First, the authors generate a collection of candidate schedules

for each ship in the fleet. Then, those candidates schedules are brought into a set

partitioning model and solved by commercial optimization software.

In 2008, Bredström and Rönnqvist [37] presented a mixed integer linear program-

ming model for the Combined Vehicle Routing and Scheduling Problem with Time

Windows. The model contains two types of variables: binary routing variables and

rational scheduling variables. It also contains eight types of constraints: six of them

correspond to a multiple Traveling Salesperson Problem and the two remaining were

introduced by the authors to model pairwise temporal precedences and pairwise syn-

chronization between customers visits. The authors presented also a heuristic which

uses the linear relaxation of their mathematical programming model to iteratively

choose/discard subsets of promising arcs of the network. The explicit introduction of

the proposed temporal and precedence constraints allowed the optimization library

to solve to optimality 33 of the 75 smaller proposed instances, within a time limit

of one hour. In contrast, the proposed heuristic found 29 optimal solutions within

a time limit of two minutes. It is important to note that, although those instances

involve twenty customers, four vehicles, and two synchronizations, they give rise to

MILP models with 1,900 variables and 2,100 constraints. For the remaining bigger

instances (which give rise to MILP models with more than 27,000 variables and

more than 28,000 constraints), the MILP library was not able to find any feasible

solution within the one hour time limit, and the authors only analyzed the behavior

of the heuristic on some of those instances with an overall time limit of ten minutes.

Based on those results, the authors argue that, if we are interested only in obtaining

good feasible solutions, then it does not seem more difficult to solve the problem

with synchronization constraints that solve the problem with the relaxed constrains.
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1.2 Methods

In this section, we present a brief discussion of some topics, techniques, and algo-

rithms that will be used later in this work. We only present a brief discussion of

general topics, and provide some concise examples of models and algorithms.

1.2.1 The A* Search Algorithm

The A* search algorithm is a graph traversal algorithm that was introduced by

Peter Hart, Nil Nilsson, and Bertranm Raphael in [115]. It can be considered as

an extension of Dijkstra’s algorithm (see Appendix A.5.3 or Dijkstra (1959) [70]) to

search for the minimum cost path in very large graphs. The main idea behind this

algorithm is to incorporate some heuristic information to guide the search. For some

problems, this results in an efficient search procedure that guarantees the optimality

of the solution found.

Let us recall that an arc progression W from x1 to xk+1 in a digraph G′ = (X ′,A′)
is a finite sequence (x′1, a

′
1, x

′
2, . . . , x

′
k, a′k, x′k+1) such that k ≥ 0, and a′i = (x′i, x′i+1) ∈

A′ for i = 1, . . . , k.

Let us consider a simple digraph G′ = (X ′,A′) with a distinguished vertex x′0. We

define a digraph G = (X,A) by taking X as the set of all the finite arc progressions

in G′ starting from x′0. We add one arc (x, y) to G if and only if there exists an arc

a′ = (x′, y′) ∈ A′ such that y can be obtained by extending x with the arc a′. We

call every x ∈X a state and we say that G is a graph of states.

Suppose that we are given an initial state x0 and a final state xν , and that we aim

to find a minimum cost path from x0 to xν . Suppose also that we have two functions

g, h ∶ X → R, such that, for all x ∈ X, g(x) is the cost of a path from x0 to x, and

h(x) is the estimated cost of a minimum cost path from x to the xν . The A* search

consists of a best-first search that uses the evaluation function f(x) = g(x) + h(x)
to guide the search.

The value g(x) corresponds to the exact cost of moving from x0 to state x, and

the value h(x) is an approximation of the cost increment that would result from

moving from x to xν . So, the function g is defined in a unique way, but we can

use any heuristic as the function h. These functions g and h are usually called the

current cost function and the estimated completion cost function, respectively.

Given a state x, let us denote by g∗(x) the minimum cost of a path from x0 to x,

by h∗(x) the minimum cost of a path from x to xν , and define f∗(x) = g∗(x)+h∗(x).
We have the following.
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Lemma 1.1 (Subpath optimality). Let c∗ be the cost of a minimum cost path P ∗

from x0 to xν, and let x be any vertex of P ∗, then g(x) is the smallest possible cost

of a path from x0 to x. In other words, we have that g(x) = g∗(x).
Proof. By definition of g∗(x), we have that g∗(x) ≤ g(x). We will show that g∗(x) =
g(x). Suppose, to the contrary, that g∗(x) < g(x), then there exists a path P from

x0 to x with cost g∗(x). The path P + P ∗
[x,xν]

(i.e., the path P extended by the

subpath of P ∗ from x to xν) has cost g∗(x)+h∗(x) < g(x)+h∗(x) = c∗ contradicting

the optimality of P ∗. ∎
Now, the optimality of an A* algorithm depends on certain properties of the

heuristic function h. For example, we say that a heuristic is admissible if never

overestimates the cost to reach the final state. That is, a function h is admissible if,

for every state x, it provide us with a lower bound for the cost of a minimum cost

path from x to the final state.

Note that, if h is an admissible heuristic then, for every state x, the cost f(x)
is an optimistic estimation of the cost of a minimum cost path that continues from

state x to the final state xν .

We also have the following result.

Theorem 1.1 - Optimality of the A* algorithm

Let suppose that we have a finite system of states represented as a digraph G =
(X,A), with a given final state xν that is reachable from a given initial state x0.

Consider an A* algorithm that uses a state evaluation function f = g + h > 0, with

g and h defined as in the previous paragraphs. Then, if the heuristic function h is

admissible, the solution found by the A* algorithm is optimal.

Proof. We proceed by contradiction. Suppose that the optimal path P ∗ from x0 to

xν has cost c∗, but the algorithm has ended with a x0-xν-path P of cost c with c > c∗.
Because the algorithm has not found the optimal state, we have that there exists

some vertex x ≠ xν that is in the optimal path P ∗, and that was not expanded. Let

g∗(x) be the cost of a minimum cost path from x0 to x, and h∗(x) be the cost of a

minimum cost path from x to the final state xν . We have the following.

● c ≤ f(x), because otherwise, we would have c > f(x) and the algorithm would

have not finished yet;

● f(x) = g(x) + h(x) by definition of f ;

● g(x) + h(x) = g∗(x) + h(x) by Lemma 1.1, because x is on the optimal path

P ∗;
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● g∗(x) + h(x) ≤ g∗(x) + h∗(x) because h is admissible (i.e., the value h(x) may

underestimate the true cost h∗(x));

● g∗(x) + h∗(x) ≤ c∗, because in fact g∗(x) + h∗(x) = c∗.

Putting all together, we have that c ≤ f(x) = g(x) + h(x) = g∗(x) + h(x) ≤
g∗(x) + h∗(x) ≤ c∗. But we initially have supposed that c > c∗. This contradiction

completes the proof.

∎

Example 1.1 - Computation of a shortest path with an A* algorithm

The map of France in Figure 1.2 shows the approximated location of twelve French

cities. The numbers correspond to the approximate straight-line distances in kilo-

meters from each city to the City of Paris.

Paris
Chartres Provins

Orleans

Dijon

LyonClermont-Ferrand

Bourges

Moulins

Nevers

Auxerre
Montargis

0
7475

109
99

197 216

264

149

391346

264

Figure 1.2: Location of twelve French cities and their straight-line distances (in
kilometers) to the City of Paris.

Table 1.5 provides us with the shortest highway distance in kilometers between

some of those cities.
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Table 1.5: The shortest distances in kilometers of the highway trajects between
some pairs of French cities (values were taken from Google Maps [108]).

from / to Auxerre Bourges Chartres Clermont-Fd Dijon Lyon Montargis Moulins Nevers Orleans Paris Provins

Auxerre - - - - - - - - - - - 106
Bourges 138 - - - - - 118 - - 122 - -
Chartres - - - - - - - - - - 96 -
Clermont-Fd - 190 - - - 167 - 105 - - - -
Dijon 150 - - - - - - - - - - -
Lyon - - - - 197 - - 204 - - - -
Montargis -
Moulins - 100 - - 182 - - - 56 - - -
Nevers 119 - - - - - 137 - - 166 - -
Orleans 78 - - - - - - - - -
Provins 89 -

The straight-line distance between two cities is clearly an optimistic lower bound

for the shortest highway distance between those cities, because in real-life, due to

geographical accidents, roads almost always have curves.

Figure 1.3 represents the progress of an A* algorithm to compute a shortest

highway path from Clermont-Ferrand to Paris, considering only the highway trajects

that are indicated in Table 1.5. Each rectangle represents a state of the system and

corresponds to a path starting at Clermont-Ferrand and ending at the city indicated

by the label inside of the rectangle.

The cost f(s) of a state s corresponding to a city x is calculated by adding the

costs g(s) and h(s); where g(s) is the shortest highway distance from Clermont-

Ferrand to city x, and h(s) is the straigth-line distance from city x to Paris. For

example, in Figure 1.3 (b), the state with the label “Lyon” has an estimated cost of

558, and this value was computed as the sum of 167 (the shortest highway distance

from Clermont-Ferrand to Lyon) and 391 (the straight-line distance from Lyon to

Paris).

Note that, at each stage, we choose a state s with the minimum estimated cost

f(s) and then we expand s to create new states. For example, in Figure 1.3 (b), the

state with the smallest estimated cost is Moulins, so it is the next state to expand.

Figure 1.3 (c) shows the system after expanding Moulins. Note that, we have three

new states with the labels “Bourges”, “Dijon”, and “Nevers”. The estimated cost

of the state with the label “Nevers” is 377 km, and it is computed as the sum of

the shortest highway distance from Clermont-Ferrand to Moulins (105 km), plus the

shortest highway distance from Moulins to Nevers (56 km), plus the straight-line

distance from Nevers to Paris (216 km).

Finally, we observe the A* algorithm finishes when it reaches the final state

“Paris” which corresponds to a highway path of length 424 km. Because the

straight-line distance is an admissible heuristic, we can assert that the solution

found by the algorithm is optimal. ◻
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Clermont-Ferrand

Bourges Lyon Moulins

Clermont-Ferrand

LyonBourges

Bourges Dijon Nevers

Clermont-Ferrand

LyonBourges Moulins

Bourges Dijon

Auxerre Montargis Orleans

Moulins

Clermont-Ferrand

Lyon

Auxerre Montargis Orleans Bourges Dijon Nevers

Auxerre Montargis Orleans

Clermont-Ferrand

Bourges Lyon Moulins

Auxerre Montargis Orleans Bourges Dijon Nevers

Auxerre Orleans

Chartres Paris Provins

(a) Initial state

346=0+346

(b) After expanding Clermont-Ferrand (346)

387=190+197 558=167+391 369=105+264

(c) After expanding Moulins (369)

387=190+197 558=167+391

402=(105+100)+197 551=(105+182)+264 377=(105+56)+216

(d) After expanding Nevers (377)

558=167+391387=190+197

402=205+197 551=287+264

429=(105+56+119)+149 397=(105+56+137)+99 436=(105+56+166)+109

(e) After expanding Bourges (387)

558=167+391

427=(190+138)+99 407=(190+118)+99 421=(190+122)+109 402=205+197 551=287+264

429=286+149 397=298+99 436=237+109

(f) After expanding Montargis (397)

558=167+391

429=286+149 436=237+109

402=205+197 551=287+264

500=(105+56+137+127)+75 424=(105+56+137+126)+0

427=328+99 407=308+99 421=312++109

Clermont-Ferrand

Moulins

Nevers

Bourges

Montargis

Figure 1.3: Stages in a A* search for Paris, starting at Clermont-Ferrand. States
are labelled with the values f = g + h. The g values were taken as the shortest
highway distances (see Table 1.5) and the h values were taken as the straight-line
distances from each city to Paris (see Figure 1.2).
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Dechter and Pearl (1985) [60] examined some properties of heuristic best-first

search strategies whose evaluation functions depend on all the information available

from each candidate path, and not merely on the current cost function g and the

estimated completion cost function h. They show that under certain assumptions

several properties of A* can be preserved. The authors also introduced an interesting

notion of optimality for comparing best-first search algorithms: an algorithm A

dominates an algorithm B with respect to a set of instances I, if and only if for every

I ∈ I, the set of nodes expanded by A is a subset of the set of nodes expanded by B.

Using this definition of domination, the authors examined the class of algorithms

that, like A*, return optimal solutions when all cost estimates are optimistic. They

proved that no optimal algorithm exists for that class, but if we consider only the

class of best-first search algorithms that are guided by path-dependent evaluation

functions, then A* is indeed optimal (i.e., A* dominates all the algorithms in that

class).

We close this section by mentioning the A* has been used extensively for tackling

a wide range of problems. As a matter of fact, the original paper of Hart, Nilsson,

and Bertram [115] has more than 12,800 citations.

1.2.2 Methods Based in Branch-and-Bound

Branch-and-bound is an algorithmic general framework for solving discrete and com-

binatorial optimization problems, as well as mathematical optimization problems.

It was first proposed by Ailsa Land and Alison Doig from the London School of

Economics in [146], while they were carrying out a research sponsored by British

Petroleum in 1960 to develop discrete programming models for the transport and

storage of petroleum.

In this work we are going to use some methods based in branch-and-bound for

solving mixed integer linear programs. So we start this section by providing some

terminology and notation about linear programs.

A mixed integer linear program (MILP) is a problem of the form

minimize cx + hy

subject to Ax +By ≤ b

x ≥ 0 integral

y ≥ 0.

(P1)
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where c = (c1, c2, . . . , cn) and h = (h1, . . . , hp) are two row vectors, A = (aij) is an

m × n matrix, B = (bij) is an m × p matrix, and b =
⎛⎜⎜⎜⎝
b1

⋮
bm

⎞⎟⎟⎟⎠
is a column vector. We

assume that all entries of c, h, A, and B are rational numbers. The columns vectors

x =
⎛⎜⎜⎜⎝
x1

⋮
xn

⎞⎟⎟⎟⎠
and y =

⎛⎜⎜⎜⎝
y1

⋮
yp

⎞⎟⎟⎟⎠
contain the variables to be optimized. The variables xj are

constrained to be nonnegative integers whilst the variables yj are allowed to take

nonnegative real values.

The expression cx + hy is called the objective function of (P1) and the set S =
{(x, y) ∈ Zn

+×Rp
+ ∶Ax+By ≤ b} is called the set of feasible solutions to (P1). Given

a feasible solution s = (x,y) ∈ S we define the cost of s as the value cx + hy and

we denote it by cost(s). If (x, y) is a feasible solution of (P1) that minimizes the

expression cx+hy, then (x, y) is also a feasible solution of (P1) that maximizes the

expression −(cx+hy), so it is possible to transform any maximization problem into

a minimization one.

If we take the problem (P1) without considering h, B, and y we obtain a pure

integer linear program. In contrast, if we take (P1) without considering c, A, and

x we obtain a linear program. Linear programs are important because there exist

algorithms to solve them efficiently☼ in theory and practice.

Now we define the natural linear programming relaxation of (P1) as the problem

minimize cx + hy

subject to Ax +By ≤ b

x ≥ 0

y ≥ 0.

(P2)

Note that in this case, vector x is not constrained to be integral. So, the optimal

cost of a feasible solution for (P2) is a lower bound for the optimal cost of a feasible

solution for (P1). Let us denote by S′ = {(x,y) ∈ Rn
+ ×Rp

+ ∶Ax +By ≤ b} the set of

feasible solutions of (P2).

An inequality αu ≤ β is valid for a set K ⊆ Rm if it is satisfied by every u′ ∈K.

Let s = (x∗,y∗) be a feasible optimal solution of (P2). We may assume that

s = (x∗,y∗) is a basic% optimal solution of (P2). If s is not a feasible solution of

☼In the sense of computational complexity, see Appendix A.4
%This is a very technical concept from linear programming theory. For our present discussion,

it is sufficient to know that given an optimal feasible solution of a linear program, there exist
algorithms that allow us to find a basic feasible solution with the same cost.
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(P1), then we can find an inequality αx + γy ≤ β that is valid for S but such that

αx∗ + γy∗ > β.✠ Such an inequality αx + γy ≤ β is called a cutting plane separating

s = (x∗,y∗) from S.

Given a cutting plane αx + γy ≤ β separating s = (x∗,y∗) from S, we define

S1 = S′ ∩ {(x, y) ∶ αx + γy ≤ β}. The linear programming relaxation of (P1) over S1

is

minimize cx + hy

subject to Ax +By ≤ b

αx + γy ≤ β
x ≥ 0

y ≥ 0.

(P3)

Since every solution in S satisfies αx + γy ≤ β, we have that S ⊆ S1 ⊂ S′ so we

say that (P3) is stronger than (P2).

Let us return to the branch-and-bound method. For applying the branch-and-

bound method to a minimization MILP problem, we need to perform iteratively the

following two kinds of steps:

• “branch” step: given a subset of possible solutions, partition the subset into

at least two nonempty subsets.

• “bound” step: for every subset obtained by branching iteratively, compute a

lower bound on the cost of any solution within the subset.

At the beginning of the branch-and-bound algorithm, we have a set S consisting

of all feasible solutions. Note that such a set is usually given in a implicit way (e.g.,

S = {(x,y) ∈ Zn
+×Rp

+ ∶Ax+By ≤ b} is the set of feasible solutions of (P1) but is not

an explicit set of solutions). Also, we initialize an upper bound variable U as +∞ or

as any other valid value (e.g., a heuristic solution of the problem).

The branch-and-bound algorithm constructs a search tree T rooted at S by

performing iteratively a branch step followed by a sequence of bound steps. During

the branch-and-bound process, we call the incumbent to the best feasible solution

found by so far at a given moment.

At each step, the branch-and-bound algorithm chooses an active (i.e., non-

explored) node of T corresponding to a (implicit) set S of feasible solutions, and

partitions such a set into a collection of (implicit) subsets of feasible solutions, i.e.,

✠The existence of such an inequality is guaranteed when (x∗, y∗) is a basic feasible solution of
(P2).
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S = S1 ⊔ . . . ⊔ St. Then, for each i = 1, . . . , t the algorithm computes a lower bound

Li on the cost of any solution in Si. Such a bound is usually computed by solving

the linear relaxation of the MILP in Si and we have one of the following cases.

1. Pruning by optimality: If while computing the lower bound Li we find a feasible

solution s ∈ Si with cost Li, then we deduce that s is a best cost solution in Si.

In this case, we can redefine Si = {si}, and mark resulting node as non-active.

In case cost(si) < U, then we update the incumbent by setting s∗ = si and we

update the best known cost by setting U = cost(si).
2. Pruning by bound: If we have Li ≥ U then we deduce that Si does not contain

feasible solutions with a better cost than the incumbent. In this case, we mark

node Si as non-active.

3. Pruning by infeasibility: If we find that Si = ∅, then we discard Si.

4. New node: If we are not in any of the previous cases, then we have that ∣Si∣ > 1

and Li < U. In this case, we add a new active node Si and a new arc (S,Si) to

the directed tree T .

The algorithm stops when there are no more active nodes to explore. A pseu-

docode of the whole above process is shown in Algorithm 1.

Algorithm 1: Branch-and-bound algorithm
Input : An instance of a minimization MILP problem.

Output: An optimal solution s∗ (if any).

1 Set T ← (V (T ) = {S}, E(T ) = ∅), where S is the set of all feasible solutions.

Mark S as active and set the incumbent s∗ ← Nil.

Set the upper bound U ← +∞ (or to any other finite upper bound available).

2 Choose an active vertex S′ of the tree T (if there is none, stop and return s∗).

Mark S′ as non-active and find a partition S′ = S1 ⊔ . . . ⊔ St.

Set T ← (V (T ) ∪ {S1, . . . , St}, A(T ) ∪ {(S′, S1), . . . , (S′, St)}) [Branch step]

3 for i = 1, . . . , t do

Find a lower bound Li on the cost of any solution in Si. [Bound step]

if Si = {s}, cost(s) = Li, and Li < U then

U ← cost(s), s∗ ← s, and mark Si as non-active. [Pruning by optimality]

if Li ≥ U then mark Si as non-active. [Pruning by bound]

if Si = ∅ then mark Si as non-active. [Pruning by infeasibility]

if ∣Si∣ > 1 and Li < U then mark Si as active. [New node]

4 Go to Step 2.

48 State of the Art



Models and Algorithms for Problems of Scheduling/Routing with Synchronizations

According to Williams [217], although branch-and-bound based methods have

proved to be the most successful, in general, on practical MILPs, the basic branch-

and-bound algorithm usually receives little attention in theoretical mathematical

programming books, possibly because of its lack of mathematical sophistication

compared with other methods like the Gomory cutting-plane algorithm.

The Gomory cutting-plane algorithm [107] was the first algorithm for solving

general MILPs. It can be described as an iterative process that approximates the

set of feasible solutions of a MILP as the set of feasible solutions of a linear program.

Such a linear program is constructed initially as the linear relaxation of the MILP

and then the approximation is improved by generating and introducing additional

specific cutting planes called Gomory cuts.

Ralph Gomory invented this method around 1957 for solving pure integer pro-

gramming problems and provided a way for obtaining a finite algorithm. Later,

Gomory extended the algorithm for solving MILPs. However, this and other cutting-

plane algorithms resulted to be impractical due to numerical instability and because

they usually need an exponential number of cuts to make progress towards the so-

lution.

As a result, the branch-and-bound method of Land and Doig dominated the

practical world of MILP computation until mid-1990s, when Balas et al. [19] showed

that cutting-plane methods can be very effective when combined with branch-and-

bound methods. Resulting algorithms were hence called branch-and-cut methods.

Branch-and-Cut

The first branch-and-cut implementation for solving general MILPs was proposed

by Balas et al. [19]. It adds several Gomory cuts at a time, reoptimizes the resulting

linear program, performs a few rounds of cut generation, and incorporates this

procedure in a branch-and-bound framework. Incorporated in this way, Balas et

al. (1998) [31] performed numerical experiments on a set of 106 instances (taken

from a library of customer and academic models) and they found that Gomory

cuts speed up the branch-and-bound search by a factor of 2.5. Commercial integer

programming solvers started to incorporate Gomory cuts and other types of cuts in

1999 [49].

Note the branch-and-cut methods implemented in the commercial solvers are of

general purpose. In practice, we usually face MILPs with a combinatorial structure

that admits other types of ad hoc cuts. In those cases, we can incorporate the

generation of those cuts into the cutting component of a branch-and-but algorithm

of general purpose.
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A pseudocode of the whole above process is shown in Algorithm 2.

Algorithm 2: Branch-and-cut algorithm
Input : An instance of a minimization MILP problem.

Output: An optimal solution s∗ (if any).

1 Set T ← (V (T ) = {S}, E(T ) = ∅), where S is the set of all feasible solutions.

Mark S as active and set the incumbent s∗ ← Nil.

Set the upper bound U ← +∞ (or to any other finite upper bound available).

2 Choose an active vertex S′ of the tree T (if there is none, stop and return s∗).

Mark S′ as non-active and find a partition S′ = S1 ⊔ . . . ⊔ St.

Set T ← (V (T ) ∪ {Si}, A(T ) ∪ {(S′, Si)}) [Branch step]

3 for i = 1, . . . , t do

Find a lower bound Li on the cost of any solution in Si. [Bound step]

Try to add some cutting planes for improving the value of Li. [Cut step]

Update the value of Li. [Bound step]

if Si = {s}, cost(s) = Li, and Li < U then

U ← cost(s), s∗ ← s, and mark Si as non-active. [Pruning by optimality]

if Li ≥ U then mark Si as non-active. [Pruning by bound]

if Si = ∅ then mark Si as non-active. [Pruning by infeasibility]

if ∣Si∣ > 1 and Li < U then mark Si as active. [New node]

4 Go to 2.

As we have mentioned previously, the branch-and-bound algorithms for solv-

ing MILPs usually solve a natural linear programming relaxation for obtaining a

bound on the optimal cost at each node. Because the quality of those bounds may

have an important impact on the performance of a branch-and-bound algorithm,

researchers began to consider alternative MILP formulations with stronger natural

linear programming relaxations. This gave rise to the branch-and-price method.

Branch-and-Price

Branch-and-price is a method of combinatorial optimization for solving some mixed

integer programming problems that typically contain a large number of variables.

An introductory description of the method with some examples can be found in [21].

We start this section by describing the column generation algorithm which is one

of the main components of the branch-and-price method.

Consider the LP problem

minimize cx

subject to Ax = b

x ≥ 0

(P4)

with x ∈ Rn, b ∈ Rn, and A ∈ Rm×n with linearly independet rows. Suppose that A is
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given in an implicit way because its number of columns is so large that is impossible

to store it in a computer.

There exist some iterative linear programming algorithms (like the revised sim-

plex method) which, for generating a new basic feasible solution x′ at any given

iteration, only require the n columns related to the current basic feasible solution x

and a column which is to enter the basis. So, if we find an efficient way for discov-

ering a column xi that yields a new basic feasible solution x′ with improved cost,

then it is possible to solve (P4) with a column generation algorithm.

Such an algorithm considers two problems: the master problem and the sub-

problem. The master problem is the original problem with only a subset of columns

being considered. The subproblem is a new problem created to identify an improv-

ing column (i.e., a column that yields a new basic feasible solution with improved

cost). A pseudocode of the column generation method is shown in Algorithm 3.

Algorithm 3: Column generation algorithm
Input : A feasible LP problem P =min{cx ∶Ax ≤ b, x ≥ 0}.
Output: An optimal solution x∗.

1 Initialize the master problem and the subproblem.

2 Find a solution x∗ of the master problem.

3 Solve the subproblem for finding an improving column.

4 if an improving column xi is found then

5 Add xi to the master problem and then go to Step 2

6 else

7 Return x∗.

One of the most influential works about the column generation method was the

paper of Gilmore and Gomory (1961) [103] on the cutting-stock problem. Another

interesting example is Desrosiers et al. (1984) [66] where the authors used the

column generation method for solving a routing problem with time windows.

Let us return to the branch-and-price method.

The branch-and-price method is based on a branch-and-bound schema in which,

at each node of the search tree, we have a natural linear programming relaxation

whose solution provide us with a bound for the cost of any MILP feasible solution

on the node, but whose explicit formulation may be impossible to write due to time/

memory requirements. For this reason, some sets of columns are left out and we

proceed to obtain/improve the linear programming relaxation solutions by using a

column generation method.

At first glance we can roughly conceive the method as a hybrid of branch-and-

bound with column generation methods. However, according to Johnson [133], the

following drawbacks may arise.
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• The structure of the pricing problem is delicate and it can be destroyed if we

use the conventional integer programming branching on variables.

• Solving to optimality the natural linear relaxation problems at each node may

be computationally expensive. So we may need to apply specific rules for man-

aging the branch-and-bound tree and avoid the computation of the solution of

many of those relaxations.

To finish this brief section, we mention an illustrative example of a branch-and-

price algorithm for the Generalized Assignment Problem (GAP).

Example 1.2 - A branch-and-price model for the GAP

The Generalized Assignment Problem is the following 0, 1 pure integer linear pro-

gram, defined by coefficients cij and tij, and capacities Tj, i = 1, . . . ,m, j = 1, . . . , n.

maximize ∑m
i=1∑n

j=1 cijxij

subject to ∑n
j=1 xij = 1 i = 1, . . . ,m

∑m
i=1 tijxij ≤ Tj j = 1, . . . , n

x ∈ {0,1}m×n.

(GAP)

One interpretation of this model is as follows. Suppose that a hospital has n

operating rooms and that there are m surgeries that must be scheduled during a

given time period T . Let tij be the estimated time of operating on patient i in room

j, for i = 1, . . . ,m, j = 1, . . . , n. The aim is to maximize the utilization time of the

operating rooms during the time period (note that this is equivalent to minimizing

wasted capacity).

The first set of constraints are called the assignment constraints and mean that

each patient i is operated exactly once. The second constraints are the capacity

constraints on each of the operating rooms.

If we apply the Dantzig-Wolfe decomposition to previous formulation with the

assignment constraints defining the master problem, and the operating room capac-

ity constraints defining the subproblems, we obtain the following master problem.

maximize ∑1≤j≤n∑1≤k≤Kj
(∑1≤i≤m cijy

j
ikλ

j
ik
)

subject to ∑1≤j≤n∑1≤k≤Kj
y

j
ikλ

j
k = 1 i = 1, . . . ,m

∑1≤k≤Kj
λ

j
k = 1 j = 1, . . . , n

λ
j
k ∈ {0,1} j = 1, . . . , n,

k = 1, . . . , Kj.

52 State of the Art



Models and Algorithms for Problems of Scheduling/Routing with Synchronizations

where the first m entries of a column, given by yj
k = (yj

1k, y
j
2k, . . . , y

j
mk), form a feasible

solution to the jth knapsack constraint

∑
1≤i≤m

tijy
j
i ≤ Tj, y

j
i ∈ {0,1}, i = 1, . . . ,m,

and where Kj denotes the number of feasible solutions of that constraint.

The reason for such a reformulation is that the natural linear programming

relaxation of the Dantzing-Wolfe decomposition is stronger than the one obtained

from the standard formulation. However, note that such a decomposition it is usually

too big for writing the complete LP formulation in an explicit way. So, for solving

the LP relaxation, we use a column generation algorithm that will be based on

the solution of n knapsack problems (the jth knapsack problem searches for a new

assignment of patients to operating room j).

Once we have obtained an optimal solution for the cost of the natural linear

programming relaxation of the master problem on some node, if the solution is not

integral it would be necessary to branch over some variables in order to find an

integral solution. Yet, we observe that a standard branching over the λj
k variable

would create a problem along a branch where λj
k = 0, and because yj

k represents a

particular solution to the jth knapsack subproblem, setting λj
k = 0 means that this

solution would be excluded. That usually would result in a bad branching strategy

because it is possible that the next time that the jth knapsack problem is solved

the optimal solution is precisely yj
k, and in that case, it would be necessary to forbid

that solution and search for an alternative solution of that knapsack problem. If we

continue branching in that way, at depth ℓ in the branch-and-bound tree we would

need to find an optimal solution of the jth knapsack problem that is different from

the ℓ previous optimal solutions that we have found at each branching. As a result,

the jth knapsack subproblem may become harder with every new branching.

An interesting idea to remediate that difficulty is to consider the current frac-

tional solution with respect to the original variables and select a fractional variable

xij. Then we use a branching rule that would correspond to branching on xij. That

is, if xij = 1, then all the existing columns in the master problem that do not assign

patient i to operating room j are deleted and patient i is permanently assigned to

operating room j (i.e., variable yj
i is fixed to 1 in the jth knapsack); in contrast,

if xij = 0, all existing columns in the master problem that assign patient i to op-

erating room j are deleted and patient i cannot be assigned to operating room j

(i.e., variable yj
i is removed from the jth knapsack problem). The application of

such a branching rule implies that each of the knapsack problems contains one fewer

variable after performing the branching, and so they become easier. ◻
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1.2.3 Layered Graphs

Layered graphs are a modelization tool to (re)state optimization problems that allow

an indexation over resources state values during the different steps of a process.

Gouveia et al. (2019) [109] contains a relatively recent survey about layered graphs

and several classifications of the literature.

Although it is difficult to point out which were the papers that used layered

graphs for the first time, it seems clear that most of the early developments occurred

in the context of Time-Expanded networks (see, e.g., [30, 90, 94, 106, 110, 212]). A

Time-Expanded network (TEN) is a particular type of layered graph that is obtained

by considering indexations of vertices over time values. We start this section by

describing Time-Expanded networks.

To illustrate the construction of a Time-Expanded network, we are going to

consider an example based on the Vehicle Routing Problem (VRP). In the VRP we

have a digraph G = (X,A) whose vertex set X contains a distinguished depot vertex

d and customer vertices {x2, . . . , xν(G)}. For every arc a ∈ A we have a nonnegative

travel time denoted by timeG(a). Also, we associate with every vertex x in X ∖{d}
a nonnegative demand bx. Finally, we have a fleet of vehicles with capacity κ and

a time horizon [0,Ω]. We consider that a customer vertex x is served when some

vehicle arrives to x and incorporates the demand bx to its load. The aim is to

determine a collection of tours for the vehicles in the fleet, in such a way that, all

the customers are served, the capacity of the vehicles is respected at any moment,

and the sum of the travel times of the arcs in the tours is minimized.

For the VRP, the vertex set of the related Time-Expanded network is obtained

by replicating each vertex x for each admissible time value t, creating a vertex xt.

Every vertex xt is associated with a particular visiting time t of customer x. Also, the

Time-Expanded network includes arcs (xt, yt′) between pairs of replicated vertices

xt and yt′ if the travel time from x to y is equal to t′ − t and the arc (x, y) is an

arc of the original digraph. Example 1.3 illustrates a VRP instance and its related

Time-Expanded network.

Example 1.3 - A Time-Expanded network built from a VRP instance

Figure 1.4 (a) depicts the transit network of a VRP instance with a depot d and five

customers {u,w,x, y, z}. We consider a time horizon Ω = 7 (i.e., seven time units)

and a fleet of vehicles with capacity κ = 6. Figure 1.4 (b) depicts the corresponding

Time-Expanded network. It is not difficult to show that the optimal solution for

the VRP instance is given by the tours Γ1 = (d, u,w, x, d) and Γ2 = (d, z, y, d), which

correspond, respectively, to the paths (d0, u1,w3, x4, d6) and (d0, z3, y4, d7) in the

Time-Expanded network. ◻
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Figure 1.4: An example of Time-Expanded network. (a) The transit network of
a VRP instance with a depot vertex d and customers {u, w, x, y, z}, a time horizon
Ω = 7, and a vehicle capacity κ = 6. Travel times are provided next to the arcs.
(b) The Time-Expanded network constructed from the VRP instance in (a).

As we can see from Example 1.3, the size of a Time-Expanded network may

become huge even for small VRP instances, yet we should not give up too easily.

A closely look of the Time-Expanded network in Figure 1.4 (b) allows us to see

that many arcs in the Time-Expanded network cannot be used by any feasible

solution. This is because a valid tour for a vehicle corresponds to a path in the Time-

Expanded network starting at d0 and ending at an element of {d1, d2, . . . , d6, d7}. So,

by performing a breadth-first search (BFS) starting at vertex d0, we can discard all

the arcs of the Time-Expanded network that are not contained in any of those paths,

and proceeding in this way, we obtain the simplified Time-Expanded network that

is shown in Figure 1.5.
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Figure 1.5: A simplification of the Time-Expanded network in Figure 1.4 (b).

The above kind of simplifications may have a drastic impact in our capabil-

ity to solve formulations over Time-Expanded networks, for this reason, this is an

important and active field of research (see for example [25], [40], or [144]).
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Simplifications are often performed with one of the following objectives in mind.

• Preserve optimality: in this case, we only discard the incompatible or re-

dundant arcs, yet the resulting network may be still too big and it could be

necessary the use of ad hoc methods for solving the underlying formulations.

• Obtain a feasible solution: in this case, we not only discard the incompatible

or redundant arcs, but we also discard (in a heuristic way) collections of arcs

that seem less promising. Proceeding in this way, we obtain networks that are

easier to handle, but we obtain approximated solutions.

A more recent approach that works in the reverse sense is the dynamic dis-

cretization discovery (DDD) algorithm. It was proposed by Boland et al. (2017)

[32] in the context of a Service Network Design Problem and it was adapted later

for solving the Traveling Salesman Problem with Time Windows (see [33]) and the

Time-Dependent Traveling Salesman Problem with Time Windows (see [214]). The

algorithm repeatedly solves a MILP formulation on a “partially” Time-Expanded

network and refines that network based on an analysis of the solutions obtained. At

the general step, we solve an auxiliary MILP which is based on a partially Time-

Expanded network DT and whose solution provide us with a lower bound for the

optimal cost of the original problem. If such auxiliary solution can be seen as a

feasible solution of the original problem, then the solution is optimal and we are

done; otherwise we create one or more variations of DT and we solve some related

MILP problems to search for “converted” solutions that are feasible for the original

problem. If one of those converted solutions has the same cost than the current

lower bound, then we can assert that it is an optimal solution, otherwise we use the

solution on DT to identify time points that can be added (together with some arcs)

to DT , and ensure an improved solution in the next iteration. Note that the nodes

and arcs added at each iteration are chosen in such a way that they guarantee to

preserve optimality. Gnegel et al. (2023) [105] provided a more general approach

by embedding the DDD algorithm in a branch-and-bound framework and called

branch-and-refine the resulting method.

So far in this section, we have only considered examples of networks that involve

indexations over time values. Although time values give us an intuitive representa-

tion of the evolution of the states in a process, there is nothing special in this type

of resource, and we can consider time as an abstract resource among others. Such

an interpretation leads us directly to the concept of layered graph, which generalizes

the concept of Time-Expanded network. Example 1.4 shows a way in which we can

use the load values to obtain a load-indexed layered graph for the VRP.
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Example 1.4 - A load-indexed layered graph built from a VRP instance

Figure 1.6 depicts a load-indexed layered graph constructed from the VRP instance

in Example 1.3. In order to avoid a cumbersome drawing, we have removed some

incompatible or redundant arcs. Once more, it is not difficult to show that the

optimal solution for the VRP instance is given by the tours Γ1 = (d, u,w, x, d) and

Γ2 = (d, z, y, d) which correspond, respectively, to the paths (d0, u2,w4, x5, d5) and

(d0, z1, y6, d6) in the load-indexed layered graph. ◻
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Figure 1.6: A load-indexed layered graph constructed from the VRP instance in
Example 1.3. Note that we have removed some incompatible or redundant arcs.

We close this section by summarizing the following observations that we have

extracted from the article of Gouveia et al. [109].

• Layered graphs allow to obtain easily integer programming formulations of

some graph problems involving complex aspects or relations, but the price to

pay for this flexibility is a formulation with a big number of variables.

• Integer programming formulations based on layered graphs usually give tight

dual bounds that can be obtained from the associated linear programming

relaxations. However the big size of the formulations may turn difficult to

solve even those linear programming relaxations and it could be necessary the

development of special methods and techniques for handling those models.

• The use of layered graphs can be interesting if the number of achievable re-

source values is not so big, and also for difficult problems for which are not

known alternative models, or acceptable algorithms based on the original de-

cision variables.
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• Using a layered graph approach does not seem very promising in problems for

which there are ad hoc models with evidence of certain performance, especially

if those models can be effectively solved by algorithms based on natural space

formulations.

1.2.4 Flows and Multicommodity Flows

In this section, we start by defining two important problems of the network flow

theory: the Maximum Flow Problem and the Minimim Cut Problem. Then we

introduce the Multicommodity Flow Problem as a generalization of the Maximum

Flow Problem.

Let G be a digraph, we denote by V (G) and A(G) the set of vertices and arcs

of G, respectively. We also use the notations ∂−G(U) = {(x, y) ∈ A(G) ∶ x ∉ U, y ∈ U}
and ∂+G(U) = {(x, y) ∈ A(G) ∶ x ∈ U, y ∉ U}. If U is a singleton {x}, then we write

∂−G(x) and ∂+G(x) instead of ∂−G({x}) and ∂+G({x}), respectively.

Given a digraph G with capacities cap ∶ A(G) → R+, a flow is a function f ∶
A(G)→ R+ with f(a) ≤ cap(a) for all a ∈ A(G). The excess of a flow f at v ∈ V (G)
is defined by

exf(v) = ∑
a∈∂−

G
(v)

f(a) − ∑
a∈∂+

G
(v)

f(a).

We say that f satisfies the flow conservation rule at vertex v if exf(v) = 0. A

flow satisfying the flow conservation rule at each vertex is called a circulation. An

ŝ-p̂-flow is a flow satisfying exf(s) ≤ 0 and exf(v) = 0 for all v ∈ V (G) ∖ {ŝ, p̂}. We

also define the value val(f) of an ŝ-p̂-flow f by val(f) ∶= −exf(s). One of the most

basic problems about ŝ-p̂-flows is the following.

Maximum Flow Problem: Given a digraph G with arc capacities cap ∶ A(G) →
R+ and two distinguished vertices ŝ and p̂. Find an ŝ-p̂-flow of maximum value.

This problem can be solved efficiently both in theory ⊛ and practice by using,

for example, the Ford-Fulkerson algorithm (see Appendix A.5.4).

Now let us recall that an ŝ-p̂-cut in a digraph G is an arc set ∂+G(X) with ŝ ∈X
and p̂ ∈ V (G)∖X. The capacity of an ŝ-p̂-cut is the sum of the capacities of its arcs.

One of the most basic problems about ŝ-p̂-cuts is the following.

⊛i.e., In polynomial time with respect to the size of the input digraph, see Appendix A.4.
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Minimum Cut Problem: Given a digraph G with arc capacities cap ∶ A(G) → R+

and two distinguished vertices ŝ and p̂. Find an ŝ-p̂-cut of minimum capacity.

The following min-max theorem is a central result of network flow theory that

links the Maximum Flow Problem and the Minimum Cut Problem.

Theorem 1.2 - Max-Flow-Min-Cut Theorem

In a directed graph G, the maximum value of an ŝ-p̂-flow equals the minimum ca-

pacity of an ŝ-p̂-cut. ∎
It results that the Minimum Cut Problem can be solved also by using the Ford-

Fulkerson algorithm in the following way.

1. Apply the Ford-Fulkerson algorithm for finding a maximum ŝ-p̂-flow f .

2. Build the digraph G′ = {a ∈ A(G) ∶ f(a) < cap(a)}.
3. The set of vertices x for which there exist an undirected ŝ-x-path in G′, con-

stitutes an ŝ-p̂-cut of minimum capacity in G.

Another important structural result about flows is the following Flow Decompo-

sition Theorem. It was proved independently by Gallai [99], and Ford and Fulkerson

[95].

Theorem 1.3 - Flow Decomposition Theorem

Let G be a digraph and let f be an ŝ-p̂-flow in G. Then there exists a family P
of ŝ-p̂-paths and a familiy C of circuits in G together with weights w ∶ P ∪ C → R+

such that f(a) = ∑P ∈{P∪C∶a∈A(P )}w(P ) for all a ∈ A(G), ∑P ∈P w(p) = val(f), and

∣P ∣ + ∣C∣ ≤ ∣A(G)∣. Moreover, if f is integral then w can be chosen to be integral. ∎
Now we proceed to define the Multicommodity Flow Problem which can be seen

as a generalization of the Maximum Flow Problem.

Let us consider a digraph G with arc capacities cap ∶ A(G) → R+ and a collection

of pairs (ŝ, p̂) in V (G)×V (G), the multicommodity flow problem consists in finding

an ŝ-p̂-flow for each pair (ŝ, p̂) in such a way that the total flow through any arc

does not exceed the arc capacity. Here, we follow the treatment of Korte and Vygen

[142] and we specify the pairs (ŝ, p̂) by a second digraph H and we add an arc from

(p̂, ŝ) to H when we ask for a flow from ŝ to p̂ in G. The arcs of G are called supply

arcs and the arcs of H are demand arcs or commodities. Endpoints of demand arcs

are called terminals. Let us state the problem in a formal way.
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Directed Multicommodity Flow Problem: Given a pair (G,H) of directed

graphs with V (G) = V (H), capacities cap ∶ A(G)→ R+, and demands dem ∶ A(H)→
R+. Find a family (xf)f∈A(H), where xf is an ŝ-p̂-flow of value dem(f) in G for each

f = (p̂, ŝ) ∈ A(H), and

∑
f∈A(H)

xf(a) ≤ cap(a), for all a ∈ A(G).

The Directed Multicommodity Flow Problem has some natural linear program-

ming (LP) formulations of polynomial size and therefore it can be solved in poly-

nomial time by means of linear programming. However, those LP formulations are

usually very large and it is preferred to use faster combinatorial algorithms for solv-

ing the problem approximatively. Also, the totally unimodular property that is

satisfied by the system matrix of an maximum flow LP problem with integral coeffi-

cients, is no longer true for Multicommodity Flow Problems as shows the following

example.

Example 1.5 - A Directed Multicommodity Flow instance without integer solutions

The two digraphs depicted in Figure 1.7 correspond to a Directed Multicommodity

Flow Problem instance with unit capacities and unit demands.
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dem(a) = 1, for all a ∈ A(H)

(a) (b)

Figure 1.7: An example of a Directed Multicommodity Flow Problem instance.
(a) Digraph G and capacities. (b) Digraph H and demands.

The multicommodity flow shown in Figure 1.8 is a feasible solution of the above

instance, but it is not an integral solution. In fact, we can prove that there are no

integral feasible solutions in the following way.

DigraphG is acyclic so, by Theorem 1.3, we deduce that any positive integral x-y-

flow over G can be decomposed into a family of x-y-paths that carry integral positive

amounts of flow. Suppose the instance has a feasible integral solution consisting of
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an x1-x12-flow, and an x3-x10-flow. We apply the Flow Decomposition Theorem to

those flows to obtain paths from x1 to x12 and from x3 to x10 that carry positive

integral flow. Note that there are four distinct paths from x1 to x12, four distinct

paths from x3 to x10, and that any x1-x12-path intersects to any x3-x10-path in at

least one arc. Therefore, if we select an x1-x12-path and an x3-x10-path from the

above flow decompositions, the amount of flow passing through any common arc of

those paths must be at least two, but this violates the capacity constraints. Such

a contradiction proves that there cannot be integral feasible solutions of the above

instance. ◻
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Figure 1.8: A feasible solution of the Directed Multicommodity Flow Problem
instance illustrated in Figure 1.7. (a) x1-x12-flow. (b) x3-x10-flow.

State of the Art 61





Part II

The Item Relocation Problem

with Transfers and Time Horizon

63





Chapter 2

The Projected Item Relocation

Problem

In this chapter we introduce the Item Relocation Problem (IRP) which is the first

problem that we treat in this work. The problem is motivated by shared mobility

systems where a collection of items (e.g., bicycles) is distributed on a transit network,

and a fleet of vehicles must relocate those items to meet an expected user demand.

The IRP can be seen as a one-commodity many-to-many Capacitated Pickup-and-

Delivery Problem with unpaired pickups and deliveries, transfers, and time horizon.

We start by defining the problem in a formal way and we propose the TEN

IRP model which is a 2-commodity flow model over a Time-Expanded network for

handling the IRP. Because Time-Expanded network models usually involve a big

number of integer variables, they are very difficult to solve directly with a MILP

solver. For that reason, we propose a “Project-and-Lift” approach for handling that

TEN IRP model.

First, we “project” the TEN IRP model on the original transit network to obtain

the Projected IRP model (PIRP) which is a simpler 2-commodity flow model that

involves only a linear number of integer variables, but which drops the temporal

dimension of the original IRP. Most of this chapter will be focused on that PIRP

model, and the way it can be improved by the introduction of specific constraints

for recovering part of the temporal dimension of the problem.

Next, we introduce the “Lift” problems, which consist in the construction of

solutions for the TEN IRP model starting from solutions of the PIRP model. We

present two Lift problems which can be distinguished by their degree of compatibility

with PIRP solutions.
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2.1 Introduction

Emerging mobility systems, based on vehicle sharing, aim at finding a flexible com-

promise between individual mobility and rigid public transportation systems (see

e.g., [101, 182, 195] for surveys). Such systems include collective taxis, transport on

demand, carpooling, shared riding, etc., and share some key features: they rely on

emerging mobility technologies (e.g., electric vehicles, autonomous vehicles), require

a responsive day-to-day operational management through intensive use of inter-

net platforms, and aim at answering environmental concerns and urban congestion,

while keeping part of the flexibility of individual transportation.

Managing such emerging mobility systems requires decisions at a strategic level

(for pricing, infrastructure dimensioning, demand/cost analysis, integration into

multimodality, see e.g., [17, 101, 216]), at an operational level (for real-time handling

of the demands, relocation of free vehicles, synchronization, and unexpected event

management, see e.g., [101, 168]), and also at a tactical level (for in advance man-

agement of recurrent demands or maintenance scheduling, see e.g., [26, 45, 62, 190]).

The resulting problems are difficult and must be usually addressed in a dynamic

way, taking uncertainty into account. In order to overcome these difficulties, the

problems are often studied in a static paradigm using aggregated representations of

the circulation of vehicles and passengers to make decisions about the dimensions

of the system and to precompute routes and schedules for its operational manage-

ment. A popular approach is the use of multicommodity flow models, where the

different commodities correspond to the different kinds of objects whose circulation

is supported by the network (see e.g., see Section 1.2.4 or [4, 39, 40, 41, 46, 144]).

Hereby, it is crucial to take time constraints into account that are imposed by

the synchronization of vehicle routes and user demands. In order to deal with

this specific temporal dimension while taking profit from the powerful network flow

machinery, mobility models are often cast in Time-Expanded networks (TENs),

containing one copy of the original transit network for each considered time unit

(see e.g., Section 1.2.3 or [14, 41, 40, 51]). This powerful conceptual tool is well

fitted to the modeling of systems and decision problems involving the circulation of

resources (e.g., vehicles, objects, passengers) over time. The disadvantage is that

such networks grow with the size of the time space so that solving multicommodity

flow problems in TENs typically requires very long computation times.

One possible approach to overcome this difficulty consists in restricting the TEN

to an active part of the network of limited size (see e.g., [14, 144]) which typically

results in heuristics without optimality guarantee. Another approach consists in

projecting the TEN model to the original network or to some auxiliary simpler
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network (see [45, 81]), and so making the temporal dimension become implicit: the

algorithmic process consists in first solving the projected model, and next turning

(i.e., lifting) the resulting solution into a solution of the original TEN model.

In this work, we adopt the latter approach. For the sake of simplicity, we work on

a generic 2-commodity flow model, related to the Item Relocation Problem (see e.g.,

[26, 45, 81, 182]), which arises when vehicles are required to periodically exchange

items between stations in order to rebalance the access to those items for potential

users. According to such an interpretation, one flow is related to vehicles and the

other to the (identical) items which are transported by those vehicles. In most

cases, this relocation process has to be performed within a given time horizon, and

vehicles are allowed to meet in order to exchange part of their load if necessary. The

2-commodity flow model that we present in this chapter is generic in the sense that

it embraces the whole spectrum of possible quality criteria: the number of involved

vehicles, vehicle operational costs, and item riding time.

Relation with the Existent Literature

Around 1960 Ford and Fulkerson [95] showed how problems involving both routing

and scheduling could be cast into the network flow framework. This issue about how

to take into account the time-dependence of a network motivated in the 1970/1980

years the emergence of the notion of “dynamic networks” (see [14]) and gave rise to

the generalization of network flow models involving rational or integral flow values to

models where flow functions become trajectories subject to constraints. Sometimes

they are called “flow over time” functions because they correspond to transit rates

for items which circulate within the network and whose values depend on the time.

In the years 1990/2000, several important contributions by Fleischer and Skutella

[91, 92], Hall [112], and Powell [174], were carried on about both applications to

evacuation planning and algorithm design. Those authors addressed the complexity

issue and explored the way how standard flow algorithms could be adapted to the

flow over time framework. They dealt with the multicommodity flow issue (see [159,

5, 180]) while adapting algorithms designed for standard static networks, and could

state, in the continuous case, some “fully polynomial-time approximation schemes”

(FPTAS) (see [91]). At this time, they also brought insights about the link between

the TEN framework and the network flow over time models.

More recently, some authors tried to combine the TEN framework with the

improvement of the mixed integer linear programming (MILP) libraries in order

to directly address some transportation problems through the application of MILP

libraries to multicommodity flow models set on Time-Expanded networks (see [174,
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91, 180, 92, 182, 190]). In [96] and [144], authors adapted column generation and

branch-and-price techniques in order to restrict the search process to an active part

of the TEN and so to better control computational times.

As for the applications of the TEN framework, they were initially related to

evacuation problems or energy transportation problems (see [5, 174]), which typically

involve only one flow vector whose value is going to evolve throughout the time,

on a network whose arc capacities or availability are going to evolve themselves

throughout the time. But attempts to rely on the TEN framework, at least to

formalize the problems and possibly to solve them in an approximate way were also

done in order to optimize the rebalancing processes involved in the management

of vehicle sharing systems (see [14, 159, 174, 17, 96]) and deal with Pickup-and-

Delivery Problems (see [13]). In those last cases, the authors had to deal with

multicommodity flow models, which imposed a significantly higher complexity (see

[95, 159, 5]).

Outline

This chapter is organized as follows: we first introduce in Sections 2.2) and 2.3

the reference Item Relocation Problem (IRP) and its formulation through the TEN

framework. In Section 2.4, we describe the Projected IRP (PIRP) model and the way

how this model may be enhanced through the use of “Extended-Subtour” constraints

which link the time horizon and the number of vehicles circulating through each

subset of non-depot vertices. We propose two versions of those constraints, which

we prove to be both separable in polynomial time.

Next, in Section 2.5 we propose a brief discussion about the Lift problems, we

present some introductory examples, and we describe the Project-and-Lift Decom-

position Scheme for handling the TEN IRP model. In Section 2.5.1 we present two

Lift problems which can be distinguished by their degree of compatibility with PIRP

solutions. In Section 2.5.2 we examine the feasibility of one of the Lift problems and

as a result we derive the “Feasible-Path” constraints for the PIRP model (Section

2.5.3). Those constraints are necessary for the feasibility of the Lift problems and

involve a path decomposition property that must be verified by the item flow. The

separation of those constraints its known to be an NP-hard problem, but we show

a way to deal with them through column generation.

Finally, Section 2.6 is devoted to the description of the resulting branch-and-cut

algorithms and to numerical experiments.
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2.2 The Item Relocation Problem

We have a transit network represented over a simple digraph G = (X,A) with a set

of vertices X and a set of arcs A. There exists in X a distinguished depot vertex d

where vehicles are located at the beginning and at the end of the relocation process.

There are two weight functions cost ∶ A → R+ and time ∶ A → R+ associated with

the digraph G. For all a = (x, y) ∈ A, the values cost(a) and time(a) respectively

encode the cost and the time required by a vehicle in order to move from vertex x to

vertex y. We extend those functions to the functions cost ∶ V (G) × V (G) → R+ and

time ∶ V (G) ×V (G) → R+ defined by costG(x, y) = dist(G,cost)(x, y) and timeG(x, y)
= dist(G,time)(x, y), respectively.

Items are situated at the vertices of the digraph G and rebalancing their distri-

bution may be required to guarantee the operability of the mobility system. When

we decide to launch the relocation process, we are provided with an integral vector b

of balance coefficients bx, x ∈ X which satisfies ∑x∈X bx = 0. A value bx > 0 indicates

that x is an excess vertex and vehicles must remove bx items from x, a value bx < 0

indicates that x is a deficit vertex and vehicles must bring −bx items to x, and a

value bx = 0 indicates that x is neutral and it is not required to remove or bring

items to x. We denote by X+ the set of all the excess vertices, and analogously we

denote by X− the set of all the deficit vertices.

For the relocation process, a fleet of identical vehicles is available. Each vehicle

has a capacity κ, specifying the maximal number of items which may be transported

by a vehicle at the same time. The relocation process must take place within a given

time horizon [0,Ω].

The Item Relocation Problem (IRP) consists in organizing the transfer by vehicles

of items from excess vertices to deficit vertices, while meeting time horizon and

vehicle capacity requirements. Furthermore, preemption is allowed, which means

that vehicles may exchange items. We next set the problem in a more formal way.

IRP Inputs:

A digraph G = (X,A) with a specific depot vertex s, a weight function time ∶
A→ R+, and a weight function cost ∶ A→ R+. A vector b of balance coefficients

indexed over X, and a time horizon [0,Ω].

IRP Outputs:

A vehicle route is a circuit which starts and ends in the depot vertex d. Because

no more than one arc a = (x, y) connects a vertex x to another vertex y, the

route of a vehicle q can be represented as a sequence Γq = (xq
0 = d, xq

1, . . . , x
q

ν(q)
=

The Projected Item Relocation Problem 69



Models and Algorithms for Problems of Scheduling/Routing with Synchronizations

d) of ν(q)+1 vertices, with both first and last elements equal to d. This route

must be computed together with two time sequences tq = (tq0, . . . , tqν(q)) and

t̄q = (t̄q0, . . . , t̄qν(q)), and with a load sequence ℓq = (ℓq
0, . . . , ℓ

q

ν(q)−1
): the value tqi

means the time when the vehicle q arrives at vertex xq
i , the value t̄qi means the

time when the vehicle q leaves vertex xq
i , and the value ℓq

i is the load of vehicle

q when it leaves vertex x
q
i . If vehicle q arriving at vertex x according to x

q
i

transfers a load ℓ to vehicle q′ leaving vertex x according to xq′

j then we say

that vehicles q and q′ perform a transfer transaction (x, q, i, q′, j, ℓ), and we call

q and q′ the emitting vehicle and the receiving vehicle related to (x, q, i, q′, j, ℓ),
respectively. A solution of the IRP is defined by two main objects:

– a route collection Γ = {Γq ∶ q = 1, . . . ,Q}, every route Γq being given

together with the time sequences tq, t̄q and the load sequence ℓq. This

collection Γ provides us with the route followed by the vehicles, together

with their schedules and their loads;

– a collection Θ ⊆ {(x, q, i, q′, j,L) ∶ xq
i ∈ Γq, x

q′

j ∈ Γp} of transfer transactions

which expresses the way the vehicles interact during the process.

IRP Constraints:

• Loads ℓq
i , q = 1, . . . ,Q, i = 1, . . . , ν(q), must never exceed the capacity κ, and

must fit with the relocation requirements as expressed by the vector b of

balance coefficients. For any vertex x, the balance between the loads which

arrive into x and those which leave x, including those involved into the transfer

transactions, must be equal to the balance coefficient bx.

• Time values tqi , t̄
q
i , q = 1, . . . ,Q, i = 1, . . . , ν(q), must belong to the interval

[0,Ω], be consistent with the weight function time ∶ A → R+, and meet the

Weak Synchronization Constraints: if a transfer transaction (x, q, i, q′, j, ℓ) oc-

curs, then the receiving vehicle q′ cannot leave xq′

j before the emitting vehicle

q could reach x
q
i .

IRP Objective Function:

• The considered cost function involves the following three components: the

number of vehicles c1 = Q, the vehicle ride costs c2 = ∑Q
q=1∑ν(q)−1

i=0 cost(xq
i , x

q
i+1)

which tends to express the costs induced by the routes for the fleet manager,

and the item ride time c3 which means the time during which items are not

available for the users and aims at expressing the notion of service quality.

• In order to avoid a multiobjective formulation, we consider the minimization

of a hybrid cost α ⋅c1+β ⋅c2+γ ⋅c3, where α, β, γ are positive scaling coefficients.
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Example 2.1 - An example of an IRP instance

Consider the digraph G = (X,A) depicted in Figure 2.1. It shows an example of

an IRP instance over G and a solution involving two vehicles, say q = 1 and q′ = 2,

which transit over two paths Γ1 and Γ2, respectively.

The vehicle q moves from the depot vertex d to vertex u in one time unit. At

time one, it balances u by picking up five items. Then, it moves from u to x in one

time unit. At time two, q drops two items at vertex x and then it moves from x to

y in one time unit. At time three, q satisfies the demand of vertex y by dropping

three items. Finally, q goes back from y to d in one time unit.

On the other hand, the vehicle q′ moves from the depot vertex d to vertex w

in two time units. At time two, it balances w by picking up five items. Then, it

moves from w to x in one time unit. At time three, q′ picks up from x the two items

dropped by q. Then it goes from x to z in one time unit. At time four, q′ satisfies

the demand of vertex z by dropping seven items. Finally, q′ goes back from z to d

in two time units.

We have that Γ1 = (d, u, x, y, d), t1 = (0,1,2,3,4), t̄1 = (0,1,2,3,4), and ℓ1 =
(0,5,3,0). Similarly, Γ2 = (d,w, x, z, d), t2 = (0,2,3,4,6), t̄2 = (0,2,3,4,6), and

ℓ2 = (0,5,7,0). There is a transfer transaction (x,1,2,2,2,2) involved at vertex x

because two items are transferred from the vehicle in Γ1 to the vehicle in Γ2.

Finally, we check that c1 = 2, c2 = ∑a∈A(Γ1) cost(a) +∑a∈A(Γ2) cost(a) = 4 + 6 = 10,

and c3 = 5 ⋅ time((u,x)) + 3 ⋅ time((x, y)) + 5 ⋅ time((w,x)) + 7 ⋅ time((x, z)) = 20. ◻
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Figure 2.1: An example of an IRP instance over a digraph G = (X, A) and a
solution involving two vehicles and one transfer transaction.
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2.3 A TEN 2-Commodity Flow Formulation

In order to cast the IRP into the TEN framework (see [14, 41, 51, 144]), we first

derive from the digraph G = (X,A) its time expansion GΩ = (XΩ,AΩ) according

to Ω. The vertex set XΩ is the set of all pairs xt = (x, t), x ∈ X, t ∈ {0,1, . . . ,Ω},
augmented with two distinguished vertices, a source ŝ and a sink p̂. We associate

with the digraph GΩ = (XΩ,AΩ) two weight functions timeGΩ ∶ AΩ → R+ and

costGΩ ∶ AΩ → R+ which are defined according to the following types of arcs.

• Input-arcs a = (ŝ, (x,0)), with x ∈X, timeGΩ(a) = 0, and costGΩ(a) = 0.

• Output-arcs a = ((x,Ω), p̂), with x ∈X, timeGΩ(a) = 0, and costGΩ(a) = 0.

• Waiting-arcs a = ((x, t), (x, t+1)), with x ∈X, t ∈ {0, . . . ,Ω−1}, timeGΩ(a) = 0,

and costGΩ(a) = 0.

• Active-arcs a = ((x, t), (y, t + time(x, y))), with (x, y) ∈ A, t ∈ {0, . . . ,Ω −
time(x, y)}, timeGΩ(a) = γ ⋅ time(x, y), and costGΩ(a) = β ⋅ cost(x, y).

• Backward-arc a = (p̂, ŝ) with timeGΩ(a) = 0 and costGΩ(a) = α.

Now, we formalize the IRP as a 2-commodity flow model on GΩ = (XΩ,AΩ).

TEN IRP: Find functions H ∶ AΩ → Z+ and h ∶ AΩ → Z+ (for vehicles and

items, respectively) such that

• H and h satisfy flow conservation at any vertex of XΩ. (E1)

• For any active-arc a = ((x, t), (y, t + time(x, y))): h(a) ≤ κ ⋅H(a). (E2)

• For any input-arc a=(ŝ, (x,0)), with x ≠ d: (E3)

H(a) = 0 and h(a) =max(bx,0).
• For any output-arc a =((y,Ω),p̂), with y ≠ d: (E4)

H(a) = 0 and h(a)=max(−by,0).
• The global cost

Cost(H,h) = ∑
a∈AΩ

(H(a) ⋅ costGΩ(a) + h(a) ⋅ timeGΩ(a))
is minimized.
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Explanation. The flow conservation constraints (E1) express the circulation of

vehicle and items inside the digraph G, condition (E2) ensures that any item moving

between two vertices x and y must be contained into some vehicle. Conditions (E3)

and (E4) provide us with initial and final constraints: vehicles must start and end

their route in d, while the flow h means that for any excess vertex x, bx items must

leave x, and that for any deficit vertex y, by items must arrive into y.

Example 2.2 - An example of TEN IRP instance

Figure 2.2 shows the construction of the Time-Expanded network GΩ = (XΩ,AΩ)
associated to the digraph G = (X,A) of Figure 2.1. It also illustrates how to turn

the vehicle routes and schedules of Example 2.1 into a 2-commodity flow (H, h). ◻
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Figure 2.2: The routes and schedules from Example 2.1 viewed as a 2-commodity
flow on the Time-Expanded network GΩ = (XΩ, AΩ). (a) Vehicle flow H in GΩ.
(b) Item flow h in GΩ.

Theorem 2.1 - TEN IRP ⇒ IRP

Solving the TEN IRP also solves the IRP.

Proof. If (H,h) is a feasible solution of the above TEN IRP formulation, then we

may decompose H into a sum of c1 = Q =H((p̂, ŝ)) flows (0,1)-valued, H1, . . . ,HQ,

which are the supports of circuits containing the arc (p̂, ŝ) and so connect vertex
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(s,0) with the vertex (s,Ω). Those (0,1)-valued flows may be turned into a vehicle

route collection Γ = {Γ1, . . . ,ΓQ}, together with a time sequence tq = (tq0, . . . , tqν(q)),
which fit with IRP requirements. Finally, we distribute the values h(a), a ∈ AΩ

among the routes Γq, q = 1, . . . ,Q, in such a way that we get a load sequence ℓq =
(ℓq

0, . . . , ℓ
q

ν(q)
− 1) which meets IRP requirements.

Conversely, any scheduled route collection Γ of IRP can be turned into a 2-

commodity flow (H,h) which meets (E1)-(E4), with the same global cost value. ∎

2.3.1 A Characterization of the IRP Feasibility

Depending on the value Ω, the IRP may or may not admit feasible solutions. In

order to characterize the existence of feasible solutions, let us recall that we have

denoted by X+ the set of the vertices x of the digraph G = (X,A) such that bx >
0 and by X− the set of the vertices y such that by < 0. We define a feasible-

pair (x, y) for the time horizon Ω as any pair (x, y), x ∈ X+, y ∈ X− such that

time(d, x) + time(x, y) + time(y, d) ≤ Ω. We denote by ΦF P the set of all feasible-

pairs and for any subset U ⊆X+ we denote by ΦF P (U) the image of U through the

feasible-pairs, that means the set of vertices y ∈X− such that there exists a feasible-

pair (x, y) with x ∈ U . The following theorem characterizes the IRP feasibility.

Theorem 2.2 - Characterization of the IRP Feasibility

IRP admits a feasible solution (H,h) if and only if, for any subset U of the vertex

set X+, the following inequality holds: ∑x∈U bx ≤ ∑y∈ΦF P (U) ∣by ∣. (F1)

Proof. The only if part is obvious, since the flow h must express the transportation of

any item in U to some vertex of ΦF P (U) in no more than Ω time units. Conversely,

let us suppose that (F1) holds. Then we deduce from matching theory (Hall’s

marriage theorem [113]) that the following linear program PMATCH admits a feasible

solution.

LP PMATCH: Compute an integral nonnegative vector z = (z(x,y), (x, y) ∈
ΦF P ) such that

• for any x ∈X+, ∑(x,y)∈ΦF P z(x,y) = bx,

• for any x ∈X−, ∑(x,y)∈ΦF P z(x,y) = −by.
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For every (x, y) such that z(x,y) ≠ 0 we set: tx = time(d, x) and ty = time(y, d).
Then we may derive in a natural way a flow h(x,y) which transports z(x,y) items from

(x, tx) to (y, ty) in the TEN GΩ while following a shortest path (with respect to

the weight function time) in G from x to y, and a nonnegative integral flow H(x,y)

which involves ⌈z(x,y)/κ⌉ vehicles along a shortest path in GΩ from ŝ to p̂ (with

respect to the weight function timeGΩ), that visits (x, tx) before (y, ty), and whose

support contains the support of h(x,y). We only need to set H = ∑(x,y)∈AH
(x,y) and

h = ∑(x,y)∈A h
(x,y) in order to conclude. ∎

2.4 The Projected IRP Model

This section is devoted to some of the major results of the present chapter. We are

going to deal with the studied IRP while projecting the TEN IRP model on the

original digraph G.

Consider an IRP instance on a digraph G = (X,A) with a time horizon [0,Ω].
Given a flow H on the Time-Expanded network GΩ = (XΩ,AΩ) we define the pro-

jection of flow H on G as the flow F ∶ A→ Z+ defined for all a = (x, y) ∈ A by

F (a) = Ω−timeG(a)∑
t=0

H((x, t), (y, t + timeG(a))).

Similarly, given a 2-commodity flow (H,h) on the Time-Expanded network GΩ =
(XΩ,AΩ) we define the projection of the 2-commodity flow (H,h) on G, as the 2-

commodity flow (F , f) such that F and f are the projections on G of the flows H

and h, respectively.

Additional Notation. Given a digraph G = (X,A) and sets U,V ⊆X, we use the

notation ∂−G(U) = {(x, y) ∈ A ∶ x ∉ U, y ∈ U}, ∂+G(U) = {(x, y) ∈ A ∶ x ∈ U, y ∉ U},
∂G(U) = ∂−(U) ∪ ∂+(U), and A(U,V ) = {(x, y) ∈ A ∶ x ∈ U, y ∈ V }. For a sin-

gleton {x} we will write ∂−G(x), ∂+G(x), and ∂G(x), instead of ∂−G({x}), ∂+G({x}),
and ∂G({x}), respectively. Also, for any U ⊆ X ∖ {d} we define a value d−U =
dist(G,time)(d,U) = inf{x∈X ∶∃(x,y)∈∂−

G
(U)} time(d, x) and a value d+U = dist(G,time)(U,d) =

inf{y∈X ∶∃(x,y)∈∂+
G
(U)} time(y, d).
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Projecting the TEN IRP on the digraph G means to deal with the projections F

and f , of flows H and h on the arcs of G. If we restrict ourselves to G (i.e., we do

not take source ŝ and sink p̂ into account), then we obtain the following constraints.

• F satisfies flow conservation at any vertex of X. (E5.1)

• For any vertex x of G: ∑a∈∂+
G
(x) f(a) −∑a∈∂−

G
(x) f(a) = bx; (E5.2)

• For any arc a of G: f(a) ≤ κ ⋅ F (a); (E6)

• Vehicle ride cost c2 = β ⋅ (∑a∈A cost(a) ⋅ F (a)). (E7.1)

• Item ride time c3 = γ ⋅ (∑a∈A time(a) ⋅ f(a)). (E7.2)

2.4.1 Projected Cost and Extended-Subtour Constraints

Constraints (E5.1), (E5.2), and (E6) are not enough to characterize F and f in a

satisfactory way, since they do not forbid subtours (see Figure 2.3), likely to induce

a significant distortion between vehicle ride cost c2 and item ride time c3 related to

H and h, and the values β ⋅ (∑a∈A cost(a) ⋅ F (a)) and γ ⋅ (∑a∈A time(a) ⋅ f(a)).
Legend

cost(a) = time(a) = 1 for all a ∈ A

Ω = 7

κ = 1
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Figure 2.3: A 2-commodity flow (F , f) with subtours. (a) An example of an
IRP instance over a digraph G = (X, A). (b) A 2-commodity flow (F , f) that
satisfies (E5.1)-(E6) but contains two subtours which are not reachable from the
depot.

Besides, (E5.1)-(E7.2) do not provide us with a well-fitted estimation of the vehi-

cle number c1 = Q =H((t̂, ŝ)). However, we can check that the following statements

hold.
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Lemma 2.1. Let (H,h) be a feasible solution of TEN IRP and let (F, f) be its

projection on the network G = (X,A), then (∑a∈A time(a)⋅F (a))
Ω is a lower bound for the

vehicle number.

Proof. The quantity ∑a∈A time(a) ⋅ F (a) provides us with the global time vehicles

spend running inside G, waiting times being excluded. Since the whole process

must be performed in no more than Ω time units, we see that we need at least
(∑a∈A time(a)⋅F (a))

Ω vehicles in order to achieve it. ∎

As a consequence, we should search for a 2-commodity flow (F, f) that minimizes

the projected cost:

PCost(F, f) = α⋅(∑a∈A time(a) ⋅ F (a))
Ω

+β⋅(∑
a∈A

cost(a)⋅F (a))+γ⋅(∑
a∈A

time(a)⋅f(a)).
Lemma 2.2. For all U ⊆X ∖ {d}, the following Weak-Extended-Subtour constraint

holds:

Ω ⋅
⎛
⎝ ∑

a∈∂−
G
(U)

F (a)⎞⎠ ≥ ∑
a∈∂G(U)∪A(U,U)

time(a) ⋅ F (a). (E8.1)

Proof. Let us denote by Q the number of vehicles involved in a TEN IRP solution

(H,h). Any vehicle q may enter into U , one or several times, get out of U , and move

inside U . Hence the global time that vehicles spend inside U , entering to U , and

going out from U is equal to ∑a∈∂G(U)∪A(U,U) time(a) ⋅F (a). For each vehicle q, this

time cannot exceed Ω. Hence, we deduce that Ω ⋅Q ≥ ∑a∈∂G(U)∪A(U,U) time(a) ⋅F (a).
Since ∑a∈∂−

N
(U)F (a) ≥ Q, we conclude. ∎

Ω ·
(

∑

a∈∂
−

G
(U)

F (a)
)

≥

∑

a∈∂G(U)∪A(U,U)

time(a) · F (a)

d

U

Figure 2.4: Interpretation of the Weak-Extended-Subtour constraints. The
number of vehicles entering U ⊆ X ∖ {d} is upper bounded by ∑a∈∂−

G
(U)F (a)

and the total amount of time available for those vehicles must be enough to visit,
within the time horizon [0, Ω], each arc a ∈ ∂G(U)∪A(U, U), a total of F (a) times
(i.e., ∑a∈∂G(U)∪A(U,U) time(a) ⋅ F (a)).
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An interpretation of the Weak-Extended Subtour constraints can be found in

Figure 2.4. It results that those constraints can be strengthened as follows.

Lemma 2.3. For all U ⊆X ∖{d}, the following Strong-Extended-Subtour constraint

holds:

(Ω − d−U − d+U) ⋅ ⎛⎝ ∑
a∈∂−

N
(U)

F (a)⎞⎠ ≥ ∑
a∈∂N (U)∪A(U,U)

Ta ⋅ F (a). (E8.2)

Proof. We adapt the proof of Lemma 2.2, while noticing that for each of the Q

vehicles involved into U , the time it spends while entering into U , getting out of U

and moving inside U , cannot exceed Ω − d−U − d
+
U , since it moves first from d until

some vertex x such that (x,u) ∈ ∂−G(U) and next goes back the same way from some

vertex y, such that (u′, y) ∈ ∂+G(U) into d. ∎

Figure 2.5 shows an interpretation of the Strong-Extended-Subtour constraints.

(Ω −d
−

U
−d

+

U
)·

(

∑

F (a)
)

≥

∑

time(a) · F (a)

d

U

d+U

d−U

a∈∂
−

G
(U) a∈∂G(U)∪A(U,U)

Figure 2.5: Interpretation of the Strong-Extended-Subtour constraints. The
amount of time that a vehicle needs to reach the tail of an arc in ∂−(U) from the
depot d, is lower bounded by d−U ; symmetrically the amount of time that a vehicle
needs to reach the depot d from the head of arc in ∂+(U), is lower bounded by d+U .
The number of vehicles entering U ⊆X ∖ {d} is upper bounded by ∑a∈∂−

G
(U)F (a)

and the total amount of time available for those vehicles must be enough to visit,
within the time horizon [d−U , Ω − d+U ], each arc a ∈ ∂G(U) ∪ A(U, U), a total of
F (a) times (i.e., ∑a∈∂G(U)∪A(U,U) time(a) ⋅ F (a)).

Remark 1. Though Lemma 2.3 implies Lemma 2.2, we distinguish both, because

they are going to induce very different separation algorithms, and because in prac-

tice, only constraints (E8.1) are going to be efficient.

We deduce that we should search for (F, f) as a solution of the following pro-

jected model.
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Projected Item Relocation Problem (PIRP): Given an IRP instance with

a capacity k, a time horizon [0,Ω], and a digraph G = (X,A) with depot vertex

d. Find two functions F ∶ A→ Z+ and f ∶ A→ Z+ such that:

• F satisfies flow conservation at any vertex of X; (E5.1)

• for any vertex x ∈X, ∑a∈∂−
N
(x) h(a) −∑a∈∂+

N
(x) h(a) = bx; (E5.2)

• for any arc a ∈ A, f(a) ≤ κ ⋅ F (a); (E6)

• for any U ⊆X ∖ {d},
(Ω − d+U − d−U) ⋅ (∑a∈∂−

N
(U)F (a)) ≥ ∑a∈∂N (U)∪A(U,U) time(a) ⋅ F (a); (E8.2)

• Minimize the projected cost PCost(F, f) = (E9)

α ⋅
(∑a∈A time(a)⋅F (a))

Ω + β ⋅(∑a∈A cost(a) ⋅F (a)) + γ ⋅(∑a∈A time(a) ⋅f(a)).

2.4.2 Separating the Extended-Subtour Constraints

We have the two following results.

Theorem 2.3 - Complexity of the Weak-Extended-Subtour Constraints Separation

The Weak-Extended-Subtour constraints (E8.1) can be separated in polynomial time,

through a classical Min-Cut algorithm.

Proof. Given some flow F on a digraph G = (X,A) and a time horizon [0,Ω]. Sep-

arating (E8.1) means searching for U ⊆ X ∖ {d} such that Ω ⋅ (∑a∈∂−
G
(U)F (a)) −

∑a∈∂G(U)∪A(U,U) time(a) ⋅ F (a) < 0. If we add a term ∑a∈A time(a) ⋅ F (a) on both

sides, and divide by Ω, we see that it also means searching for U ′ =X ∖U , such that

∑a∈∂+
G
(U ′)F (a)+ (∑a∈A(V,V ) time(a)⋅F (a))

Ω < (∑a∈A time(a)⋅F (a))
Ω . Let us set ∆ = ∑a∈A time(a)⋅F (a)

Ω ,

and for any a ∈ A, we define a weight w(a) = time(a)⋅F (a)
Ω (notice that every w(a) is

nonnegative). Our problem becomes to search for U ′ ⊆ X, which contains d and it

is such that:

∑
a∈∂+

G
(U ′)

F (a) + ∑
a∈A(U ′,U ′)

w(a) <∆ (E10)

In order to search for such a set U ′, we construct an auxiliary digraph G′ = (X ′,A′).
The vertex set X ′ of G′ consists of X augmented with a new auxiliary vertex t̂.

Then with any arc a = (x, y) in A, we associate an arc â = (x, t̂), and we denote
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by Â the set of all arcs â, such that a ∈ A. The arc set A′ of G′ is A ⊔ Â. Now, we

provide any arc a ∈ A′ with a weight w′(a) ≥ 0, defined as follows.

• If a ∈ A, then we set w′(a) = F (a) −w(a).
• If â ∈ Â is associated with a ∈ A, then we set w′(â) = w(a).

This construction is illustrated in Figure 2.6.

d d

x y

w(a)

a x ya

t̂

G G′

U ′ U ′

w′(a) = F (a)− w(a)

âw
′ (â)

= w(a
)

Figure 2.6: Switching from a digraph G to the auxiliary digraph G′.

Let us prove now that: Searching for U ′ ⊆ X, with d ∈ U ′ and such that

(E10) holds, it is equivalent to search for U ′ ⊆ X, with d ∈ U ′ and such that

∑a∈∂+
G′
(U ′)w′(a) <∆. (E11)

If we prove (E11), then we get our separation result, since U ′ which meets (E11)

is nothing but a d-t̂-cut in the digraph G′, whose weight according to w′ does not

exceed ∆. Its existence may be checked with a standard minimum cut algorithm.

So let us check (E11). In order to do so, we consider U ′ ⊆ X, which contains d,

and compare the quantity σ1 = ∑a∈∂+
G
(U ′)F (a) + ∑a∈A(U ′,U ′)w(a), and the quantity

σ2 = ∑a∈∂+
G′
(U ′)w′(a). We are going to prove first that σ1 ≤ σ2. Let a be an arc in A,

the following four cases have to be considered.

• Case 1: If arc a = (x, y) ∈ A(U ′, U ′) then arc a counts with a weight of w(a)
in σ1, and arc â counts with a weight of w(a) in σ2 (see Figure 2.7).

U ′

w(a)

a a

d

x y

d

w(a)
â

x y

t̂

U ′

G G′

Figure 2.7: An arc a = (x, y) ∈ A(U ′, U ′) in the digraph G and its two associated
arcs in the auxiliary digraph G′.
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• Case 2: If arc a = (x, y) ∈ ∂+G(U ′) then, arc a counts with a weight of F (a) in

σ1; the arcs a and â count in σ2 with a weight of w(a)+ (F (a)−w(a)) = F (a)
(see Figure 2.8).

F(a)

w(a)

F(a)−w(a)
a a

â
U ′

d

x y

U ′

d

x y
t̂

G G′

Figure 2.8: An arc a = (x, y) ∈ ∂+G(U
′) in the digraph G and its two associated

arcs in the auxiliary digraph G′.

• Case 3: If arc a = (x, y) ∈ ∂−G(U ′) then arc a does not count in σ1; the arcs a

and â do not count in σ2 (see Figure 2.9).

U ′

d

y xa a

d

y x

t̂

U ′

â

G G′

Figure 2.9: An arc a = (x, y) ∈ ∂+G(U
′) in the digraph G and its two associated

arcs in the auxiliary digraph G′.

• Case 4: If arc a = (x, y) ∈ A(X ∖U ′,X ∖U ′) then the arc a does not count in

σ1; the arcs a and â do not count in σ2 (see Figure 2.10).

U ′

d

y

d

yx x

t̂

a a

U ′

â

G G′

Figure 2.10: An arc a = (x, y) ∈ A(X ∖U ′, X ∖U ′) in the digraph G and its two
associated arcs in the auxiliary digraph G′.

It follows that σ1 = ∑a∈∂+
G
(U ′)F (a) +∑a∈A(U ′,U ′)w(a) ≤ ∑a∈∂+

G′
(U ′)w′(a) = σ2.
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Conversely, if u ∈ A′, then either u can be written u = a with a = (x, y) ∈ A
or it can be written u = â, with a ∈ A. In both cases we can see that we enter

into one of the above configurations of Case 1 -Case 4. Therefore, we deduce that

σ1 = ∑a∈∂+
G
(U ′)F (a) +∑a∈A(U ′,U ′)w(a) ≥ ∑a∈∂+

G′
(U ′)w′(u) = σ2 and so we conclude.

∎
Theorem 2.4 - Complexity of the Strong-Extended-Subtour constraints separation

The Strong-Extended-Subtour constraints (E8.2) can be separated in polynomial

time, by a sequence of ∣X ∣2 applications of a minimum cut algorithm.

Proof. Let us suppose, as at the beginning of the proof of Theorem 2.3, that we are

provided with a current flow F . So we denote by Λ− the set of all values time(d, x),
such that x ∈X, and by Λ+ the set of all values time(y, d), such that y ∈X, and for

any pair (L−, L+) ∈ Λ− ×Λ+, we set X(L−, L+) = {x ∈X ∶ time(d, x) ≤ L−} ∪ {y ∈X ∶
time(y, d) ≤ L+} (see Figure 2.11 (a)).

Now, we denote by G′′(L−, L+) = (X ′′,A′′) the digraph obtained by identifying

the vertices of X(L−, L+) into a single vertex dL+

L− . In the rest of this proof, we

abbreviate the digraph G′′(L−, L+) simply as G′′. We associate an arc a′′ = (dL+

L− , y)
with any arc a = (x, y), such that x ∈ X(L−, L+), y ∉ X(L−, L+), and also an arc

a′′ = (y, dL+

L−) with any arc a = (y, z), such that y ∉ X(L−, L+), z ∈ X(L−, L+).
We provide these associated arcs with a weight time′′(a′′) = time(a) and a flow

F ′′(a′′) = F (a) (see Figure 2.11 (b)). All arcs a = (y, w) ∈ A such that y and w are

not in X(L−, L+), are maintained as arcs of G′′, with a weight time′′(a) = time(a)
and a flow F ′′(a) = F (a).

d

x

z

y

w

y

w

dL+

L−

X(L−, L+)

(a) (b)

Figure 2.11: Identifying X(L−, L+) into a single vertex dL+

L− . (a) An example of
set X(L−, L+) in a digraph G. (b) The digraph G′′(L+, L−) corresponding to (a).

Then in order to separate constraints (E8.2), we first notice that all previous

developments, including Theorem 2.3, hold even in the case when G is a multidi-

graph, that means when several arcs a, provided with distinct weights time(a) and

cost(a), may connect a same pair of vertices (x, y).
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Next, for any pair (L−, L+) in Λ− × Λ+, we build the corresponding network

G′′, and next we separate (E8.1) in the sense of Theorem 2.3, while replacing Ω by

(Ω − L− − L+), digraph G by digraph G′′, flow F by flow F ′′, and weight time by

weight time′′.

By doing this, we get either a success signal (no subset U ⊆ X ∖X(L−, L+)
which violates (E8.2) in above sense, or a subset U ⊆ X ∖X(L−, L+) which does it.

So we claim the following statement.

Claim. There exists U ⊆ X ∖ {d} such that, F violates (E8.2) if and only if there

exist L− and L+ and U ′ ⊆X ∖X(L−, L+) such that

(Ω −L− −L+) ⋅ ∑
a∈∂−

G′′
(U ′)

F ′′(a) < ∑
a∈∂G′′(U ′)∪A′′(U ′,U ′)

time′′(a) ⋅ F ′′(a). (E12)

Let us first check the (if) part of above claim. In order to do so, we consider U

such that (E8.2) is violated by F in the sense of digraph G, that means:

(Ω − d−U − d+U) ⋅ ( ∑
a∈∂−

G
(U)

F (a)) < ∑
a∈∂G(U)∪A(U,U)

time(a) ⋅ F (a).

We may select x and y both in X ∖U such that d−U = time(d, x) and d+U = time(y, d).
If we set L− = time(d, x) and L+ = time(y, d), then we have that X(L−, L+) ⊆X∖U ,

which means that U can be considered as a subset U ′ which results in the separation

of (E8.1) in digraph G′′.

Let us now check the (only if) part of previous claim. In order to do so, we

consider L−, L+ and related U ′ as above. We first notice that, for any L−, L+, and any

U ′ ⊆X∖X(L−, L+), we have d−U ≥ L− and d+U ≥ L+. Then we see that ∑a∈∂−
G
(U)F (a) =

∑a∈∂−
G′′
(U ′)F ′′(a) and ∑a∈∂G(U)∪A(U,U) time(a) ⋅ F (a) = ∑a∈∂G′′(U ′)∪A′′(U ′,U ′) time′′(a) ⋅

F ′′(a), since arcs a in A(U,U) are not modified by the fusion of vertices ofX(L−, L+)
and since arcs a of ∂G(U) are turned into arcs a′′. Now we note that, if U ′ is such

that (Ω − L− − L+) ⋅ (∑a∈∂−
G′′
(U ′)F ′′(a)) < ∑a∈∂G′′(U)∪A′′(U ′,U ′) time′′(a) ⋅ F ′′(a), then

we also have (Ω − d−U − d+U) ⋅ (∑a∈∂−
G
(U)F (a)) < ∑a∈∂−

G
(U)∪A(U,U) time(a) ⋅ F (a), since

d−U ≥ L− and d+U ≥ L+. This completes the proof of the above claim and concludes

the proof of the theorem. ∎

The Projected Item Relocation Problem 83



Models and Algorithms for Problems of Scheduling/Routing with Synchronizations

A Separation Algorithm

We separate both Extended-Subtour constraints (E8.1), (E8.2) in a hybrid way,

while applying the Min-Cut procedure designed for constraints (E8.1) and sending

back the related constraints (E8.2) to the main branch-and-cut process.

This gives rise to the following Algorithm 4.

Algorithm 4: Separation of constraints (E8.1)

input : Digraph G, flow F , and time horizon [0, Ω].
output: A success signal if the constraints (E8.1) are satisfied by F , otherwise a (E8.2)

constraint violated by F .

1 Derive from F , G, and Ω the network G′ described in the proof of Theorem 2.3;

2 Apply the Ford-Fulkerson algorithm to compute a maximum d-t̂-flow ϕ in G′, and let

val(ϕ) be the resulting flow value;

3 if val(ϕ) ≥ ∑a∈A time(a)⋅F (a)
Ω

then

4 return success;

5 else

6 Retrieve an d-t̂-cut ∂+(U) with d ∈ U , t̂ ∈X ∖U , and capacity val(ϕ);
7 return constraint (E8.2) related to U ;

The correctness of Algorithm 4 derives from the procedure to compute a d-t̂-cut

of minimum capacity using the Ford-Fulkerson algorithm (see Theorem 1.2 and the

three-step procedure that follows it).

2.5 The Lift Problems

The projected model that we have described in Section 2.4 can be very useful be-

cause, once we have found an optimal solution for a problem instance, we obtain a

lower bound for the value of any optimal solution for the corresponding Item Relo-

cation Problem, and we can also get an idea about which are the vertices and arcs

that should be used by the vehicles to perform the relocation process. It turns out

that even with all this information, it can be difficult to determine a solution for

the Item Relocation Problem.

In this section we will see that, given a solution of a PIRP instance, it is not

always possible to construct an IRP solution with the same cost that uses exactly

the same vertices and arcs. Therefore, we will introduce some problems related to

the ways in which, starting from a solution for the PIRP model, we can construct

feasible solutions for the corresponding Item Relocation Problem.
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Before starting with the formal study of the problems that will be dealt in this

section, we present a simpler problematic arising from a real life situation. It will

give us some intuition about the problems that we are going to face later.

Example 2.3 - Pneumatic road tube counters

A pneumatic road tube counter (see [167]) is a temporary electronic traffic recording

device that sends a burst of air pressure along a rubber tube when the tires of a

vehicle pass over the tube. The pressure pulse closes an air switch, producing an

electrical signal that is transmitted to a counter (see Figure 2.12).

0	 1	

(a) (b)

Figure 2.12: (a) A pneumatic road tube counter, indicating that zero vehicles
have passed in a particular sense of a street. (b) The same pneumatic road tube
counter in (a), but after the passing of a vehicle. Now, the counter indicates that
one vehicle has passed.

Consider the transit network depicted in Figure 2.13 (a) consisting only of one-

way streets. Suppose that we have installed one pneumatic road tube counter ini-

tialized at zero on each street, and that there is an unknown number of vehicles

located at vertex d at time zero.

u

x y

w w

x y

u

z z

d d1 2

3 0

1 1

1 13 0

1 1

2 1
1 1

1 1

3 0

4 0

1 2

(a) (b)

Figure 2.13: The transportation networks from Example 2.3. (a) Any numerical
label on an arc indicates the units of time that are necessary to traverse the arc.
(b) Any arc label represents the value shown by the pneumatic road tube counter
that is installed on the corresponding arc.
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We allow those vehicles to circulate on the transit network during six units of

time, without paying attention to the process. At time six, we find out that all the

vehicles have already returned to vertex d, and the pneumatic road tube counters

indicate the values shown in Figure 2.13(b).

Now, we are required to answer: how many vehicles have transited on the network

between time zero and time six?

To answer this question in a more systematic way, we are going to construct

an auxiliary multidigraph using the original transit network, and the values in the

pneumatic rubber tube counters. The construction is as follows. First, we start with

an empty digraph with the same vertices as the original transit network. Then, for

every arc (x, y) in the transit network, we put in the multidigraph as many arcs

(x, y) as indicates the corresponding pneumatic rubber tube counter. Finally, we

remove all the isolated vertices. Note that, every arc on this multidigraph represents

the pass of a single vehicle through the corresponding street. Also, it is not difficult

to prove♣ that we always obtain an Eulerian multidigraph with this construction.

If we take the digraph in Figure 2.13(a) together with the values of the pneumatic

road tube counters displayed in Figure 2.13(b), and we follow the above construction,

we obtain the multidigraph depicted in Figure 2.14.

w

x y

u

z

d1

1
1

1

2
1

1

1
1

1

Figure 2.14: The multidigraph used in Example 2.3. Any numerical label on an
arc indicates the units of time that are necessary to traverse the arc.

Because this multidigraph is Eulerian, in principle, we could explore it with a

single vehicle, passing only once through each arc. However, if we follow any Eulerian

path, we will find out that using a single vehicle we do not have enough time to

traverse all the arcs. Then, we need to use at least two vehicles. On the other hand,

we can see that there are two arcs going out from vertex d, and hence there were at

most two vehicles leaving vertex d. Therefore the answer is two vehicles. ◻
♣Provided that all vehicles started in a depot and returned to it.
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The question posed in Example 2.3 cannot be answered in general because the

value of a pneumatic road tube counter represents only the number of times that the

corresponding street has been traversed by vehicles. For example, if we do not have

enough time to follow an Eulerian path, and a counter indicates a number greater

than one, it is not always possible to deduce if some car has transited several times

on the same street. As a consequence, we cannot determine, in general, how many

vehicles there were on the transit network.

The following example aims to introduce the notion of “lift”.

Example 2.4 - Lifting a projected solution

Let us return to the situation presented in Example 2.3. Suppose that this time

we are required to construct the paths that were followed by the two vehicles. How

should we proceed?

It is not difficult to see that the temporal dimension of the process has been lost

because the pneumatic rubber tube counters do not allow us to know at which times

the vehicle have passed. On the other hand, the vehicle’s routes involve a temporal

dimension because any vehicle requires an amount of time to traverse a street, and

the vehicle routes induce precedence relations on the multidigraph arcs.

Now, consider the subgraph of our transportation network that is induced by the

arcs that were visited by at least one vehicle during the transportation process, and

imagine that we have drawn this subgraph on a plane surface (see Figure 2.15 (a)).

Suppose that we have a collection of real-size elastic stickers representing the arcs,

and that we paste, by matching the shape of the corresponding arc in the drawing,

as many stickers of the arc as the corresponding pneumatic rubber counter indicates.

If we proceed to peel off the stickers, taking one sticker at a time, and concate-

nating the head of the current sticker with the tail of the previously detached one,

and we achieve to obtain paths starting and ending at vertex d as in Figure 2.15

(b), then we would have obtained a solution for the problem.

Nevertheless, it is not difficult to find other different solutions for this prob-

lem, and therefore we cannot decide precisely which one corresponds to the routes

followed by the vehicles.

The mathematical analogy of the above process is as follows. In Figure 2.15 (a)

we have a weighted digraph embedded in a plane, whilst in Figure 2.15 (b) we have

a digraph in a three-dimensional space with a new temporal component t. Further-

more, if we project the digraph in Figure 2.15 (b) by dropping the t component,

then we obtain again the digraph in Figure 2.15 (a). ◻
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Figure 2.15: An example of “lift”. (a) A digraph embedded on a plane surface.
(b) “Lifting” the digraph in (a) into a three-dimensional space with a new com-
ponent t.

Examples 2.3 and 2.4 allow us to establish some analogies with the problems

that we will treat in this section. First of all, it is not difficult to conceive an

interpretation of the PIRP solutions in terms of pneumatic rubber tube counters.

The idea is to install two kinds of pneumatic rubber tube counters on each one-way

street: one for the vehicles and the other one for the items. Next, we will see that,

although this interpretation can be very illustrative, it is not completely realistic.

It is true that given a solution of an IRP, we can deduce trivially a 2-commodity

flow which is a solution of the corresponding PIRP model; and conversely the PIRP

solutions obtained that way can be lifted again (at least in the theory) to obtain the

original IRP solution from which they have been projected.

However, the projected model involves integral flows, and so, they are more

general than the integral flows induced by the circulation of discrete objects (like

vehicles or items) on a transit network. In particular, integral flows can exhibit a

counterintuitive behavior (like ubiquity) on certain parts of a network and this in
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turn can give rise to some issues that are difficult to remediate when we try to lift

a projected solution into a solution for the corresponding relocation problem.

The following two examples illustrate some of those situations.

Example 2.5 - The “mushroom”

The digraph in Figure 2.16 shows that a solution (F, f) of the PIRP cannot always

be viewed as the projection of a feasible solution (H,h) of IRP TEN. In Figure 2.16,

we see that the vehicle follows the route (d, y, x, z, y, d), but cannot transport that

way any item from z to x. ◻

d

y
x z

by = 0
bx = −1 bz = 1

Legend

(F , f)

(1, 0)

(1, 1)(1, 1)

(1, 0) (1, 0)

Figure 2.16: A solution of PIRP which cannot be lifted.

Example 2.6 - The “helix”

Every arc of the digraph depicted in Figure 2.17 requires one unit of time to be

traversed. If we consider vehicles with a capacity κ = 2, and a time horizon Ω = 3

(i.e. three units of time), then the values F and f that are shown in this figure

correspond to a solution of some PIRP instance.

d

x

z y

bz = −1 by = −1

bx = 2

(1, 0) (1, 2)

(1, 1)

(1, 0)(1, 1)

(1, 0)

Legend

(F , f)

Figure 2.17: A solution of PIRP which cannot be lifted.

However, lifting this solution would require at least two units of time to transport

the two items at vertex x, to vertex d; and then we need at least two additional

units of time to carry one of those items to y (or to z) and return to d. ◻
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Examples 2.5 and 2.6, show that if we insist in lifting a solution for the Item

Relocation Problem that has the same quality and uses exactly the same arcs and

vertices than a given projected solution, it is not always possible to lift such a

solution.

This raises in a natural way the following “lift” issue: given a feasible (optimal)

PIRP solution (F , f), how can we derive from (F , f) a feasible/optimal IRP solu-

tion, according to the TEN framework? Clearly, though we refer here to a specific

relocation problem, this issue may be set in a far more generic setting: how can we

efficiently deal with a problem originally set on a TEN while applying the following

decomposition scheme?

Project-and-Lift Decomposition Scheme

1. Solve a projected version of the problem which skips the temporal dimen-

sion.

2. Turn (i.e., lift) the resulting solution (F , f) into a “good” solution (H, h)

of the original problem, while restricting ourselves to a reduced represen-

tation of the related TEN.

2.5.1 Two Lift Problems

For all the examples presented in this section, we are going to consider that we are

given an IRP instance over a graph G = (X,A), and that we have computed an

optimal 2-commodity flow (F, f) of the corresponding PIRP model, with respect to

the cost parameters α = 10, β = 1, and γ = 1.

The most natural way to formalize this lift issue consists in setting the following

Strong Lift Problem.

Strong Lift Problem: Given an IRP instance on a digraph G = (X,A) and

a PIRP solution (F , f). Compute a feasible IRP solution (H, h) so that

• the projection of H (respectively, h) on the transit network G is equal to

F (respectively, f);

• the cost value Cost(H, h) is smallest possible.
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Remark 2. If (H, h) is a feasible solution of the previous Strong Lift Problem

then the difference between Cost(H, h) and PCost(F, f) only reflects the difference

between the true number of vehicles H(p̂, ŝ) and its approximation ∑a∈A time(a)⋅F (a)
Ω

as expressed in the PIRP Model.

Example 2.7 - An example of the Strong Lift Problem

The digraph depicted in Figure 2.18 (a) shows an optimal solution (F, f) of a PIRP

instance. Suppose that we have cost(a) = time(a) = 1, for every arc a. If we consider

a fleet of vehicles with capacity κ = 10, and a time horizon Ω = 6, then we would

have that ∑a∈A time(a)⋅F (a)
Ω = 2+1+1+2+1+2+2+1

6 = 2. So, from this projected solution we

can estimate that two vehicles are necessary to perform the relocation process.
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ŝ

Legend

H>0

(H, h)

(a) (b)

Figure 2.18: An example of the Strong Lift Problem. (a) An optimal solution
(F, f) of a PIRP instance. (b) A solution (H, h) for the TEN IRP such that it
is the minimal cost solution with time-projection equal to the 2-commodity flow
(F, f) in (a). We only have depicted the arcs a with H(a) > 0.

On the other hand, we can observe that there are three units of flow F leaving

vertex d, and that when a vehicle leaves the depot vertex d, it needs at least four

units of time to return to vertex d. If we try to use only two vehicles to perform the

relocation process, one of the vehicles would be obligated to leave the depot vertex

two times, and then it would require at least eight units of time to complete its

route. However, we have a time horizon Ω = 6, and therefore it is not possible to

use only two vehicles to perform a relocation process with time-projection (F, f).
The TEN IRP solution (H,h) shown in Figure 2.18(b) is the minimal cost solu-

tion among all the IRP solutions with a time projection equal to the 2-commodity

flow (F, f) in (a). Note that, because the flow H involves three vehicles, the cost of

(H,h) exceeds by α the cost of (F, f). ◻
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As we shall see in Chapter 3, solving this problem is difficult. Worse, numerical

experiments will show that, in many cases, the Strong Lift Problem does not admit

any feasible solution. This leads us to propose a more flexible version of Lift problem,

which does not involve flow F .

Partial Lift Problem: Given an IRP instance on a digraph G = (X,A) and

an item flow f . Compute a feasible IRP solution (H, h) so that

• the projection of h on the digraph G is equal to f ;

• the cost value Cost(H, h) is smallest possible.

Example 2.8 - An example of the Partial Lift Problem

Figure 2.19 (a) shows an example of a PIRP solution (F, f). If we consider a fleet

of vehicles with capacity κ = 1, a time horizon Ω = 6, and suppose that cost(a) =
time(a) = 1, for every arc a in the depicted digraph; then the 2-commodity flow

(F, f) cannot be lifted into a TEN IRP solution
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Figure 2.19: An example of the Partial Lift Problem. (a) A PIRP solution
(F ′, f ′) on a digraph G = (X, A). (b) A solution (H, h) for the TEN IRP with
optimal cost among all the the TEN IRP solutions whose time-projection (F ′, f ′)
is such that f ′ = f . Here, H is a unitary flow, and we only have depicted the arcs
a with H(a) > 0. Arcs labels indicate the number of carried items.

On the other hand, it is not difficult to show that the 2-commodity flow (H,h)
represented in Figure 2.19 (b) is an optimal TEN IRP solution among all the TEN

IRP solutions whose time-projection (F ′, f ′) is such that f ′ = f . Note that F and

F ′ are not comparable (that is F /≥ F ′, and F /≤ F ′). ◻
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2.5.2 Feasibility of the Partial Lift Problem

Once again, we must first address feasibility. In order to answer it, we introduce the

following notion of “feasible-path”.

• A feasible-path (viewed as a collection of arcs) of G = (X,A) is any path π from

x ∈ X+ to y ∈ X− whose weight time(π) in the sense of the weight function

time is such that: time(d, x) + time(π) + time(y, d) ≤ Ω. We associate, with

any such feasible-path, a flow vector eπ which transports one item from x to

y along the path π. We denote by ΠΩ
G the set of all feasible-paths.

• A flow f is feasible-path-decomposable if and only if, for all a ∈ A we can write

f(a) = ∑π∈ΠΩ
G
λπ eπ

a , with λπ ∈ R+ for all π ∈ ΠΩ
G.

• We say that a ΠΩ
G-indexed vector w = (wπ, π ∈ ΠΩ

G) is a feasibility-path vector

if, for any feasible-path π, we have ∑a∈π wa ≥ 0.

The meaning of the notion of feasible-path is obvious: an item starting from a

vertex x ∈ X+ can be transported to some vertex y ∈ X− along some path π only

if π is a feasible-path. It follows that a solution (F , f) of the PIRP model may be

lifted into a feasible IRP solution (H, h) only if f is feasible-path-decomposable.

This leads us to the following characterization of the feasibility of the Partial Lift

Problem.

Theorem 2.5 - A Characterization of the Partial Lift Problem Feasibility

The Partial Lift Problem admits a feasible solution if and only if for any feasibility-

path vector w, the following inequality holds:

∑
a∈A

wa ⋅ f(a) ≥ 0. (F2)

Proof. Necessity follows in a straightforward way from the above explanation. As

for sufficiency, we get it by noticing that (F2) is nothing more than a formulation

of Farkas Lemma (see [83]) in the case of vector f= (f(a), a ∈ A) and the vector

collection {eπ = (eπ
a , a ∈ A), π ∈ ΠΩ

G}: flow f is feasible-path-decomposable if and

only if vector f belongs to the cone defined by the collection {eπ, π ∈ ΠΩ
G}, that

means (by Farkas Lemma) if and only if for any vector w whose scalar product with

any vector eπ is nonnegative (i.e., w ⋅ eπ = ∑a∈A wa ⋅ eπ
a ≥ 0, for all eπ with π ∈ ΠΩ

G),

then the scalar product w ⋅ f is also nonnegative. ∎
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2.5.3 Enhancing the PIRP Model with Feasible-Path Con-

straints

This characterization of the feasibility of the Partial Lift Problem suggests us to

enhance our PIRP model with an additional constraint which imposes the flow f to

be feasible-path-decomposable. This Feasible-Path constraint reads as follows.

• For any feasibility-path vector w, the following inequality holds:

∑
a∈A

wa ⋅ f(a) ≥ 0. (E13)

Handling (E13) can be done through branch-and-cut and a separation scheme

which relies on a current collection Π of feasible-paths, according to the algorithmic

scheme described in Algorithm 5.

Algorithm 5: Feasible-Path constraints separation scheme.

input : Flow vector f= (f(a), a ∈ A), a parameter ε > 0, and a collection Π

of feasible-paths.

output: A success signal if f is feasible-path-decomposable, otherwise a

Feasible-Path constraint (E13) which is not satisfied by f.

1 stop ← False ;

2 while not stop do

3 if linear system f = ∑π∈Π yπeπ has a solution y = (yπ, π ∈ Π) then

4 stop ← True, and return success

5 else

6 Retrieve (by Farkas Lemma) some vector w = (wa, a ∈ A) such that

∑a∈Awa ⋅ fa < 0, and ∑a∈Awa ⋅ eπ
a ≥ 0 for all π ∈ Π;

7 Search for a feasible-path(∗) π0 such that ∑a∈π0
wa ≤ −ε ;

8 if π0 has been found then

9 add π0 into current collection Π;

10 else

11 stop ← True, and return constraint ∑a∈Awa ⋅ fa ≥ 0
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(∗) Instruction “Search for a feasible-path” . This instruction refers to the Con-

strained Shortest Path Problem, which is weakly NP-complete (see [4]) and can

be handled with moderate computational effort through tree search algorithms (see

[151]). For simplicity we have chosen to formulate that Constrained Shortest Path

Problem as a constraint system CPATH(w) and solve it with a MILP solver (see the

following details of implementation).

Details of Implementation

We start by constructing a supergraph G(ŝ, t̂) of digraph G in the following way.

First, we add to G(ŝ, t̂) all the vertices and arcs of G, and for every arc a ∈ A
we define timeG(ŝ,t)(a) = timeG(a). We also add two new auxiliary vertices: a

source vertex ŝ and a sink vertex t̂. We add an arc from ŝ to every excess vertex

x. Each of those arcs (ŝ, x) has a weight costG(ŝ,t̂)((ŝ, x)) = dist(G,cost)(d, x)) and a

weight timeG(ŝ,t̂)((ŝ, x)) = dist(G,time)(d, x). Symmetrically, we add an arc from every

deficit vertex y to vertex t̂. Each of those arcs (y, t̂) has a weight costG(ŝ,t)((y, t)) =
dist(G,cost)(y, d) and a weight timeG(ŝ,t̂)((y, t)) = dist(G,time)(y, d).

Next, we define the vector f= (f(a), a ∈ A(G)) and we construct a matrix A

such that every column of A is the characteristic vector (indexed over A(G)) of

a path π in G that goes from an excess vertex x to a deficit vertex y, and such

that timeG((d, x)) + timeG(π) + timeG((y, d)) ≤ Ω. For example, we might start

with a matrix A consisting of all the characteristic vectors of the minimum weight

x-y-paths π (with respect to the weight time) such that x is an excess vertex, y is

a deficit vertex, and timeG((d, x)) + timeG(π) + timeG((y, d)) ≤ Ω.

We try to solve the linear system Ay = f . If the system is feasible, then the item

flow f can be decomposed into a collection of paths all with a weight time less than

or equal to the time horizon Ω, and we are done. Otherwise, if the linear system

is not feasible, then we compute a Farkas certificate vector w (again indexed over

A(G)) such that w ⋅ f > 0 and wA ≤ 0, we select a threshold value ε > 0 (for example

ε = 0.01), and we construct the following constraint system.
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CPATH(w) constraint system

Variables

• clockx ∈ R+ for all x ∈ V (G).
• arca ∈ {0,1} for all a ∈ A(G(s, t)).

Constraints

• For all x ∈ V (G): dist(G,time)(d, x) ≤ clockx ≤ Ω− dist(G,time)(x, d).
• ∑a∈∂−

G(ŝ,t̂)
(ŝ) arca = 1.

• For all x ∈ V (G(ŝ, t̂)) ∖ {ŝ, t̂}: ∑a∈∂−
G(ŝ,t̂)

(x) arca = ∑a∈∂+
G(ŝ,t̂)

(x) arca.

• For every a = (x, y) ∈ A(G):
clockx + dist(G(ŝ,t̂),time)(x, y) ≤ clocky +Ω(1 − arca).

• ∑a∈A(G(s,t)) timeG(ŝ,t̂)(a) ⋅ arca ≤ Ω.

• ∑a∈A(G)wa ⋅ arca > ǫ.

If CPATH(w) is feasible, then we construct from any feasible solution the corre-

sponding vector (arca, a ∈ A(G)), we add this vector as a new column of matrix A,

and we restart the process from the step where we try to solve the system Ay = f .

On the other hand, if the above MILP is infeasible, then the current item flow

cannot be decomposed using only paths with a time duration less than or equal to

Ω, then to improve the PIRP formulation we can add the constraint w ⋅ f ≤ 0 to the

PIRP model to forbid the current item flow f .

2.6 Numerical Experiments

We handle the PIRP model through branch-and-cut with the help of a commercial

solver. We let the solver decide for the choice of a branching strategy and focus on

the design and implementation of the separation procedures.
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We separate both Extended-Subtour constraints and Feasible-Path constraints

while using the Algorithms 4 and 5 described in Sections 2.4.2 and 2.5.3.

Purpose. The purpose of our experiments is to evaluate the influence on the be-

havior of the global resolution process (running time, solution value, number of

generated cuts, number of nodes of the search tree visited during the process, etc.)

of the different constraints (E8), (E13) introduced in sections 2.4.2 and 2.5.2.

Technical context. The experiments were performed on a computer with a 2.3GHz

Intel Core i5 processor and 16GB RAM. The implementations were coded in the

C++ language, compiled with Apple Clang 10, and made use of the CPLEX12.10

MILP libraries.

An important implementation detail. Note that we can relax the integrality

constraint over the item flow variables. This is because if we assign integer values to

the vehicle flow variables and we relax the integrality of the item flow variables, the

resulting problem is nothing more than a Minimum Cost Flow linear programming

problem over the item flow variables, and it always has integral optimal solutions

due to the total unimodularity of its constraint matrix. Such a relaxation cannot

be guessed by the optimization libraries and may have an important impact on the

efficiency of the implementations, because it reduces the number of integer variables.

Instances. No standardized benchmarks exist for the generic IRP. So we built

instances as follows: the station set X is a set of n points inside a 100×100 integral

grid, the set of arcs A consists of m arcs generated randomly, the weight time ∶
X ×X → Z+ corresponds to the rounded Euclidean distance and the weight cost ∶
X ×X → Z+ to the taxicab distance. Each vertex x but d is assigned to a balance

coefficient bx in {−10, . . . ,10}, the capacity κ is chosen from {2, 5, 10, 20}, the time

horizon limit Ω is a product λ ⋅ (max(x, y)∈A time(x, y)) when choosing λ ∈ {4, 6, 8}.
The scaling coefficients α, β, γ are chosen in such a way that the values of cost

components c1 (number of vehicles), c2 (vehicle ride cost) and c3 (item ride time)

become comparable. Table 2.1 provides us with a characteristics summary of the 20

instances that we analyzed.
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Table 2.1: Instance characteristics.

Id n m κ Ω λ α β γ

1 20 78 2 324 4 304 1.0 1.000
2 20 65 5 320 4 150 0.4 0.500
3 20 77 10 440 4 328 0.2 0.250
4 20 75 2 680 8 328 1.0 1.000
5 20 50 5 536 8 392 0.4 0.250
6 20 57 10 840 8 376 0.2 0.250
7 20 62 5 420 6 300 0.4 0.500
8 50 163 2 460 4 170 1.0 1.000
9 50 155 5 260 4 196 0.4 0.500
10 50 149 10 440 4 164 1.0 0.500
11 50 146 20 436 4 312 0.1 0.125
12 50 175 2 728 8 268 1.0 1.000
13 50 217 5 912 8 672 0.4 0.250
14 50 154 10 1040 8 416 0.2 0.125
15 100 363 2 336 4 252 1.0 1.000
16 100 236 5 516 4 188 0.4 0.250
17 100 289 10 432 4 360 0.2 0.250
18 100 419 2 1032 8 412 1.0 1.000
19 100 327 5 552 8 392 0.5 0.200
20 100 313 10 712 8 312 0.5 0.500

Results and Comments

We first observe the behavior of the PIRP model when neither of the constraints

(E8, E13) nor the approximation of the number of the vehicles provided by Lemma

2.1 are involved. So, for any instance in Table 2.1, we provide in Table 2.2:

• the optimal value G1 of the PIRP model, computed while considering neither

the term α(∑a∈A time(a) ⋅ F (a))/Ω (related to the approximate number of

vehicles) in the objective function, nor the Extended-Subtour constraints, nor

the Feasible-Path constraints; we also provide the related running time (in

seconds) T1 used to compute G1;

• the optimal value G2 of the PIRP model, computed with the objective function

(E9), but without considering the Extended-Subtour constraints, and without

considering the Feasible-Path constraints; we also provide the related running

time (in seconds) T2 used in the computation of G2, and the estimated number

of vehicles V2 obtained from the expression ⌈∑a∈A time(a)⋅F (a)
Ω ⌉.
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Table 2.2: Numerical results for the PIRP model with/without including the
term α(∑a∈A time(a) ⋅ F (a))/Ω in the objective function (E9). In these experi-
ments neither the Extended-Subtour constraints nor the Feasible-Path constraints
were considered.

Id G1 T1 G2 T2 V2

1 999.00 0.01 1621.11 0.03 2
2 765.90 0.05 1127.71 0.05 3
3 441.85 0.02 819.47 0.07 2
4 2925.00 0.02 3708.34 0.02 3
5 1226.20 0.02 2323.21 0.03 3
6 1016.20 0.02 1532.38 0.03 2
7 1600.10 0.01 2445.81 0.02 3
8 11606.00 0.04 13951.30 0.08 14
9 2783.70 0.13 4292.61 0.27 8
10 6910.50 0.23 7829.03 0.39 6
11 687.08 0.25 1590.26 0.45 3
12 5640.00 0.06 6878.19 0.10 5
13 777.25 0.45 1525.93 0.96 2
14 1627.28 0.77 2547.22 0.78 3
15 9587.00 1.39 13507.00 4.61 16
16 3113.05 0.40 4391.96 1.38 7
17 1743.65 0.21 3018.55 0.78 4
18 16164.00 0.57 19882.20 0.65 9
19 3146.00 1.44 5748.40 7.51 7
20 4706.50 0.63 5883.62 2.46 4

We next observe the impact of adding constraints (E8, E13). For any instance

described in Table 2.1, we provide in Table 2.3:

• the optimal value G3 (respectively LB3) of the PIRP model (respectively of

the LP relaxation of the PIRP model) computed with the objective function

(E9), with the Extended-Subtour constraints, but without the Feasible-Path

constraints; the time value T3 corresponding to the running time in seconds

spent in the computation of G3, the estimation V3 of the number of vehicles

used in the solution (obtained from the expression ⌈∑a∈A time(a)⋅F (a)
Ω ⌉), and the

Boolean quantity PD which indicates whether the item flow vector f computed

by the algorithm is feasible-path-decomposable (PD is equal to 1 if and only

if, the corresponding item flow vector f is feasible-path-decomposable);

• the optimal value G4 of the PIRP model computed with the objective func-

tion (E9), with the Extended-Subtour constraints, and with the Feasible-Path

constraints; the time value T4 corresponding to the running time in seconds

required by the computation of G4, the estimation V4 of the number of vehi-

cles used in the solution (obtained from the expression ⌈∑a∈A time(a)⋅F (a)
Ω ⌉), the
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quantity CT4 equals the global number of cuts added by the separation proce-

dure, and the quantity ND4 equals the number of nodes in the branch-and-cut

tree that were visited during the algorithm. Missing values are indicated by

a hyphen symbol -, and correspond to PIRP instances that turned out to be

infeasible when including the Feasible-Path constraints.

Table 2.3: Numerical results for the PIRP model computed with the objec-
tive function (E9), with the Extended-Subtour constraints, and with/without the
Feasible-Path constraints.

Id G3 T3 V3 LB3 PD G4 T4 V4 ND4 CT4

1 2109.12 0.47 3 1323.04 0 2110.85 1.61 3 808 13
2 1290.09 0.08 3 971.52 0 - 0.01 - 0 1
3 854.83 0.12 2 546.78 1 854.83 3.25 2 9 3
4 3805.81 0.07 3 3599.04 1 3805.81 0.65 3 22 2
5 2432.86 0.03 3 2064.80 0 - 0.44 - 0 10
6 1532.38 0.03 2 1276.16 1 1532.38 1.09 2 0 1
7 2727.30 0.07 4 2448.12 1 2727.30 0.32 4 35 2
8 15561.30 0.27 17 15163.21 1 15561.30 0.81 17 38 3
9 5612.59 6.71 12 4927.96 0 - 0.01 - 0 1
10 7966.03 0.78 6 7443.35 1 7966.03 12.76 6 479 11
11 1840.17 2.49 3 933.32 1 1840.17 19.33 3 6860 11
12 6976.11 0.14 5 6531.15 1 6976.11 1.17 5 142 1
13 1643.76 0.98 2 1044.28 1 1643.76 124.47 2 80 7
14 2643.62 3.20 3 2230.72 1 2643.62 7.29 3 2464 4
15 17131.00 44.97 22 16286.10 0 17179.00 81.58 22 23364 36
16 4826.24 1.05 8 4257.80 1 4826.24 2.54 8 90 7
17 3227.92 0.60 4 2696.90 0 3272.98 70.22 4 446 13
18 20219.30 1.00 10 19556.76 1 20219.30 63.24 10 52 1
19 5944.23 5.99 7 5175.84 1 5944.23 46.90 7 1564 2
20 6091.24 4.68 4 4885.78 1 6091.24 31.09 4 1986 8

By comparing columns G2 and G3, we see that the Extended-Subtour constraints

improve the cost of some solutions (F, f), in such a way that those solutions become

closer to the projections of optimal TEN IRP solutions (H, h).

The values in columns T3 and T4 show that the separation of the Feasible-Path

constraints has a non-negligible impact on the running times of the branch-and-

cut algorithm for solving the PIRP model (about 2,200% more on average). Also,

the Feasible-Path constraints allow us to assert the infeasibility of instances 2, 5,

and 9. Furthermore, by examining the computed solutions with costs G3 and G4,

we confirm that in 14 of the 17 remaining feasible instances, the Feasible-Path

constraints were already satisfied even though we did not take them explicitly into

account.
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2.7 Conclusions

In this chapter we have introduced the Item Relocation Problem and, in order to

handle it, we have formulated the TEN IRP model which is a 2-commodity flow

over a Time-Expanded network.

Because the TEN IRP model is too complex for solving directly with a MILP

solver we have proposed a Project-and-Lift approach: first we project the TEN IRP

on the original digraph to obtain an easier PIRP model. Then we use the solutions of

that model for constructing (i.e., lifting) solutions for the original TEN IRP model.

Because while projecting the TEN IRP model the temporal dimension of the

original problem is lost, we have introduced the Extended-Subtour constraints for

linking the time horizon and the number of vehicles circulating through a set of

non-depot vertices. We have proposed two versions of those constraints and we have

shown how they can be separated in polynomial time. As a result we have obtained

an improved PIRP model which can be handled efficiently with a branch-and-cut

algorithm.

With regards to the lift part, we have presented two Lift problems which aim

to construct solutions of the TEN IRP model starting from solutions of the PIRP

model. From those problems we have derived the Feasible-Path constraints related

to a feasibility property that must be satisfied by the item flow of the PIRP model.

We have shown how to handle those constraints by a column generation procedure

that involves a Constrained Shortest Path as the pricing problem.

Finally we have tested the branch-and-cut algorithms over a set of 20 problem

instances. We have confirmed experimentally the improvement of the costs due

to the introduction of the Extended-Subtours constraints and the Feasible-Path

constraints, and their impact on the related running times.

The Lift problems that we have introduced are difficult and the probability of

getting feasible/good solutions for them depends on the structure of the computed

PIRP solutions. For that reason it would be interesting to search for additional

constraints for improving the PIRP model.

Until now, we only have introduced two Lift problems but we have not proposed

models or algorithms to solve them. That will be the main subject of the following

chapter.
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Chapter 3

Lifting Projected IRP Solutions

In this chapter we propose models and algorithms for handling the Lift problems

that we have introduced in Section 2.5.1.

In Section 3.1 we introduce an auxiliary digraph Strong(G,F ) and we use it to

set a MILP model for solving the Strong Lift Problem in an exact way. Then we

perform some numerical experiments and we show that when this model is feasible,

its solution provides us with a solution for the TEN IRP model.

In Section 3.2 we describe a “Weak/Cover” decomposition approach to deal with

the Partial Lift Problem. In Section 3.2.1 we start by defining two auxiliary digraphs

Weak(G,f) and Cover(G,f), and we use them in Section 3.2.2 for setting three

systems of mixed integer linear constraints that are necessary for the Weak /Cover

decomposition. In Section 3.2.3, we describe a particular way of implementing the

Weak/Cover decomposition and we examine a property that must be verified by the

item flow in order to apply this particular implementation. Finally, in Section 3.3 we

handle that particular implementation of the Weak/Cover decomposition by using

two heuristic algorithms, and we show the results of some numerical experiments

for comparing both algorithms.

3.1 A MILP Model for the Strong Lift Problem

Let us recall that the Strong Lift Problem is about the search of an IRP solution

(H, h) whose projection on the digraph G is exactly the solution (F , f) which we

obtained through the resolution of the projected PIRP model. So let us consider a

feasible (optimal) solution (F , f) of the PIRP model. We denote by S(F ) the sum

∑a∈AF (a), and by Q(F ) the sum ∑x∈X ((∑a∈∂−
G
(x)F (a)) ⋅ (∑a∈∂+

G
(x)F (a))). We are

now going to show that it is possible to set a MILP formulation of the Strong Lift
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Problem, which involves 2 ⋅Q(F ) decision variables, together with Q(F ) +3 ⋅ S(F )

integral load and time variables.

The idea is that solving the Strong Lift Problem mainly means determining

what happens “inside” the vertices of the digraph G: more precisely, a vertex x

being given, we want to know along which arc a′ a given vehicle (respectively, a

given item) which arrives into x along some arc a is going to leave x, and at which

time. Figure 3.1 illustrates the way vehicles and items which arrive into a vertex

x ∈X along arcs a1, a2, and a3 distribute themselves among the arcs a4 and a5 whose

origin is x. In order to formalize this idea, we are first going to build an auxiliary

digraph Strong(G,F ) by “expanding” any vertex x of the digraph G according to

the flow value F which arrives into x. Next we shall set a Strong Lift model as a

MILP model involving variables indexed on the arcs of this auxiliary digraph.
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Figure 3.1: The Strong Lift Problem. (a) A set of arcs a1, a2, a3, a4, a5 that are
incident with a common vertex x, together with their corresponding flow values in
a PIRP solution (F , f). (b) “Expanding” vertex x makes appear the way vehicles
and items distribute themselves between the arcs a1, a2, a3 which arrive into x

and the arcs a4, a5 which leave x.

In order to formalize this idea, given a PIRP solution (F, f) on a digraph G we

construct the following digraph Strong(G,F ).
• With any arc a = (x, y) ∈ A such that F (a) > 0, we associate F (a) copy-arcs am,

m = 1, . . . , F (a), with respective tail vertices p = (x, a,m,+), and respective

head vertices q = (y, a,m,−), a weight time(Strong(G,F ))(am) = timeG(a), and a

weight cost(Strong(G,F ))(am) = costG(a). For any arc a of G such that F (a) > 0,

we denote by Copy(a) the set of arcs am, m = 1, . . . , F (a). It follows that,

at the same time we create those copy-arcs, we also create copy-vertices p =
(x, a,m,+) and q = (y, a,m,−), which respectively correspond to the vehicles

which leave x and to the vehicles which arrive into y. We denote by X∗ the

resulting vertex set and by Copy(A) the set of all copy-arcs. For any such
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vertex p = (y, a,m, ε), we set x(p) = y and ε(p) = ε, and, for any vertex y of

G, we set:

– X∗(y) = {p ∈X∗ such that x(p) = y};
– X∗Plus(y) = {p ∈X∗ such that x(p) = y, ε(p) = +};
– X∗Minus(y) = {p ∈X∗ such that x(p) = y, ε(p) = −};
– CopyIn(y) = {a ∈ Copy(A) such that a has its head in X∗Minus(y)};
– CopyOut(y) = {a ∈ Copy(A) such that a has its tail in X∗Plus(y)}.

• We complete the arc collection {am, a = (x, y) such that F (a) > 0,m = 1, . . . , F (a)}
by router-arcs u = ((x, a,m,−), (x, a′,m′,+)), with a weight time(Strong(G,F ))(u) =
0, a weight cost(Strong(G,F ))(u) = 0, and such that for any vertex x of G, they

connect any copy-vertex (x, a,m,−) where a has head x, m = 1, . . . , F (a), to

any copy-vertex (i, a′,m′,+), where a′ has tail x, m′ = 1, . . . Fa′ . We denote by

Router the set of all router-arcs created this way, and, for any x, we denote by

Router(x) the set of the router-arcs u whose tail may be written (x, a,m,−).
Notice that Router(x) defines a complete bipartite digraph on the vertices of

X∗(x). For any vertex p = (x, a,m,+), we denote by RouterIn(p) the set of

router-arcs u whose head is p. Similarly for any vertex p = (x, a,m,−), we

denote by RouterOut(p) the set of router-arcs u whose tail is p.
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Figure 3.2: Constructing the digraph Strong(G, F ). (a) A set of arcs
a1, a2, a3, a4, a5, a6 in a digraph G together with their corresponding flow values F

of a PIRP solution. (b) The arcs and vertices in the digraph Strong(G, F ) that
are created from the arcs, vertices, and flow values in (a). To avoid a cumbersome
drawing we have not depicted the router-arcs.

We denote by Strong(G,F ) the resulting digraph (see Figure 3.2), which con-

tains 2 ⋅ S(F ) vertices, S(F ) copy-arcs, and Q(F ) router-arcs.
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Example 3.1 - An example of a digraph Strong(G,F )
Consider the PIRP solution (F, f) over the digraph G = (X,A) that is depicted in

Figure 3.3.
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bw = 5

(2, 0)

(2, 0)

(1, 3)

(1, 5)

(1, 7)

(1, 5)

(1, 0)

(1, 0)

(0, 0)

Legend

(F, f)

κ = 10

Ω = 6

cost(a) = 1, for all a ∈ A

time(a) = 1, for all a ∈ A

Figure 3.3: An IRP instance on a digraph G = (X, A) together with a PIRP
solution (F, f). We have used different arrow tips for distinguishing each arc.

The lift digraph constructed from this solution has 20 vertices and 28 arcs and

is shown in Figure 3.4.

Router(d) Router(x)

Router(u)

Router(y) Router(z)

Router(w)

Figure 3.4: The lift digraph constructed from the PIRP solution (F, f) over the
digraph G = (X, A) in Figure 3.3. For every vertex u ∈ X, we have surrounded
with a dotted convex shape the set of router-arcs in Router(u).
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Consider a vertex x ∈ V (G). The purpose of the digraph Strong(G,F ) is to use

the router-arcs in Router(x) as “routers” for the vehicles and items entering X∗(x)
via CopyIn(x), and going out from X∗(x) via CopyOut(x).

For example, in Figure 3.5, we have used some of those arcs to create a IRP

solution, involving a single vehicle route. However, due to the time horizon this is

not a feasible solution.
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X∗(d) X∗(x)

X∗(u)

X∗(y) X∗(z)

X∗(w)

(a) (b)

Figure 3.5: Two subgraphs of the lift digraph shown in Figure 3.4. (a) A
Hamiltonian path that indicates a single vehicle flow. (b) Item flow.

In contrast, Figure 3.6 shows a feasible solution involving two vehicles. ◻
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X∗(d) X∗(x)
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(a) (b)

Figure 3.6: Subgraphs of the lift digraph shown in Figure 3.4. (a) Two paths
which indicate a vehicle flow involving two vehicles. (b) Item flow.
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Now, we can set the following MILP SLIFT(G, F , f) Model:

MILP SLIFT(G, F , f)

Variables

• Z = (Zu, u = ((x, a,m,−), (x, a′,m′,+)) ∈ Router) ∈ {0,1}∣Router∣.

• z = (zu, u = ((x, a,m,−), (x, a′,m′,+)) ∈ Router) ∈ R∣Router∣
+ .

• ℓ = (ℓu, u = ((x, a,m,−), (x, a′,m′,+)) ∈ Router) ∈ {0,1}∣Router∣.

• z∗ = (z∗am , am ∈ Copy(A)) ∈ R∣Copy(A)∣
+ .

• t = (tp, p = (x, a,m, ε) ∈X∗) ∈ R∣X∗∣+ .

Constraints

• For any copy-vertex q = (x, a,m, ε) of Strong(G, F ), with x ≠ d:

∑u∈RouterIn(q)Zu = 1 = ∑u∈RouterOut(q)Zu. (E14.1)

• For any copy-vertex q = (d, a,m,+) of Strong(G, F ):

∑u∈RouterIn(q)Zu ≤ 1. (E14.2)

• For any copy-vertex p = (d, a,m,−) of Strong(G, F ):

∑u∈RouterOut(p)Zu ≤ 1. (E14.3)

• For any router-arc u: zu ≤ κ ⋅ ℓu. (E15.1)

• For any copy-arc am: z∗am ≤ κ. (E15.2)

• For any vertex p = (x, a,m,−) of Strong(G, F ) with bx ≥ 0:

z∗am = ∑u∈RouterOut(p) zu. (E16.1)

• For any vertex p = (x, a,m,−) of Strong(G, F ) with bx < 0:

z∗am ≤ ∑u∈RouterOut(p) zu. (E16.2)

• For any vertex q = (x, a,m,+) of Strong(G, F ) with bx ≤ 0:

z∗am = ∑u∈RouterOut(q) zu. (E17.1)

• For any vertex q = (x, a,m,+) of Strong(G, F ) with bx > 0:

z∗am ≥ ∑u∈RouterOut(q) zu. (E17.2)

• For any arc a = (x, y) of G: ∑u∈Copy(a) z∗u = f(a). (E18)

108 Lifting Projected IRP Solutions



Models and Algorithms for Problems of Scheduling/Routing with Synchronizations

• For any copy-arc (p, q) = ((x, a = (x, y),m,+), (y, a = (x, y),m,−)):
tq ≥ tp + timeG(x, y). (E19)

• For any router-arc u = (p = (x, a,m,−), q = (x, a′,m′,+)), the implication

((Zu = 1)∨ (ℓu = 1))⇒ tp ≥ tq holds, and it can be represented by the two

linear constraints: Ω ⋅Zu + tp − tq ≤ Ω and Ω ⋅ ℓu + tp − tq ≤ Ω. (E20)

Objective function

Maximize ∑u∈Router(d)Zu. (E21)

The meaning of the above variables is as follows.

• For u = ((x, a,m,−), (x, a′,m′,+)) ∈ Router:
– the value Zu = 1 means that the vehicle which arrives at vertex x along

the copy-arc am keeps on along the copy-arc a′m
′
;

– the value zu means the number of items which arrive at vertex x along

the copy-arc am and which are transferred to the copy-arc a′m
′
;

– ℓu = 0 indicates that zu = 0.

• For am ∈ Copy(A), the value zam means the number of items transported along

arc am.

• For p = (x, a,m, ε) ∈X∗ the value tp means the time when a vehicle arrives (in

case ε = −) or leaves (in case ε = +) in x along arc am.

Now we explain the meaning of the above constraints (E14.1)-(E21).

• Constraint (E14.1) means that for every q = (x, a,m,+) with x ≠ d exactly one

vehicle must enter q through a router-arc in RouterIn(q). Symmetrically, for

every q = (x, a,m,−) with x ≠ d exactly one vehicle must leave q through a

router-arc in RouterOut(q).
• Constraint (E14.2) means that if q = (d, a,m,+) (i.e., q ∈ X∗Plus(d) with d

the depot vertex) then at most one vehicle can enter q through a router-arc

in RouterIn(q). The case ∑u∈RouterIn(q)Zu = 0 means that q is the starting

vertex of a vehicle route, and the case ∑u∈RouterIn(q)Zu = 1 means that q is an

intermediate vertex of a vehicle route.
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• Constraint (E14.3) means that if p = (d, a,m,−) (i.e., q ∈X∗Minus(d) with d

the depot vertex) then at most one vehicle can leave p through a router-arc in

RouterOut(p). The case ∑u∈Out(p)Zu = 0 means that p is the ending vertex of

a vehicle route, and the case ∑u∈Out(p)Zu = 1 means that p is an intermediate

vertex of a vehicle route.

• For any router-arc u, the constraint (E15.1) models the logical implications:

if ℓu = 0 then zu = 0 (i.e., if ℓu = 0 then the router-arc u cannot transport any

item), and if ℓu = 1 then zu ≤ κ (i.e., if ℓu = 1 then the router-arc u cannot

transport more than κ items).

• Constraint (E15.2) means that every copy-arc am cannot transport more than

κ items.

• Constraint (E16.1) means that for every p = (x, a,m,−) which is a copy of a

neutral or an excess vertex x ∈ X, we have the number of items entering p

through am is equal to the number of items leaving p through the router-arcs

in RouterOut(p) (see Figure 3.7).

X∗Plus(x)

X∗Minus(u)p. . .

. . . . . .

. . .

z∗am

∑

u∈RouterOut(p) zu

Figure 3.7: Interpretation of the SLIFT(G, F ,f) constraints (E16.1). For all
p = (x, a, m,−) ∈ X∗Minus(x) with x ∈ X and bx ≥ 0, the number of items
entering p through the copy-arc am is equal to the number of items leaving p

through the router-arcs in RouterOut(p).

• Constraint (E16.2) means that for every p = (x, a,m,−) which is a copy of a

deficit vertex x ∈ X, we have the number of items entering p through am is

less than or equal to the number of items leaving p through the router-arcs

in RouterOut(p). Note the “less than or equal to” symbol of this constraint.

That is because we are considering the demand of bx items in vertex x is

satisfied by taking items from vehicles only when they arrive to a vertex in

X∗Minus(x) (see Figure 3.8). As a consequence, the total number of items
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entering to a vertex p ∈ X∗Minus(x) is greater than or equal to the total

number of items going out from p.

p = (x,
 a, m

, −)ց

X∗(x)

bx< 0

Figure 3.8: Interpretation of the SLIFT(G, F ,f) constraints (E16.2). In a set
of copy-vertices X∗(x) of a deficit vertex x, the items for satisfying the demand
bx can be taken from the vehicles only when they arrive to some copy-vertex
p = (x, a, m,−) ∈X∗Minus(x)

• Constraint (E17.1) means that for every q = (x, a,m,+) which is a copy of

a neutral or a deficit vertex x ∈ X, we have the number of items entering

through the router-arcs in RouterIn(q) is equal to the number of items leaving

q through the copy-arc am (see Figure 3.9).

X∗Plus(x)

X∗Minus(x)

q

. . . . . .

z∗am

∑

u∈RouterIn(q) zu

. . .. . .

Figure 3.9: Interpretation of the SLIFT(G, F ,f) constraints (E17.1). For all
q = (x, a, m,+) ∈ X∗Plus(x) with x ∈ X and bx ≤ 0, the number of items entering
through the router-arcs in RouterOut(p) is equal to the number of items leaving
p through the copy-arc am.

• Constraint (E17.2) means that for every q = (x, a,m,−) which is a copy of an

excess vertex x ∈ X, we have the number of items leaving q through am is
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greater than or equal to the number of items entering q through the router-

arcs in RouterIn(q). Note the “greater than or equal to” symbol of this

constraint. That is because we are considering the surplus objects in vertex x

can be assigned to vehicles only when they arrive to a vertex in X∗Plus(x)
(see Figure 3.10). As a consequence, the total number of items entering to a

vertex q ∈ X∗Plus(x) is greater than or equal to the total number of items

going out from q.

bx>0

X∗(x)

q=(x, a, m, +)
ր

Figure 3.10: Interpretation of the SLIFT(G, F ,f) constraints (E17.2). In a set
of copy-vertices X∗(x) of an excess vertex x, the surplus items can be assigned to
vehicles only when they arrive to some copy-vertex q = (x, a, m,+) ∈X∗Plus(x)

• Constraint (E18) means that the total quantity of items traversing the copy-

arcs in Copy(a) is equal to the number of items traversing a in the PIRP

solution (F , f).

• Constraint (E19) means that for any copy-arc u = (p, q) with p ∈ X∗Plus(x)
and q ∈X∗Minus(y) the departure time for vertex q is at least the departure

time for vertex p plus the time necessary for traversing the copy-arc u (i.e.,

timeG(x, y) ).

• In the case of constraints (E20) we have that timeStrong(G,F )(a) = 0. So, the

inequality Ω ⋅ Zu + tp − tq ≤ Ω models the logical implication (Za = 1) ⇒ (tx ≤
timey), and the inequality Ω ⋅ ℓu + tp − tq ≤ Ω models the logical implication

(ℓa = 1) ⇒ (tx ≤ ty). Hence, if an arc (x, y) has vehicles or items traversing

through it, the departure time of y is at least the departure time of x.

• The objective function (E21) aims to maximize the number of times that the

vehicles use the depot vertex as an intermediate vertex of their routes. This

reduces the number of vehicles that leaves the depot vertex for the first time,

and as a consequence we minimize the number of vehicles used by the solution.
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We have the following result about the SLIFT(G, F , f) MILP model.

Theorem 3.1 - SLIFT(G, F , f) solves the Strong Lift Problem

Solving the above MILP model SLIFT(G, F ,f), which involves 2 ⋅ Q(F ) decision

variables Z and ℓ, together with Q(F )+ 3 ⋅S(F ) rational load and time variables z,

z∗ and t, also solves the Strong Lift Problem related to (F ,f) in an exact way.

Proof. Since the Strong Lift Problem explicitly requires the projection of H onto

the digraph G to be equal to F , we see that the routes followed by the vehicles are

completely determined by the way we assign a vehicle entering into a vertex x along

some copy-arc am onto another copy-arc a′m
′
leaving x (in case x = d, we may assign

a “null” arc, that means consider that the vehicle ends its trip into d with the arc

am). Decision vector Z, together with matching constraints (E14.1 - E14.3) express

the way vehicle routes distribute themselves inside any vertex x. Then we see that,

since any true item move from x to y must be covered by some vehicle, any item

arriving to some vertex xi along some copy-arc am will have either to remain in x

as part of the negative deficit bx or keep on along another copy-arc a′m
′

leaving x.

Constraints (E16.1 - E18) express the way items are going to distribute themselves

while traversing this vertex x. Deriving a IRP solution (H, h) from a PIRP solution

(F , f) and from vectors Z, ℓ, z, z∗, that means from such an accurate description of

the routes followed by the vehicles and the items, becomes possible if we are able to

embed the vertices of the Strong(F , f) digraph into the Time-Expanded network

GΩ, that means if we can compute a vector t which meets constraints (E19, E20).

It follows that any feasible solution of the Strong Lift Problem may be turned into

a feasible solution of SLIFT(G, F , f) and conversely. We conclude by noticing that

the value of the objective function ∑u∈Router(d)Zu is merely the difference between

the value ∑a∈∂+
G
(d)F (a) and the number of vehicles, while the other components of

the cost IRP function are the same for (H, h) and (F , f). It comes that solving

SLIFT(G, F , f) makes us minimize the number of vehicles involved into the lifted

solution (H, h) derived from (F , f). ∎
Remark. Though above results may look trivial, they are not. They derive from

the fact that we require the projection of H onto digraph G to be exactly equal to

F .
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Numerical Behavior of SLIFT(G, F , f)

What we want to observe here is the probability that a projected solution (F , f)

may be lifted, the related increase in the number of vehicles with respect to the

estimation involved into the PIRP model, and also the running times related to the

MILP SLIFT(G, F , f) model.

Table 3.1 displays the numerical results of solving the SLIFT(G, F , f) MILP,

over the instances of Table 2.1. We have modified the time horizon values of in-

stances 2, 5, and 9, in order to make them feasible. Again, column G4 corresponds to

the optimal value (with respect to the objective function (E9)) of the PIRP solution

found by the branch-and-cut algorithm that incorporates the separation procedures

described in Algorithms 4-5, and the column V4 is the estimated number of vehicles

in the solution with cost G4. The column SLIFT displays the cost of the solution of

the SLIFT(G, F , f) MILP, TSLIFT indicates the running time in seconds that was

spent in the computation of SLIFT, and VSLIFT is the number of vehicles used in the

solution with cost SLIFT. Missing values are indicated by a hyphen symbol -, and

correspond to PIRP solutions (F , f) for which the corresponding SLIFT(G, F , f)

MILP is infeasible.

Table 3.1: Strong Lift Numerical Results.

Id n m κ Ω λ α β γ G4 V4 SLIFT TSLIFT VSLIFT

1 20 78 2 324 4 304 1.0 1.000 2110.85 3 - 0.01 -
2 20 65 5 400 5 150 0.4 0.500 1196.10 3 - 0.01 -
3 20 77 10 440 4 328 0.2 0.250 854.83 2 - 0.01 -
4 20 75 2 680 8 328 1.0 1.000 3805.81 3 - 6.19 -
5 20 50 5 603 9 392 0.4 0.250 2354.43 3 2474.70 0.01 3
6 20 57 10 840 8 376 0.2 0.250 1532.38 2 - 0.07 -
7 20 62 5 420 6 300 0.4 0.500 2727.30 4 - 0.01 -
8 50 163 2 460 4 170 1.0 1.000 15561.30 17 - 0.56 -
9 50 155 5 390 6 196 0.4 0.500 4326.10 7 - 0.01 -
10 50 149 10 440 4 164 1.0 0.500 7966.03 6 - 0.01 -
11 50 146 20 436 4 312 0.1 0.125 1840.17 3 - 0.01 -
12 50 175 2 728 8 268 1.0 1.000 6976.11 5 - 700.00 -
13 50 217 5 912 8 672 0.4 0.250 1643.76 2 2153.65 0.14 2
14 50 154 10 1040 8 416 0.2 0.125 2643.76 3 - 8.08 -
15 100 363 2 336 4 252 1.0 1.000 17179.00 22 - 0.01 -
16 100 236 5 516 4 188 0.4 0.250 4826.24 8 - 17.38 -
17 100 289 10 432 4 360 0.2 0.250 3272.98 4 - 0.01 -
18 100 419 2 1032 8 412 1.0 1.000 20219.30 10 - 34226.28 -
19 100 327 5 552 8 392 0.5 0.200 5944.23 7 - 1630.87 -
20 100 313 10 712 8 312 0.5 0.500 6091.24 4 - 2.46 -

Comments. Unfortunately, the numerical experiments from Table 3.1 show that,

even when f is feasible-path-decomposable, SLIFT(G, F , f) scarcely admits a feasi-

ble solution. So we are now going to focus on the Partial Lift Problem.
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3.2 Dealing with the Partial Lift Problem

Setting a MILP model for the Partial Lift Problem is not as easy as for the Strong

Lift Problem, since we cannot say that the arcs involved into a PIRP solution (F , f)

will be enough to ensure the existence of a “lifted” solution (H, h). So we are going

to try a decomposition approach which relies on the idea that the quality of final

solution (H, h) is mostly driven by the way items are routed and scheduled, and

that an algorithmic resolution might work as an iterative loop whose every iteration

could be decomposed into two steps as follows.

1st step: “Lift” item flow f into an item flow h on the TEN GΩ, without taking

care of the flow F . This initial “Weak-Lift” process is going to rely on the

construction of a specific Weak(G, f) digraph, whose construction is going to

follow the same logic as the construction of the Strong(G,F ) digraph.

2nd step: Once h has been fixed, extend h into a good (best) solution IRP (H,

h). Performing this step is just going to be a matter of solving a Minimum

Cost Flow problem on an ad hoc digraph. This ad hoc digraph is going to be a

subgraph of some Cover(G, f) digraph which will be defined later, and whose

construction will allow us to resolve those Minimum Cost Flow problems in a

flexible way.

Linking 1st step and 2nd step: A key point is that the quality of resulting so-

lution deeply depends not only on the route followed by the items, but also

on the way they are scheduled, that means on the time values of the vertices

and arcs which are going to support h in GΩ. So we provide both the digraph

Weak(G, f) involved into the 1st step and the digraph Cover(G, f) involved

into the 2nd step with some kind of flexibility, which allows to delay the in-

stantiation of the time variables related to the arcs and which support h and

to make them evolve until a satisfactory solution is obtained. This flexibility

device takes the form of a collection Λ of arcs common to both Weak(G, f)

and Cover(G, f), which commands a set of constraints imposed to those time

values. This arc set Λ becomes the master object of a bi-level Weak/Cover

decomposition scheme, which we describe now into details, while starting by

the construction of the two digraphs Weak(G, f) and Cover(G, f).
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3.2.1 The Digraphs Weak(G, f) and Cover(G, f)

The digraph Weak(G, f) aims at providing us with a description of the way items

traverse the vertices x of the digraph G. Its construction proceeds the same way as

for the digraph Strong(G, f).

Vertices of Weak(G, f)

With any arc a = (x, y) ∈ A such that f(a) ≥ 1, we associate ⌈f(a)
κ
⌉ copy-arcs

am,m = 1, . . . , ⌈f(a)
κ
⌉, with tail p = (x, a,m,+), head q = (y, a,m,−), a weight

time(Weak(G,F ))(am) = timeG(a), and a weight costWeak(G,F )(am) = costG(a), respec-

tively; and we denote by Copy(a) the set of those arcs am,m = 1, . . . , ⌈f(a)
κ
⌉. At the

same time we create those copy-arcs, we also create copy-vertices p = (x, a,m,+) and

q = (y, a,m,−), which respectively correspond to the vehicles which leave x with a

non-null load and to the vehicles which arrive into y with a non-null load. Like in

the case of the digraph Strong(G, F ), we denote by X∗ resulting vertex set which

becomes the vertex set of Weak(G, f). Also we denote by Copy(A) the set of all

those copy-arcs. For any vertex p = (y, a,m, ε) of X∗, we set x(p) = y and ε(p) = ε.
Also, for any vertex y of G, we define the following subsets of X∗:

• X∗(y) = {p ∈X∗ such that x(p) = y};
• X∗Plus(y) = {vertices p, x(p) = y, and ε(p) = +};
• X∗Minus(y) = {p ∈X∗ such that x(p) = y, and ε(p) = −};

Arcs of Weak(G, f)

We complete the arc collection {am, a = (x, y), such that f(a) ≥ 1,m = 1, . . . , ⌈f(a)
κ
⌉}

by router-arcs which, for any vertex x of G, connect copy vertex (x, a,m,−) with a

arriving into x, m = 1, . . . , ⌈f(a)
κ
⌉, to copy vertex (x, a′,m′,+) with a′ starting from

x, m′ = 1, . . . , ⌈f(a)
κ
⌉. Once again we denote by Router the set of all router-arcs

created this way, and, for any x, we denote by Router(x) the set of all router-arcs

u whose tail can be written (x, a,m,−). Notice that Router(x) defines a complete

bipartite digraph on the vertices of X∗(x). For any vertex p = (x, a,m,−), we denote

by RouterOut(p) the set of router-arcs u whose tail is p. Similarly, for any vertex

q = (x, a,m,+), we denote by RouterIn(q) the set of router-arcs u whose head is q.
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Finally, for any vertex y of G, we set:

• CopyIn(y) = {a ∈ Copy(A) such that a has its head in X∗Minus(y)};
• CopyOut(y) = {a ∈ Copy(A) such that a has its tail in X∗Plus(y)}.
We denote by Weak(G, f) resulting digraph (see Figure 3.11). This digraph

can be seen as a subgraph of Strong(G, F ), since every vertex (respectively, every

arc) of Weak(G, f) is also a vertex (respectively, is also an arc) of Strong(G, F ).

Furthermore, it does not contain more than 2 ⋅ S(F ) copy-vertices, S(F ) copy-arcs,

and Q(F ) router-arcs.
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(y, a1, 1,−) (y, a2, 1,−) (y, a2, 2,−)
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copy-arcs
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Figure 3.11: Constructing the digraph Weak(G, f). (a) Three arcs a1, a2, a3

which are incident with a common vertex y in a digraph G = (X, A) together
with their corresponding f values in a PIRP solution (F ,f). (b) All the arcs and
vertices of Weak(G, f) that are constructed from the vertices, arcs, and f values
in (a).

Lemma 3.1. The digraph Weak(G, f) is acyclic.

Proof. It directly comes from the fact that if (F , f) is an optimal solution of the

PIRP model, then the subgraph induced by the arcs a = (x, y) of G such that f(a) > 0

does not contain any circuit. ∎

The digraph Cover(G, f) aims at providing us with a flexible reduced version

of the Time-Expanded network GΩ and at helping us in finding the flows H and h.

Its construction proceeds as follows.

Vertices of Cover(G, f)

They are all the vertices of Weak(G, f), augmented with an auxiliary vertex source

and an auxiliary vertex sink. We denote by V (Cover) the vertex set of Cover(G,

f).
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Arcs of Cover(G, f)

They are:

• one arc u = (sink, source), provided with a weight costCover(G,f)(u) = α;

• any arc u = (source, p = (x, a,m, ε)), p ∈X∗, provided with a weight costCover(G,f)(u)
equal to the cost weight (i.e., the weight induced by cost ∶ A→ R+) of a mini-

mum time weight path (i.e., minimum with respect to the weight time ∶ A →
R+) from d to x;

• any arc u = (p = (x, a,m, ε), sink), p ∈X∗, provided with a weight costCover(G,f)(u)
equal to the cost weight of a minimum time weight path from x to d;

• any arc u = (p = (x, a,m, ε), q = (y, a′,m′, ε′)), p, q ∈ X∗, provided with a

weight costCover(G,f)(u) equal to the cost weight of a minimum time weight

path from x to y. Among those arcs, those which belong to the set Copy(A)
of arcs am, a ∈ A, m = 1, . . . , ⌈f(a)

κ
⌉, we say they are marked.

We denote by A(Cover) the arc set of the digraph Cover(G, f).

Those two digraphs allow us to describe the following Weak/Cover Decomposi-

tion Scheme.

3.2.2 The Weak/Cover Decomposition Scheme

As in the Strong Lift Problem, the way item flow values f(a), a ∈ ∂−G(x) will dis-

tribute themselves into values f(a′), a′ ∈ ∂+G(x) while moving through vertex x, is

going to be described by two real vectors z = (zu, u = ((x, a,m,−), (x, a′,m′,+)) ∈
Router), and z∗ = (z∗am , am ∈ Copy(A)). Those two vectors will provide us with

“lifted” flow h once we assign time values tp to the vertices p of the digraph Weak(G,

f). But conversely, the way we assign those time values is going to have an impact

on the computation of vectors z, and z∗. So, as told at the beginning of Section

3.2, we consider as the master object of our decomposition scheme a set Λ of arcs

(p, q), p ∈X∗ ∪{source, sink} = V (Cover). This active arc subset of A(Cover) will

provide us with the arcs which can be used for item transfer or vehicle moves. It

must contain all the marked arcs, and induce the following constraints.

• On vector Z which will describe vehicle routes on the digraph Cover(G, f):

for every arc u = (p, q) which is not in Λ, we set Zu = 0.
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• On vector z: for every router-arc u = (p, q) which is not in Λ, we set zu = 0;

• On time vector t = (tp, p ∈ V (Cover)): for every arc (p, q) in Λ, we have that

tq ≥ tp + timeG(x(p), x(q)).
That means that once Λ has been determined, vector t becomes constrained by

the following linear programming constraint system CTIME(Λ).

CTIME(Λ) constraint system on the time vector t = (tp, p ∈ V (Cover)) ≥ 0:

• tsource = 0; (E22)

• tsink ≤ Ω; (E23)

• for any arc u = (source, p), p ∈X∗: tp ≥ timeG(d, x(p)); (E24)

• for any arc u = (p, sink), p ∈X∗: tp + timeG(x(p), d) ≤ Ω; (E25)

• for any arc (p, q) in Λ, p ∈X∗, q ∈X∗: tq ≥ tp + timeG(x(p), x(q)). (E26)

By the same way, vectors (z, z∗) become constrained by the following constraint

system WEAK(G, f , Λ), which is nothing more than a linear program.

WEAK(G, f , Λ) constraint system on vectors z, z∗:

• for any copy-arc am: z∗am ≤ κ; (E27)

• for any copy-vertex q = (x, a,m,−) of Weak(G, f):

z∗am ≤ ∑u∈RouterOut(q) zu; (E28)

• for any copy-vertex p = (x, a,m,+) of Weak(G, f):

z∗am ≥ ∑u∈RouterIn(p) zu; (E29)

• for any vertex x of G:

∑u∈CopyIn(x) z∗u = ∑u∈RouterOut(x) zu +max(−bx,0); (E30)

• for any vertex x of G:

∑u∈CopyOut(x) z∗u = ∑u∈RouterIn(x) zu +max(bx,0); (E31)

• for any router-arc u which is not in Λ: zu = 0. (E32)
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Finally, the flow vector Z with indexation on the arcs of Cover(G, f) and which

is going to represent the activity of the vehicles becomes constrained by the following

constraint system COVER(G, f , Λ), which is nothing more than a standard Minimum

Cost Flow LP model.

COVER(G, f , Λ) constraint system on vector Z:

• for every vertex p of Cover(G, f): (E33)

∑
u∈∂−

Cover(G,f)
(p)
Zu = ∑

u∈∂+
Cover(G,f)

(p)
Zu;

• for any marked arc u: Zu = 1; (E34)

• for any unmarked arc u ∈X∗ ×X∗ which is not in Λ: Zu = 0; (E35)

• the cost (E36)

∑
u∈A(Cover)

costCover(G,f)(u) ⋅Zu

is the smallest possible.

In the rest of this chapter, we will denote by (λ, µ) an optimal dual solution

of COVER(G, f , Λ), with vector λ = (λp, p ∈ V (Cover)) corresponding to con-

straints (E33) and vector µ = (µu, u is a marked arc of A(Cover)) corresponding to

constraints (E34).

So, we may now reformulate our Partial Lift Problem according to the following

bi-level setting.

Weak/Cover Reformulation of the Partial Lift Problem: Compute

arc collection Λ ⊆ A(Cover) which contains the marked arcs and is such that

• CTIME(Λ) admits a feasible solution;

• WEAK(G, f , Λ) system admits a feasible solution (z, z∗);

• the optimal value ∑u∈A(Cover) costCover(G,f)(u) ⋅ Zu of COVER(G, f , Λ) is

the smallest possible.
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3.2.3 Weak-Lift-Consistency

Before keeping on, we must ask ourselves about which kind of restriction are imposed

to the solutions computed according to above Weak/Cover decomposition scheme.

We say that vector h is weak-lift-consistent with f if the projection of h onto

G is equal to f , and for any arc a = (x, y) of G we have that, the transportation

of f(a) items from x to y can be decomposed into the transportation along m arcs

((x, tm), (y, tm + timeG(x, y)), m = 1, . . . , ⌈f(a)
κ
⌉ of the Time-Expanded network GΩ

(some of them possibly identical), and each one transporting no more than κ items.

Then we have the following result.

Theorem 3.2 - Optimal Weak-Lift-Consistent solutions

Solving above Weak/Cover Reformulation yields the best feasible weak-lift-consistent

solution of the Partial Lift Problem.

Proof. Let us first consider some feasible weak-lift-consistent solution (H, h) of the

Partial Lift Problem. We split any arc u = ((x, t), (y, t+timeG(x, y)) of GΩ such that

related value h(u) is larger than κ into ⌈h(u)
κ
⌉ arcs with pairwise distinct vertices.

Then we consider the skeleton digraph Sk(GΩ, H, h) obtained from GΩ by keep-

ing only the arcs u = ((x, t), (y, t + timeG(x, y)) and vertices (x, t) obtained this

way, by adding an arc between any two consecutive vertices (x, t) and (x, t′), t ≤ t′,
and by adding vertices source and sink together with arc (sink, source) and all

arcs (source, (x, t)) and ((x, t), sink). Since (H, h) is weak-lift-consistent we can

say that, for any arc a = (x, y) in G, no more than ⌈h(u)
κ
⌉ arcs u = ((x, t), (y, t +

timeG(x, y)) are involved into Sk(GΩ, H, h). It comes that we may associate in

a bijective way, with any vertex (x, t) of Sk(GΩ, H, h), a vertex p = (x, a,m, ε)
of Weak(G, f) and extend this correspondence to vertices source and sink. For

any vertex p = (x, a,m, ε) obtained through this construction, we set x(p) = x
and t(p) = t. We define the arc collection Λ as Λ = {(p, q) such that t(q) − t(p) ≥
timeG(x(p), x(q))}. Then we easily check that h may be turned into a feasible solu-

tion of WEAK(G, f , Λ), that H may be turned into a feasible solution of COVER(G,

f , Λ) with unchanged cost value, and that values tp = t(p) meet the constraints of

CTIME(Λ).

Conversely, let us consider a solution (Λ, z, z∗, Z) of above Weak/Cover Decom-

position Scheme, together with some feasible solution t of the CTIME(Λ) constraint

system. We see that t may be chosen in such a way that, for any arc marked

arc (p, q) in Λ, we get tq = tp + timeG(x(p), x(q)). Then we perform the following

construction of a digraph Aux(G, f , t). This construction is illustrated in Figure

3.12.
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Figure 3.12: Constructing the digraph Aux(G, f , t). (a) A set of arcs in a
digraph Weak(G, f) together with their corresponding vertex time values. (b)
The digraph Aux(G, f , t) constructed from the digraph in (a).

Vertices of Aux(G, f , t). They are all the vertices of Cover(G, f). For any x,

the vertices of X∗(x) may be ordered according to a linear order σx, in such a way

that for any p, q ∈X∗(x) the following implication holds: pσxq⇒ tp ≤ tq.
Arcs of Aux(G, f , t). They are as follows.

• One arc u = (sink, source), provided with a weight costAux(G,f,t)(u) = α.

• Any arc u = (source, p = (x, a,m, ε)), p ∈ X∗, such that tp is at least equal to

the minimum time weight of a path from d to x(p) in G, and which is minimal

for the ordering σx with this property. Such an arc u is provided with a weight

costAux(G,f,t)(u) equal to the cost weight of a minimum time weight path from

d to x(p) in G.

• Any arc u = (p, sink), p ∈X∗, such that Ω−tp is at least equal to the minimum

time weight of a path from x(p) to d in G, and which is maximal for the

ordering σx with this property. Such an arc u is provided with a weight

costAux(G,f,t)(u) equal to the cost weight of a minimum time weight path from

x(p) to d in G.

• Any arc u = (p = (x, a,m, ε), q = (x′, a′,m′, ε′)), x ≠ x′, such that tq − tp is

at least equal to the minimum time weight of a path, from x to x′ in G and

that p is maximal for σx with this property and q is minimal for σx′ with this

property. Such an arc u is provided with a weight costAux(G,f,t)(u) equal to

the cost weight of a minimum time weight path from x(p) to x(q) in G. If

(a,m) = (a′,m′), then this arc is marked, and provided with a capacity Mu

equal to ⌈z∗
am

κ
⌉.
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• Any arc u = (p = (x, a,m, ε), p′ = (x, a′,m′, ε′)), where p and p′ are consecu-

tive according to the ordering σx. Such an arc u is provided with a weight

costAux(G,f,t)(u) = 0.

Vectors z and z∗ provide us with a flow h defined on the digraph Aux(G, f ,

t). In order to get H, we proceed as follows. For any arc u = (p = (x, a,m, ε), q =
(y, a′,m′, ε′)), x ≠ y, which is not a marked arc and is such that tq > tp+timeG(x, y),
we introduce an auxiliary vertex q′ = (y, tp + timeG(x, y)) (if it does not already

exists), and deviate the flow along the path (p, q′, q). Every time we do it, we

update accordingly h and σx. This process is finite, and when it ends, flow vector Z

and flow h provide us with a feasible IRP solution (H, h), with unchanged cost. ∎

Existence of Weak-Lift-Consistent Solutions

Still, solving the Partial Lift Problem according to previously described decompo-

sition scheme remains heuristic, in the sense that not all IRP feasible solutions (H,

h) are weak-lift-consistent, as it is shown by the following example.

Example 3.2 - A feasible-path-decomposable flow which is not weak lift-consistent

In the digraph G = (X,A) depicted in Figure 3.13, the item flow vector f= (f(a), a ∈
A) can be decomposed into two feasible-paths (w,x, y) and (x, y, z). Theorem 2.5

tells us that f can be lifted into a feasible IRP solution (H, h). However we need

two vehicles in order to transfer three items from w to y, and two items from x to z,

which will traverse arc (x, y) at distinct times. We deduce that digraph Weak(G, f),

which allows only one arc from x to y, forbids the existence of a weak-lift-consistent

IRP solution (H, h). ◻
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Figure 3.13: An example of feasible-path-decomposable item flow f that is
not weak-lift-consistent. (a) An IRP instance over a digraph G = (X, A). (b)
A feasible-path-decomposable item flow f on G that does not allow a weak-lift-
consistent IRP solution (H, h).
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Checking the existence of weak-lift-consistent IRP solutions can be done by solv-

ing the following MILP WLIFT(G, f) constraint system.

MILP WLIFT(G, f) (constraint system)

Variables

• z = (zu, u = ((x, y,m,−), (x, y′,m′,+)) ∈ Router), with rational values.

Value zu means the number of items which arrive at vertex x along arc

am and which are transferred to arc a′m
′
.

• ℓ = (ℓu, u = ((x, a,m,−), (x, a′,m′,+)) ∈ Router), with {0,1} values.

Value ℓu = 1 means that zu ≠ 0.

• z∗ = (z∗am , am ∈ Copy(A)) with rational values. Value zu means the num-

ber of items which are transported along arc am;

• t = (tp, p = (x, a,m, ε) ∈ X∗) with rational nonnegative values. Value tp

means the time when a vehicle arrives at (in case ε = −) or leaves (in case

ε = +) x along arc am.

Constraints

• For any router-arc u: zu ≤ κ ⋅ ℓu. (E37)

• For any copy-arc am: z∗am ≤ κ. (E38)

• For any vertex q = (y, a,m,−) of Weak(G,F ):
z∗am ≥ ∑u∈RouterOut(q) zu. (E39)

• For any vertex p = (x, a,m,+) of Weak(G,F ): z∗am ≥ ∑u∈In(p) zu. (E40)

• For any vertex x of G:

∑v∈CopyIn(x) z∗u = ∑u∈RouterOut(x) zu +max(−bx,0). (E41)

• For any vertex x of G:

∑v∈CopyOut(x) z∗u = ∑u∈RouterIn(x) zu +max(bx,0). (E42)

• For any arc a = (x, y) of G: ∑u∈Copy(a) z∗u = f(a). (E43)

• For any copy-arc (p, q) = ((x, a = (x, y),m,+), (y, a = (x, y),m,−)):
tq ≥ tp + timeG(x, y). (E44)
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• For any router-arc u = (p = (x, a,m,−), q = (x, a′,m′,+)), the logical

implication (ℓu = 1) ⇒ (tq ≥ tp) holds, which can be represented by the

constraint: Ω ⋅ ℓu + tp − tq ≤ Ω. (E45)

Theorem 3.3 - Existence of Weak-Lift-Consistent Solutions

A feasible weak-lift-consistent solution (H, h) of the Partial Lift Problem exists if

and only if above constraint system WLIFT(G, f) admits some feasible solution.

Proof. Deriving a solution (z, z∗, ℓ, t) from a feasible IRP solution is pure routine.

Conversely, let us suppose that we are provided with a feasible solution (z, z∗, ℓ,

t) of WLIFT(G, f). Then we build digraph Aux(G, f , t) exactly as in the proof of

Theorem 3.2. In order to get vector H, we solve the following Minimum Cost Flow

Problem MCF(G, f , t).

MCF(G, f , t): Compute an integral flow vector Z on the digraph Aux(G, f ,

t) such that

• Z satisfies the flow conservation condition at every vertex;

• for any marked arc u, Zu ≥Mu, where Mu is the capacity defined in the

setting of Aux(G, f , t).

• Z minimizes the cost ∑u∈A(Aux(G,f,t)) costAux(G,f,t) ⋅Zu.

Then we derive H from Z the same way we did in the last part of Theorem 3.2

and we conclude. ∎

In the next section we present some numerical results (see Table 3.2) of solving

the WLIFT(G, f) MILP, over the same instances in Table 3.1. Those numerical

results allow us to check that in most cases, a feasible-path-decomposable flow f

induces a feasible WLIFT(G, f) MILP. In such a case, intuition tells us that we

should not need to involve, while dealing with the Partial Lift Problem, flow vectors

h which are not weak-lift-consistent.
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This intuition leads us to set the following conjecture.

Conjecture 1 - Exactness of Weak/Cover Decomposition Scheme for

Weak-Lift-Feasible Solutions

If above constraint system WLIFT(G, f) is feasible, then the Weak/Cover de-

composition scheme solves the Partial Lift Problem in an exact way.

3.3 Handling the Weak/Cover Decomposition

In this last section, we briefly address the issue of the practical design of an algo-

rithm for the Partial Lift Problem. Previously described Weak/Cover decomposition

scheme involves, as its master object, a collection Λ of arcs of the Cover(G, f) di-

graph.

This suggests us to design algorithms which focus on computing “good” col-

lections Λ. As it usually happens when it comes to the design of algorithm for

multi-level models, the main difficulty here is to derive from the slave CTIME(Λ),

WEAK(G, f , Λ) and COVER(G, f , Λ) levels sensitivity information which will allow

us to efficiently drive master collection Λ.

We notice that WEAK(G, f , Λ) is a simple rational linear program, with con-

straints related to main vector z which are transportation constraints set on bipar-

tite digraphs, that COVER(G, f , Λ) is a simple Minimum Cost Flow LP model and

that CTIME(Λ) is about the computation of a maximum weight path in an acyclic

digraph.

A consequence is that we may rely on linear programming duality in order to

retrieve information from the resolution of the slave levels, and drive the master

object Λ accordingly.

First, in Section 3.3.1 we compact our Weak/Cover formulation in a way which

skips slave levels CTIME(Λ) , WEAK(G, f , Λ) and COVER(G, f , Λ) and only keeps

constraints related to master object Λ. Next (Section 3.3.2-19) we derive a simple

algorithmic handling of Λ which we apply to the instances of Table 3.1.
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3.3.1 An Exact MILP Weak/Cover Reformulation

We turn the previous Weak/Cover decomposition scheme into a WPLIFT(G, f)

MILP model to search for an optimal weak-lift-feasible solution of the Partial Lift

Problem.

We consider vectors t, z, z∗, and Z as in Section 3.2.2 and introduce an additional

{0,1}-valued vector χ = (χu, u ∈ A(Cover)). We merge the programs CTIME(Λ),

WEAK(G, f , Λ), and COVER(G, f , Λ) into a single MILP, while discarding con-

straints (E26), (E32), and (E35). Next, we add the constraints (E46)-(E49) and the

objective function (E50) which are described below.

MILP WPLIFT(G, f)

Variables

• t = (tp, p ∈ V (Cover)) ∈ R+.
• z = (zu, u ∈ Router) ∈ R+.
• z∗ = (z∗u, u ∈ Copy(A)) ∈ R+.
• Z = (Zu, u ∈ A(Cover)) ∈ R+.
• χ = (χu, u ∈ A(Cover)) ∈ {0, 1}∣A(Cover)∣.

Constraints

• Include constraints (E22)-(E25), (E27)-(E31), and (E33)-(E34).

• For any marked arc u: χu = 1. (E46)

• For any arc u = (p, q) ∈X∗ ×X∗: (E47)

if χu = 1 then tp + timeG(x(p), x(q)) ≤ tq.
• For any router-arc u: if χu = 0 then zu = 0. (E48)

• For any unmarked arc u ∈X∗ ×X∗: if if χu = 0 then Zu = 0. (E49)

Objective Function

The cost (E50)

α ⋅Z(sink, source) + β ⋅ ∑
u∈X∗×X∗

costCover(G, f)(u) ⋅Zu + γ ⋅∑
a∈A

time(a) ⋅ f(a)
is smallest possible.

Lifting Projected IRP Solutions 127



Models and Algorithms for Problems of Scheduling/Routing with Synchronizations

3.3.2 A Simple Monotonic Cover Algorithm

There are clearly many ways to turn previously described Weak/Cover Decomposi-

tion Scheme and above WPLIFT(f) reformulation into an algorithm. We propose,

implement and test here a very simple “Monotonic Cover” algorithm which basically

works in two steps, without any feedback loop.

• 1st step: Solve the WLIFT(G, f) model and derive vectors z∗ and z and ℓ, and

initialize collection Λ with the arcs of Cover(G,f) which support z∗ and z.

• 2nd step: While it is possible to maintain the feasibility of constraint system

CTIME(Λ), make Λ evolve in a monotonic way by first, at any iteration, solv-

ing the COVER(G, f , Λ) Minimum Cost Flow model, and next inserting into

Λ a non-active arc (p, q) which would induce a new constraint on the dual of

COVER(G, f , Λ) that makes infeasible the current dual optimal solution of

COVER(G, f , Λ). At any iteration, retrieve some IRP solution and update the

best solution ever obtained.

Algorithm 6: Monotonic Cover algorithm.
input : A parameter ε > 0, and an item flow f such that WLIFT(G, f) is feasible.

output: A TEN IRP solution (Hcur, hcur) over the digraph Aux(G, f , t) defined in the

proof of Theorem 3.2.

1 Solve WLIFT(G, f) MILP and retrieve vectors z∗ and ℓ;

2 Set Λ← Copy(A) ∪ {u ∈ Router ∶ ℓu = 1} and construct digraph Cover(G, f);

3 Solve COVER(G, f ,Λ) and CTIME(Λ);

4 Retrieve a primal solution (Hcur, hcur) and a dual solution (λ, µ) of COVER(G, f , Λ);

5 Set CurCost ← cost(Hcur hcur) and stop ← False;

6 while not stop do

7 Search for an arc u = (p, q) such that λp − λq + µu − costCover(G,f)(u) > ε and such

that CTIME(Λ ∪ {u}) remains feasible;

8 if no arc u was found at previous step then

9 Take Hcur = (Hcur
a , a ∈ A(Cover));

10 Take hcur = (hcur
a , a ∈ A(Cover))) ;

11 stop ← True and return (Hcur, hcur) ;

12 else

13 Λ← Λ ∪ {u};
14 Retrieve a feasible vector solution t of CTIME(Λ) and take

Λ(t) = {(p, q) ∈ Cover(G, f) ∶ tq ≥ tp + timeG(x(p), x(q))} ;

15 Solve the Minimum Cost Flow problem COVER(G, f , Λ(t)) and retrieve a primal

solution (H, h) and a dual solution (λ, µ);
16 If cost(H, h)< CurCost, then update (Hcur, hcur) to (H, h), and CurCost to

cost(H, h) ;

128 Lifting Projected IRP Solutions



Models and Algorithms for Problems of Scheduling/Routing with Synchronizations

Implementation Details

Although the construction of the MILP models from Sections 3.1-3.2.3 can be per-

formed without much difficulty, the implementation of Algorithm 6 it is a little

more delicate because it involves the interaction and updating of several LP models.

Furthermore, Algorithm 6 uses some LP dual solutions, which in turn depend on

the particular implementation of their LP primal counterparts. Therefore, in this

subsection we describe a way of implementing Algorithm 6.

Throughout this subsection, the identification of the elements of a finite set X

with index values x = 1, . . . , n, means that we have established a bijective function

φ ∶X → {1, . . . , n}, and we are using the symbol x to denote both an element of X,

and the index φ(x). The particular interpretation of x should be clear from context

so confusion should not result.

Input. Consider an IRP instance consisting of a digraph G = (X,A), a vector b of

vertex balance coefficients, a time horizon Ω, a fleet of vehicles with finite capacity

κ > 0, a weight function cost ∶ A → R+, a weight function time ∶ A → R+, and non-

negative cost parameters α, β, and γ. Let us suppose, also, that we have a solution

(F, f) of the corresponding PIRP model.

If we consider that any vertex in X is identified with an index value x = 1, . . .

, n, and that any arc in A is identified with an index value a = 1, . . . , m. Then,

we should be provided with an array balance, indexed over x = 1, . . . , n, and

with an array item flow, indexed over a = 1, . . . , m. For every index x, the entry

balance[x] is the balance coefficient bx of the corresponding vertex x; and for every

index a, the entry item flow[a] is the value of the items flow f passing through

the corresponding arc a.

We also should be provided with an array arc, with indexation over a = 1, . . . ,

m. The entry arc[a] codifies an arc a = (x, y) ∈ A and contains the following four

records:

1. a record arc[a].tail containing the tail x of arc a;

2. a record arc[a].head containing the head y of arc a;

3. a record arc[a].weight cost equal to cost(a);
4. a record arc[a].weight time equal to time(a).
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We consider that we have a digraph data structure based on adjacency lists that

encodes the digraph G. This data structure consists of two bidimensional arrays

adj arc out, and adj arcs in, both with the first dimension indexed by x = 1, . . .

, n. The structure adj arcs out[x] is a ragged array that contains the indices a of

all the arcs with tail x; similarly adj arcs in[x] is a ragged array that contains the

indices a of all the arcs with head x. In other words, adj arcs out[x] (respectively,

adj arcs in[x]) contains all the elements of ∂+G(x) (respectively, all the elements

of ∂−G(x)).
Also, we should be provided with two bidimensional arrays cost path, and

time path; both indexed over {1, . . . , n} × {1, . . . , n}. For all (x, y) in {1, . . . , n} ×
{1, . . . , n}, the entry cost path[x][y] is equal to dist(G,cost)(x, y), i.e., the mini-

mum weight of a path from vertex x to vertex y in the digraph G (with respect

to the weight function cost); analogously, the entry time path[x][y] is equal to

dist(G,time)(x, y), i.e., the minimum weight of an (x, y)-path in G (with respect to

the weight function time).

Encoding sets Copy(A) and X∗ of digraph Weak(G, f). We start by defining

I = ∑a∈A⌈
f(a)

κ
⌉. Then, we scan the entries of array item flow, and for every a =

1, . . . , m, such that item flow[a]> 0, we create ⌈item flow[a]/κ⌉ new index

values i; every such value will correspond to a copy-arc of Copy(A) in the digraph

Weak(G,f). So, we identify any copy-arc in Copy(A) with an index i = 1, . . . , I,

and we create an array copy arc indexed over i = 1, . . . , I. We fill entry copy arc[i]

with the following five records initialized in the following way:

1. copy arc[i].arc = a,

2. copy arc[i].head in G = arc[a].head,

3. copy arc[i].tail in G = arc[a].tail,

4. copy arc[i].weight cost = arc[a].weight cost,

5. copy arc[i].weight time = arc[a].weight time.

In a similar way, at the same time we are dealing with an arc a = (x, y) we fill

two bidimensional arrays adj copy arcs out, and adj copy arcs in, by adding the

current index i to adj copy arcs out[x] and adj copy arcs in[y].
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Hence at the very end, we have a bidimensional array adj copy arcs out that

provide us, for every x ∈ X with a ragged array adj copy arcs out[x] containing

the indices i of all the copy-arcs with copy arc[i].tail in G = x; similarly, we

have a bidimensional array adj copy arcs in that provide us, for every x ∈X with

a ragged array adj copy arcs in[x] containing the indices i of all the copy-arcs

with copy arc[i].head in G = x.

Next, in the digraph Weak(G, f) we can identify the copy-vertex head of copy-

arc i with the index value i, and the copy-vertex tail of copy-arc i with the index

value I + i. Proceeding this way, we identify every copy-vertex in X∗ with an

index value i = 1, . . . , 2I. Then, we create an array lift vertex indexed from

1 to 2I. For i from 1 to I we set lift vertex[i] = copy arc[i].head in G, and

lift vertex[I + i] = copy arc[i].tail in G. Note that, by using this indexation,

we can determine easily that, in the digraph Weak(G, f), the copy-arc encoded by

copy arc[i] has a copy-vertex head with index value i, and a copy-vertex tail with

index value I + i. We also know that any copy-vertex i corresponds to a copy of the

vertex lift vertex[i] in digraph G.

Encoding set Router of digraph Weak(G, f). For all vertex x ∈X, for all copy-

arc i in adj copy arcs in[x], and for all copy-arc i′ in adj copy arcs out[x] we

create a a triple (x, i, i′) and a new index value j. Then, we identify every one of

those triples with an index value j = 1, . . ., J . For every index value j, we store the

triple (x, i, i′) in an array router arc. Note that, such a triple (x, i, i′) represents

a router-arc in Router(x) with copy-vertex head i and copy-tail I + i′.
Conversely, we introduce two bidimensional arrays adj router arcs out and

adj router arcs in. For every i in {1, . . . , I}, adj router arcs in[i] is a ragged

array containing the indices j such that router arc[j] has its second coordinate

equal to i; similarly adj router arcs out[i] is a ragged array containing the in-

dices j such that router arc[j] has its third coordinate equal to i. In other words,

for every x ∈X, and every copy-vertex i ∈X∗(x), the array adj router arcs in[i]

contains the indices j of all the router-arcs in Router(x) with copy-vertex head i

(i.e., the router-arcs in RouterIn(i)); similarly, the array adj router arcs out[i]

contains the indices j of all the router-arcs in Router(x) with copy-vertex tail I + i
(i.e., the router-arcs in RouterOut(I + i)).

Encoding WLIFT(G,f) MILP. We can use the above-defined arrays lift vertex,

copy arc, and router arc to guide the construction of the MILP WLIFT(G,f).

For all am ∈ Copy(A), the variables z∗am can be indexed from 1 to I; whilst, for

u ∈ Router, variables zu and ℓu can be indexed from I + 1 to I + J .
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On the other hand, for p ∈X∗ the variables tp can be indexed from 1 to 2I in the

following way. For every index i from 1 to I, we create one variable ti corresponding

to the copy-vertex head (in the digraph Weak(G, f)) of copy-arc i, and one variable

tI+i corresponding to the copy-vertex tail (in the digraph Weak(G, f)) of copy-arc

i. Proceeding this way, we can see that for i in {1, . . . , 2I}, the real variable ti

corresponds to the time value associated with copy-vertex i in X∗.

Encoding vertices of digraph Aux(G,f , t). We suppose here that we have a

feasible solution ζ = (z,z∗, ℓ, t) of the MILP WLIFT(G, f). Vertices of Aux(G,f , t)

are all the pairs (i, ti) with i from 1 to 2I, together with a new pair source = (d,0)
with an index value 2I + 1, and a new pair sink = (d,Ω) with an index value 2I + 2.

For encoding those vertices, we create an array aux vertex indexed from 1 to 2I+2.

For any such a value i in {1, . . . ,2I} we store in aux vertex[i] the following two

records initialized in the following way:

1. aux vertex[i].vertex in G = lift vertex[i],

2. aux vertex[i].time = ti.
We also define:

1. aux vertex[2I + 1].vertex in G = d,
2. aux vertex[2I + 1].time = 0;

3. aux vertex[2I + 2].vertex in G = d,
4. aux vertex[2I + 2].time = Ω.

Conversely, we create a bidimensional array aux vertex back indexed by X;

and for x = 1, . . . , n, we store in the array aux vertex back[x] all the indices i

such that aux vertex[i].vertex in G = x. In other words, aux vertex back[x]

contains the indices of all the vertices in X∗(x).
Encoding arcs of digraph Aux(G,f , t). We take all the pairs (i, i′) with i ∈
{1, . . . ,2I,2I + 1}, and i′ ∈ {1, . . . ,2I,2I + 2}, together with the pair (2I + 2,2I + 1).
Any pair (i, i′) represents an arc ((i, ti), (i′, ti′)) of Aux(G,f , t), and can be identified

with an index value k = 1, . . . , K. For every such an index value k representing a

pair (i, i′), we store the following records on an array covering arc:

● aux arc[k].tail=i,

● aux arc[k].head=i′,
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● a weight cost aux arc[k].weight cost, which is equal to β ⋅ cost path[x][y]

if i is related to vertex x (i.e., if lift vertex[i] = x), and i′ is related

to vertex y (i.e., if lift vertex[i′] = y); but when k represents the pair

(i, i′) = (2I + 2,2I + 1), we set aux arc[k].weight cost = α.

● a weight time aux arc[k].weight time, which is equal to γ ⋅ time path[x][y],

if i is related to vertex x, and i′ is related to vertex y.

● a flag value aux arc[k].mark, which is equal to 1 if 1 ≤ i′ ≤ I, I + 1 ≤ i ≤ 2I,

and i + i′ = 2I (i.e. if i′ and i are, respectively, the head and tail of the

copy-arc stored at copy arc[i′]). In such a case, we store a record value

aux arc[k].item flow equals to z∗i′ . Otherwise, we set aux arc[k].mark

= 0, and aux arc[k].item flow = 0.

● a flag value aux arc[k].active, which tell us whether arc (i, i′) is active: any

arc k such that aux arc[k].mark = 1 is active, as well as the arc (2I+2,2I+1)
(i.e. the arc (sink, source) of Aux(G,f , t)). As for the other arcs k con-

necting vertex (aux vertex[i′].vertex in G, aux vertex[i′].time) to vertex

(aux vertex[i].vertex in G, aux vertex[i].time) we set aux arc[k].active

= 1, if

Case 1: aux vertex[i′].vertex in G = aux vertex[i].vertex in G,

and aux vertex[i′].time ≤ aux vertex[i].time

Case 2: aux vertex[i′].vertex in G ≠ aux vertex[i].vertex in G,

aux vertex[i′].time + aux arc[k].weight time ≤ aux vertex[i].time,

and there does not exist another vertex (i′′, ti′′) of Aux(G,f , t) with

∗ aux vertex[i′′].vertex in G = aux vertex[i].vertex in G,

∗ aux vertex[i′].time < aux vertex[i′′].time, and

∗ aux vertex[i′′].time < aux vertex[i].time.

Note that, we can use the array aux vertex back to initialize this last record.

As usual, while building the arc set {1, . . . ,K} of Aux(G,f , t), we also build two

arrays adj aux arcs out, and adj aux arcs in, both with indexation on 1, . . . ,2I+
2, with the meaning:

● adj aux arcs out[i] provide us with the list of arcs k with tail i, and

● adj aux arcs in[i] provide us with the list of arcs k with head i.
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Encoding MCF(G, f , t). The linear program MCF(G, f , t) aims to compute an

integral flow vector Z = (Zk, k = 1, . . . ,K) with Zk = 0 for all k ∈ {1, . . . ,K} such that

aux arc[k].active = 0, and that minimizes ∑k∈K (aux arc[k].weight cost) ⋅Zk

+ ∑k∈K (aux arc[k].time cost) ⋅ (aux arc[k].item flow).

Note the second sum is a constant that corresponds to the cost c3 related to the

item ride time. The term is constant because we search for solutions (H,h) such

that f is the projection of h.

The following constraints are added to the linear program in the order below:

1. Z satisfies flow conservation at any vertex of Aux(G,f , t), so, for any i =
1, . . . ,2I + 2 we add the constraint

∑
k∈∂−

Aux(G,f,t)
(i)
Zk = ∑

k∈∂+
Aux(G,f,t)

(i)
Zk ,

notice we can use previous arrays adj aux arcs in and adj aux arcs out in

order to set those constraints.

2. For any k = 1, . . . ,K, if aux arc[k].mark = 1, we add the constraint:

Zk ≥ ⌈aux arc[k].item flow

κ
⌉,

but if aux arc[k].mark = 0, we simply add the constraint

Zk ≥ 0.

The dual solution vector of MCF(G, f , t) is a vector (u, y) with indexation u =
(ui, i = 1, . . . ,2I + 2), and y = (yk, k = 1, . . . ,K, with aux arc[k].active = 1), and

the constraints in the dual of MCF(G, f , t) are as follows.

For all k = (i, i′), such that aux arc[k].active = 1:

● if aux arc[k].mark = 1, we have a constraint

ui − ui′ + yk ≤ aux arc[k].weight cost;

● if aux arc[k].mark = 0, we have a constraint

ui − ui′ ≤ aux arc[k].weigth cost.
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A LP implementation of CTIME(Λ). The first time we solve the WLIFT(G,f)

MILP, we are provided with a solution ζ and a collection Λ consisting of all the arcs

carrying at least one item.

We can obtain a LP implementation of CTIME(Λ) from the WLIFT(G,f) MILP

by simply fixing the values of variables in z, ℓ, and z∗ to the corresponding values

computed in the solution ζ. Proceeding that way, adding a new arc (i, i′) to Λ is

equivalent to the introduction of a constraint ti′ ≥ ti + costAux(G,f,t)((i, i′)) to that

implementation of CTIME(Λ).

Additional comments. If Z= (Zk, k ∈ A(Aux(G,f, t))) is an optimal solution of

current MCF(G,f , t) model and (u,y) is an optimal LP dual solution, the only way

to possibly reduce the cost below the optimal value, it could be to allow the use of

an arc k = ((i, ti), (i′, ti′)) ∈ Aux(G,f, t) with aux arc[k].active= 0.

Now we may note that, given an arc k = ((i, ti), (i′, ti′)) ∈ Aux(G, f, t) with

aux arc[k].active= 0, the change of a constraint Zk = 0 in MCF(G,f ,t) by a con-

straint Zk ≥ 0, would be equivalent to add a constraint u(i, ti)−u(i′, ti′) ≤ costAux(G,f,t)(k)
to the LP dual problem of MCF(G, f , t). If this constraint is already satisfied by

the current LP dual solution (u,y), then the optimal value would not change. So,

we are interested in finding an arc k = ((i, ti), (i′, ti′)) with aux arc[k].active= 0,

and such that u(i, ti) − u(i′, ti′) > costAux(G,f,t)(k), because the incorporation of the

opposite constraint u(i, ti) −u(i′, ti′) ≤ costAux(G,f,t)(k) into the LP dual model, makes

infeasible the current dual optimal solution (u,y).
We will not add this constraint directly into the dual of MCF(G,f ,t). Instead

we will include such an arc k into the collection Λ, and that means the addition of

a constraint ti′ ≥ ti + costAux(G,f,t)(k) into the above described LP implementation

of CTIME(Λ).

Now we provide a complete example of the Monotonic Cover algorithm.
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Example 3.3 - Lifting a solution with Algorithm 6

Figure 3.14 shows an IRP instance over a digraph G = (X,A) with a depot vertex

0. Vertices 1, 3, and 5 are excess vertices with b1 = 1, b3 = 10, and b5 = 1. Vertices

2, 4, and 6 are deficit vertices with b2 = −1, b4 = −10, and b6 = −1. Vehicles have an

item capacity κ = 10 and the time horizon for the relocation process is Ω = 56.
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Figure 3.14: An example of IRP instance over a digraph G = (X, A) with
X = {0, 1, 2, 3, 4, 5, 6}, depot vertex 0, and A = {(0, 1), (1, 2), (1, 3), (2, 0), (2, 1),
(3, 4), (3, 5), (4, 2), (4, 3), (5, 6), (6, 4), (6, 5)}.

Figure 3.15 shows an item flow f on the same digraph G that allows to trans-

port the items from excess vertices to deficit vertices. Note that f is feasible-path-

decomposable for the given time horizon Ω = 56.
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Figure 3.15: An example of item flow f over the same instance in Figure 3.14.
Note that f allows to transport the items from excess vertices to deficit vertices,
and is feasible-path-decomposable for the time horizon Ω = 56.
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For the instance in Figure 3.14 and the item flow f in Figure 3.15, we formulate

and solve the MILP WLIFT(G,f). Figure 3.16 shows a WLIFT(G,f) solution over the

digraph Weak(G,f). Note the set of router-arcs is empty and the set of copy-arcs

consists of the three arcs (3,0), (4,1), and (5,2).
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Figure 3.16: A solution of the MILP WLIFT(G, f) (illustrated over the digraph
Weak(G,f)) for the digraph G in Figure 3.14 and the item flow in Figure 3.15.

Now, we construct the digraph Aux(G, f , t) from the WLIFT(G,f) solution

depicted in Figure 3.16. The digraph Aux(G, f , t) is depicted in Figure 3.17. In

the Figures 3.16-3.21 of this example, we have drawn each vertex p of Aux(G, f ,

t), according to the corresponding tp value: a vertex p is drawn at a lower position

than a vertex q if and only if tp ≤ tq.
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Figure 3.17: The digraph Aux(G, f , t) constructed from the WLIFT(G, f)
solution in Figure 3.16.
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We solve the Minimum Cost Flow MCF(G, f , t) for the vector t=(t0 = 48, t1 = 42,

t2 = 36, t3 = 6, t4 = 12, t5 = 18) and we obtain the solution depicted in Figure 3.18

which involves three vehicles.
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Figure 3.18: A MCF(G,f ,t) solution over a subgraph of Aux(G, f , t). We have
considered the vector t from the WLIFT(G,f) solution in Figure 3.16.

Now, we retrieve a dual solution (y,u) of MCF(G, f , t) and we identify the

non-active arc (0,4) such that y0 − y4 − costAux(G,f,t)((0,4)) = −322 < 0. We add

the arc (0,4) to Λ, that means a new constraint t4 ≥ t0 + costW eak(G,f)((0,4)) in

CTIME(G,Λ). We solve CTIME(G,Λ) and retrieve a solution t′ = (t0 = 8, t1 = 42,

t2 = 36, t3 = 6, t4 = 16, t5 = 18). Then we solve MCF(G, f , t′) and we obtain the

solution depicted in Figure 3.19 which involves two vehicles.
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Figure 3.19: A MCF(G,f ,t′) solution over a subgraph of Aux(G, f , t). We have
taken the vector t′ = (t0 = 8, t1 = 42, t2 = 36, t3 = 6, t4 = 16, t5 = 18).
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Again, we retrieve a dual solution (y,u) of MCF(G, f , t) and we identify the

non-active arc (0,5) such that y0 − y5 − costAux(G,f,t)((0,5)) = −332 < 0. We add

the arc (0,5) to Λ, that means a new constraint t5 ≥ t0 + costW eak(G,f)((0,5)) in

CTIME(G,Λ). We solve CTIME(G,Λ) and retrieve a solution t′ = (t0 = 8, t1 = 42,

t2 = 36, t3 = 6, t4 = 16, t5 = 22). Then we solve MCF(G, f , t′) and we obtain the

solution depicted in Figure 3.20 which still involves two vehicles.
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Figure 3.20: A MCF(G,f ,t′) solution over a subgraph of Aux(G, f , t). We have
taken the vector t′ = (t0 = 8, t1 = 42, t2 = 36, t3 = 6, t4 = 16, t5 = 22).

We repeat the process and add the non-active arc (1,5) to Λ. We solve CTIME(G,Λ)

and retrieve a solution t′ = (t0 = 8, t1 = 18, t2 = 36, t3 = 6, t4 = 16, t5 = 26). Then

we solve MCF(G, f , t′) and we obtain the solution depicted in Figure 3.21 which

involves a single vehicle.
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Figure 3.21: A MCF(G,f ,t′) solution over a subgraph of Aux(G, f , t). We have
taken the vector t′ = (t0 = 8, t1 = 18, t2 = 36, t3 = 6, t4 = 16, t5 = 26).

Finally, we arrive at the end of the process because it is not possible to add more

non-active arcs to Λ and keep a feasible constraint system CTIME(G,Λ). ◻
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Numerical Experiments

We performed experiments with the purpose of getting an evaluation of the differ-

ence, namely with regard to the number of vehicles, between the value provided by

the projected PIRP model and the IRP solution obtained after performing the “lift”

process. So, Table 3.2 provides us, for the instances described in Table 3.1, with

the values G4, T4, and V4 computed with the PIRP model. Column MC displays

the cost of the solution computed with Algorithm 6, TMC indicates the running

time in seconds that was spent in the computation of MC, VMC is the number of

vehicles used in the solution with cost MC, and column ITER shows the number of

iterations in the main loop of Algorithm 6 to compute the value MC. Missing values

are indicated by a hyphen symbol -, and correspond to PIRP instances for which the

WLIFT(G, f) MILP is unfeasible.

Table 3.2: Numerical results for the WLIFT(G, f) MILP, and the Monotonic
Cover algorithm.

Id n m κ Ω G4 V4 WLIFT TWLIFT MC TMC VMC ITER

1 20 78 2 324 2110.85 3 1 0.01 3097.00 0.213 5 10
2 20 65 5 400 1196.10 3 1 0.01 1294.70 0.131 3 5
3 20 77 10 440 854.83 2 1 0.01 1504.25 0.425 3 19
4 20 75 2 680 3805.81 3 1 0.03 5958.00 2.651 7 43
5 20 50 5 603 2354.43 3 1 0.06 3074.30 2.176 4 33
6 20 57 10 840 1532.38 2 1 0.01 2655.40 0.321 4 17
7 20 62 5 420 2727.30 4 1 0.03 3963.70 1.623 7 39
8 50 163 2 460 15561.30 17 1 0.15 20952.00 811.539 31 294
9 50 155 5 390 4326.10 7 0 0.01 - - - -

10 50 149 10 440 7966.03 6 0 0.03 - - - -
11 50 146 20 436 1840.17 3 0 0.01 - - - -
12 50 175 2 728 6976.11 5 1 0.03 11745.00 38.117 17 133
13 50 217 5 912 1643.76 2 1 0.01 3619.25 2.901 4 48
14 50 154 10 1040 2643.76 3 1 0.03 6134.03 21.542 10 108
15 100 363 2 336 17179.00 22 1 0.59 23469.00 271.212 37 187
16 100 236 5 516 4826.24 8 1 0.29 9190.75 340.001 24 244
17 100 289 10 432 3272.98 4 0 0.01 - - - -
18 100 419 2 1032 20219.30 10 1 0.14 54691.00 4495.43 70 977
19 100 327 5 552 5944.23 7 1 0.01 17026.20 484.001 32 357
20 100 313 10 712 6091.24 4 1 0.01 11809.50 62.124 18 139

Comments. From Table 3.2, we can check above Monotonic Cover algorithm finds

feasible IRP solutions for all the weak-lift-consistent instances (i.e., instances with 1

in the WLIFT column). However, by comparing values in columns V4 and VMC, we

can see that most of the time the solutions found by the Monotonic Cover algorithm

involve a bigger number of vehicles than the estimated number by the PIRP model.
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3.3.3 A More Efficient Path-Concatenate Algorithm

If we analyze previous Algorithm 6, we can observe that choosing a non-active

arc with a negative reduced cost in the COVER(G, f , Λ) model is not enough to

guarantee an improvement in the cost solution, because the inclusion of a new arc

a in the collection Λ may give a different CTIME(Λ) solution, and this in turn may

yield a COVER(G, f , Λ ∪ {a}) model with a worse cost optimal solution. We may

try to avoid this problem by replacing the step 7 of Algorithm 6 in the following

way:

Step 7′: Search for an arc u = (p, q) such that λp −λ1 +µu − costCover(G,f)(u) > ε,
CTIME(Λ∪ {u}) remains feasible, and COVER(G, f ,Λ∪ {u}) has and optimal solu-

tion with cost better than or equal to the cost of COVER(G, f ,Λ).

Although such a a modification avoids previous issue, it has the following two

drawbacks.

• The number of non-active arcs u such that λp − λ1 + µu − costCover(G,f)(u) > ε
may be huge (see column ITER of Table 3.2), and for each of those arcs u we

would need to solve not only the corresponding linear program CTIME(Λ∪{u})
but also the linear program COVER(G, f ,Λ ∪ {u}). As a result, we obtain a

slower Monotonic Cover algorithm.

• If current collection Λ is a local optimal collection (i.e., if for all u ∈ Cover(G,

f)∖Λ, such that λp−λ1+µu−costCover(G,f) > ε and CTIME(Λ∪{u}) is feasible,

we have that COVER(G, f ,Λ ∪ {u}) has a worse optimal solution cost than

COVER(G, f ,Λ)), then we would end solving all of the related linear programs

COVER(G, f ,Λ ∪ {u}) only to find that the cost has not been improved.

The algorithm which we are going to present here works in a more empirical way,

and uses a resolution of the CTIME(Λ) constraint system through Bellman algorithm

in order to deduce which arc (p, q), with p = (x1, a1,m1,−) and q = (x2, a2,m2,+)
has to be inserted in Λ. Its intuition is very simple: we do as if we were dealing with

a collection of paths, supported by the arcs of current collection Λ, which are going

to be followed by the vehicles between the time when they start loading some item

and the time when they come back with empty load to the depot vertex d. Then

we try to concatenate two among those paths, in such a way that it will be possible

for a same vehicle to follow those two paths and that resulting path is going to be

the shortest possible.
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More precisely, we proceed as in Section 6 while following two steps:

• The first step works exactly as in Section 3.3.2: we solve WLIFT(G,f) and

derive vectors z, z∗ which will remain unchanged during all the process. We

initialize Λ with the arcs of Cover(G, f) which correspond to nun-null z, z∗

values.

• Then the second step works as follows:

– Current collection Λ being given, we solve CTIME(Λ) through Bellman

algorithm for the search of a longest path in an acyclic digraph, and get,

for any vertex p = (x, a,m, ε) ∈X∗ a time window [Minp,Maxp], with:

∗ Minp ≥ time(d, x);
∗ Maxp ≥ Ω − time(x, d).

– Then we identify vertices p1 = (x1, a1,m1,+) such thatMinp1
= time(d, x1)

and denote by StartPath resulting vertex set. By the same way, we iden-

tify vertices p2 = (x2, a2,m2,−) such that Maxp2
= Ω − time(x2, d) and

denote by EndPath resulting vertex set. The meaning of those two vertex

subsets is that they identify the vertices which may respectively corre-

spond to the first time when a vehicle loads some item and the last time

when it is unloaded some item.

– Then we select p2 = (x2, a2,m2,−) ∈ EndPath and p1 = (x1, a1,m1,+) ∈
StartPath such that Minp2

+Ω −Maxp1
does not exceed Ω, which also

means Minp2
≤Maxp1

, and such that Maxp1
−Minp2

is the largest pos-

sible.

– We insert arc (p2, p1) into Λ, update the time windows induced by the con-

straint system CTIME(Λ), and get some feasible solution t of CTIME(Λ).

We set Λ(t) = {(p, q) ∈ A(Cover) ∶ tq ≥ tp + time(x(p, x(q)))}.
– Finally we solve the COVER(G, f , t) Minimum Cost Flow problem, and

update accordingly the best solution H ever found.

We stop when it is not possible to perform above process, that means when it

is not possible to compute p1 and p2.

The above process may be set in an algorithmic format as follows.
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Algorithm 7: Path-Concatenate algorithm.

input : An item flow f such that WLIFT(G, f) is feasible.

output: A TEN IRP solution (Hcur, hcur) over the digraph Aux(G,f , t)

defined in the proof of Theorem 3.2.

1 Solve WLIFT(G, f) MILP and retrieve vectors z, z∗ and ℓ which will remain

unchanged during all the process

2 Λ is the set of all arcs of Cover(G, f) which correspond to non null z, z∗

values.

3 Compute time windows [Minp,Maxp] for p ∈X∗
4 Solve the Minimum Cost Flow model COVER(G, f , Λ) and derive an initial

solution (Hcur, hcur).

5 stop ← False;

6 while not stop do

7 Compute the StartPath and EndPath subsets;

8 if one of those subsets is empty then

9 stop ← True;

10 else

11 Search for p2 = (x2, a2,m2,−) ∈ EndPath and

p1 = (x1, a1,m1,+) ∈ StartPath such that Minp2
≤Maxp1

and

Maxp1
−Minp2

is the largest possible ;

12 if Fail(Search) then

13 stop ← True;

14 else

15 Λ← Λ + {(p2, p1)};
16 Update the time windows [Minp,Maxp], p ∈X∗ and retrieve

some feasible solution t of CTIME(Λ);

17 Λ(t)← {(p, q) ∈ A(Cover) ∶ tq ≥ tp + time(x(p), x(q))};
18 Solve COVER(G, f , Λ(t)): if the value of resulting solution Z is

better than the cost of (Hcur, hcur) then update (Hcur, hcur).

19 Return (Hcur, hcur);

As the numerical test are going to make appear, this algorithm is significantly

more efficient than the previous one of Section 3.3.2.
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Implementation Details

Of course, there are different ways of implementing the heuristic described in Al-

gorithm 7. In this section we describe a four-step implementation for constructing

vehicle paths that are compatible with a computed time-feasible items flow f . The

proposed implementation starts by associating with any vertex u of Weak(G, f) a

time window [Minu,Maxu], and uses an initial collection Γ of non-incident arcs as

“seeds” for constructing vehicle paths. At the general step, it considers arc costs,

time window values, and uses constraint propagation to select an arc u = (p, q) of

Cover(G, f) and merge two paths of Γ into a single path. The selected arc u = (p, q)
is added to current collection Λ, and we solve the resulting COVER(G, f ,Λ ∪ {u}).
At the end, we otput the best cost COVER(G, f ,Λ) solution found. We describe

next the initialization and the four stages of the proposed implementation.

Initialization. We start from a WLIFT(G, f) constraint system set on a digraph

Weak(G, f) corresponding to a PIRP solution (F , f) and with a feasible solution (z,

ℓ, z∗, t). We construct digraph Aux(G, f , t) and an auxiliary digraph Gtime with

vertex set Xtime =X∗, and arc set Atime = {a ∈ Copy(A) ∶ z∗a > 0}∪ {a ∈ Router ∶ za >
0}. This digraph Gtime will be used to keep track of the time constraints related to

the constructed solutions. Also, given x, y ∈ X, for every x′ ∈ X∗(x), and for every

y′ ∈ X∗(y), we define time(x′, y′) = time(x′, y) = time(x, y′) = time(x, y). This

function will be used at the fourth stage of the heuristic.

For every x ∈ Xtime we associate a time window [Minx,Maxx], where Minx

(respectively Maxx) is the minimum (respectively the maximum) departure time

from x that is compatible with (z, ℓ, z∗, t); that is, Minx, Maxx are values such

that, if we fix the tx variable value in the initial WLIFT(G, f) constraint system to a

value in the interval [Minx,Maxx], resulting constraint system remains feasible, and

[Minx,Maxx] is maximal with respect to set inclusion. We also define an initial col-

lection of one-arc paths Γ = {(x, y) ∈ Atime, such that (x, y) ∈ Copy(A) and z∗(x,y) >
0}, and a boolean array used vertices indexed over Xtime and with all entries ini-

tialized to false.

First stage. We search for an arc a = (x, y) ∈ Router with used vertices[x] =
false, and used vertices[y] = false, and such that a is the unique arc with za > 0

connecting x to y. We merge the path Γ1 ∈ Γ ending at x with the path Γ2 ∈ Γ

starting at y. Also, we set used vertices[x] = true, and used vertices[y] = true.

We repeat this process until no more of such arcs a can be found.
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Second stage. We put all the arcs a = (x, y) ∈ Router with za > 0 in a list L, and we

sort those arcs (x, y) according to their corresponding Minx −Maxy values. Then,

for every a in L (in the ordering given by L) with used vertices[x] = false, and

used vertices[y] = false we merge the path Γ1 ∈ Γ ending at x with the path

Γ2 ∈ Γ starting at y, and we set used vertices[x] = true, and used vertices[y] =
true.

Third stage. We put all the arcs a = (x, y) ∈ Router with za = 0 in a list L, and we

sort those arcs (x, y) according to their corresponding Minx −Maxy values. Then,

for every a in L (in the ordering given by L) with used vertices[x] = false, and

used vertices[y] = false we add a to Atime, and propagate time constraints (i.e.,

we check the acyclicity of Atime ∪ {a}, and update time window values). Let Γ1 ∈ Γ

be the path ending at x, and Γ2 ∈ Γ be the path starting at y. Let x′ be the first

vertex of Γ1, and y′ be the last vertex of Γ2. We have the two following cases.

• If Gtime is acyclic, and for all x ∈ Xtime we have that Minx ≤Maxx, and also

we have that time(d, x′) + time(Γ1) + time(x, y) + time(Γ2) + time(y′, d) ≤ Ω,

then we merge the path Γ1 ∈ Γ ending at x with the path Γ2 ∈ Γ starting at y,

and we set used vertices[x] = true, and used vertices[y] = true. For all

x ∈ X∗ , we replace tx by Minx. Then we update Aux(G, f , t), and we solve

MCF(G, f , t).

• If Gtime contains a cycle, or exists x ∈ Xtime such that Minx > Maxx, or we

have time(d, x′) + time(Γ1) + time(x, y) + time(Γ2) + time(y′, d) > Ω, then the

corresponding constraint system is infeasible. We remove a from Atime, and

restore time window values.

Fourth stage. For every x ∈Xtime such that x is the ending vertex of a path in Γ,

and for every y such that y is the starting vertex of a path in Γ, we create a pair

(x, y). We put those pairs in a list L and we sort those pairs (x, y) according to their

corresponding time(x, y) values. Then, for every pair (x, y) in L (in the ordering

given by L) with used vertices[x] = false, and used vertices[y] = false we

add (x, y) to Atime, and propagate time constraints (i.e., we check the acyclicity of

Atime ∪ {a}, and update time window values). Let Γ1 ∈ Γ be the path ending at x,

and Γ2 ∈ Γ be the path starting at y. Let x′ be the first vertex of Γ1, and y′ be the

last vertex of Γ2. We have the two following cases.
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• If Gtime is acyclic, and for all x ∈ Xtime we have that Minx ≤Maxx, and also

we have that time(d, x′) + time(Γ1) + time(x, y) + time(Γ2) + time(y′, d) ≤ Ω,

then we merge the path Γ1 ∈ Γ ending at x with the path Γ2 ∈ Γ starting at y,

and we set used vertices[x] = true, and used vertices[y] = true. For all

x ∈ X∗ , we replace tx by Minx. Then we update Aux(G, f , t), and we solve

MCF(G, f , t).

• If Gtime contains a cycle, or exists x ∈ Xtime such that Minx > Maxx, or we

have time(d, x′) + time(Γ1) + time(x, y) + time(Γ2) + time(y′, d) > Ω, then the

corresponding constraint system is infeasible. We remove a from Atime, and

restore time window values.

Output. Return the best cost MCF(G, f , t) solution found.

Note that, once we have checked the acyclicity of Gtime, the above constraint

propagation process for updating time windows can be performed in timeO(size(Gtime))
in the following way.

Propagation of Min values. Sort Xtime in a topological ordering of Gtime. For

every x ∈ Xtime, and every a = (x, y) ∈ ∂+Gtime
(x), if Miny <Minx + time(x, y) then

set Miny =Minx + time(x, y).

Propagation of Max values. Sort Xtime in a reverse topological ordering of Gtime.

For every y ∈ Xtime, and every a = (x, y) ∈ ∂−Gtime
(y), if Maxx > Maxy − time(x, y)

then set Maxx =Maxy − time(x, y).

Numerical Experiments

Table 3.3 provides us, for the instances described in Table 3.1, with the values G4,

T4, and V4 computed with the PIRP model; and with the values MC, TMC, and VMC

computed with Algorithm 6. Column PC displays the cost of the solution computed

with the above-described Path-Concatenate algorithm, TPC indicates the running

time (in seconds) that was spent in the computation of PC, and VPC is the number

of vehicles used in the solution with cost PC. Columns TEN and V contain reference

values for the cost and number of vehicles of the TEN IRP model computed by

CPLEX 12.10 in one hour. Again, missing values are indicated by a hyphen symbol

- and correspond, either to PIRP instances for which the WLIFT(G, f) MILP is
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unfeasible or TEN IRP instances for which the solver could not find any feasible

solution within the time limit.

Table 3.3: Numerical results for the Monotonic Cover algorithm, and the Path-
Concatenate algorithm.

Id n m κ Ω G4 V4 MC TMC VMC PC TPC VPC TEN V

1 20 78 2 324 2110.85 3 3097.00 0.213 5 3097.00 0.003 5 2633.00 4
2 20 65 5 400 1196.10 3 1294.70 0.131 3 1294.70 0.009 3 1282.70 3
3 20 77 10 440 854.83 2 1504.25 0.425 3 1504.85 0.045 3 1123.25 2
4 20 75 2 680 3805.81 3 5958.00 2.651 7 4537.00 0.224 4 4215.00 3
5 20 50 5 603 2354.43 3 3074.3 2.176 4 2474.70 0.163 3 2469.00 3
6 20 57 10 840 1532.38 2 2655.40 0.321 4 1822.80 0.039 2 1823.70 2
7 20 62 5 420 2727.30 4 3963.70 1.623 7 3266.50 0.142 5 2898.10 4
8 50 163 2 460 15561.30 17 20952.00 811.539 31 18435.00 18.622 24 17006.00 20
9 50 155 5 390 4326.10 7 - - - - - - 5023.70 9

10 50 149 10 440 7966.03 6 - - - - - - 8820.50 8
11 50 146 20 436 1840.17 3 - - - - - - 2670.93 6
12 50 175 2 728 6976.11 5 11745.00 38.117 17 7589.00 4.622 6 - -
13 50 217 5 912 1643.76 2 3619.25 2.901 4 2234.25 0.189 2 - -
14 50 154 10 1040 2643.76 3 6134.03 21.542 10 3425.83 1.807 4 - -
15 100 363 2 336 17179.00 22 23469.00 271.212 37 21623.00 9.476 32 19383.00 27
16 100 236 5 516 4826.24 8 9190.75 340.001 24 6656.35 20.588 14 31881.35 86
17 100 289 10 432 3272.98 4 - - - - - - 3808.15 5
18 100 419 2 1032 20219.30 10 54691.00 4495.430 70 22692.00 217.848 13 - -
19 100 327 5 552 5944.23 7 17026.20 484.001 32 7556.70 33.846 10 - -
20 100 313 10 712 6091.24 4 11809.50 62.124 18 7548.00 6.679 7 - -

Comments: In Table 3.3, we can see that the Path Concatenate heuristic presented

in this section finds feasible IRP solutions for all the weak-lift-consistent instances.

Also, by comparing values in columns MC and PC, TMC and TPC, and VMC and

VPC, we can see that most of the time the solutions found by the Path Concatenate

heuristic have lower costs, involve less vehicles, and have required lower running

times to be computed than the solutions found by the Monotonic Cover algorithm.

3.4 Conclusion

In this chapter we have proposed several algorithms for handling the two Lift prob-

lems introduced in Section 2.5.1.

We have proposed a MILP formulation for solving the Strong Lift Problem in an

exact way. However, the numerical experiments have suggested that even when we

consider both the Extended-Subtour constraint and the Feasible-Path constraints,

the computed PIRP solutions usually yield an infeasible Strong Lift Problem. Then,

we have either to search for additional constraints that may increase the probability

of obtaining PIRP solutions which yield feasible Strong Lift Problems, or we have

to accept a deterioration of the cost estimated by the PIRP model.
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Also, we have studied the Partial Lift Problem and we have proposed a Weak/

Cover decomposition approach for handling it in a flexible way. We have introduced

the concept of weak-lift-consistence and provided two heuristic algorithms for lifting

item flows which are weak-lift-consistent.

Finally, the resolution approach described here remains somewhat heavy. It

requires an extended use of the mixed integer linear programming machinery, and

so is hardly fitted to situations when the size of the base digraph G is large. It follows

that a last issue is about the way our almost exact algorithms may be turned into

fast running heuristic algorithms, which can run without the help of any specific

and possibly expensive library.

148 Lifting Projected IRP Solutions



Part III

The Pickup-and-Delivery Problem

with Transfers and Time Horizon

149





Chapter 4

The Virtual Path Problem:

Application to the PDPT

Let G be an acyclic digraph with an underlying constraint system. Suppose we are

allowed to introduce new arcs between some pairs of vertices of G at the expense of

introducing new constraints in the constraint system. In this chapter we introduce

the Virtual Path Problem, which is about the construction of a directed path be-

tween two given vertices of G, while optimizing some objective function and while

maintaining the feasibility of the underlying constraint system related to G.

In Section 4.2 we describe formally the Virtual Path Problem and we present

the Virtual A* algorithm for solving it in an exact way.

Then, in Section 4.3 we introduce the 1-Request Insertion PDPT which is about

the way that one additional request can be inserted into the current solution of a

Pickup-and-Delivery Problem with Transfers (PDPT) instance. We show that this

insertion problem can be seen as particular case of the Virtual Path Problem and

then we propose the Virtual A* algorithm as an exact algorithm for solving the

problem. We also propose a heuristic based on Dijkstra’s algorithm and constraint

propagation. We compare the quality of the found solutions and the performance

of both algorithms over several data sets of pseudorandom instances.

In Section 4.4 we show how to combine the single insertion algorithms developed

in Section 4.3 with some classical metaheuristics, to insert multiple requests into a

PDPT schedule.

use those single insertion algorithms to handle PDPT instances with multiple

requests. We also present some common algorithms based on random/local search

to explore the solution space and we conclude with some numerical experiments.
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4.1 Introduction

A standard Pickup-and-Delivery Problem (PDP) most often involves a finite set

V of identical vehicles v1, v2, . . . , v∣V ∣ with capacity κ, which must be scheduled in

order to perform a set of pickup-and-delivery tasks inside some transit network G.

Time windows may be involved, but in most cases, a time horizon [0,Ω] is imposed

for the whole schedule. Vehicles must meet a set R of requests: a request r ∈ R
consists in an origin or, a destination dr, a load ℓr, and has to be served by exactly

one vehicle.

In the PDP with transfers (PDPT), a request may be served by several vehicles,

in the sense that load ℓr may start from origin or with some vehicle v1 and next

shift to some vehicle v2 at some relay vertex x, and so on, until reaching destination

dr into some vehicle vp. Depending on the context, a transfer from v1 to v2 may

take different forms: one may impose either vehicles to meet (strong synchronization

constraint) at relay vertex x or only forbid vehicle v2 from leaving x before the arrival

of v1 (weak synchronization constraint). In other words, a weak synchronization

constraint implies that v1 and v2 are obliged to meet only when v2 arrives first to

the relay vertex x.

Due to those synchronization constraints, a convenient way to model PDPT

is through the use of Time-Expanded networks (see Section 1.2.3, or for example

Godinho et al. (2014) [106] and Bsaybes et al. (2019) [41]). Given a digraph

G = (X,A) and a time horizon [0,Ω], we construct a Time-Expanded network

GΩ = (XΩ,AΩ) (see Figure 4.1) whose vertex set XΩ consists of an auxiliary source

vertex ŝ, an auxiliary sink vertex p̂, and a copy (x, ti) for every vertex x of G and

for any time value ti ∈ [0,Ω] (note that in practice, we usually consider only a finite

set of relevant time values ti). We represent any feasible move along an arc of G,

from a vertex x to a vertex y between time ti and time ti+δ (where δ ≥ 0 is the time

necessary for moving from x to y), by some arc ((x, ti), (y, ti+δ)). If x = y then such

a move becomes a waiting move. Then, we represent vehicle circulation by a unique

integral flow vector H indexed over the set AΩ of the Time-Expanded network arcs,

and request circulation comes as a multicommodity flow {hr ∶ AΩ → R, r ∈ R} such

that, for every arc a ∈ AΩ the sum Σr∈Rhr(a) is less than or equal to the value κ ⋅Ha,

where Ha is the entry of vector H corresponding to arc a.

However, resulting models are not very well-fitted to numerical handling, both

because of their size and because the PDPT tends to arise in dynamic contexts, with

requests not completely known in advance and which must be managed in a flexible

way.
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Figure 4.1: Construction of a Time-Expanded network. (a) A digraph G =
(X = {w, x, y, z}, A = {(z, w), (w, x), (x, y), (y, w), (w, z)}). Arc labels indicate
the time necessary for traversing each arc. (b) The Time-Expanded network GΩ

with time horizon [0, Ω = 7] constructed from (a). Because the time weights are
integral, we only need to consider the integral values ti in the interval [0, 7].

It results that most often, the PDPT is handled in a heuristic way and a common

strategy is to rely on an insertion (or build and destroy) approach: requests are

successively inserted into some current schedule and possibly removed and reinserted

for trying to improve the cost.

According to this paradigm, the key issue becomes the related insertion process.

In case no transfer is allowed, the insertion is trivial in the sense that it can be

performed through enumeration. It is not the case when transfers are allowed. As a

matter of fact, inserting a request r becomes then significantly more difficult than

simply searching for some path from an origin or to a destination dr inside some ad

hoc network (or even Time-Expanded network) because synchronization (strong or

weak) constraints requirements tend to impact the whole current schedule.

So, the main purpose of this chapter is to thoroughly study the one request

insertion problem that occurs as a part of the Pickup-and-Delivery Problem with

Transfers (with time horizon), and that we will denote by 1-Request Insertion PDPT.

For this, we introduce a more general problematic that we call the Virtual Path

Problem and we give a generic framework for handling it through a combination of

constraint propagation techniques and an A*-like algorithm (see Section 1.2.1, or

for example, Nilsson (1980) [166] and Russell and Norvig (2021) [188]).

Then, we adapt the algorithm for the Virtual Path Problem to derive an algo-

rithm for solving the 1-Request Insertion PDPT in an exact way, without imposing

any restriction neither on the number of transfers nor on the characteristics on the

transfer parameters. In order to fit with the purpose of practical use in realistic

dynamic contexts, we also describe a heuristic algorithm, which relies on Dijkstra’s

algorithm (augmented with a “closure” mechanism) and constraint propagation.
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Finally, we show how to insert multiple requests into a PDPT schedule by com-

bining some classical metaheuristics with the single insertion algorithms that we

have developed.

Relation with the Existent Literature

Among the papers mentioned in Section 1.1, the works of Bouros et al. (2011)

[36] and Lehuédé et al. (2013) [156] are the closest ones to the contributions of

this chapter. Both rely on the construction of auxiliary graphs, which represent

the current state of vehicle paths together with some specific constraints related

to transfers. Still [36] does not care of time-feasibility (i.e., time windows) nor the

impact of restrictions imposed to transfers. At the opposite, [156] is a theoretical

contribution which focuses on the complexity of testing the feasibility of an insertion

(with one transfer at most), after some preprocessing that allows the management

of slack time variables. The work we present here it is in the middle of those

works: while we also rely on precomputation of weight path values, we relax the

restriction on the number of relay vertices used in a transfer, impose no restriction

on the number of transfers, and propose both exact and heuristic algorithms for

the computation of a best feasible insertion for a given request. Also, we analyze

through numerical experiments, the impact on both the behavior of the algorithms

and the nature of the solutions for PDPT instances with single/multiple requests.

4.2 The Virtual Path Problem

We start from an acyclic digraph H = (X,A) with vertex set X and arc set A. We

denote by <<A the partial ordering over X that is induced by the arcs of H, and

we suppose that we are provided with a unique minimal vertex xmin and a unique

maximal vertex xmax, both with respect to <<A. A weight function time ∶ A(H) → R+

is associated with H. In addition, we are provided with a time horizon [0,Ω] and

so, function time induces the following system (CS) of constraints that involves a

nonnegative time vector t = (tx, x ∈X).
● For any a = (x1, x2) ∈ A, we have that tx2

≥ tx1
+ time(a). (CS1)

● For any x ∈X, we have that tx ≤ Ω. (CS2)

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

(CS)

We suppose that (CS) is feasible and for any x ∈X, we denote by [Minx,Maxx]
the time window of feasible values associated to x.
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We also are provided with two specific additional vertices ô (origin) and d̂ (des-

tination) which are not in X, and with a collection Λ of paths Λk, k = 1, . . . ,K in

H. For k = 1, . . . ,K the path Λk has a weight time(Λk) which is induced by the

function time, that is time(Λk) ∶= ∑a∈A(Λk) time(a).
An example of the above-defined situation is illustrated in Figure 4.2.

Λ1

Λ2

ô

d̂

xmin xmax

Figure 4.2: Two isolated vertices ô and d̂, and a connected digraph H = (X, A)
involving paths Λ1 and Λ2. Note that ô and d̂ are not vertices of H.

Our purpose is the computation of some kind of path from ô to d̂ which meets

some constraints and minimizes some cost involving the weight of the path, the

route collection Λ, and the time windows [Minx, Maxx], x ∈ X. Moving from ô to

d̂ will involve arcs of A, which now are dubbed real-arcs and additional arcs which

will be called virtual-arcs and which will behave as vertex transitions that impact

the constraint system (CS). We describe now the construction of those virtual-arcs.

We start by defining X∗ =X ∪ {ô, d̂}. Then, we define a virtual-arc as a 4-tuple

avirt = (x, y, a1 = (x1, y1), a2 = (x2, y2)), where (x, y) ∈ (X ∪ {ô}) × (X ∪ {d̂}) is such

that (x, y) ∉ A, and a1, a2 ∈ A ∪ {Nil}, (here, Nil is a new auxiliary arc). Any

virtual-arc is provided with a nonnegative “length” 3-tuple (∆,∆1,∆2) in such a

way that:

● if x ∈X, then x = x1; otherwise if x = ô then we are provided with an auxiliary

deviation cost δ2;

● if y ∈ X, then y = y2; otherwise if y = d̂ we are provided with an auxiliary

deviation cost δ1;

● if a1 = Nil then a2 ≠ Nil, x = ô, y ≠ d̂, and ∆ =∆1;

● if a2 = Nil then a1 ≠ Nil, y = d̂, x ≠ ô, and ∆ =∆2.
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We say that x is the tail vertex of avirt, that y is its head, that ∆ is its length,

and that ∆1, ∆2 are its deviation coefficients.

Remark 1. This notion of virtual-arc formalizes the notion of transfer, i.e., of

“bridges” in digraph H from the tail of one arc to the head of another one, or from

the source vertex ô to the head of some arc, or from the tail of some arc to the

sink vertex d̂. A virtual-arc (x, y, a1, a2) represents a movement from x to y that

introduces new constraints to (CS).

Then we consider a set Avirt of virtual-arcs and denote by H∗ = (X∗, A∗ =
Avirt ∪A) the structure which results from augmenting real-arc set A with virtual-

arc set Avirt. We call H∗ a virtual digraph. Please notice that this virtual digraph

has to be understood more as a kind of transition system that impacts the constraint

system (CS). Also note that this virtual digraph may contain cycles.

x = ô

x2 y = y2

δ2 ∆ = ∆1

∆2 = δ2 +∆1 − time(x2,y2)

(a)

x = x1 y1

∆ = ∆2 δ1

y = d̂

∆1 = ∆2 +δ1 − time(x1,y1)

(b)

(v, i) (v, i+1)

real-arc

(c)

(v, i−1)
(v, i)

(v, i+1)

xv
i = xw

j

(w, j−1)

(w, j)

(w, j+1)

real-arc

(d)

x = x1 y1

z

x2 y = y2

∆1 = time(x,z)+ time(z,y2)− time(x1,y1)

∆2 = time(x1,z)+ time(z,y)− time(x2,y2)

∆ = time(x,z)+
time(z,y)

(e)

x1 = x2 y1 = y2

x = ô y = d̂∆

δ2 δ1

∆1 = ∆2 = δ2 +∆+δ1 − time(x1,y1)

(f)

∆1=δ2+time(ô,z)+time(z,y1)−time(x1,y1)

δ2x1 y1

x = ô

z

x2 y = y2

∆ = time(ô,z)+
time(z,y)

∆2 = time(x2,z)+ time(z,y)− time(x2,y2)

(g)

x = x1 y1

∆1 = time(x,z)+ time(z,y2)− time(x1,y1)

z

∆ = time(x,z)+
time(z, d̂)

∆2= time(x,z)+time(z, d̂)+δ1−time(x2,y2)

x2

y2

y = d̂

δ1

(h)

∆1=δ2+time(x,z)+time(z,y1)−time(x1,y1)

x1

δ2

y1
x = ô

z

y = d̂
x2 y2

δ1

∆ = time(ô,z)+
time(z, d̂)

∆2= time(x2,z)+time(z, d̂)+δ1−time(x2,y2)

(i)

Figure 4.3: Deviation coefficients to construct the virtual graph arcs.

Running along virtual-arc (x, y, a1, a2) while moving from ô to d̂ means inserting

the arc (x, y) as a real-arc of H∗ with an impact on the constraint system (CS). Let

us describe this impact.
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Insertion of a virtual-arc (x, y, a1 = (x1, y1), a2 = (x2, y2)): (V1)

● It increases the values time(a1) and time(a2) respectively by ∆1, and ∆2. (see

Figures 4.4-4.7). Note this can be understood intuitively as the introduction

of two new constraints tx1
+ time(a1) +∆1 ≤ ty1

and tx2
+ time(a2) +∆2 ≤ ty2

.

● It introduces a new real-arc (x, y) with time((x, y)) =∆ (see Figures 4.4-4.7).

Again, this can be understood intuitively as the introduction of a new con-

straint ty ≥ tx +∆.

x = x1 y1

x2 y = y2

time(a1)

time(a2)

x = x1 y1

x2 y = y2

time(a1) + ∆1

time(a2) + ∆2

∆

(a) (b)

Figure 4.4: A virtual-arc avirt = (x, y, a1, a2) with x, y ∈ X and a1, a2 ∈ A. (a)
Components of avirt. (b) The effect of adding the arc avirt in (a) to the digraph
H. It increases the values time(a1) and time(a2), by ∆1 and ∆2, respectively. It
also creates a new real-arc (x, y) with time((x, y)) =∆.

● In case a1 = Nil, then x = ô, y ≠ d̂, and it also creates a new real-arc from

x2 to ô with time((x2, ô)) = δ2 (See Figure 4.5). Note this can be understood

intuitively as the introduction of a new constraint tx2
+ δ2 ≤ tô.

x2 y2 = y

Nil arc

time(a2)

x = ô x = ô

x2 y2 = y

time(a2) + ∆2

∆ = ∆1

(a) (b)

δ2

Figure 4.5: A virtual-arc avirt = (x, y, a1, a2) with a1 = Nil and x = ô. (a)
Components of avirt. (b) The effect of adding the arc avirt in (a) to the digraph
H. It increases the value time(a2) by ∆2, creates a new real-arc (ô, y) with
time((ô, y)) =∆ =∆1, and creates a new real-arc (x2, ô) with time((x2, ô)) = δ2.
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● In case x = ô, y ≠ d̂, and a1 ≠ Nil, then it also creates a new real-arc from x1

to ô, with time((x1, ô)) = δ2 (see Figure 4.3 (g)). Note this can be understood

intuitively as the introduction of a new constraint tx1
+ δ2 ≤ tô.

● In case a2 = Nil, then y = d̂, x ≠ ô, and it also creates a new real-arc from d̂ to

y1 with time((d̂, y1)) = δ1 (See Figure 4.6). This can be interpreted intuitively

as the introduction of a constraint td̂ + δ1 ≤ ty1
.

x = x1 y1

Nil arc

y = d̂

time(a1) time(a1) + ∆1

x = x1 y1

y = d̂

∆ = ∆2

(a) (b)

δ1

Figure 4.6: A virtual-arc avirt = (x, y, a1, a2) with a2 = Nil, y = d̂, and x ≠ ô.
(a) Components of avirt. (b) The effect of adding the arc avirt in (a) to digraph
H. It increases the value time(a1) by ∆1, creates a new real-arc (x1, d̂) with
time((x1, d̂)) =∆ =∆2, and creates a new real-arc (d̂, y1) with time((d̂, y1)) = δ1.

● In case y = d̂, x ≠ ô, and a2 ≠ Nil, then it also creates a new real-arc from d̂ to

y2, with time((d̂, y2)) = δ1 (See Figure 4.3 (h)). Note this can be understood

intuitively as the introduction of a new constraint td̂ + δ1 ≤ ty2
.

● In case x = ô, y = d̂, and a1 = a2 ∈ A, then it also creates a new real-arc

(x1, ô) with time((x1, ô)) = δ2, a real-arc (d̂, y1) with time((d̂, y1)) = δ1 (See

Figure 4.7). This can be interpreted intuitively as the introduction of the two

constraints tx1
+ δ2 ≤ tô, and td̂ + δ1 ≤ ty1

.

x = ô y = d̂

x1 = x2 y1 = y2
time(a1)

x1 = x2 y1 = y2
time(a1) + ∆1

x = ô y = d̂

(a) (b)

δ2 δ1

Figure 4.7: A virtual-arc avirt = (x, y, a1, a2) with x = ô, y = d̂, and a1 = a2 ∈ A.
(a) Components of avirt. (b) The effect of adding the arc avirt in (a) to digraph
H. It increases the value time(a1) by ∆1, creates a new real-arc (ô, d̂) with
time((ô, d̂)) =∆, creates a new real-arc (x2, ô) with time((x2, ô)) = δ2, and creates
a new real-arc (d̂, y1) with time((d̂, y1)) = δ1.
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● In case x = ô, y = d̂, and a1, a2 ∈ A with a1 ≠ a2, then it also creates a new real-

arc (x1, ô) with time((x1, ô)) = δ2 and a real-arc (d̂, y2) with time((d̂, y2)) = δ1

(See Figure 4.3 (i)). This can be interpreted intuitively as the introduction of

the two constraints tx1
+ δ2 ≤ tô, and td̂ + δ1 ≤ ty2

.

As we can see, such an insertion impacts both the time windows [Minx,Maxx],
x ∈ X and the weights time(Λk) of paths Λk, k = 1, . . . ,K. In order to make

(CS) consistent, this leads us to impose to any virtual-arc (n,m,a1 = (x1, y1), a2 =
(x2, y2)):

● no path from y2 to x1 exists in H. (J1)

Now, we proceed to define our Virtual Path Problem. We want to compute a

virtual path π which connects ô to d̂ and involves real-arcs and virtual-arcs, while

maintaining the feasibility of constraint system (CS). This imposes that the new

real-arcs resulting from the insertion of the virtual-arcs of π does not create any

cycle. More precisely, let π be a virtual path starting at ô, if we denote by Aadd(π)
the set of real-arcs which were created by considering the virtual-arcs of π, then

the set A ∪Aadd(π) must contain no cycle. In case the resulting constraint system

CS(π) is feasible, then for all x ∈X∗ we denote by [Minπ
x,Maxπ

x] the resulting time

windows and we denote by Λπ
k the path Λk after being modified by the creation of

the virtual path π.

As for the cost of virtual path π, it may involve the weight time(π) = ∑a∈A(π) time(a)
(i.e., the “distance” run by the request), the weights time(Λπ

k), k = 1, . . . ,K (vehicle

running costs), and the time when all the served requests may be achieved (user

ride time).

Hence we define cost(π) ∶= α ⋅ time(π) + ∑K
k=1 βk ⋅ time(Λπ

k) + ∑x∈X∗ γx ⋅Minπ
x,

where α, βk, γn are nonnegative scaling coefficients for k = 1, . . . ,K, and x ∈ X∗.
We denote by Xuser the subset of X defined by the nodes x such that γx > 0. We

summarize this as below.

Virtual Path Problem: Compute a virtual path π from ô to d̂ in the virtual

digraph H∗ so that

● resulting real-arc set A ∪Aadd(π) does not contain any cycle;

● resulting constraint system CS(π) remains feasible;
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● the cost of path π:

cost(π) ∶= α ⋅ time(π) + K∑
k=1

βk ⋅ time(Λπ
k) + ∑

x∈X∗
γx ⋅Minπ

x,

is minimal, where α, βk, γx are nonnegative scaling coefficients for

k = 1, . . . ,K, and x ∈X∗.

An Algorithm for the Virtual Path Problem

Let us recall that the A* algorithm was introduced in [115] as an adaptation of Di-

jkstra’s algorithm in order to deal with the path search in very large state networks,

like those which may be involved in robotics. It fits our purpose here since at any

time during the resolution problem, we shall deal not only with some current vertex

x, but also with the full sequence of all virtual-arcs which have been previously

inserted to reach x. We are going to describe an algorithm that we call Virtual A*

and which will perform an enumeration of the sequences of virtual-arcs likely to be

part of virtual path π, while relying on the preprocess that we describe next.

Preprocess for the Virtual A* algorithm:

1. Compute a table DLARGE and a table DSHORT which provide us, for any pair

x1, x2 ∈ X, with the weight according to the function time; of respectively a

maximum weight path and a minimum weight path from x1 to x2. If no path

exists from x1 to x2 in the original digraph G then we set DLARGE[x1, x2] = −∞
and DSHORT[x1, x2] = +∞. Clearly (CS) constraints imply that:

- for any x1, x2 ∈X∗, we have that tx2
≥ tx1
+ DLARGE[x1, x2];

- for any x ∈ X, Minx = DLARGE[xmin, x], and Maxx = Ω−DLARGE[x,xmax].
The construction of DSHORT can be performed together with a comple-

mentary data structure allowing us to retrieve, for any x1, x2 in X, a

minimum weight path πx1,x2
of H (with respect to the weight function

time) from x1 to x2.

Note this part of the preprocess helps us in performing both constraint prop-

agation and no cycle checking during the resolution process.

2. For any pair (x, y) in X∗ ×X∗ such that (x, y) ∉ A, set an arc (x, y) if there

exists some virtual-arc avirt from x to y and provide it with a weight D1
(x,y)
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equals to min{∆ = time(avirt) ∶ avirt has tail x and head y}. Let A1 be the

set of arcs obtained that way. Then (X∗,A ∪A1) defines an oriented digraph

structure H1. By setting D1
a = time(a), for all a ∈ A; we provide any arc a with

a weight D1
a. Next, for any x ∈ X∗, we compute (through Dijkstra algorithm)

the weight W1[x] of a minimum weight path (according to D1 = (D1
a, a ∈ A))

from x to d̂. Clearly W1[x] provides us with a lower bound for the weight of

a minimum cost virtual path from x to d̂, since we do not care here with

the feasibility of such a path. Then we set LB = α⋅W1[ô] + ∑K
k=1 βk ⋅ Lk +

∑x∈X∗ γx ⋅Minx. By the same way, LB provides us with a lower bound for

the cost cost(π) of any virtual path π which connects ô to d̂ in the virtual

digraph H∗ and which does not consist of a single virtual-arc from ô to d̂.

3. Compute a value val∗
ô,d̂

equals to the minimum possible cost of a virtual path

consisting of a single virtual-arc avirt

ô,d̂
with tail ô and head d̂. Let us denote by

πô,d̂ the resulting virtual path. It follows that val∗
ô,d̂
= cost(πô,d̂). If πô,d̂ exists

as a feasible solution of our problem, then set UB = val∗
ô,d̂

, otherwise set UB

= +∞. The computation of val∗
ô,d̂

can be achieved according to the following

lemma.

Lemma 4.1. Given a path π′ consisting of a single virtual-arc avirt

ô,d̂
= (ô, d̂, a1 =

(x1, y1), a2 = (x2, y2)). We can compute, for any path Λk the weight time(Λπ′

k ) by

adding ∆1 to time(Λk) if a1 ∈ Λk and adding ∆2 to time(Λk) if a2 ∈ Λk. Similarly,

if we define X ′ = {ô, d̂, y1, x2, y2} and Xuser = {x ∈X∗ ∶ γx ≠ 0}, then for all x ∈Xuser

we can compute the values Minπ′

x by propagating first the constraints (V1) and (C1)

for the vertices in X ′ and then by taking Minπ′

x as sup(Minx, supx′∈X′(Minx′ +
DLARGE[x′, x])). It follows that cost(π′) can be computed in O(∣Xuser∣).

Proof. The first part of above statement follows from the updating process de-

scribed in (V1). For the second part, we sort X ′ in a topological ordering with

respect of <<A∪{(x1,ô),(ô,d̂),(d̂,y2)}, and we use such an ordering to apply the formu-

las described in (V1) to propagate the constraints (V1) and (C1) on vertices ô,

d̂, y1, x2, and y2 in constant time. Then, for x ∈ Xuser we have that Minπ′

x =
sup(Minx, supx′∈X′(Minx′ + DLARGE[x′, x])). ∎

The virtual-arcs of H∗ may be provided with an oriented digraph relation Σ as

follows. Virtual-arcs avirt
1 = (x1, y2, a1, a2) and avirt

2 = (x′1, y′2, a′1, a′2) define an arc

(avirt
1 , avirt

2 ) in Σ if and only if DSHORT[y2, x
′
1] ≠ +∞. We provide any such an arc

(avirt
1 , avirt

2 ) in Σ with a weight Φ(avirt
1 , avirt

2 ) equals to the number of x-y-paths πx,y of

real-arcs, such that DSHORT[y2, x]+∑a∈A(πx,y) time(a)+DSHORT[y, x′1] =DSHORT[y2, x
′
1],

that means the number of paths of real-arcs likely to be involved in a virtual path π

which would connect avirt
1 to avirt

2 according to Σ. Note that Σ may contain cycles.
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Let us suppose that π is some virtual path which is a feasible solution of our

Virtual Path problem and that (avirt
1 , avirt

2 , . . . , avirt
ν ) is the sequence of virtual-arcs

involved in π. Then we have the following.

Lemma 4.2. The sequence (avirt
1 , avirt

2 , . . . , avirt
ν ) defines a chain (i.e., an elemen-

tary path) according to Σ, which does not induce any cycle (that means, which

is such that, for any x1, x2 ∈ X with x1 <<A x2, DSHORT[x2, x1] = +∞). Be-

sides, if π is optimal, then for any consecutive elements avirt
i = (xi

1, y
i
2, a

i
1, a

i
2),

avirt
i+1 = (xi+1

1 , yi+1
2 , ai+1

1 , ai+1
2 ) in (avirt

1 , avirt
2 , . . . , avirt

ν ), the virtual path π follows a path

of G with minimum time weight equal to DSHORT[yi
2, x

i+1
1 ].

Proof. The first part from the proof derives from the fact we forbid arc set A ∪
Aadd(π) from containing any cycle. The second part is due to the fact that, if the

subpath of real-arcs followed by π from yi
2 to xi+1

1 is not a minimum weight path

in the sense of weight function time (see Figure 4.8), then we may improve π with

respect of the first term of cost(π) = α ⋅time(π)+∑K
k=1 βk ⋅time(Λπ

k)+∑x∈X∗ γx ⋅Minπ
x,

without modifying any of the two other terms. ∎

ô

xi+1
1

yi2

d̂

shortest
path

shortest
path

optimal virtual
path from ô to d̂

Legend

real-arcs

virtual-arcs

Figure 4.8: Representation of an optimal virtual path from ô to d̂.

Now, we describe the Virtual A* algorithm, which performs a breadth-first search

(BFS) process inside a tree of states; where the BFS is filtered by a lower/upper

bound device.

● A state s consists of a pivot vertex x ∈X∗ and a sequence virt(s) = (avirt
1 , . . . , avirt

ν )
(possibly empty) of virtual-arcs. Any state s = (x, virt(s)) is provided with

the following additional information.
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- For any avirt
i = (xi

1, y
i
2, a

i
1 = (xi

1, y
i
1), ai

2 = (xi
2, y

i
2)), i = 1, . . . , ν, its current

values Minxi
1
, Minyi

1
, Minxi

2
, and Minyi

2
, related to the time windows

[Miny,Maxy] for y = xi
1, y

i
1, x

i
2, y

i
2.

- The value Minx (note that here, x is the pivot vertex).

- The weight λ(s) (with respect to the weight function time) of the path

π(s) in H∗ from ô to x and which is involved in state s.

- The subset Xuser
act of user nodes y whose value Miny has not been fully

determined yet.

- A value val(s) which reflects the expected quality of state s and decom-

poses itself into a current cost val1(s) and an estimation value val2(s)
of the cost which remains to be run in order to arrive to d̂.

● We use an expansion list LS of states s, sorted in a nondecreasing order of

val(s) values.

At a given time during the process, we are provided with a state (x, virt(s)) and

we try to expand it along an arc a∗ with tail x. Before doing it, we first check that:

● if a∗ is a real-arc, then it keeps along with Lemma 4.2;

● if a∗ is a virtual-arc, then it does not induce the creation of any cycle.

Lemma 4.3. In case a∗ is a real-arc (x, y), then a∗ meets Lemma 4.2 if and only

if λ(s) + time(a∗) = DSHORT[ô, y]. In case a∗ is a virtual-arc (x, y, a1, a2), then a∗

does not create any cycle if and only if DSHORT[y, xi
1] = +∞ for any i = 1, . . . , ν.

Proof. The first part expresses the fact that the path from ô to d̂ which results

from the expansion of x through a real-arc (x, y) must be a minimum weight path.

As for the second statement, let us first recall that we only consider virtual-

arcs which meet (J1). Then we see through induction that, if the insertion of a

virtual-arc a∗ creates a cycle, then such a cycle cannot involve only the virtual-arc

a∗ = (x, y, a1, a2) (because DSHORT[y, x] = +∞) and so the cycle must involve some

previously created real arc (xi
1, y

i
2), and so that we must have DSHORT[y, xi

1] ≠ +∞,

for some i (see Figure 4.9). In case x = ô (respectively y = d̂), then we adapt our

notations, since a∗ has tail ô (respectively a∗ has head d̂). ∎
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Λ1

(xi1, y
i
2)

Λ2

a∗ = (x, y)

xi1

Λ3

x

y

ô

d̂
DSHORT[y, xi1] 6= +∞

Legend

virtual path

Figure 4.9: The figure used in the proof of Lemma 4.3. Given a state s =
(y, virt(s)) with virt(s) = (avirt

1 = (x1
1, y1

1, a1
1, a2

2), . . . , avirt
ν = (xν

1 , yν
1 , aν

1 , aν
2)), we

can verify that the virtual path from ô to y codified by s induces a cycle in
A ∪Aadd(π) by checking if DSHORT[y, xi

1] ≠∞ for some i = 1, . . . , ν.

Let us consider a state s = (x, virt(s)) with virt(s) = (avirt
1 , avirt

2 , . . . , avirt
ν ) and

involving a path π. Let us suppose that avirt
i = (xi

1, y
i
2, a1 = (xi

1, y
i
1), a2 = (xi

2, y
i
2)) for

i = 1, . . . , ν. Next, we must compute the state s′ = (y, virt(s′)) which results from s

when we extend π by an arc a∗ and its impact on the constraints system (CS).

The case when a∗ is a real-arc (x, y) is easy since (CS) remains unchanged and

we have the following updates: (V2)

● Min
π∪{a∗}
y = sup( Minπ

y , sup( Minπ
xν

1
+ DLARGE[xν

1, y], Minπ
xν

2
+ DLARGE[xν

2, y],
Minπ

yν
1
+DLARGE[yν

1 , y], Minπ
yν

2
+ DLARGE[yν

2 , y]));

● λ(s′) = λ(s) + time(a∗);
● val1(s′) = val1(s) + α ⋅ time(a∗);
● val2(s′) = W1[y].

Things are more complicated when a∗ is a virtual-arc a∗ = (x, y, a1 = (x1, y1), a2 =
(x2, y2)) with coefficients (∆,∆1,∆2). We have that: (V3)

● λ(s′) = λ(s) +∆;

● val2(s′) = α⋅ W1[y];

● values Min
π∪{a∗}
x2 , Min

π∪{a∗}
y1 , Min

π∪{a∗}
y2 are computed according to Lemma

4.4, while Min
π∪{a∗}
x1 =Minπ

x1
;
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● we have virt(s′) = (virt(s), a∗);
● val1 is increased by α ⋅∆ +∆1 ⋅ (∑k∈K1

βk) +∆2 ⋅ (∑k∈K2
βk) +Θ, where:

- Ki = {k ∈ {1, . . . ,K} ∶ ai ∈ Λk} for i = 1,2;

- Θ comes according to Lemma 4.5.

● Xuser
act is updated by withdrawing Xo(virt(s)) computed as in Lemma 4.5;

● s′ = (y, virt(s′)) with virt(s′) above defined.

Lemma 4.4. The values Min
π∪{a∗}
x2 , Min

π∪{a∗}
y1 , Min

π∪{a∗}
y2 can be obtained in O(ν)

by propagating constraints (C1) and (V1) from current value Minπ
x.

Proof. We proceed as in Lemma 4.1. We first modify every value Minxo , with

xo = x2, y1, y2 according to the formula Min
π∪{a∗}
xo = sup (Minπ

xo , supi=1,...,ν(Minπ
xi

1

+
DLARGE[xi

1, x
o], Minπ

xi
2

+ DLARGE[xi
2, x

o], Minπ
yi

1

+ DLARGE[yi
1, x

o], Minπ
yi

2

+ DLARGE[yi
2, x

o])).

Then we propagate constraints (V1) on the set {x,x2, y1, y2} (completed by d̂ in case

the head of a∗ is d̂) and we check that resulting values Min
π∪{a∗}
y for y ∈ X∗ are

stable under (V1) and (C1). ∎
Lemma 4.5. Value Θ can be computed in O(ν ⋅ ∣Xuser∣) as follows.

● If a∗ has tail ô, then Θ = γôMin
{a∗}
ô +γy2

Min{a
∗}

y2
+γx2

Min{a
∗}

x2
such that it derives

from Lemma 4.4.

● If a∗ does not have tail ô and does not have head d̂, then set:

- Xo(virt(s)) = {xo ∈Xuser−{ô, d̂} ∶ for all k ∈K, and for all i ∈ {1, . . . , ν},
xo is not a predecessor of xi

1 or yi
2 in Λk};

- for any xo ∈ Xo(virt(s)), we define Bxo = sup (Minπ
xo, supi=1,...,ν(Minπ

xi
1
+

DLARGE[xi
1, x

o], Minπ
xi

2
+ DLARGE[xi

2, x
o], Minπ

yi
1
+ DLARGE[yi

1, x
o], Minπ

yi
2
+

DLARGE[yi
2, x

o])).

- Θ = ∑xo∈Xo(virt(s)) γxo(Bxo −Minπ
xo).

● If a∗ has head d̂, then set:

- Xo(virt(s)) = {xo ∈Xuser−{ô, d̂} ∶ for all k ∈K, and for all i ∈ {1, . . . , ν},
xo is not a predecessor of xi

1 or yi
2 in Λk};

- for any xo ∈ Xo(virt(s)), we define Bxo = sup (Minπ
xo, supi=1,...,ν(Minπ

xi
1
+

DLARGE[xi
1, x

o]), Minπ
xi

2
+ DLARGE[xi

2, x
o], Minπ

yi
1
+ DLARGE[yi

1, x
o], Minπ

yi
2
+

DLARGE[yi
2, x

o])).

- Θ = ∑xo∈Xo(virt(s)) γxo(Bxo −Minπ
xo) + γd̂Min

π∪{a∗}
d̂

.
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Proof. The first statement of above list expresses the fact that only values Minx,

which may be affected by the insertion of a virtual-arc with origin ô, and that we

are sure that they are not going to be modified anymore (Lemma 4.4), correspond

to x = ô, x = x2, and x = y2. As for the second statement, we deal as in Lemmas 4.1

and 4.4 in order to update target values Minπ
xo , with the difference that we focus on

xo ∈Xo(virt(s)). This subset involves the vertices xo whose values Minxo have not

been updated yet and the vertices that we are sure (because of Lemmas 4.1 and 4.4)

that they are not going to be impacted by the insertion of additional virtual-arcs.

The third statement can be handled as the second one, with the difference that

we know that we become sure that no value Minx which has not been modified yet,

is going to be modified later. ∎

Algorithm 8 shows a pseudocode for the Virtual A* algorithm. Note that, ∂+H∗(x)
denotes the set of arcs (real-arcs or virtual-arcs) in H∗ with tail x. Also we denote

by Head(LS) the first element of the list LS.

Algorithm 8: Virtual A* algorithm
Input : Digraph G, and virtual digraph H∗. Tables DLARGE, and DSHORT; value val∗

ô,d̂
.

Output: A feasible virtual path (if there exists one), or a failure message.

1 LS←{(ô, Nil)}, val← LB, val1← 0, val2← LB, iterate← true

2 if πop = ((ô, d̂, a1, a2)) is feasible then

3 path←((ô, d̂, a1, a2)), UB ←val∗
ô,d̂

4 else

5 path ← Nil, UB ←+∞

6 while (LS ≠ ∅ ) and (iterate = true) do [Main loop]

7 s = (x, virt(s))← Head(LS)
8 Remove Head(LS) from LS

9 if (val(s) ≥ UB then

10 iterate ← false

11 else if (n = d̂) then

12 path←virt(s), iterate ← false

13 for a∗ ∈ ∂+H∗(x) satisfying Lemma 4.3 do

14 s′ ← Expand(s, a∗)

15 if (supy∈X∗(Min
π(s′)
y ) ≤ Ω) and s′ is not in LS then

16 Push s′ into LS according to val(s′)

17 if path ≠ Nil then [If any solution]

18 return virtual path retrieved from variable path

19 else [If no solutions]

20 Print “No path found”

To conclude this section, we specify the retrieve instruction for retrieving a vir-

tual path from a sequence of virtual-arcs virt(s) and the Expand function.
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Instruction retrieve. Let virt(s) be the sequence of virtual-arcs which we have

got at the end of the Virtual A* algorithm. If virt(s) =((ô, d̂, a1, a2)) then we take

π = ((ô, d̂, a1, a2)). In other case, we should have virt(s) = (avirt
1 , . . . , avirt

ν ) with

avirt
i = (xi

1, y
i
2, (xi

1, y
i
1), (xi

2, y
i
2)) for i = 1, . . . , ν; x1

1 = ô, yν
2 = d̂, and ν ≥ 2. We get

path π by setting, for any i = 1, . . . , ν − 1:

● πi = shortest path in G from yi
2 to xi+1

1 ;

● π = (avirt
1 , π1, a

virt
2 , . . . , avirt

1 , πν−1, avirt
ν ).

Expand function. We must consider the following two cases.

1. If a∗ is a real-arc (x, y), then the Expand function works according to (V2).

2. If a∗ is a virtual-arc (x, y, a1 = (x1, y1), a2 = (x2, y2)) then the Expand function

works according to (V3), Lemmas 4.4-4.5.

We can adapt the Virtual A* algorithm, in order to impose an upper bound

VMAX on the number of virtual-arcs involved into virtual path π, by using a counter

variable vcount inside the state variables of Virtual A* to reject any virtual-arc a∗

as soon as vcount is equal to VMAX.

We see that Virtual A* works by visiting the Virtual Tree Υ whose vertex set

V (Υ) consists of all finite chains virt(s) = (avirt
1 , avirt

2 , . . .) and whose arcs set A(Υ)
comes in a natural way: virt(s) = (avirt

1 , . . . , avirt
ν ) is the parent of any virt(s′) =

(avirt
1 , . . . , avirt

ν , avirt
ν+1). Related arc is provided with a weight Φ∗(virt(s), virt(s′)) =

Φ(avirt
ν , avirt

ν+1). Also, for any vertex virt(s) = (avirt
1 , . . . , avirt

ν ) ∈ V (Υ), we can asso-

ciate a weight Ξ(virt(s)) = ν ⋅ ∣Xo(virt(s))∣, where Xo(virt(s)) is the set defined in

Lemma 4.5. We have the following statement.

Theorem 4.1 - Complexity of the Virtual A* Algorithm

Above Virtual A* algorithm solves the Virtual Path Problem in an exact way, with a

complexity of O(∑virt(s)∈V (Υ)Ξ(virt(s))+∑(virt(s),virt(s′))∈A(Υ)Φ∗(virt(s), virt(s′))).
It becomes time-polynomial if we impose an upper bound VMAX on the number of

virtual-arcs involved in the searched path π.

Proof. For the complexity part, we see that the number of possible states (i.e.,

∣V (Υ)∣) is bounded by the number of chains virt(s) in the digraph involved in

Lemma 4.2. Lemmas 4.3-4.5 tell us that for virt(s) = (avirt
1 , . . . , avirt

ν ) the Expand

procedure works in O(ν ⋅ ∣Xo(virt(s))∣).
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As for the exactness of the algorithm, it derives from the fact that the quality

of a virtual path π entirely depends on the chain induced by its virtual-arcs. Since

the Virtual A* algorithm enumerates these chains while filtering the search process

through branch-and-bound and constraint propagation, we get our result. ∎

4.3 Application to the PDPT

In this section we introduce the 1-Request Insertion PDPT problem and we show

that can be seen as a particular case of the Virtual Path Problem. Then, we propose

the virtual A* algorithm for solving the problem in an exact way and a heuristic

Dijkstra-like algorithm. We also present some numerical results.

4.3.1 The PDPT Problem

We first suppose that we are provided with a finite set X of “points” representing

physical locations, given together with the following two functions.

• A function time ∶X ×X → R+, such that for any x, y ∈X, the value time(x, y)
means the time required for a vehicle to move from x to y according to a

minimum weight path strategy (with respect to the weight time).

• A function relay ∶ X ×X → X is going to be involved in order to determine

“relay vertices”, that means the transfer points where two vehicles v1, v2 will

meet in order to perform some transfer. Intuitively, for any (x1, x2) ∈ X ×X,

the element u = relay(x1, x2) corresponds to a place that is more or less at the

same distance from x to y and minimizes the sum time(x1, u) + time(u,x2).
For example, if X contains points from a Euclidean plane, we can define the

function time to be the Euclidean distance, and then u = relay(x1, x2) would

be an element in X with minimal Euclidean distance to the midpoint of the

segment from x1 to x2.

A PDPT instance consists of a finite set of points X together with the two

functions time ∶ X ×X → R+ and relay ∶ X ×X → X that we have just defined, a

finite set of vehicles V with a common capacity κ ∈ R+, a time horizon [0,Ω], and

a finite set R ⊂ X ×X ×R+ of requests r = (or, dr, ℓr). The point or is the origin of

r, the point dr is the destination of r, and ℓr is the load of r. Also, we have two

functions start ∶ V → X and end ∶ V → X. For v ∈ V , start(v) is called the starting

depot vertex of v and end(v) is called the ending depot vertex of v.
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Figure 4.10 shows an example of PDPT instance involving five points, two vehi-

cles, and two requests.

(a) (b) (c)

(d) (e)

V = {v, w}, κ = 10, Ω = 15,

start(v) = end(v) = A,

start(w) = end(w) = A.

{ }

R=
r1=(or1=B, dr1=D, ℓr1=5),

r2=(or2=D, dr2=B, ℓr2=2)

X = {A,B,C,D,E}

C

B D

A E

A B C D E




































A 0 1 2 2 1

B 1 0 1 2 2

C 2 1 0 1 2

D 2 2 1 0 1

E 1 2 2 1 0

A B C D E




































A A A B E A

B A B B C A

C B B C C D

D E C C D D

E A A D D E

Figure 4.10: An example of PDPT instance. (a) The set X = {A, B, C, D, E} of
points. (b) A symmetric matrix whose entries define the distance function time.
(c) A matrix defining the function relay. (d) The set of vehicles V = {v, w}, the
capacity κ, the upper limit of the time horizon [0, Ω], and the starting and ending
depot vertices of vehicles. (e) The set R of requests consisting of r1 = (B, D, 5)
and r2 = (D, B, 2).

Now we will describe briefly the PDPT. Although we are not going to deal with

the whole problem until Section 4.4, we give here, for completeness reasons, some

intuition about this problem and clarify some of the involved details. This will allow

us to set the stage for the insertion subproblem model which will be detailed later

in this section.

The PDPT consists in finding a schedule for the vehicles fleet, allowing to trans-

port the requests from their origins to their destinations. Vehicles capacity must

be respected at any moment, but vehicles are allowed to transfer requests to other

vehicles through a weak synchronization mechanism. This is, if a vehicle v is trans-

ferring a load ℓr to another vehicle w at a relay vertex z, and the receiving vehicle

w arrives first to z, then w has to wait for the arriving of v with the load ℓr. The

time duration for traversing every path in the schedule (including waiting times),

must be within the given time horizon.

Depending on the context, there can be several ways to define the cost of such

schedules. Here, we consider that the cost of a schedule is a nonnegative weighted

linear combination of the sum of the distances traversed by the requests, the sum

of the distances traversed by the vehicles, and the sum of the arrival times of the

requests; and we aim to find a minimal cost schedule.
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Now we proceed to describe our formal model for the insertion problem involved

in the PDPT.

4.3.2 Formal Description of a PDPT Feasible Solution

Let GX be the digraph with vertex X and arc set {(x, y) ∈X ×X, x ≠ y}. According

to the above definition of a PDPT instance, we define a solution (Γ,Π) for the

PDPT instance, which we also call a PDPT schedule as:

• A collection Γ = {Γ(v), v ∈ V } of arc progressions on GX , where the vertex

sequence Γ(v) = (xv
0 = start(v), xv

1 , . . . , xv
nv
= end(v)) is the route followed

by vehicle v in GX ;

• A collection Π = {Π(r), r ∈ R} of arc progressions on GX , where the vertex

sequence Π(r) = (yr
0 = or, y

r
1, . . . , y

r
nr
= dr) is the route followed by request r

when moving from its origin or to its destination dr. Points yr
1, . . ., yr

nr
belong

to the set {xv
i ∶ v ∈ V, 0 ≤ i ≤ ∣Γ(v)∣ − 1} and we may distinguish the following

two types of moves for a request r.

– If yr
q and yr

q+1 are related to two consecutive vertices of path Γ(v), then

they have to be consecutive in Π(r) and so we talk about a vehicle move

inside vehicle v;

– If yr
q = xv

i and yr
q+1 = xw

j are related to two distinct paths Γ(v) and Γ(w),
then they refer to the same vertex in X and so we talk about a transfer

move from vehicle v to vehicle w.

Denoting by X(Γ) the set {(v, i) ∶ v ∈ V, 0 ≤ i ≤ ∣Γ(v)∣ − 1}, we see that such a

solution induces a digraph structure G(Γ,Π) on the vertex set X(Γ), with arc set

A(Γ,Π) defined as follows.

• With any v ∈ V and any 0 ≤ i ≤ ∣Γ(v)∣ − 1, we associate a vehicle arc a =
((v, i), (v, i + 1)), with weight time(a) ∶= time(xv

i , x
v
i+1). Following the paths

Π(r) allows the computation of the load ℓv
i of arc a, which is the sum of loads

ℓr for requests r which move through this arc. Of course ℓv
i does not have to

exceed the capacity κ. (C1: Load Constraints)

• With any r ∈ R and 1 ≤ q ≤ ∣Π(r)∣ − 1, such that moving from yr
q = xv

i to

yr
q+1 = xw

j corresponds to a transfer move from vehicle v to vehicle w, we

associate a synchronization arc a = ((v, i), (w, j)), with weight time(a) ∶=
time(yr

q , y
r
q+1) = 0 (because in this case yr

q and yr
q+1 correspond to the same

place). We denote by A′ the set of those synchronization arcs.
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Observe that proceeding in this manner, we have extended the weight function

time ∶ A(G) → R+ of digraph G to a weight function time ∶ A(Γ,Π) → R+ of digraph

G(Γ,Π).

(a)

(b) (c) (d) (e)

(f)

(g)

(w,0) (w,1) (w,2) (w,4) (w,5) (w,6)

(v,0) (v,1) (v,2)

(w,3) 

Π(r1)Γ(v) Γ(w) Π(r2)

Γ(v)

Γ(w)

5
5

(v,3)
(v,4)

2
5

Γ =
Γ(v) = (xv

0 = A, xv
1 = B, xv

2 =C, xv
3 = E, xv

4 = A),
Γ(w) = (x0

w = A, x1
w = D, x2

w = B, x3
w = E, x4

w = D, x5
w =C, x6

w = A)

{ }

Π =
Π(r1) = (yr

0
1 = xv

1, y
r
1

1 = xv
2, y

r
2

1 = xv
3, y

r
3

1 = x3
w, y

r
4

1 = x4
w),

Π(r2) = (yr
0
1 = x1

w r
1

2 = x2
w, y )

{ }

B

C

D

A E

B

C

D

A E

B

C

D

A E

B

C

D

A E

(v,0) (v,1) (v,2)

(v,3)

(v,4)

(w,0) (w,1) (w,2)

(w,3)

(w,4) (w,5) (w,6)

y
r
0
1 = or1

y
r1
1

y
r1
2

y
r
0
2

y
r1
3

dr1
= y

r
4
1

arc in A′

= or2
dr2

= y
r
1
2

Π(r2)

Π(r1)

=

=

Figure 4.11: (a) An example of solution for the instance defined in Figure 4.10.
(b)-(e) Subgraphs of GX arc-induced by the paths Γ(v), Γ(w), Π(r1), and Π(r2),
respectively. (f) The paths on the digraph G(Γ, Π) corresponding to the directed
paths Γ(v) and Γ(w) of GX . (g) The digraph G(Γ, Π). We have also depicted with
double arrows the directed paths corresponding to Π(r1) and Π(r2). Numeric arc
labels indicate positive loads traversing through arcs in A(Γ, Π) ∖A′.

Next, we define a function timeG(Γ, Π) ∶ X(Γ) ×X(Γ) → R+, by taking

timeG(Γ, Π)((v, i), (w, j)) ∶= dist(G(Γ, Π), time)((v, i), (w, j))
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for all (v, i), (w, j) ∈X(Γ). This value timeG(Γ, Π)((v, i), (w, j)) can be understood

as the minimal amount of time that is necessary to travel in G(Γ, Π, r) from (v, i)
to (w, j).

Figure 4.11 shows an example of solution (Γ,Π) for the instance defined in Fig-

ure 4.10, and the associated digraph G(Γ,Π).

Feasibility of (Γ,Π). As we just mentioned, (Γ,Π) must meet the above load

constraints (C1). Also it must satisfy time consistency constraints defined as follows.

• With any vertex (v, i) in the digraph G(Γ,Π) we associate a time value τ v
i

which represents the earliest time when vehicle v may leave vertex (v, i). Then

we see that:

– for any vehicle arc a = ((v, i), (v, i+ 1)), we have that τ v
i+1 ≥ τ v

i + time(a);
– weak synchronization implies that τw

j ≥ τ v
i for any transfer arc ((v, i), (w, j)).

They can be summarized as: (C2: Time Consistency Constraints)

• for any arc a = ((v, i), (w, j)) in the digraph G(Γ,Π), we have a constraint

τw
j ≥ τ v

i + time(a);
• the time limit given by the time horizon [0,Ω] implies that, for any (v, i) ∈
X(Γ) we have that 0 ≤ τ v

i ≤ Ω.

They impose that: (C3: No Cycle Constraints)

• arc set A(Γ,Π) does not contain any cycle.

If (Γ,Π) satisfies those constraints, we can associate, with every (v, i) in G(Γ,Π),
a time window [Min(v,i), Max(v,i)] which contains the feasible values of variable τ v

i

and which is constrained by (C2).

Cost of a solution (Γ,Π). As we said in Section 4.3.1, we are going to define

the cost of a solution as a nonnegative weighted linear combination of the sum of

the distances traversed by the requests, the sum of the distances traversed by the

vehicles, and the sum of the arrival times of the vehicles.
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4.3.3 The 1-Request Insertion PDPT Model

Those preliminaries allow us to define in a formal way the 1-Request Insertion PDPT,

about the insertion of a new request into a current feasible PDPT schedule (Γ,Π).
So we start from such a feasible schedule (Γ,Π) and from an additional request

r = (or, dr, ℓr). Intuitively, inserting request r means building a suitable sequence of

the following five types of moves.

(1) Start from or and enter into some path Γ(v) at the level of some vertex (v, i+1),
and so imposing vehicle v to make a deviation between (v, i) and (v, i + 1).
Such a move will be performed once as the initial move (see Figure 4.12 (a)).

(2) Leave some path Γ(w) at the level of some vertex (v, i) in order to reach dr

and so impose a vehicle a deviation between (v, i) and (v, i+ 1). Such a move

will be performed once as the final move (see Figure 4.12 (b)).

(3) Keep on inside vehicle v, while moving from some (v, i) to its successor (v, i+1).
Such type of move will be possibly performed several times (see Figure 4.12

(c)).

(4) Move from vehicle v to vehicle w while using some arc ((v, i), (w, j)) of A′

and some shared point xv
i = xw

j . Such type of move will be possibly performed

several times (see Figure 4.12 (d)).

(5) Move from vehicle v to vehicle w at a relay vertex z while v is running between

some vertex (v, i) and its successor (v, i+1), and while w performs a deviation

from (w, j − 1) to the relay vertex z and then returns to (w, j). Such a move

will be possibly performed several times (see Figure 4.12 (e)).

Remark 2. For simplicity, here we are going to restrict our study to these five

types of moves. However, we note that it is also possible to combine:

(6) moves of types (1) and (2), in such a way that r is inserted through a simple

deviation of a vehicle v between two successive vertices of Γ(v). This is, while

traversing Γ(v), vehicle v performs a deviation from (v, i) to transport the

load ℓr from or directly to dr, and then v returns to its original path at the

level of vertex (v, i + 1) (see Figure 4.12 (f)). We call direct-arcs this type of

arcs.

(7) movements of types (1) and (5), in such a way that, request r starts from or in

a vehicle v and then is transferred directly to another vehicle w at some relay

vertex z, while v is moving from (v, i) to (v, i+1), and while w is moving from

(w, j − 1) to (w, j) (see Figure 4.12 (g)).
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(8) movements of types (2) and (5), in such a way that r leaves some path Γ(v)
(at the level of a vertex (v, i)), to be transferred from v to w at some relay

vertex z. Then r reaches dr directly from z in vehicle w. The first part of this

process happens while v is moving from (v, i) to (v, i+ 1), and the second one

while w is moving from (w, j − 1) to (w, j) (see Figure 4.12 (h)).

(9) moves of types (1), (2) and (5), in such a way that r starts from or in a vehicle

v, then r is transferred directly to another vehicle w at some relay vertex z,

and finally r reaches dr directly from z inside vehicle w, while v is moving

from (v, i) to (v, i + 1), and while w is moving from (w, j − 1) to (w, j) (see

Figure 4.12 (i)).

(v, i) (v, i+1)

or
(v, i) (v, i+1)

dr

(v, i) (v, i+1)

(v, i−1)

(v, i)

(v, i+1)

xv
i = xw

j

(w, j−1)

(w, j)

(w, j+1)

(v, i) (v, i+1)

z

(w, j−1) (w, j)
(v, i) (v, i+1)

or dr

(v, i) (v, i+1)
or

z

(w, j−1) (w, j)

(v, i) (v, i+1)

z

(w, j−1) (w, j)
dr

(v, i) (v, i+1)

or

z
dr

(w, j−1) (w, j)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.12: Types of moves for transporting a request r = (or, dr, ℓr).

While moves of types (1), (2), (3), and (4) are easy to understand, we need to

better explain the moves of type (5). Clearly, a move of type (5) involves some relay

vertex z: both vehicle v and w are going to perform a deviation through z, vehicle
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v will drop load ℓr in z, and vehicle w will take it as soon as possible. In order to

identify z, we use the function relay and we take:

z = relay(relay(xv
i , x

w
j ), relay(xv

i+1, x
w
j−1)). (C4)

Please notice that (C4) restricts our freedom to choose the relay vertex, and so

it has to be considered as an hypothesis of the model.

Now, given a PDPT schedule (Γ,Π) and one additional request r, we define the

following digraph H(Γ,Π, r).
• The vertices of H(Γ,Π, r) are the vertices of G(Γ,Π) plus the two vertices or

and dr;

• The arcs of H(Γ,Π, r) are:

– In-arcs: they have the form a = (or, (v, i)), with 0 ≤ i < ∣Γ(v)∣ − 1, weight

time(a) ∶= time(or, x
v
i+1) and such that ℓv

i + ℓr ≤ κ. Every in-arc a =
(or, (v, i)) is associated with a value ∆a

1 ∶= time(xv
i−1, or) + time(or, x

v
i );

– Out-arcs: with the form a = ((w, j), dr), with 1 ≤ j ≤ ∣Γ(w)∣ − 1, weight

time(a) ∶= time(xw
j , dr) and such that ℓw

j + ℓr ≤ κ. Every out-arc a =
((w, j), dr) is associated with a value ∆a

1 ∶= time(xw
j , dr)+ time(dr, x

w
j+1);

– Vehicle-arcs: arcs a = ((v, i), (v, i+1)) in G(Γ,Π), with weight time(a) ∶=
time(xv

i , x
v
i+1) and such that ℓv

i +ℓr ≤ κ. Every vehicle-arc a = ((v, i), (v, i+
1)) is associated with a value ∆a

1 ∶= time(xv
i , x

v
i+1);

– A′-arcs: the arcs a = ((v, i), (w, j)) ∈ A′, with weight time(a) ∶= time(xv
i , x

w
j ) =

0. Every A′-arc a = ((v, i), (w, j)) is associated with a value ∆a
1 ∶= 0;

– Transfer-arcs: with the form a = ((v, i), (w, j)), weight time(a) ∶= time(xv
i , z)+

time(z, xw
j ) where z = relay(relay(xv

i , x
w
j ), relay(xv

i+1, x
w
j−1)). These arcs

are such that ℓv
i + ℓr ≤ κ and ℓw

j−1 + ℓr ≤ κ. Every transfer-arc a =
((v, i), (w, j)) is associated with a value ∆a

1 ∶= time(xv
i , z)+ time(z, xv

i+1),
a value ∆a

2 ∶= time(xw
j−1, z) + time(z, xw

j ), and a value ∆a
3 ∶= time(xv

i , z) +
time(z, xw

j ).
We define a function timeH(Γ, Π) ∶ (X(Γ) ∪ {or, dr}) × (X(Γ) ∪ {or, dr}) → R+, by

taking

timeH(Γ, Π, r)((v, i), (w, j)) ∶= dist(H(Γ, Π), time)((v, i), (w, j))
for all (v, i), (w, j) ∈X(Γ). This value timeH(Γ, Π)((v, i), (w, j)) can be understood

as the minimal amount of time that is necessary to travel in H(Γ, Π, r) from (v, i)
to (w, j).
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Figure 4.13 shows an example of construction of the digraph H(Γ,Π, r) from a

PDPT schedule (Γ,Π) and one additional request r = (or, dr, ℓr).

Legend

In-Arc

Out-Arc

Vehicle-Arc

(a)

(b)

or

or

Transfer-arc

A′-arc

(v,0) (v,1) (v,2)

(v,3)

(v,4)

(w,0) (w,1) (w,2)

(w,3)

(w,4) (w,5) (w,6)

dr

0 5
5

0

0 2
0 5

0 0

arc in A′

(v,0) (v,1)

(v,2) (v,3)

(v,4)

(w,0) (w,1)
(w,2) (w,3)

(w,4) (w,5)
(w,6)

dr

Figure 4.13: Deriving digraph H(Γ, Π, r) from the PDPT schedule (Γ, Π) cor-
responding to Figure 4.11, and one additional request r = (or =D, dr =B, ℓr = 9).
(a) The digraph G(Γ, Π) and the additional request r = (or, dr, ℓr). (b) The di-
graph H(Γ, Π, r). Notice that the capacity requirement forbids some vehicle-arcs
of G(Γ, Π).

If we now look back to previous Section 4.2 we see that, the restriction of the

digraph H(Γ,Π, r) to what we have called its A′-arcs and its vehicle-arcs, is a virtual

graph: the route collection Γ corresponds to the collection Λ, whilst or and dr

correspond to ô and d̂, respectively.

Table 4.1 show how to interpret the A′-arcs and vehicle-arcs of digraph H(Γ,Π, r)
as arcs of a virtual graph. Also, we note that the cases depicted in Figure 4.12 (a)-(h)

correspond, respectively, to the constructions of the virtual graph arcs illustrated in

Figure 4.3 (a)-(h).
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Table 4.1: Interpretation of the vehicle’s moves in Figure 4.12 as virtual graph
arcs.

Type of move♣ Interpretation as an arc of the virtual graph

(a) (o, (v, i + 1), Nil, ((v, i), (v, i + 1)))
(b) ((v, i), d, ((v, i), (v, i + 1)), Nil)
(c) real-arc
(d) real-arc
(e) ((v, i), (w, j), ((v, i), (v, i + 1)), ((w, j − 1), (w, j)))
(f) (o, d, ((v, i), (v, i + 1)), ((v, i), (v, i + 1)))
(g) (o, (w, j), ((v, i), (v, i + 1)), ((w, j − 1), (w, j)))
(h) ((v, i), d, ((v, i), (v, i + 1)), ((w, j − 1), (w, j)))
(i) (o, d, ((v, i), (v, i + 1)), ((w, j − 1), (w, j)))

♣According to Figure 4.12.

Let π be a path from or to dr in H(Γ,Π, r). Note that π may be interpreted

as a sequence of moves of types (1)-(5) allowing to transport the request r from or

to dr. If τ v
i denotes the time when vehicle v leaves vertex (v, i), then every in-arc,

out-arc and transfer-arc of π is going to impose additional constraints, to be added

to constraints (C2):

• An in-arc (or, (v, i)) imposes one additional constraint

τ v
i+1 ≥ τ v

i + time(xv
i , or) + time(or, x

v
i+1); (C5)

• An out-arc ((w, j), dr) imposes one additional constraint

τw
j+1 ≥ τw

j + time(xw
j , dr) + time(dr, x

w
j+1); (C6)

• A transfer-arc ((v, i), (w, j)) imposes three additional constraints (here, z is

taken as in (C4) ):

1. τ v
i+1 ≥ τ v

i +time(xv
i , z)+time(z, xv

i+1); (Deviation for vehicle v)(C7.1)

2. τw
j ≥ τw

j−1+time(xw
j−1, z)+time(z, xw

j ); (Deviation for vehicle w)(C7.2)

3. τw
j ≥ τ v

i + time(xv
i , z) + time(z, xw

j ). (Weak Synchronization)(C7.3)

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(C7)

Then a path π in H(Γ,Π, r) is going to be time-consistent if it allows the exis-

tence of time vectors tv = (τ v
0 , . . . , τ

v
∣Γ(v)∣−1

), v ∈ V , which meet constraints (C1) and

additional constraints (C5, C6, C7) related to π. Notice that if π is given, checking

the time consistence of π can be checked by constraint propagation.
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Now the 1-Request Insertion PDPT can be summarized in the following way.

1-Request Insertion PDPT : Given a PDPT schedule (Γ,Π) and one re-

quest r = (or, dr, ℓr), compute a time-consistent path π of minimum weight

(with respect to the weight function time ∶ A(H(Γ,Π, r)) → R+) from or to dr

in the digraph H(Γ,Π, r).

As we have previously said, this 1-Request Insertion PDPT can be seen as a

particular case of the Virtual Path Problem that we have introduced in Section

4.2. So, we can use the Virtual A* algorithm for solving the 1-Request PDPT in

an exact way. Still, there are also some structural properties of the problem that

can be exploited to obtain an improved implementation of the Virtual A* in this

particular case. We omit the implementation details. They can be found in the

article of Figueroa et al. (2022) [86].

4.3.4 An Empirical Dijkstra-Like Algorithm

Since our problem is likely to arise in a dynamic context, we must try to propose

approaches which are less time consuming than the previous one. In order to do

it, we fix some integer parameter m > 0 and next for every (v, i) with v ∈ V ,

i ∈ {0, . . . , ∣Γ(v)∣ − 1}, we compute minimum weight paths π(v, i) (with respect to

the weight function timeH(Γ,Π,r)) in the digraph H(Γ,Π, r), from vertex (v, i) to

destination dr, while using Dijkstra’s algorithm (see Figure 4.14 (a)). We denote

by ω(v, i) the time weight of π(v, i). Notice that such computations are involved

in the preprocess of the virtual A* algorithm in order to provide us with the values

W1[x] for all x in X∗.

Then, we close those computed paths π(v, i) (see Figure 4.14 (b)) to obtain

or -dr -paths π∗(v, i) = (or, (v, i)) + π(v, i) (i.e., we create a path from or to dr

whose first arc is the in-arc (or, (v, i)) and the remaining arcs are the ones of path

π(v, i)). For each constructed path π∗(v, i), we compute the value time(or, (v, i))+
ω(v, i), and then we select the m paths π∗(v1, i1), . . . , π∗(vm, im) with the lowest

values time(or, (v, i))+ ω(v, i). Finally, we check for every selected path π∗(vk, ik),
1 ≤ k ≤ m, the consistence of the additional constraints induced by the in-arc, the

out-arc and the transfer-arcs of π∗(vk, ik), and we keep the path π∗ which meets the

time-consistence test and which is related to the smallest time(or, (v, i))+ ω(v, i)
value. This process is summarized in Algorithm 9.
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(v1,2) (v1,3) (v1,4)
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Γ(v1)

Γ(v2)

Γ(v3)

Γ(v4)

(a)

(b)

Figure 4.14: Deriving solutions from a Dijkstra’s minimum weight path compu-
tation. (a) A subgraph Ψ of a digraph H(Γ, Π, r) obtained by Dijkstra’s algorithm
while computing a minimum weight path π(v, i) (with respect to the weight func-
tion timeH(Γ,Π,r)) from every vehicle vertex (v, i) to dr in H(Γ, Π, r). (b) Digraph
Ψ is extended by adding the m in-arcs with smallest time weight in H(Γ, Π, r)
(wavy arrows). Every path from or to dr in the resulting digraph gives rise to a
solution for handling request r and the time-feasibility of such a solution is then
checked by constraint propagation.
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Algorithm 9: Dijkstra 1-PDPT algorithm

input : A digraph H(Γ,Π, r).
output: A time-consistent or-dr-path π∗, or a failure message.

1 π∗ ← Nil ;

2 For every (v, i) with v ∈ V and i ∈ {0, . . . , ∣Γ(v)∣ − 1}, compute through

Dijkstra’s algorithm, minimum time weigth paths π(v, i) from (v, i) to

destination dr, together with their corresponding weight ω(v, i) in the

digraph H(Γ,Π, r);
3 Close every path π(v, i) computed in 2 by adding the corresponding in-arc

(or, (v, i)) and select the m resulting paths π∗(v1, i1), . . . , π∗(vm, im) with

best time(or, (v, i)) + ω(v, i) values;

4 For every path π∗(vk, ik),1 ≤ k ≤m selected in 3, test its time-consistence

(through constraint propagation) and keep as π∗ the time-consistent path

π∗(vk, ik) with best time(or, (vk, ik)) + ω(vk, ik) value;

5 if π∗ = Nil then

6 Print failure message “No path found”

7 else
return : π∗

4.3.5 Controlling Transfer-Arcs Number

As we have mentioned previously, the number of transfer-arcs is an issue since most

arcs of H(Γ,Π, r) are transfer-arcs, while at the end, the best time-consistent paths

usually contain very few of such arcs. In order to deal with the number of transfer-

arcs issue, we impose to transfer-arcs some eligibility requirement, which depends

on a threshold parameter ε ≥ 0.

ε-eligibility of a transfer-arc ((v, i), (w, j)). We say that a transfer-arc a =
((v, i), (w, j)) is ε-eligible if time(xv

i , x
w
j ) ≤ ε and the intersection of time windows

[Min(v,i) + time(a), Max(v,i) + time(a)] and [Min(w,j), Max(w,j)] is nonempty.

By limiting the maximum number of allowed transfers to a small fixed number

(e.g. 3 or 5), by fixing ε, and by imposing transfer-arcs to be ε-eligible, we become

able to control running times of both virtual A* and Dijkstra 1-PDPT algorithms.

As Section 4.3.6 will show, for most of the considered instances, this control is not

going to induce any significant loss of solutions quality.
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4.3.6 Numerical Experiments

Purpose. We have been performing experiments to:

1. analyze the performance of both virtual A* and Dijkstra 1-PDPT algorithms

from the point of view of running time costs and, in the case of Dijkstra

1-PDPT, of gap to optimality;

2. evaluate the impact of the ε-eligibility on those algorithms;

3. estimate about the potential interest of transfers, through both the number

of transfer-arcs involved in an optimal path π, and the gain induced by those

arcs.

Instances. Points of X are randomly generated on an integral grid with size n ×
n, distance function time is the upper rounding of the Euclidean distance or the

taxicab distance. The upper limit of the time horizon [0,Ω] is indicated by Ω and

is generated as a linear function of n, also we will consider a fixed capacity κ = 10.

While designing the paths, we follow the following strategies.

• Strategy Free: For every v,w ∈ V we that start(v) = end(v) = start(w) =
end(w). This is, all of the vehicles start and end their paths in a common

depot vertex. Paths Γ(v) are generated in a pseudorandom way;

• strategy Closed: For every v,w ∈ V we have start(v) = end(v) and start(w) =
end(w). This is, every vehicle starts and ends its path in a same depot ver-

tex, but different vehicles may have distinct depot vertices. Paths Γ(v) are

generated by following some linear or circular orientation;

• strategy Open: Every vehicle v starts its path in a starting depot vertex

start(v) and ends its path in an ending depot vertex end(v) (possibly different

from start(v)); furthermore, different vehicles may have distinct starting depot

vertices and different ending depot vertices. Paths Γ(v) are generated by

following some linear or circular orientation.

The designed paths have around ten arcs on average, and the arcs loads are gen-

erated in a uniform pseudorandom way by choosing elements from set {0,1, . . . ,10}.
Another important path feature is the mean ratio ρ = ∣V ∣⋅Ω

∑v∈V cost of Γ(v)
, which gives

us an approximate idea about the difficulty of an instance.

The sets A′ are created in the following way: for every (v, i) ∈ Γ(v) and ev-

ery (w, j) ∈ Γ(w), such that xv
i = xw

i and ((w, j), (v, i)) ∉ A′ we create an arc
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((v, i), (w, j)) and we add it to A′ with a probability of 0.7 if the resulting digraph

is acyclic and does not imply exceeding the time horizon.

Requests are generated also in a pseudorandom way, that is, we have selected

two different points o and d from X, and a random load value ℓ from set {1,2,3,4}.
In this first set of experiments we are going to consider the distance traversed

by the request as the cost to optimize.

Every instance is summarized by the side’s length n of the squared integer grid,

the number ∣X ∣ of points, the distance function time (each instance is tested with

the Euclidean and taxicab distances), the number of vehicles ∣V ∣, the number ∣A′∣
of arcs in A′, the upper limit Ω of the time horizon, the mean ratio ρ, the path

generation strategy strat, and a request (o, d, ℓ) ∈X ×X × {1,2,3,4}.
Instances which are going to be used here are summarized by the rows of Table

B.1 in the Appendix of this document. In general, the taxicab distance between two

points in R2 is greater than or equal to the corresponding Euclidean distance between

the two points. As a consequence, an instance is usually more time-constrained

when we use the taxicab distance than when we use the upper rounded Euclidean

distance. In particular, almost all of the instances in Table B.1 admit solutions

without transfers when we consider the Euclidean distance. To attenuate the effect

of that property, we have chosen to reduce by ten time units the time horizon of any

instance with the Euclidean distance.

Outputs. For any instance we compute the following.

1. The value No Transfer of the solution (obtained through enumeration) consid-

ering direct-arcs and forbidding transfer-arcs. The value VAL A* computed

by virtual A*, together with related running time CPU A* in seconds (includ-

ing the time for preprocessing, the time for testing the direct-arcs, and the

running-time of the Dijkstra 1-PDPT algorithm), the number Transfer A* of

transfer arcs of the solution. The value VAL DI computed by Dijkstra 1-PDPT,

together with related running time CPU DI in seconds (without including pre-

processing), the number Transfer DI of transfer arcs of the solution. The results

of these tests are shown in Table B.2 of the Appendix.

2. The same corresponding values obtained when limiting the maximum number

of allowed transfers to three. These results are shown in Table B.3 of the

Appendix.

3. The same corresponding values obtained while taking the eligibility threshold

ε as 1.0 n, 0.50 n, and 0.25 n.
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Technical context. Experiments were performed on a computer with a 2.7 GHz

Intel Core i5 processor and 8 GB 1866 MHz RAM. The implementations were built

in C++ 11 by using the Apple Clang compiler 13. Note that some values are not

available due to the absence of found solutions, in such cases the missing values are

indicated by NA (not available).

Results and Comments

Figure 4.15 shows the boxplots of running times for the tests without any eligibility

restriction. We note that the associated running times of both algorithms can be

considered “acceptable” for most of the examined instances. Although it is well

known that Dijkstra’s algorithm has a time complexity that is always polynomially

bounded on the size of the input digraph, for the virtual A* this is not the case; this

is suggested by the extremal values of CPU A* appearing in Figure 4.15.
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Figure 4.15: Boxplots of running times for the algorithms virtual A* and Dijk-
stra 1-PDPT when executed without any eligibility restriction on the 300 instances
of Table B.1 of the Appendix. The small circles (i.e., jittered points) correspond
to individual data values, the horizontal black line dividing each box corresponds
to the median value in the category (i.e, the Q2 quartile), the lower (respectively
the upper) side of a box indicates the Q1 (respectively the Q3) quartile. The
horizontal line below (respectively above) each box corresponds to the Q0 (re-
spectively the Q4) quartile.
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However, if we limit the maximum number of allowed transfers to a small con-

stant (e.g. two or three transfers at most), the complexity decreases and we achieve

running times that are polynomially bounded on the size of the input digraph. This

is confirmed by the boxplots in Figure 4.16 that correspond to the results from Table

B.3 of the Appendix; these results were obtained by limiting the maximum number

of allowed transfers to three. Note that, in comparison with the values in Figure

4.15, the maximum extremal values for the virtual A* algorithm have decreased in

at least one order of magnitude.
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Figure 4.16: Boxplots of running times for the algorithms virtual A* and Di-
jkstra 1-PDPT, limiting to three the maximum number of allowed transfers, and
executing those algorithms without any eligibility restriction on the 300 instances
of Table B.1 of the Appendix. The small circles (i.e., jittered points) correspond
to individual data values, the horizontal black line dividing each box corresponds
to the median value in the category (i.e, the Q2 quartile), the lower (respectively
the upper) side of a box indicates the Q1 (respectively the Q3) quartile. The
horizontal line below (respectively above) each box corresponds to the Q0 (re-
spectively the Q4) quartile.

Furthermore, we can verify from the results in Table B.2 that, for the considered

instances, the optimal solutions have required two transfers at most (see Figure

4.17), so the solutions obtained when limiting the maximum number of allowed

transfers to three (or even two) are still optimal solutions.
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Figure 4.17: Pie charts showing the classification the instances in Table B.1 of
the Appendix according to the number of transfers in the optimal solutions found
by the virtual A* algorithm when executed without any eligibility restriction. (a)
Classification of the instances with the taxicab distance. (b) Classification of the
instances with the upper rounded Euclidean distance.

Regarding the quality of the solutions computed by the virtual A*, Figure 4.18

compares the sum of the costs of all instances admitting solutions without transfers.

We can see the way in which the solution costs are increased when we reduce the

parameter ε of transfer-arc eligibility.
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Figure 4.18: Sum of costs for the algorithm virtual A* executed with several
values ε of transfer-arcs eligibility. These tests were performed on the instances
of Table B.1 that admit solutions without transfers. For an easier comparison,
we have added a bar corresponding to the sum of costs of the optimal solutions
without transfers.

With respect to the effectiveness, Figure 4.19 shows how the percentage of in-

stances solved by the A* algorithm decreases when we reduce the ε parameter.
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Figure 4.19: Percentages of solved instances by the algorithms virtual A* ex-
ecuted with several parameters ε of transfer-arcs eligibility. These tests were
performed on all the instances of Table B.1 of the Appendix.

Figure 4.20 compares the sum of costs obtained by the enumeration without

transfers, the Dijsktra 1-PDPT, and the virtual A* algorithms executed on all the

instances in Table B.1 that admit solutions without transfers.
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Figure 4.20: Sum of solution costs computed by enumeration without transfers,
Dijkstra 1-PDT, and virtual A* algorithms executed without any eligibility re-
striction on the instances of Table B.1 that admit solutions without transfers.
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Figure 4.21 shows the percentages of instances solved by enumeration without

transfers, Dijkstra 1-PDPT, and virtual A* without any eligibility restriction. These

results confirm the worthiness of the Dijkstra 1-PDT algorithm to search for good

quality solutions in an acceptable amount of time.

Instances with the taxicab distance Instances with the Euclidean distance

Percentages of Solved Instances

0
20

Pe
rc

en
ta

ge
s o

f s
olv

ed
 in

sta
nc

es
 

40
 

60
 

80
10

0

85
91.34

100 96.34 98 100

No Transfer 
Dijkstra 1−PDPT 
Virtual A* 

Figure 4.21: Percentages of solved instances by enumeration without transfers,
Dijkstra 1-PDPT, and virtual A* algorithms executed without any eligibility re-
striction. These results correspond to all the instances from Table B.1 of the
Appendix.

4.3.7 Possible Extensions of the Algorithms

The Algorithms 8 and 9 can be easily adapted to handle instances with time win-

dows. For that we only need to add a procedure for checking that those time windows

are respected by a (partial) solution.

Also, we can handle the dynamic version of the PDPT by “taking” a picture

of the computed schedule at a current time t ∈ (0,Ω). That is, for every v ∈ V
and every (v, i) ∈ Γ(v), we discard in digraph G(Γ,Π, r) all the vertices (v, i) with

Min(v,i) < t and maintain the current arc load values.
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If at time t a vehicle v is at some location x′ (here either x′ ∈ X or x′ may be a

new auxiliary point), we redefine (v,0) = x′ and:

• if (at time t) vehicle v is running through an arc a = ((v, i)(v, i + 1)) then we

replace (v, i) by x′, the arc a is redefined as a = ((v,0) = x′, (v,1) = xv
i+1), and

the weight time(a) is equal to the time the vehicle v needs to reach xv
i+1 from

x′;

• if (at time t) vehicle v is waiting for a request at a vertex (v, i), we only need

to add an auxiliary arc a = ((v,0) = x′, (v,1) = xv
i ) with time(a) defined as

the time that remains v to wait at (v, i) from the current time t.

Next we proceed to reindex all the tour vertices and we take resulting digraph as

the digraph H(Γ,Π, r). We also update time and relay functions to consider also

the (auxiliary) point x′, we replace time horizon [0,Ω] by [0,Ω − t], and for every

v ∈ V and (v, i) ∈ Γ(v) we replace Min(v,i) by Min(v,i) − t.

4.4 Handling Multiple Requests

The main difficulty for handling multiple requests into an insertion approach for the

PDPT, resides in the correct design and implementation of the data structures that

allow us to keep track of the evolution of a given PDPT schedule when we perform

alternately some sequences of insertions and deletions of requests. In particular, at

any time of the insertion/deletion process, we should be able to retrieve:

● the requests that are currently inserted, together with the order in which they

were inserted;

● the collections Γ and Π corresponding, respectively, to the routes followed by

the vehicles, and the routes followed by the inserted requests;

● the vertices and A′-arcs that were part of the given input instance;

● the transfer-arcs that have been created, together with the inserted requests

that are using them;

● the load of every vehicle-arc.
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For the implementation of our data structures, we are going to proceed (like in

the case of the insertion of a single request into a given PDPT schedule (Γ,Π)) by

creating the digraph G(Γ,Π) described in Section 4.3. We will take Γ(v) ∈ Γ as a

linked list that contains the sequence of vertices followed by the vehicle v. Also,

every arc a = ((v, i), (v, i + 1)) of Γ(v) has associated a load ℓv
i .

Now, for every (v, i) in Γ(v) we associate:

● an element point[(v, i)] in X, corresponding to the physical location of vertex

(v, i);
● an array of labels info[(v, i)], which allows us to determine if (v, i) was given

as a part of the initial input instance or if it is involved in the path traversed

by some currently inserted request.

In our implementation info[(v, i)] may contain the following types of labels:

● a label (Nil, “fixed-vertex”), if (v, i) was given as a part of the initial input

instance;

● a label (r, “tail in-arc”) (respectively (r, “tail A′-arc”)), if (v, i) was the

tail of an in-arc (respectively an A′-arc) that was used during the insertion of

the request r.

● a label (r, “head out-arc”) (respectively (r, “head A′-arc”) ), if (v, i) was

the head of an out-arc (respectively an A′-arc) that was used during the in-

sertion of the request r.

● a label (r, “relay vertex in emitting tour”), if (v, i) corresponds to the

relay vertex involved in a transfer-arc ((v, i), (w, j));
● a label (r, “relay vertex in receiving tour”), if (v, i) corresponds to the

relay vertex involved in a transfer-arc ((w, j), (v, i));
● a label (r, “origin direct-arc”), if (v, i) corresponds to the origin of a

request that was inserted using a direct-arc;

● a label (r, “destination direct-arc”), if (v, i) corresponds to the destina-

tion of a request that was inserted using a direct-arc.
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We maintain a linked list existent transfers to keep track of all the A′-arcs

that either were initially on the given input instance or that were created as transfer-

arcs during the insertion of some currently inserted request r. An element of this

list contains a pair (a, involved requests[a]) where a is an A′-arc of the current

PDPT schedule and involved requests[a] is a list that indicates the currently

inserted requests that are using arc a as an arc of their routes, we also add a dummy

label Nil on the list involved requests[a] if a was given as an A′-arc of the initial

input instance.

Now, suppose that we have just inserted a request r by using an or-dr-path πr,

and that the request r follows a sequence of vertices (vi1
, j1)⋯(vik

, jk) in the resulting

PDPT schedule. Then, for every (v, i) in the sequence (vi1
, j1)⋯(vik

, jk), we store

the memory address of the element (v, i) of Γ(v) in an array path[r] if :

● (v, i) is the first vertex of the sequence (vi1
, j1)⋯(vik

, jk);
● (v, i) corresponds to the tail of an A′-arc in πr;

● (v, i) corresponds to the head of an A′-arc in πr;

● (v, i) corresponds to the relay vertex of a transfer arc in πr;

● (v, i) is the last vertex of the sequence (vi1
, j1)⋯(vik

, jk).

Note that path[r] is nothing but a simplified sequence of vertices addresses

that allow us to retrieve the path Π(r) followed by the request r in the result-

ing PDPT schedule. Also, for every A′-arc or transfer-arc a = ((v, i), (w, j)) that

was used in the insertion of r, we store the memory address of the element (a,

involved requests[a]) of the linked list existent transfers, in an array transfers[r].

Every time that we insert a request r, we store the triple (r, path[r], transfers[r])

in a list inserted requests; in contrast, we use a list remaining requests to main-

tain the requests that are not currently inserted in the PDPT schedule.

4.4.1 Deletion of an Inserted Request

Let us suppose that we are given a PDPT schedule codified by the data structures

described in the previous section. Every inserted request r = (or, dr, ℓr) corresponds

to an element (r, path[r], transfers[r]) of the list inserted requests. For deleting

r from (Γ,Π), we proceed in the following way.

1. For every arc a = ((v, i), (w, j)) in Π(r), we set ℓv
i ∶= ℓv

i − ℓr.
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2. For every vertex (v, i) whose address is stored in the array path[r], we remove

from info[(v, i)] any label involving request r. If info[(v, i)] becomes empty,

then we remove vertex (v, i) from Γ(v).
3. For every entry in the list transfers[r] we have the address of an element

(a,involved requests[a]) of the list existent transfers. We remove the

label r from involved requests[a]. If involved requests[a] becomes empty,

then we remove the element (a,involved requests[a]) from existent transfers.

4. We remove the element (r,path[r], transfers[r]) from inserted requests

and we insert r = (or, dr, ℓr) into remaining requests.

4.4.2 Search Algorithms

In this section we describe some well-known metaheuristics that we have imple-

mented in combination with the virtual A* to search for a good sequence for inserting

the requests into a PDPT schedule.

Let I = (X, time, relay, V , start, end, κ, Ω, R) be a PDPT instance and let P

be a permutation of the elements of R. Suppose that we have proceeded to insert the

requests in the PDPT instance by following the ordering given by P while ignoring

infeasible insertions. Let (Γ,Π)IP be the resulting PDPT schedule.

In the rest of this chapter, we are going to denote by insertions((Γ,Π)IP ) the

number of requests satisfied by (Γ,Π)IP and by cost((Γ,Π)IP ) the related cost of the

PDPT schedule (Γ,Π)IP . Also, we denote by swap(P ) the list of all permutations

of R that differ from P by the swapping of exactly two elements.

We start with the description of one of the simplest search mechanisms.

Naive GRASP Search

GRASP stands for greedy randomized adaptive search procedure. It is a process

that constructs a greedy randomized solution at each iteration of the main loop.

A randomized solution is usually generated by adding elements to the problem’s

solution set from a list of “promising” elements which are often placed in a restricted

candidate list and chosen at random when building up the solution.

Here we propose a naive implementation of the GRASP search where, we simply

generate a random permutation P of the requests and we use the virtual A* algo-

rithm for trying to insert the requests in the ordering given by P and while ignoring

infeasible insertions. Then we evaluate the resulting solution and we remove all
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of the inserted requests. By repeating several times the above process, we obtain

Algorithm 10.

Algorithm 10: Naive GRASP search algorithm for the PDPT
Input : A PDPT instance I = (X, time, relay, V, start, end, κ, Ω, R), and an integer

n > 0 indicating the number of iterations desired.

Output: Either a PDPT solution (Γ, Π) or a failure message.

1 set iteration ← 0, max insertions ← 0, and best cost ← +∞
2 set best solution ← Nil

3 while iteration < n do [Main loop]

4 Generate a random permutation P of the requests in R

5 Apply the virtual A* algorithm to I for inserting the requests, according to the

ordering given by P and ignoring infeasible insertions

6 if (max insertions < insertions((Γ, Π)IP ′)) or ((max insertions =
insertions((Γ, Π)IP ′)) and (best cost > cost((Γ, Π)IP ′))) then

7 max insertions ← insertions((Γ, Π)IP )
8 best cost ← cost((Γ, Π)IP )
9 best solution ← (Γ, Π)IP

10 Remove from (Γ, Π)IP all the inserted requests [Restore I]

11 set iteration ← iteration +1

12 if best cost < +∞ then [If any solution]

13 return best solution

14 else [If no solutions]

15 Print “No solution found” [Print failure message]

Random Walk Search

This metaheuristic is based on a random local search. We start with a permutation

P of the elements of R. Then, we use the virtual A* algorithm for trying to insert

the requests in the ordering given by P , while discarding infeasible insertions. Next,

we remove all the inserted requests, we replace P by a random element of swap(P ),
and we repeat the whole process with that new permutation.

Descent Search

This is a local search metaheuristic with a greedy component. We start with a

permutation P of the elements in R. Then, we use the virtual A* algorithm for

trying to insert the requests in the ordering given by P , while discarding infea-

sible insertions. Next, we remove all the inserted requests and we generate, one

bye one, the elements of swap(P ). If we find a permutation P ′ ∈ swap(P ) such

that insertions((Γ,Π)IP ′) > insertions((Γ,Π)IP ) or such that insertions((Γ,Π)IP ′) =
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insertions((Γ,Π)IP ) and cost((Γ,Π)IP ′) < cost((Γ,Π)IP ) then we replace P by P ′, we

remove all the inserted requests and we repeat the whole process, otherwise we stop

the search.

Simulated Annealing

The simulated annealing is a local search metaheuristic of general purpose that was

proposed by Kirpatrick, Gelett and Vecchi [139] and Cerny [224] for approximating

the global optimum of a cost function with possibly multiple local optima. The name

of the algorithm comes from annealing in metallurgy, which is a technique involving

heating and controlled cooling of a material to alter its physical properties.

There exists many variants of the simulated annealing algorithm and in most

applications the success of the algorithm is very sensitive against the choice of the

input parameters. Here, we have implemented a variant of simulated annealing

that is known by the name of threshold accepting. The reason of our choice is

based on the empirical results obtained by Dueck and Scheuer (1990) [74] for some

optimization problems like the Traveling Salesperson Problem.

Another interesting property of the threshold accepting algorithm is that the

search is driven by tunning a set of meaningful parameters. We describe those pa-

rameters next.

Initial temperature. This parameter is used as an initial quality threshold for

discarding bad cost solutions. At the beginning of the threshold accepting algo-

rithm, we declare a variable temperature which is initialized to the value of this

parameter. Then during the main loop of the algorithm the temperature value

decreases gradually.

Freezing point. This is a termination parameter. The algorithm finishes when the

value of the variable temperature is less than or equal to the value of this input

parameter.

Batch size. This input parameter is related to the time during which the threshold

accepting maintains fixed the current quality threshold. Each time the algorithm

completes a batch of solutions with acceptable quality, compares the average cost

of current batch with the average cost of previous batch. If the average cost is not

improving, the algorithm reduces the value of variable temperature.
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Cooling factor. This input parameter is usually a rational number in the interval

(0,1), and is used to reduce gradually the value of variable temperature. Such a

reduction is performed by replacing the current value of variable temperature by its

product with the cooling factor. Therefore, the cooling factor parameter is related

directly to the intensity of the search (i.e., the more close the cooling factor is to

1, the more intensive the search is) and indirectly to the total running time of the

threshold accepting algorithm.

During an iteration of the main loop we have a current permutation P of the

requests and we explore the elements P ′ of swap(P ) in a random order. Each time

that we find an “acceptable” permutation P ′, we sum its cost to the cost of the

current batch. Then we take P ′ as the new current permutation and we start a new

iteration.

When a batch of accepted solutions is completed, we compare its cost against

the cost of the previous one. If the cost of the current batch is not “better”, then we

multiply the temperature by the cooling factor; otherwise we maintain the current

temperature. Next we start the collection of a new batch of accepted solutions.

Given the cost function that we are considering, we say that a permutation P ′

is acceptable in comparison with a permutation P in the following cases.

● If insertions((Γ, Π)IP ′) > insertions((Γ, Π)IP ).
● If insertions((Γ, Π)IP ′) = insertions((Γ, Π)IP ) and

cost((Γ, Π)IP ′) < cost((Γ, Π)IP )+temperature.

● If insertions((Γ, Π)IP ′) = insertions((Γ, Π)IP ) − 1 and

cost((Γ, Π)IP ′) < cost((Γ, Π)IP )−temperature.

Analogously, we say that the cost of batch of accepted solutions A is better than

the cost of a batch of accepted solutions B in the following cases.

● If ∑P ∈A insertions((Γ, Π)IP ) > ∑P ∈B insertions((Γ, Π)IP ).
● If ∑P ∈A insertions((Γ, Π)IP ) = ∑P ∈B insertions((Γ, Π)IP ) and

∑P ∈A cost((Γ, Π)IP ) < ∑P ∈B cost((Γ, Π)IP ).

Algorithm 11 shows a pseudocode of the resulting threshold accepting algorithm.
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Algorithm 11: Threshold accepting algorithm for the PDPT
Input : A PDPT instance I with a set of requests R, and numerical parameters: batch size,

initial temperature, cooling factor, and freezing point.

Output: Either a PDPT solution (Γ, Π) or a failure message.

1 set previous batch cost ← 0, previous batch insertions ← 0, current batch cost ← 0,

current batch insertions ← 0, accepted solutions ← 0, max insertions ← 0, and

explored neighbors ← 0, best solution ← Nil, and best cost ← +∞
2 set temperature ← initial temperature

3 set dynamic equilibrium ← false

4 Generate a random permutation P of the requests in R

5 Apply the virtual A* algorithm to I for inserting the requests, according to the ordering given by P , and

while ignoring infeasible insertions

6 while temperature > freezing point do [Main loop]

7 dynamic equilibrium ← false

8 while not dynamic equilibrium do

9 explored neighbors ← 0

10 if ((max insertions < insertions((Γ, Π)IP )) or ((max insertions = insertions((Γ, Π)IP )) and

(best cost > cost((Γ, Π)IP )))) then [Best solution?]

11 max insertions ← insertions((Γ, Π)IP ), best solution ← (Γ, Π)IP , and

best cost ← cost((Γ, Π)IP ),
12 Remove from (Γ, Π)IP all the inserted requests

13 Shuffle swap(P )
14 for P ′ ∈ swap(P ) do [Explore neighbor permutations of P ]

15 Apply the virtual A* algorithm to I for inserting the requests, according to the ordering

given by P ′, and while ignoring infeasible insertions

16 if ((insertions((Γ, Π)I
P ′
) > insertions((Γ, Π)IP )) or ((insertions((Γ, Π)I

P ′
) =

insertions((Γ, Π)IP )) and (cost((Γ, Π)I
P ′
) < cost((Γ, Π)IP )+temperature)) or

((insertions((Γ, Π)I
P ′
) = insertions((Γ, Π)IP ) − 1) and (cost((Γ, Π)I

P ′
) < cost((Γ, Π)IP ) −

temperature))) then [If P ′ is acceptable]

17 accepted solutions ← accepted solutions +1

18 current batch cost ← current batch cost + cost((Γ, Π)I
P ′
)

19 current batch insertions ← current batch insertions + insertions((Γ, Π)I
P ′
)

20 P ← P ′

21 break

22 explored neighbors ← explored neighbors +1

23 Remove from (Γ, Π)I
P ′

all the inserted requests

24 if accepted solutions = batch size then [If a new batch is completed]

25 if ((current batch insertions < previous batch insertions) or

((current batch insertions = previous batch insertions) and (current batch cost

≥ previous batch cost))) then

26 temperature ← cooling factor ∗ temperature

27 dynamic equilibrium ← true

28 previous batch cost ← current batch cost

29 previous batch insertions ← current batch insertions

30 current batch cost ← 0, current batch insertions ← 0, and accepted solutions ← 0,

31 if explored neighbors = ∣R∣(∣R∣ − 1)/2 then [If all neighbors were explored]

32 temperature ← freezing point

33 break

34 if best cost < +∞ then [If any feasible solution]

35 return best solution

36 else [If no solutions]

37 Print “No solution found” [Failure message]
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4.4.3 Numerical Experiments

For the experiments presented in this section, we are going to consider the virtual

A* algorithm without any ε-eligibility restriction, and allowing three transfers at

most. Also, we are going to consider the cost as a nonnegative weighted sum of the

distances traversed by the requests, the distances traversed by the vehicles, and the

times at which the vehicles complete their routes.

We have been performing numerical experiments with the following objectives.

• Testing the performance of search algorithms of Section 4.4.2 to evaluate the

pertinence of using them in a practical context.

• Compare the behavior of those algorithms, with different assignations of values

of the cost parameters α, β, and γ, respectively, for scaling the sum of the

distances traversed by the requests, the sum of the distances traversed by the

vehicles, and the sum of the times at which the vehicles complete their routes.

• Compare the behavior of algorithms from the point of view of the number of

inserted requests, the cost of the computed solutions, and the running times.

We examine the following values of the cost parameters: α = 1, β ∈ {0,1}, and

γ ∈ {0,1}. For the naive GRASP search and the random walk search we examine the

results for 10, 100, and 1000 iterations. In the case of the descent search algorithm

we examine the results when allowing a maximum of 10, 100, and 1000 iterations.

Finally, we test Algorithm 11 with parameters: batch size = 15, temperature

= 4 ⋅n, cooling factor = 0.85, and freezing point = n; where n is the size of the

integral grid that was considered for constructing the instance.

If P and P ′ are permutations that only differ in the last k elements, and the

requests are currently inserted in the order given by P . We use the following shortcut

to insert the requests in the order given by P ′: we remove the requests corresponding

to the last k elements of P and then we reinsert them in the order given by P ′.

Instances. We have constructed a set of 31 instances which vary from two to twelve

vehicles, and from two to fifty requests. Instances 1-26 and 30 are similar to those

ones described in Section 4.3.6. Instances 6-10, 21-16, and 30 start from collections

of tours consisting of one arc at most. The remaining instances start from collections

of prescheduled tours with more than one arc. With exception of instances 27-29,

and instance 31 (that were constructed manually), all instances were constructed in

a random way. Instances that are considered in this part are summarized in Table

B.4 of the Appendix.
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Quality criteria. We are going to consider that a solution (Γ,Π)IP is better than

a solution (Γ,Π)IP ′ either if:

• insertions((Γ,Π)IP ) > insertions((Γ,Π)IP ′), or

• insertions(Γ,Π)IP ) = insertions((Γ,Π)IP ′) and cost((Γ,Π)IP ) < cost((Γ,Π)IP ′).
Technical context. Experiments were performed on a computer with a 2.7 GHz

Intel Core i5 processor and 8 GB 1866 MHz RAM. The implementations were built

in C++ 11 by using the Apple Clang compiler 13.

Results and Comments

Results are summarized in Tables B.5, B.6, B.7, and B.8 of the Appendix. Of

course, there are several ways of using those results for comparing the examined

algorithms. Here, we start by comparing them via the results obtained by executing

the Algorithm 10 (naive GRASP search) with 1000 iterations. That is a reasonable

choosing for an empirical comparison because we have considered the same fixed

random seed and therefore, we would be comparing the results for the same set of

random permutations.

Effectiveness. Figure 4.22 shows the percentages of inserted requests, obtained by

performing the Algorithm 10 with 1000 iterations over each instance in Table B.4.
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Figure 4.22: Percentages of inserted requests obtained by performing 1000 iter-
ations of Algorithm 10 over each instance in Table B.4.
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First, we observe that for seven of the 31 instances considered, the assignation of

cost parameters α = 1, β = 0, γ = 0, achieved a lower number of insertions than the

other assignations of cost parameters that were examined. This observation agrees

with our intuition that by focusing only on the current request, we may perform

insertions with a large impact on the time/distance of the tours, and this in turn

may reduce our chances of inserting more requests. In contrast, it does not seem to

be a significant difference between the assignations α = 1, β = 0, γ = 1; α = 1, β = 1,

γ = 0; and α = 1, β = 1, γ = 1.

Of course, it can be argued that 1000 iterations could be too much computing

effort for the considered instances. However, a similar behavior is observed when we

consider only 100 iterations of Algorithm 10 (we omit the corresponding plots).

Average running time for a single request insertion. Figure 4.23 shows the

average running times in milliseconds for performing the insertion of a single request.
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Figure 4.23: The average running time in milliseconds for performing the inser-
tion of one request while considering the different combinations of cost parameters
with α = 1, β ∈ {0, 1}, and γ ∈ {0, 1}. These values were calculated by averaging
the running times per iteration of executing Algorithm 10 with 1000 iterations
over each instance in Table B.4. Note the logarithmic scale (log10).
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For computing those values, we have proceeded in the following way.

1. First, we have computed the average running time of one iteration of the naive

GRASP search algorithm; that is, we simply divide by 1000 the total running

time for performing 1000 iterations of the random algorithm.

2. Next, we have divided the average running time of one iteration of the naive

GRASP search algorithm by the number of requests.

Figure 4.23 suggests that inserting requests is more difficult on average on those

instances which start from collections of prescheduled tours with more than one arc.

We observe also a tendency indicating that insertions are easier on average when

we consider the cost parameters α = 1, β = 0, γ = 0. In the opposite way, the inser-

tions involving the assignations of cost parameters α = 1, β = 1, γ = 0; and α = 1,

β = 1, γ = 1 seem to be more difficult on average.

Based on previous results, we proceed to compare the algorithms only for the

assignation of cost parameters α = 1, β = 1, γ = 1.
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Figure 4.24: Maximum percentages of inserted requests obtained from the exe-
cution of the naive GRASP search with 1000 iterations, the random walk search
with 1000 iterations, the descent search with at most 1000 iterations, and the
threshold accepting algorithm with parameters batch size = 15, temperature =
4 ⋅ n, cooling factor = 0.85, and freezing point = n (where n is the size of
the integral grid that was considered for constructing the instance). Those algo-
rithms were executed over each instance in Table B.4 while considering the cost
parameters α = 1, β = 1, and γ = 1.
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Figures 4.24-4.25 indicate that the descent search algorithm achieves solutions

with a smaller number of insertions and with a worse cost on average. However, if we

examine Figure 4.26, we can verify that the descent search algorithm has required

lower running times than the other examined algorithms.

A careful scrutiny of results in Table B.8 shows us that there were no difference

between the solutions found by the descent search algorithm with 10, 100, and 1000

iterations. It results that the descent search algorithm has found a local optima

during the first ten iterations and therefore, there was no difference when we allowed

more iterations.

In contrast, for most of the instances, there was no significant difference between

the percentages of inserted requests in the solutions found by the naive GRASP

search, the random walk search, and the threshold accepting algorithms; they have

respectively achieved 375, 374, and 376 insertions in total; and an average 1-insertion

cost of 130.42, 130.66, and 129.35, respectively.
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Figure 4.25: Costs of the best feasible solutions found by executing the naive
GRASP search algorithm with 1000 iterations, the random walk search with 1000
iterations, the descent search with at most 1000 iterations, and the threshold
accepting algorithm with parameters batch size = 15, temperature = 4 ⋅ n,
cooling factor = 0.85, and freezing point = n (where n is the size of the in-
tegral grid that was considered for constructing the instance). Those algorithms
were executed over each instance in Table B.4 while considering the cost param-
eters α = 1, β = 1, and γ = 1.

Those data become more interesting when we observe in Figure 4.26 that for

most of the instances, the threshold accepting algorithm has required significant

lower running times (notice the logarithmic scale) than the naive GRASP search

and the random walk search.
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Figure 4.26: Running times in milliseconds used for the execution of the naive
GRASP search algorithm with 1000 iterations, the random walk search with 1000
iterations, the descent search with at most 1000 iterations, and the threshold
accepting algorithm with parameters batch size = 15, temperature = 4 ⋅ n,
cooling factor = 0.85, and freezing point = n (where n is the size of the in-
tegral grid that was considered for constructing the instance). Those algorithms
were executed over each instance in Table B.4 while considering the cost param-
eters α = 1, β = 1, and γ = 1. Note the logarithmic scale (log10).

Number of transfers in best found solutions. For instances 1-15 and 27-29

we have performed an exhaustive search for finding a permutation that yields a

best cost solution. For the remaining instances, we have chosen the best solution

found by the four search methods previously described (i.e., naive GRASP search,

random walk search, descent search, and threshold accepting). Figure 4.27 shows

the number of transfers in the best found solutions.

We note that it is difficult to figure out a priori the number of new transfers in

the solutions of a given instance. However, we may note the following global results:

• the combination of cost parameters α = 1, β = 1, γ = 0 has created a total of

60 new transfers,

• the combination of cost parameters α = 1, β = 1, γ = 1 has created a total of

53 new transfers,

• the combination of cost parameters α = 1, β = 0, γ = 1 has created a total of

45 new transfers,
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• the combination of cost parameters α = 1, β = 0, γ = 0 has created a total of

19 new transfers.

Those results suggest that the number of transfers is slightly bigger when we

consider the combination of cost parameters α = 1, β = 1, γ = 0. In contrast, the

combination α = 1, β = 0, γ = 0 usually yields solutions with a lower number of

transfers.
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Figure 4.27: Number of transfers in best found solutions. For instances 1-15
and 27-29 we have performed an exhaustive search. For the remaining instances,
we have chosen the best solution found by the four search methods described in
Section 4.4.2 (i.e., naive GRASP search, random walk search, descent search, and
threshold accepting).

4.5 Conclusions

We have introduced the Virtual Path Problem and we described the Virtual A*

algorithm for solving it in an exact way. We also introduced the 1-Request Insertion

PDPT problem and we showed that it can be seen as a particular case of the Virtual

Path Problem. Then we proposed the Virtual A* algorithm for solving the 1-Request

Insertion PDPT in an exact way, and we also provided a heuristic algorithm based

on Dijsktra’s algorithm.

We could check that, while allowing transfers is often useful, the number of

transfers is usually small (see the pie charts in Figure 4.17), and that it is important

to a priori filter transfer moves which are allowed.
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We have also examined the behavior of the virtual A* algorithm (without any

ε-eligibility restriction, and with three transfers at most) when performed as a sub-

routine for inserting requests in a sequential way, and in combination with some

classical metaheuristics. The resulting algorithms were executed for different assig-

nations of cost parameter values, and we have obtained the following observations.

• The virtual A* can be used in practice for small/middle size instances.

• The descent search algorithm may converge to a local optimum within a low

number of iterations when we consider the neighborhood swap(P ) of a per-

mutation P .

• The assignation of cost parameters α = 1, β = 0, and γ = 0 usually limits the

number of requests that we can insert in a PDPT instance. In contrast, we do

not observe much difference between the assignations α = 1, β = 0, and γ = 1;

α = 1, β = 1, and γ = 0; and α = 1, β = 1, and γ = 1.

• By tunning correctly the input parameters of Algorithm 11 (i.e., threshold

accepting) we can obtain good results with a moderate computational effort.

We close this section by noting that the computational effort necessary for per-

forming one insertion usually exhibits a high variance. In fact, during the exper-

iments it was possible to observe the appearance of some difficult insertions that

slowed considerably the speed of the search algorithms. This impact may potentially

affect the performance of local search algorithms when a set of difficult/infeasible

insertions is tried several times during the examination of a sequence of neighbor

solutions.

For this reason, it could be interesting to analyze the behavior of hybrid algo-

rithms with a tabu search (respectively, a squeaky wheel [134]) component, that

considers the difficulty of the insertion of a particular request to include it in some

tabu list (respectively, priority list), and attenuate the impact in running time of

performing difficult/infeasible insertions.
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We have analyzed two static Pickup-and-Delivery Problems with transfers and

time horizon and proposed new methods and algorithms for handling them.

First we have studied the Item Relocation Problem and we have proposed a 2-

commodity flow model over a Time-Expanded network. The model is meaningful

but results very difficult to solve in the practice. For that reason, we have proposed

a Project-and-Lift approach for handling it in a flexible way.

We have projected the 2-commodity flow model over the original transit network

to obtain a simpler 2-commodity flow model that we have called the Projected Item

Relocation Model (PIRP). To recover a part of the temporal constraints, we have

introduced the Extended-Subtour constraints which link the time horizon and the

number of vehicles circulating through any subset of non-depot vertices. We have

shown how those constraints can be separated in polynomial time, and we have

observed the efficiency of the resulting branch-and-cut algorithm and the quality of

the computed solutions. We have also introduced the Feasible-Path constraints, and

we have shown how to handle with them through column generation.

We have introduced two Lift problems: the Strong Lift Problem and the Partial

Lift Problem, which can be distinguished by its degree of compatibility with a PIRP

solution. We have proposed a MILP formulation that solves the Strong Lift Problem

in an exact way. However, we have observed that most of the time, the model

constructed from optimal PIRP solutions is infeasible. On the other hand, we have

proposed the Weak/Cover for handling the Partial Lift Problem in a flexible way.

We introduced the concept of weak-lift-consistency and we have conjectured that the

Weak/Cover models can yield optimal solutions when we start from PIRP solutions

which are weak-lift-consistent.

As future work it remains to identify other problems where the Extended-Subtour

constraints or the lower bound provided by the cost of an optimal PIRP solution

can be applied. Also, it would be interesting to find new kinds of constraints to

strengthen the PIRP model and increase the probability of obtaining solutions yield-

ing feasible Strong Lift Problems. Furthermore, the proposed Project-and-Lift ap-

proach that we have proposed for handling the Lift problems may be used for other

problems involving multicommodity flows over Time-Expanded networks.

We also have introduced the Virtual Path Problem which consists in searching

for an optimal path within a collection of paths that satisfy and impact a given

constraint system. We have proposed the Virtual A* algorithm, which is an A*-like

algorithm for solving the Virtual Path Problem in an exact way. Then we studied

the 1-Request Insertion PDPT which arises as a subproblem of the Pickup-and-

Delivery with paired pickups and deliveries, transfers, and time horizon (PDPT).
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We have shown this problem can be seen as a particular case of the Virtual Path

Problem and we proposed the virtual A* for solving the 1-Request Insertion PDPT

in an exact way. Because the complexity of the virtual A* algorithm is exponential,

we also have proposed some heuristics with a polynomial time complexity.

We have tested the virtual A* algorithm in an intensive way over a set of 300

random instances, and we have analyzed its behavior. We have confirmed that most

of the time the number of transfers in an optimal solution is small, and that the

running times exhibit a high variance. We have also confirmed how the running

times are reduced when we limit the number of transfers to a small constant. Also

we have observed the impact in solution quality when we filter the transfer-arcs

according to a weight threshold parameter.

We showed how the virtual A* algorithm can be combined with classical search

metaheuristics for inserting multiple requests into a Pickup-and-Delivery Problem

with transfers schedule. We have implemented those algorithms and analyzed their

behavior. As a result, we dispose of a solver which is able to handle small/middle

size PDPT instances.

As a future lines of research it remains to identify other problems where the

Virtual A* algorithm may be applied. It also remains to analyze the case of the

strong synchronization constraints that occur when vehicles must meet within a

given time window in order to perform a transfer. Also, it would be interesting

to analyze the behavior of the proposed search algorithms when they are provided

with a component (e.g., tabu list) to penalize the reinsertion of difficult/infeasible

requests.

Finally, in this work we have restricted ourselves to generic problems. However,

the models and algorithms that we have described in this work may be applied in

practical contexts. Therefore, it also remains to identify the type of applications

where the proposed models and algorithms can be applied.
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Appendix A

Basic Theory and Notation

The aim of this work is to introduce some transportation problems arising from

practical situations and to describe algorithmic schemes for dealing with them. In

order to evaluate problem’s difficulty and algorithms’ performance, it is necessary

to formulate them by using mathematical language.

Although mathematical language is widely used in academic and scientific con-

texts, there is not a completely standard way of writing mathematics. So, to avoid

possible ambiguities, it is necessary to give some insight about the chosen terminol-

ogy and notation. This chapter introduces some definitions, establishes the notation,

and surveys briefly the necessary background knowledge for reading the rest of this

document.

A.1 Sets

We use the conventional notation and definitions for sets. This is, we can indicate

a set by using a letter, say A, or by indicating a list of its elements between curly

braces, for example {a, b, c}. Given a set A, we write a ∈ A to indicate that an

element a belongs A, and a ∉ A to denote that a is not an element of the set A. We

say that A is a subset of a set B if all the elements of a A are contained in B, and

we denote this by A ⊆ B. We say that A is a proper subset of a set B (denoted by

A ⊂ B) if A is different from B but A ⊆ B. As usual, the the set without elements

is called the empty set and is denoted by ∅. A set {e} containing a single element

e is called a singleton. We will usually abbreviate such a set by e instead of {e}.
The intersection of sets A and B is the set A ∩ B ∶= {a ∶ a ∈ A and a ∈ B},

and the union of sets A and B is the set A ∪B ∶= {a ∶ a ∈ A, or a ∈ B, or both}.
If A ∩ B = ∅, sometimes we could write A ⊔ B instead of A ∪ B. If A and B are
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sets, then their difference A ∖B is the set {a ∈ A ∶ a /∈ B} and their symmetric

difference, denoted A△B, is the set (A ∖B) ⊔ (B ∖A). Most of the sets in this

work are finite. Given a finite set A, the cardinality of A is simply the number of

elements of A and it will be denoted by ∣A∣.
The collection of subsets of A is called the power set of A and it will be denoted

by 2A. In general, a set of sets will be called a collection, also we use the term

member to indicate an element of a collection of sets. Collections of sets are

usually denoted by calligraphic letters. A cover (or covering) of a set A is a family

of subsets of A whose union is all of A. Given a set A, a finite partition of A

consists of a finite collection A = {A1, . . . ,Ak} of subsets of A, such that, for every

i, j ∈ {1, . . . , k}, with i ≠ j, we have that Ai ∩ Aj = ∅ and A1 ⊔ ⋯ ⊔ Ak = A. The

members of a partition are called parts. A partition A′ of a set A is a refinement

of a partition A of A (and we say that A′ is finer than A and that A is coarser

than A′) if every member of A′ is a subset of some member of A.

Given a collection A of subsets of a set A, frequently we shall be interested in the

maximal members of A, these are the members of A who are not properly contained

in any other member of A; similarly, the minimal members of a collection A will

be the members of A that are not properly containing any other member of A.

The numerical sets of integers, rational and real numbers will be denoted

by Z, Q, and R, respectively. We add the subscript + to the right of these symbols

to indicate the nonnegative elements of the corresponding set, e.g., Z+ is the set of

non-negative integers.

Sometimes, we could be interested in considering a list with repetitions of ele-

ments taken from some sets and following some ordering. For this, we use the n-

tuple denoted by (x1, x2, . . . , xn) and consisting of the elements x1, x2, . . . , xn in this

particular order. If S is a set, a multiset chosen from S is a function m from S to Z+.

For example, if S = {a, b, c, d, e} and (m(a),m(b),m(c),m(d),m(e)) = (2,3,0,1,0),
then we denote this multiset by {a, a, b, b, b, d}.

Given two sets X and Y , we denote by X × Y to the cartesian product of

X and Y which is the set {(x, y) ∶ x ∈ X, y ∈ Y }. The cartesian product can be

defined inductively to consider the product of n sets X1,X2, . . . ,Xn; and in case

that X1 =X2 = . . . =Xn =X, we abbreviate X1 ×X2 ×⋯ ×Xn as Xn.

A relation R on X ×Y is simply a subset of X ×Y . In case that X = Y , we say

that R is a relation on X. If (x, y) ∈ R we say that x and y are related by R, and

we denote this by xRy.

A function f from a set A to a set B (denoted by f ∶ A → B), is a relation on

A×B such that for any a ∈ A, f contains exactly one pair with first entry a; such a
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pair (a, b) is usually denoted by f(a) = b and we call b the image of a under f , we

also say that f maps a to b.

A function f ∶ A→ B is called an injective function if for every a, b ∈ A, we have

that a ≠ b implies f(a) ≠ f(b). Function f is called a surjective if for every b ∈ B
there is an element a ∈ A such that f(a) = b. Finally, we say that f is a bijective

function if f is injective and surjective.

Given a subset A of a set X with n elements, the characteristic function of

the set A is the function χA ∶X → {0,1} defined by

χA(x) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if x ∈ A,
0 if x ∉ A.

The floor function is the function that takes as input a real number x, and gives

as output the greatest integer less than or equal to x, denoted ⌊x⌋. Similarly, the

ceiling function maps x to the least integer greater than or equal to x, denoted ⌈x⌉.

A.2 Matrices and Vector Spaces

In this section we give the notation and definitions related to matrices and vectors

spaces. For an introductory treatment of vector spaces and other algebraic structures

we refer the reader to the books of Grossman [111] or Insel et al. [128].

In this work, a n×m matrix will be simply a rectangular table of numbers with

n rows and m columns. Most of the time, we will be dealing with real matrices, so

in the rest of this subsection we consider matrices whose entries are real numbers.

If A is a matrix, we denote the entry in its ith row and jth column by aij, e.g., the

following picture depicts a matrix A with three rows and four columns.

⎛
⎜⎜
⎝

⎞
⎟⎟
⎠

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

Alternatively, sometimes we can write (aij) to indicate the matrix whose entries

are the aij. If A is a m × n matrix, we denote by AT to the transposed matrix

A, which is the n×m matrix having the element aji in the ith row and jth column.
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We will denote by Ir×s the identity matrix of r×s, this is the r×s matrix (aij)
defined by

aij ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if i = j,
0 if i ≠ j,

We denote by Jr×s the r × s matrix of all ones (this is, the matrix with all its

entries equal to one), and by 0r×s the zero matrix of r × s (this is, the matrix with

all its entries equal to zero). In case r = s, we can denote these matrices by Ir, Jr,

and 0r, respectively.

We recall that it is possible to perform some operations with matrices, for ex-

ample, if A is a matrix and λ ∈ R, the multiplication of λ and A is the matrix λA

obtained from A by multiplying each entry of A by λ. In particular, −1A is the

matrix obtained by changing the sign of every entry in A, we will denote this partic-

ular matrix by −A. Let A, B be two m×n matrices. The sum of A and B, denoted

by A+B, is a matrix C = (cij), such that cij ∶= aij + bij. On the other hand, if A is

a m×n matrix and B is a n× r matrix, the product of A and B is denoted by AB

and corresponds to the matrix C = (cij) defined by cij ∶= ai1b1j + ai2b2j +⋯+ ainbnj.

Given a set A, a binary operation ∗ on A is simply a function ∗ from A ×A
to A. Given a, b ∈ A and a binary operation ∗ on A, we denote by a∗ b to the image

of (a, b) under ∗. A binary operation ∗ on A is associative if for every a, b, c ∈ A,

we have the equation (a ∗ b) ∗ c = a ∗ (b ∗ c); similarly, we say that operation ∗ is

commutative if for verey a, b ∈ A we have the equation a ∗ b = b ∗ a.

A group (G,∗) consists of a set G together with an associative binary operation

∗ such that:

• there exists an element e ∈ G, called the unit element with respect to ∗, such

that e ∗ x = x ∗ e = x for every x ∈ G;

• for every a ∈ G, there exists an element b ∈ G, called the inverse of a, such

that, a ∗ b = b ∗ a = e, where e is the unit element.

A group (G,∗) is said abelian if a ∗ b = b ∗ a, for every a, b ∈ G, i.e., if ∗ is a

commutative operation.

A field is a set F with two binary operations + and ⋅ , such that, the set F with

the operation + is an abelian group with unit element 0F, and the set F∖ {0F} with

the operation ⋅ is also an abelian group with unit element denoted by 1F.

A vector space over a field F is a commutative group V with a binary operation

+ with unit element 0V , and an operation assigning to every pair (α, v) ∈ F × V an

element of V denoted simply as αv. Furthermore, the following properties hold for
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any x, y ∈ V , and any α,β ∈ F: α(x + y) = αx + αy, (α + β)x = αy + βy, α(βx) =
(α ⋅β)x, and 1Fx = x. The elements of a vector space are called vectors and we will

use bold letters (such as x, ℓ, λ, or Z) to denote vectors. A subset A of a vector

space V over a field F is called linearly independent if for every x1,x2, . . . ,xn ⊆ A,

and for every α1, α2, . . . , αn ∈ F, we have α1x1 + α2x2 +⋯ + αnxn = 0V if and only if

α1 = α2 = ⋯ = αn = 0F. The maximum possible cardinality of an independet set in a

vector space V is called the dimension of V .

If F is a field and r is an non negative integer, then V (r,F) will denote the

vector space of dimension r over F. Note that this vector space can be thought

as the cartesian product Fr, so a vector x = (x1, x2, . . . , xr) ∈ V (r,F) has the form

of a r-tuple, where every entry is an element of F. However, vectors in a space

of dimension r are usually regarded as a r × 1 matrices (e.g., as columns of a r × r
matrix), and in this way, we are able to multiply vectors with vectors or matrices, as

long as they have compatible sizes to perform these operations as the corresponding

matrix operations. In consonance with these comments, the transpose of a vector

v ∈ V (r,F) will be denoted by vT , and can be regarded as a 1 × r matrix (i.e., as a

row of a r × r matrix).

We denote the ith coordinate of a vector x by xi. The standard basis of a

vector space V (r,F) consists of the r vectors e1,e2, . . . ,er where ei is the r-tuple

having 1F in the ith coordinate and 0F elsewhere. A real vector indexed over a set

A, with all its entries equal to 1 will be denoted by 1A; similarly, we denote by 0A

to the real vector with all its entries equal to 0.

Let us now turn our attention to metric spaces. The following definitions were

taken from the book of Bartle and Sherbert [22].

A metric (also called distance) on a set A is a function d ∶ A×A→ R satisfying

the following properties:

(i) d(x, y) ≥ 0 for all x, y ∈ A (positivity);

(ii) d(x, y) = 0 if and only if x = y for all x, y ∈ A (definiteness);

(iii) d(x, y) = d(y, x) for all x, y ∈ A (symmetry);

(iv) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ A (triangle inequality).

A metric space (A,d) is a set together with a metric d on A.

Example A.1 - The Euclidean Real Vector Space

The n-dimensional real vector space V (n,R) together with the Euclidean distance

d defined for all x,y ∈ Rn as:
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d(x,y) =
¿ÁÁÀ n∑

i=1

(xi − yi)2

is an example of metric space. ◻
Example A.2 - The Taxicab Geometry

Another example of metric space who arises from the notion of distance in urban

areas is the taxicab geometry (cf. Krause [143]). This metric space also consists

of the n-dimensional real vector space and a distance dtaxi. The taxicab distance

dtaxi between two vectors p, q of the n-dimensional real vector space with fixed

Cartesian coordinate system is defined as

dtaxi(p,q) = n∑
i=1

∣pi − qi∣.
◻

The metric dtaxi has the interesting property of being closed over the integers and

the rational numbers, this is, if the vectors p, q have integers (respectively rational)

coordinates, dtaxi(p, q) is also an integer (respectively, rational) number. Another

metric which is also closed over the integers is the upper rounded Euclidean

distance defined for all x,y ∈ Rn as ⌈√∑n
i=1(xi − yi)2⌉.

A.3 Graph Theory

In this Section we give the definitions and results from graph theory that will be

used in the rest of this document. For a more detailed treatment of graph theory

we refer the reader to the books of Diestel [69] and Bondy and Murty [34].

A graph G is an ordered pair (V (G),E(G)) consisting of a set V (G) of ver-

tices, and a set E(G), disjoint from V (G), of edges, together with an incidence

function ψG that associates with each edge of G an unordered pair of (not nec-

essarily different) vertices of G. Usually, for notational simplicity, we write uv to

denote the unordered pair {u, v}. Sometimes, a graph G may have one or more dis-

tinguished vertices, they are vertices of G with a special notation to distinguish

them from other vertices. In this work, we may consider the following ones.

● A depot vertex denoted by dG;

● a source vertex denoted by ŝG; and

● a sink vertex denoted by p̂G.
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If e is an edge and x, y are vertices such that ψG(e) = xy, then we say e joins x

and y, and the vertices x, y are called the endpoints of e. We say the endpoints

of an edge are incident with the edge and vice versa. Two vertices incident with a

common edge are adjacent as are two edges incident with a common vertex. Two

distinct adjacent vertices are called neighbors. The set of neighbors of a vertex x in

a graph G = (V (G),E(G)) is denoted by NG(x) and the set of edges in E(G) that

are incident with x is denoted by ∂G(x). The degree of a vertex x is the number

of edges incident with x, counting each loop as two edges. An isolated vertex is a

vertex of degree zero. The minimum degree of a vertex in a graph G is denoted by

δ(G), and analogously, the maximum degree is denoted by ∆(G).
An edge with identical endpoints is called a loop and if the endpoints are different

the edge is called a link. Two or more edges that are not loops and have the same

pair of endpoints are said to be parallel edges. We say a graph is simple if it has

no loops and no parallel edges.

When no confusion arises, we usually omit the explicit mention of the graph G

in the notation and so, for example, we can write V , E, ψ, N(x) instead of V (G),
E(G), ψG, NG(x), respectively.

Example A.3 - An Example of Graph

Figure A.1 is a pictorial representation of a graph G. The set of vertices of this

graph is V (G) = {x1, x2, ..., x7} and the set of edges is E(G) = {e1, e2, ..., e12}. Edge

e5 joins vertex x1 with itself, so it is a loop. Edges like e1, e2, and e3 are parallel

edges because they join the same pair of vertices x1, x5. Vertex x7 is an isolated

vertex because it is not incident with any of the edges. The endpoints of e9 are x4

and x5. ◻

x1

x2

x5

x3

x7

x6

x4
e1

e2
e3

e6

e7

e8

e4

e5

e9

e10

e11

e12

Figure A.1: An example of graph
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Remark: Recall that a particular drawing of a graph is not the graph itself,

and a graph can be depicted in several ways, as long as we obey the joins dictated

by its incidence function. However, to avoid confusion in the drawing of a graph,

every edge only have to touch those vertices which are its endpoints.

Sometimes it is useful to specify a graph by its mod-2 vertex-edge incidence

matrix. For the graph in Figure A.1, this matrix is the following:

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

x1 1 1 1 1 0 0 0 0 0 0 0 0

x2 0 0 0 1 0 1 1 0 0 0 0 1

x3 0 0 0 0 0 1 1 1 0 1 1 0

x4 0 0 0 0 0 0 0 0 1 1 0 1

x5 1 1 1 0 0 0 0 1 1 0 0 0

x6 0 0 0 0 0 0 0 0 0 0 1 0

x7 0 0 0 0 0 0 0 0 0 0 0 0

The rows of such a matrix A = (aij) are indexed by the vertices of the graph,

and the columns are indexed by the edges of the graph. The entry aij is the number

of times (mod 2) that the jth edge, ej, is incident with the ith vertex, xi. Hence aij

is 0 or 1 unless ej is a loop incident with xi, in which case, we have aij = 0.

A graph H is a subgraph (respectively, supergraph) of a graph G if V (H)
and E(H) are subsets (respectively, supersets) of V (G) and E(G), respectively. If

V ′ is a subset of V (G), then G[V ′] will denote the subgraph of G whose vertex set

is V ′ and whose edge set consists of the edges of G having both ends in V ′. We

say G[V ′] is the subgraph of G vertex-induced by V ′. Likewise, if E′ is a subset

of E(G), then G[E′] is the subgraph of G edge-induced by E′, and it has E′ as

its set of edges and its set of vertices consists of the ends of the edges of G in E′.

Adding a set S of edges to a graph G yields a spanning supergraph of G that is

denoted by G+S. Similarly, the addition of a set X of vertices to a graph G results

in a supergraph of G denoted by G +X.

If G1 and G2 are graphs, their union G1 ∪G2 is the graph whose set of vertices

is V (G1) ∪ V (G2) and whose set of edges is E(G1) ∪E(G2). If V (G1) and V (G2)
are disjoint then G1 and G2 are called disjoint and if E(G1)∩E(G2) = ∅, then G1

and G2 are edge-disjoint.

Two graphs G and H are isomorphic, written G ≅ H, if there are bijective

functions θ ∶ V (G) → V (H), and φ ∶ E(G) → E(H) such that, a vertex v of G is

incident with and edge e of G if and only if θ(v) is incident with φ(e) in the graph H.
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The graphs depicted in Figure A.2 belong to two important types of graphs: the

complete graphs and the bipartite graphs. In general, if n a positive integer, there

is, up to isomorphism, a unique graph on n vertices in which each pair of distinct

vertices is joined by a single edge. This graph Kn, is called the complete graph

on n vertices. A bipartite graph G[X,Y ] is a graph whose set of vertices can be

partitioned in two subsets X and Y (called parts), such that, every edge of G has

one endpoint in X and the other one in Y . If the bipartite graph is simple and

every vertex in X is joined to every vertex of Y , the graph is called a complete

bipartite graph and is denoted by K∣X ∣ ∣Y ∣.

Figure A.2: The graphs K5 and K3,3

An edge progression W (from x1 to xk+1) in a graph G is a finite sequence (x1,

e1, x2, . . . , xk, ek, xk+1) such that k ≥ 0, and ei = (xi, xi+1) ∈ E(G) for i = 1, . . . , k.

If in addition ei ≠ ej for all 1 ≤ i < j ≤ k, W is called a walk in G.

Let W = (x1 = x, e1, x2, . . . , xk, ek, xk+1 = y) be a walk, then we say that

W connects x to y, and that W is an x-y-walk. Vertices x2, . . . , xk are called the

internal vertices of W . The endpoints of W are x1 = x and xk+1 = y: vertex x is

the initial vertex of W , and vertex y is the terminal vertex of W . A walk with

initial vertex x is an x-walk. If xi and xj are two vertices in the sequence of W ,

with i < j, the subsequence of W from xi to xj is denoted by W[xi,xj] and is called

the segment of W from xi to xj. The length of W is the number of edges that

contains. If all the vertices of a walk are distinct, then the edges are also distinct

and the walk is called a path.

The terminology and notation for paths is inherited from the corresponding

terminology and notation for walks, so for example, a path P from x1 to xk+1 is

called an x1-xk+1-path. The vertices x1 and xk+1 are the endpoints of P . Vertices

x2, . . . , xk are its internal vertices. By P[x, y] with x, y ∈ V (P ) we mean the

(unique) subgraph of P which is an x-y-path. Also, it is possible to extend the

notion of x-y-path to paths connecting subsets X and Y of vertices. An X-Y -path

is a path with initial vertex in X and terminal vertex in Y , and whose internal

vertices do not belong neither X nor Y . Finally, note that when G is a simple
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graph, we can abbreviate any arc progression (x1, a1, x2, . . . , xk, ak, xk+1) by simply

listing its vertex sequence (x1, x2, . . . , xk, xk+1).

A graph is connected if every pair of distinct vertices is connected by a path.

A graph that is not connected is called disconnected. In a graph G, the maximal

connected subgraphs (by contention) are called connected components. The sets

of vertices (respectively edges) of the connected components of G form a partition

of V (G) (respectively E(G)).
If P is an x-y-path in a graph G and e is an edge joining x with y that is not

in P , then the subgraph of G with set of vertices V (P ) and set of edges E(P ) ∪ e
is called a cycle. The length of the cycle is the number of eges that it contains.

Cycles with three, four, five, and six edges are called, triangles, quadrilaterals,

pentagons, and hexagons, respectively,

A graph without cycles is a forest, and a connected forest is a tree. It is not

difficult to prove that a graph is a forest if and only if all of its connected components

are trees. In a tree, a vertex of degree exactly one is called a leaf and it is a known

fact that every tree with two or more vertices must contain a leaf.

A spanning tree of a connected graph G is a subgraph T of G, such that, T is

a tree and V (T ) = V (G). Trees have many interesting properties and characteriza-

tions, for example, for every tree T we have that ∣E(T )∣ = ∣V (T )∣ − 1. As a conse-

quence, if T is a spanning tree of a graph G, we have the equality ∣E(T )∣ = ∣V (G)∣−1.

Another interesting property of trees is that any two vertices are connected by ex-

actly one path. We denote the unique path connecting two vertices x and y of a

tree T by T[x,y].

In some applications, we need to associate numbers with vertices or edges in

a graph to take into account some additional characteristics from the real world

(such as costs or capacities). A weight function associated with a graph G is any

function c ∶ E(G) → R. For a nonempty F ⊆ E(G) we write c(F ) ∶= ∑e∈F c(e), and

we define c(∅) ∶= 0. Moreover, dist(G, c)(x, y) denotes the minimum c(E(P )) over

all x-y-paths P in G. Given x ∈ V (G) and U ⊆ V (G), we define dist(G, c)(x, U) ∶=
infy∈U dist(G, c)(x, y), and symmetrically dist(G, c)(U, x) ∶= infy∈U dist(G, c)(y, x).

Let c be a weight function associated with a graph G. Given e ∈ E(G), the value

c(e) is called the weight of e. A graph G together with a weight function c defined

on its edges is called a weighted graph, and is denoted by (G, c).
A directed graph♣ or digraph D is an ordered pair (V (D),A(D)) consisting

of a set V = V (D) of vertices and a set A = A(D) of arcs, together with an incidence

♣In some contexts, like operations research, a directed graph is often called a network.
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function ψD that associates with each arc of D an ordered pair of (not necessarily

distinct) vertices fo D. If a is an arc with ψD(a) = (x, y), we can write a = (x, y), we

say that a joins x to y, and we call x, y the endpoints of a. Vertex x is the tail

of a, vertex y is the head of a, and we say that a = (x, y) leaves x and enters y.

An example of a digraph is depicted in Figure A.3. Note that we have represented

the arcs by arrows. For example, a1 = (x1, x2) has tail x1 and head x2.

x1

x2 x3

x4

x5

x7

x6

a1

a2

a4

a3

a5 a6 a7

a8

a9

a10

a11

a12

Figure A.3: A example of digraph

Given a vertex x ∈ V (D), the tails of arcs in A(D) with head x are the in-

neighbours of x; analogously, the heads of arcs in A(D) with tail x are called the

outneighbours of x. These sets of vertices are denoted by N−D(x) and N+D(x),
respectively, and their cardinalities are called indegree of x and outdegree of x,

respectively. The maximum indegree and outdegree of a digraph D are denoted by

∆−(D) and ∆+(D), respectively.

Clearly we can obtain a digraph from a graph G by specifying an order for the

endpoints of every edge; the resulting digraph is then called an orientation of G.

Conversely, if D is a digraph and G is the graph obtained from D by replacing every

arc by and edge with the same pair of endpoints, then G is the underlying graph

of the directed graph D.

In general, the terminology for directed graphs is very similar to the terminology

for graphs. For example, an arc progression W (from x1 to xk+1) in a digraph D

is a finite sequence (x1, a1, x2, . . . , xk, ak, xk+1) such that k ≥ 0, and ai = (xi, xi+1) ∈
A(D) for i = 1, . . . , k. If in addition ai ≠ aj for all 1 ≤ i < j ≤ k, W is called a

directed walk in D.

If x and y are the initial and terminal vertices of a directed walk W , we refer to W

as a directed x-y-walk. We say that a vertex y is reachable from a vertex x if there

exists a directed x-y-walk. We say that two vertices are strongly connected if x

is reachable from y, and symetrically, y is reachable from x. Given a digraph D, the
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property of strong connectivity induces a partition of V (D), and the subdigraphs of

D induced by each part of the partition are called the strong components of D.

If X and Y are sets of vertices (not necessarily disjoint) of a digraph D = (V,A),
we denote by A(X,Y ) to the set of arcs with tail in X and head in Y . When

Y = V ∖ X, the set A(X,Y ) is denoted by ∂+(X) and is called the outcut of

D associated with X. Analogously, the set A(Y,X) is the incut of D associated

with X and is denoted by ∂−(X). An x-y-cut in a digraph D is an outcut ∂+(X)
such that x ∈ X and y ∈ V ∖X, and we say that such a cut separates y from x.

Summarizing, given U, V ⊆ V (D), we define the following subsets of A(D).
● ∂−D(U) ∶= {(x, y) ∈ A(D) ∶ x ∉ U, y ∈ U};
● ∂+D(U) ∶= {(x, y) ∈ A(D) ∶ x ∈ U, y ∉ U};
● ∂D(U) ∶= ∂−D(U) ∪ ∂+D(U);
● A(U,V ) ∶= {(x, y) ∈ A(D) ∶ x ∈ U, y ∈ V }.

If U consists of a single element x (i.e., U is the singleton {x}), then we write ∂−D(x),
∂+D(x), ∂D(x), and A(x, V ), instead of ∂−D({x}), ∂+D({x}), ∂D({x}), and A({x}, V ),
respectively. Analogously, if V = {y} we write A(U, y) instead of A(U, {y}).

A flow network N(ŝ, p̂) consists of a digraph D = (V,A) (the digraph associated

with N(ŝ, p̂)) with two distinguished vertices, a source ŝ and a sink p̂, together with

a nonnegative function cap ∶ A → R+ called the capacity function of N(ŝ, p̂).
Given an arc a ∈ A the weight cap(a) is the capacity of a.

Let N(ŝ, p̂) be a flow network with associated digraph D = (V,A) and capacities

cap ∶ A(D) → R+. A flow is a function f ∶ A(D) → R+ with f(a) ≤ cap(a) for all

a ∈ A(D). The excess of a flow f at v ∈ V (D) is defined by

exf(v) = ∑
a∈∂−

D
(v)
f(a) − ∑

a∈∂+
D
(v)
f(a).

We say that f satisfies the flow conservation rule at vertex v if exf(v) = 0. A

flow satisfying the flow conservation rule at each vertex is called a circulation. An

ŝ-p̂-flow is a flow satisfying exf(ŝ) ≤ 0 and exf(v) = 0 for all v ∈ V (D) ∖ {ŝ, p̂}. We

define the value val(f) of an ŝ-p̂-flow f by val(f) ∶= −exf(ŝ). We say that a flow

f in a flow network N(ŝ, p̂) is maximum if there is no flow in N(ŝ, p̂) with value

greater than val(f).
A cut in a flow network N(ŝ, p̂) is an ŝ-p̂-cut in its underlying digraph. The

capacity of a cut K = ∂+(X) is defined as the sum of the capacities of its arcs and

we denote this value by cap(K).
222 Basic Theory and Notation



Models and Algorithms for Problems of Scheduling/Routing with Synchronizations

A.4 Algorithms and Complexity

In mathematics, one way of comparing real valued functions of a single variable is

examining their behavior either around a particular value or when the variable takes

arbitrary large (or low) values. In this latter case we talk about asymptotic analysis

of functions.

In asymptotic analysis, we are usually interested in determining, for a given

function f ∶ N→ N if one of the following cases holds:

1. f(n) converges to a certain value when n→∞;

2. f(n) does not converge, but remains bounded between certain values when

n→∞;

3. f(n) diverges, this is, for every n ∈ N there exists m ∈ N such that f(ℓ) ≥ n for

every ℓ ≥m.

In the third case, we are also interested in the “rate” of growing of f . This rate

is usually determined by comparing f(n) with the corresponding values of other

well known functions like log(x), x, x2, x3, . . . ex. To indicate such comparisons the

so called “big-Oh” notation is frequently used.

Let f, g be functions from N to R+. The notation f(n) = O(g(n)) means that

there exists constants n0 and C such that for all n ≥ n0, the inequality ∣f(n)∣ ≤ C ⋅g(n)
is satisfied.

Before than electronic computers became common, many mathematicians were

inclined to consider that any finite algorithm was good enough for practical purposes

and some problems were considered as solved after finding a finite algorithm. One

of the first notions of computational complexity was introduced in Edmonds [78].

In this paper entitled “Flowers, paths and trees”, Edmonds attracted the attention

about the practical importance of the efficiency of an algorithm, an he also gave

the first “efficient” algorithm to compute a matching of maximum cardinality in a

general graph.

In Jünger et al. [135], William R. Pulleyblank gives a nice account of the historical

context in which Edmonds published a series of articles giving the necessary details

to achieve the polinomiality of certain well-known algorithms.

The notions of computational complexity were eventually formalized and gave

rise to a formal concept of “polynomial time algorithm” an to the NP-completness

theory, that was introduced independently by Cook [52] and Levin [148].
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To formalize the concept of polynomial time algorithm, it is necessary to in-

troduce a theoretical machine model (this is, a theoretical computer in which we

are going to “execute” algorithms). There exists several of such models like Turing

machines or random access machines, and they offer different degrees of flexibility

to implement algorithms. However, it can be shown that most of these machine

models are equivalent, in the sense that, we can execute the same algorithms and

obtain the same results in amounts of time that are not significatively different (i.e.,

if an algorithm takes a polynomial number of steps in one machine model, then

it takes also a polynomial number of steps in the other models). For this reason,

we omit these details relative to machine models and we refer the reader to the

book of Garey et al. [100] (which describes a one-tape Turing machine), the chapter

about NP-completness in Korte and Vygen [142] (which also shows the equivalence

between one-tape Turing machines and two-tape Turing machines), or the book of

Aho and Hopcroft [3] (which describes random access machines and several Turing

machines).

In the rest of this section, we follow chapter 8 of Bondy and Murty [34] and

chapter 9 of Cook et al. [53].

First of all, consider a finite set Σ. We will call this particular set Σ the alphabet

and its elements are called symbols or letters. Any ordered finite sequence of

symbols in Σ is called a word or a string. The size of a word w will be defined

as the number of symbols used un w including multiplicities, and this value will be

denoted by size(w).
Also, we will denote by Σ∗ the set of all the words of symbols taken from Σ.

The following example shows that we can encode mathematical objects like ra-

tional numbers or graphs as words.

Example A.4 - Encoding a graph as a word

Consider the alphabets Σ1 = {a, b, c, d, e, f , (, ),{,}, ,} (i.e., letters from a to f , left

parenthesis symbol, right parenthesis symbol, left curly brace symbol, right curly

brace symbol, and the comma symbol), and Σ2 = {0,1,#}. The graph in the Figure

can be encoded in Σ1,Σ2, respectively, as the words:

w1 = ({a, b, c, d, e},{a, b},{a, c},{b, c},{c, d},{d, e},{e, a}})
w2 = 100#000#001#000#010#010#011#011#100#100#000##

The interpretation of w1 is straightforward because the chosen alphabet Σ1 is

part of the common mathematical notation. However, for interpreting w2 we need

to indicate the following enconding conventions that we have used for writing w2.

● We have used the symbol # as a separator of binary sequences;
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● all the binary sequences appearing in w2 have the same length;

● each vertex is encoded by a unique binary sequence;

● the collection of binary sequences that encode vertices, can be arranged to

follow a total ordering with respect to the lexicographic order;

● the first vertex is encoded by a sequence of zeros;

● the number of vertices (minus one) was encoded as the first binary sequence

(from left to right) in w2;

● the rest of binary sequences have to be read in consecutive pairs, and they

correspond to the endpoints of the graph edges;

● the end of a word is indicated by two consecutive separator symbols, that is,

by ##.

For decoding w2, we start by reading the string w2 from left to right until finding

the first separator symbol #, that is, we read the subword 100#. According our

encoding conventions, the leading binary sequence indicates the number of vertices

in the instance minus one. So, in this particular case, the sequence 100 means that

the encoded graph has five vertices, namely, 000, 001, 010, 011, and 100. Note that

we can identify these binary sequences, respectively, with the vertices a, b, c, d,

and e. Next, we continue reading w2 until finding the separator symbol # in two

occasions, that is, we read the sequence 000#001#, which tell us that the first edge

has endpoints 000, and 001 (i.e., it is the encoding of the edge {a, b}). We continue

reading all the remaining edges in this way until finding two consecutive separator

symbols ##, which indicate the ending of the word w2. ◻

b

c

a e

d

Figure A.4: The graph used in Example A.4.

As the above example shows, there can be several ways of choosing an alphabet

or an encoding, and the choosing is quite arbitrary.

Clearly, we won’t be interested in encodings containing redundancies, and so for

the purpose of this work, we will assume that we are using an efficient encoding (i.e.,
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one with length pollinomialy bounded by the minimum possible encoding length),

and therefore we are going to consider that the different encodings of an object are

equivalent.

Now, we discuss the concept of “problem”. In an informal way, we can say that a

problem is a question or task. We can classify problems in the following two types.

1. Decision problems: problems that can be answered with “yes” or “no”, for

example: “Is this given graph bipartite?”;

2. Finding problems: problems in which we are required to find and object

with certain properties, for example, “Find a perfect matching of minimal

cost in this given graph.”

Most of the complexity theory is restricted to decision problems because every

problem of finding an object usually has associated a family of decision problems

and, from a complexity point of view, the complexity of a finding problem and its

associated familly of decision problems is the same.

Since we encode mathematical objects by words, we can also encode mathemat-

ical properties, so following Cook et al. [53], a problem is any subset Π of Σ∗, and

any word w in Π is called an instance.♢ In the particular case of decision prob-

lems, an instance whose answer is “yes” is called a “yes”-instance. Analogously,

an instance whose answer is “no” is a “no”-instance.. In the rest of this section we

consider only decision problems that are given by the set of all its “yes”-instances.

We need to be careful with above definitions: in the real life, we cannot decide

that some given instance w is a “yes”-instance of a problem Π by simply checking if

w ∈ Π because the set Π is not usually known in an explicit way, and it may be huge

or infinite. For deciding if w ∈ Π, we need to apply some ad hoc “algorithm” A that

“solves” Π in the following way: w ∈ Π if and only if after “applying” A to w, it can

be determined mathematically that A “stops” after a finite number of “steps”. The

formal definitions behind these ideas will be clarified in the following paragraphs.

A basic step (in an algorithm) consists of replacing a subword u by a word u′.

This is, if we have a word w = tuv, where t and v are also subwords, we replace w

by the word w′ = tu′v.

An algorithm is a finite list of basic steps, and it can be described by a set

{(u1, u
′
1), . . . , (un, u′n)} where u1, u

′
1, . . . , un, u′n are words. The interpretation of such

a set is the following: if a word w contains an element of {u1, . . . , un} as a subword,

♢We can note, however, that Σ∗ can have many words without sense, so in a more formal
treatment we would require that we can determine in polynomial time (using a fixed machine
model) whether an arbitrary word in Σ∗ is an instance of Π or not.
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then we choose the smallest index j such that w contains uj as a subword, and we

write w = tujv in such a way that subword t is as short as possible. We call tu′jv

the succesor of w. We say that an algorithm stops at word w if w does not contain

any of u1, . . . , un as subwords.

For a fixed algorithm A, we say that a finite or infinite sequence of words

w0,w1, . . . , is allowed by A if wi+1 is the succesor of wi (i = 0,1, . . .) and in case

that the sequence is finite, the algorithm stops at the last word of the sequence. We

say that algorithm A accepts a word w if the allowed sequence starting with w is

finite.

We say that algorithm A solves a decision problem Π ⊆ Σ∗ if Π is the set of

words in Σ∗ accepted by A, and we say that A solves Π in polynomial time if there

exists a polynomial p(x) such that for any word w ∈ Σ∗ if A accepts w, then the

allowed sequence starting with w contains at most p(size(w)) words and the size of

each word in the sequence is upper bounded by p(size(w)). The class of decision

problems for which there exists a polynomial-time algorithm for solving them is

denoted by P .

Another important class of decision problems is the class NP . This class consists

of those decision problems Π ⊆ Σ∗ for which there exist a decision problem Π′ in P
and a polynomial p(x) such that for any word w ∈ Σ∗ we have that: w ∈ Π if and

only if there exists a word v such that (w, v) ∈ Π′ and such that size(v) ≤ p(size(w)).
Such a word v is called a certificate that w belongs to Π.

Remark: The letters NP stand for “nondeterministic polynomial time”, which

is a concept related to the one of nondeterministic algorithm. As a matter of fact,

a nondeterministic algorithm for a decision problem always answer “no” for a “no”-

instance, and for a “yes”-instance, there is a positive probability that it answer “yes”.

In particular, NP does not mean “not polynomial time”.

Example A.5 - Examples of problesm in NP.

Consider the following two problems:

Π1 = {G ∶ G is a bipartite graph}, and

Π2 = {G ∶ G is a Hamiltonian graph}.
These problems belong to NP since the problems:

Π′1 = {(G, (X,Y )) ∶ G is a graph and (X, Y) is a bipartition for G} and

Π′2 = {(G,H) ∶ G is a graph and H is a hamiltonian cycle of G}
belong to the class P . This is because for Π′1, the problem of deciding if two

disjoint subsets of vertices X, Y of a graph G are the parts of G (i.e., deciding if G

can be seen as a bipartite graph with parts X and Y ), can be solved in polynomial
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time (we only need to verify that each edge of G has one extreme in X and the

other one in Y ): Similarly, for Π′2 the problem of deciding if a given subgraph H of

a graph G is a hamiltonian cycle of G, can be solved in polynomial time (we only

need to verify that V (H) = V (G) and E(H) ⊆ E(G)). ◻
Remark: We have that P ⊆ NP because if Π ∈ P , we can take the empty word

� as a certificate, this is Π′ = {(w,�) ∶ w ∈ Π}; which proves that Π′ ∈ P .

From the above remark, it is natural to ask whether this inclusion is strict. This

is an unsolved question and it is also known as

Conjecture 1 (The Cook-Edmonds-Levin Conjecture.).

P ≠ NP .
A decision problem with set of “yes”-instances Π ⊆ Σ∗ belongs to the class coNP

if the complementary problem Π̄ = Σ∗ ∖Π belongs to NP ♡.

Example A.6 - A problem in coNP.

The bipartite graph decision problem Π1 from Example A.5 belongs to the class

coNP , because the problem

Π′′1 = {G ∶ G is a graph, but G is not a bipartite graph}
is equivalent to the problem

Π′′′1 = {G ∶ G is a graph containing and odd cycle.}
and this last problem belongs to the class P because we can find an odd cycle in

linear time, for example, by using a breadth-first search algorithm. ◻
From the above definitions, we can deduce that for any problem Π in P , we have

also that Π̄ is in P , and therefore P ⊆ NP ∩ coNP .

The problems in NP∩coNP are those problems for which there exist certificates

both in case the answer is “yes” and in case the answer is “no”. A theorem giving

us the certificates “yes” and “no” is called a good characterization.

For most of the problems that is known they are in NP ∩ coNP it has been

proved that they are also in P ; however, there exists some problems in NP ∩ coNP
for which we still do not know if they really belong to P . This situation gives rise

to the following conjecture.

♡Again, Σ∗ ∖Π may contain words w without sense, so we assume that we have a polynomial
time algorithm to decide if a word w is an instance.
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Conjecture 2 (Edmonds Conjecture.).

P = NP ∩ coNP .

The Primality Testing Problem (i.e., testing if a given number is prime or not)

was a problem known to be in NP ∩ coNP that could not be proved to be in P
for many years, but a polynomial time algorithm for solving it, was finally found

in 2003 by Agrawal et al. [2]. Another problem in NP ∩ coNP , for which there is

not known a polynomial time algorithm is the problem of determining if two given

graphs are isomorphic.

An algorithm A is a polynomial-time reduction of a problem Π′ to a problem

Π if A is a polynomial-time algorithm such that for any allowed sequence starting

with a word w and ending with a word v, we have that w ∈ Π′ if and only if v ∈ Π.

A problem Π is called NP-complete if for each problem Π′ in NP there exists

a polynomial time reduction of Π′ to Π.

It is not obvious at all that there existsNP-complete problems. The first problem

that was proved to be NP-complete was the Boolean Satisfiability Problem (see, for

example, Cook [52]).

Analogosuly, we can define the coNP-complete class as the class of problems

Π such that for each problem Π′ in coNP there exists a polynomial time reduction

of Π′ to Π. A computational problem Π is called NP-hard if all problems in NP
polynomially reduce to Π. This is, NP-hard problems are at least as hard as the

hardest problems in NP .

Figure A.5 sketches the two possibilities of inclusions for the classes P , NP and

NP-complete for the cases of P ≠ NP and P ≠ NP . Note that, if P = NP , some

regions would collapse into a single one.
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P ≠ NP P = NP

P = NP =NP-complete

P

NP-hard

NP-complete

NP-hard

NP

Figure A.5: The inclusions of complexity classes P , NP , NP-complete, and
NP-hard for the two possibilities P ≠NP and P =NP .

Basic Theory and Notation 229



Models and Algorithms for Problems of Scheduling/Routing with Synchronizations

What if a problem is NP-hard?

If we arrive to prove that a problem arising in some real world application is NP-

hard then we should stop searching for a polynomial time algorithm, unless we are

willing to tackle the Cook-Edmonds-Levin conjecture.

However, we should not be discouraged yet: NP-hardness should be viewed only

as a limitation on what can be accomplished with a given problem, and it does not

mean that a problem is intractable. In practice, there are many NP-hard problems

for which it is possible to compute optimal or good enough solutions in an acceptable

amount of time.

Also, it is worth noting that not all the NP-complete problems are equally hard

(even when we know they are theoretically equivalent with respect to polynomial

time transformations). The success for solving one of those NP-complete problems

may depend on the size/structure of the problem instance and on the existence of

ad hoc algorithms with some theoretical/empirical performance.

We close this section with an example taken from the book of Bertsimas and

Tsitsiklis [29]. The example shows what can be achieved sometimes with an approx-

imated polynomial time algorithm.

Example A.7 - Computing a bound for the TSP in polynomial time

Given a graph G = (X,E) with weights c(e) for every edge e ∈ E, we aim to find a

hamiltonian cycle (i.e., a cycle that visits all the vertices exactly once) of minimum

weight (with respect to the weight c). Note, this problem is known to be NP-

complete.

For modeling the problem, we define for every edge e ∈ E a variable ze which is

equal to 1 if edge e is included in the cycle, and 0 otherwise. Recall tha for every

U ⊆ X we use the notation ∂(U) = {e = (x, y) ∈ E ∶ x ∈ U, y ∉ U}, and that ∂(x) is

the set of edges incident to x.

Now, because in every cycle, each vertex is incident to exactly two edges, we

have

∑
e∈∂({x})

ze = 2, x ∈X.
Also, if we partition the vertices into two nonempty sets U and X ∖ U , then in

every hamiltonian cycle there are at least two edges conecting U and X ∖U . Hence

we have

∑
e∈∂(U)

ze ≥ 2, U ⊂X,U ≠ ∅, U ≠X.
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The following linear programming problem provides a lower bound to the optimal

cost of the TSP:

minimize ∑e∈E c(e) ⋅ ze

subject to ∑e∈∂(x) ze = 2, x ∈X,
∑

e∈∂(U)
ze ≥ 2, U ⊂X, U ≠ ∅, U ≠X,

ze ≤ 1 ∀e ∈ E
ze ≥ 0 ∀e ∈ E

(A.1)

This problem has an exponential number of constraints because there are 2∣X ∣−2

nonempty proper subsets of vertices. However we can solve this problem in polyno-

mial time in the following way.

Given a vector z∗, we need to check whether it satisfies all the above constraints

and if not, to exhibite a violated inequality.

Note that all the constraints can be checked by enumeration in polynomial time,

except the constraints involving the subsets U ⊂X.

However, we can check them also in polynomial time using a classical max-flow-

min-cut algorithm. For that, we consider the graph G and assign a capacity z∗e to

every edge e of E. Then we compute a minimumc cut, where the minimum cut is

also taken over all choices of the source and sink vertices. Let U0 be a minimum

cut. If the capacity of U0 is larger than or equal to 2, then the point z∗ is feasible

because for all U , ∑e∈∂(U) z∗e ≥ ∑e∈∂(U0) z
∗
e ≥ 2.

If not, then the inequality corresponding to U0 is a violated, that is

∑
e∈∂(U)

z∗e < 2.

Finding a minimum cut in a directed graph is equivalent to solving a Maximum

Flow Problem, and this can be done in polynomial time. Thus, if we combine this

separation procedure with a polynomial time linear programming algorithm (like

the ellipsoid algorithm [137]), we can compute this bound in polynomial time.

How good can be such a bound?

Figure A.6 shows the fourteen iterations for solving the above linear programming

formulation for an Euclidean TSP instance (arising from the 32 capitals of the

states of Mexico) using the method that we have just described. It results that the

computed lower bound provides us with an optimal solution. Of course, we have

been very lucky; there exist instances where the bound is not that tight. ◻
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Instance Iteration 1 Iteration 2

Iteration 3 Iteration 4 Iteration 5

Iteration 6 Iteration 7 Iteration 8

Iteration 9 Iteration 10 Iteration 11

Iteration 12 Iteration 13 Iteration 14

Figure A.6: Computing a lower bound in polynomial time for an Euclidean TSP
instance arising from the 32 capitals of the states of Mexico.
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A.5 Some Data Structures and Algorithms

In this section we describe some of the data structures and algorithms that were

used for carrying out this work.

A.5.1 Indexed Priority Queue

The indexed priority queue is a data structure that allows to maintain a priority

queue, with the possibility of changing the priority of the elements at any moment.

The complexity of inserting, changing or deleting an element is logarithmic on the

number of elements in the priority queue. On the other hand, we can perform in

constant time some operations like checking if an element is already present in the

priority queue, or reading the element with the highest priority.

The classical priority queues usually allow two basic operations: one push oper-

ation which consists in the insertion of a new element into the priority queue, and

one pop operation which consists of reading an element with the highest priority,

followed by removing it from the priority queue. Priority queues are commonly

implemented by using a binary heap and forbid to the users the possibility of mod-

ifying the entries already present at the data structure. This last characteristic is

known as immutability of keys and it is related to the fact that the modification of

a single entry might invalidate the heap-order invariant on which is based the whole

data structure. For example, the priority queues that are implemented in the STL

library of the C++ language, have immutable keys.

Still, there are some algorithms in which we obtain more information during the

execution, and we would like to have the possibility of updating the priority of some

elements, and avoid the construction of a new data structure with the new priorities.

As typical examples we can mention some implementations of the Dijkstra’s

algorithm to compute the shortest paths starting at a given vertex of graph, and

the Jarnik-Prim algorithm to compute the minimum spanning tree of a weighted

graph. In both cases, we maintain a boolean array explored indexed over the set

of vertices, and we use it to keep track of the explored vertices. At a first step,

we start by putting a specified vertex into the priority queue. Then, at the general

step, we pop a highest priority vertex x from the priority queue, and we mark it as

explored. Next, we proceed to visit all its non-explored neighbors. This means, to

consider every edge e = (x, y) such that y has not been marked as explored, and

• if y is in the priority queue, and e improves its priority, then we update the

priority of y;
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• if y is not into the priority queue, then we push y into the priority queue,

giving it a priority according to the weight of e.

For some applications in competitive environments, there can be a non-neglecting

difference of performance between an indexed priority queue and a classical priority

queue. On the other hand, there are more specialized data structures (e.g., Fibonacci

heaps or d-ary heaps) with the same capabilities of an indexed priority queue, and

with slightly better theoretical complexities. However, these structures are usually

much more difficult of implementing and sometimes are not as efficient in practice

when compared with the theoretically less efficient forms of heaps (see [97]).

An Implementation of Indexed Priority Queue

We use a constant maxN as an upper bound for the number of the elements that we

are going to push into the priority queue. Then, we use a variable N to keep track

of the number of elements that are present into the priority queue. The internal

structure of the priority queue relies on three arrays:

1. an array keys to store the elements (keys, numbers, or other objects) that will

be inserted into the priority queue. Note that, those elements must be taken

from a set with a total ordering ⪯. The ordering ⪯ is used to establish the

priorities of the elements in the priority queue;

2. an array heap of nonnegative integers encoding the complete binary tree that

it is being used by the min-indexed priority queue;

3. an array index of nonnegative integers such that, index[i] is the index in

the array heap, of the element keys[i].

Example A.8 - An example of min-indexed priority queue

The min-indexed priority queue depicted in Figure A.7, follows an alphabetic order-

ing and it is implemented with the help of the following arrays.

i 0 1 2 3 4 5 6 7 8

keys[i] A S O R T I N G -

heap[i] - 0 6 7 2 1 5 4 3

index[i] 1 5 4 8 7 6 2 3 -
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We can check that:

● heap[1]=0 means that the element keys[0] (the letter “A”) has priority 1;

● heap[2]=6 means that the element keys[6] (the letter “N”) has priority 2;

● heap[3]=7 means that the element keys[7] (the letter “G”) has priority 3;

● heap[4]=2 means that the element keys[2] (the letter “O”) has priority 4;

● heap[5]=1 means that the element keys[1] (the letter “S”) has priority 5;

● heap[6]=5 means that the element keys[5] (the letter “I”) has priority 6;

● heap[7]=4 means that the element keys[4] (the letter “T”) has priority 7;

● heap[8]=3 means that the element keys[3] (the letter “R”) has priority 8;

● index[0]=1 means that heap[1]=0; ● index[1]=5 means that heap[5]=1;

● index[2]=4 means that heap[4]=2; ● index[3]=8 means that heap[8]=3;

● index[4]=7 means that heap[7]=4; ● index[5]=6 means that heap[6]=5;

● index[6]=2 means that heap[2]=6; ● index[7]=3 means that heap[3]=7.

A

N G

O

S I T R

1

2 3

8

4 5 6 7

Figure A.7: The min-indexed priority queue used in Example A.8.

Private Methods.

• swap. This private method receives two indices i and j, and exchanges the

entries of the array heap with indices i and j. Then, it also updates the

array index by redefining index[heap[i]]=i, and index[heap[j]]=j. This

method can be used by other methods (e.g., swim, sink, and delMin) to

perform the necessary changes in the array heap. Note that it is declared as

private method because if it is used in an incorrect way, it can destroy the

heap order.

• swim. When a node’s key becomes smaller and the heap order is violated

(i.e., the node is smaller than its parent), we can restore the heap order by

interchanging the node with its parent. Such an exchange fix the heap order

at current level (because the node is smaller than both its children). But the

node may still be smaller than its parent, and in that case, we need to repeat
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the process. If we continue in this way, moving up the heap, we eventually

restore the heap order.

• sink. When a node’s key becomes larger and the heap order is violated (i.e.,

the node is larger than one or both of its children), we can restore the heap

order by interchanging the node with its smaller child. Such an exchange fix

the heap order at current level. But the node may still be larger than one or

both of its children, and in that case, we need to repeat the process. If we

continue in an iterative way, moving downd the heap, we eventually restore

the heap order. This method is called during the delMin operation.

Public Methods.

• contains. This method receives an index i (i.e., a non-negative integer), and

returns a boolean true value if the key with index i is in the priority queue;

otherwise, this method returns a boolean false value.

• isEmpty. This method does not receive parameters. It returns a boolean

true value if the priority queue is empty;, otherwise, it returns a boolean

false value.

• size. This method does not receive parameters. It only returns the number

of elements that are currently into the priority queue.

• insert. This method receives an index i and a new key k. We add the new

key at the end of the array keys, increment N (i.e., the size of the heap), and

then swim up through the heap with that key to restore the heap order.

• delMin. We take the smallest key off the top, put the item from the end of the

heap at the top, decrement N (i.e., the size of the heap), and then sink down

through the heap with that key to restore the heap order.

• decreaseKey. This method receives an index i (i.e., a non-negative integer)

and a key element k that is smaller than the element in keys[i]. The method

updates the array keys by doing keys[i]=k, as a result the entry in the array

heap corresponding to the element k, can violate the heap order, therefore the

method calls the swim with the parameter index[i], to restore the heap order.

Implementation in the C++ Language

The following implementation is based on the description given by Robert Sedgewick
and Kevin Wayne in [192].
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1 // IndexMinPQ.h

2 #ifndef IndexMinPQ_h

3 #define IndexMinPQ_h

4 #include <stdio.h>

5 #include <vector>

6

7 class IndexMinPQ

8 {

9 private:

10 int maxN, N, *heap, *index, *keys;

11

12 // swap the entries in the given indices of heap and index arrays

13 void swap(int, int);

14

15 // bottom-up reheapify

16 void swim(int);

17

18 // top-down reheapify

19 void sink(int);

20

21 public:

22 // constructor

23 IndexMinPQ(int);

24

25 // destructor

26 ˜IndexMinPQ();

27

28 // is i an index on the priority queue?

29 bool contains(int);

30

31 // is the priority queue empty?

32 bool isEmpty();

33

34 // number of items in the priority queue

35 int size();

36

37 // associate key with index i

38 void insert(int, int);

39

40 // remove a minimal item and returns its index

41 int delMin();

42

43 // decrease the key associated with index i

44 void decreaseKey(int, int);

45 };

46 #endif /* IndexMinPQ_h */
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1 // IndexMinPQ.cpp

2 #include "IndexMinPQ.h"

3

4 IndexMinPQ::IndexMinPQ(int maxN){

5 this->maxN = maxN;

6 N = 0;

7 keys = new int[maxN + 1];

8 heap = new int[maxN + 1];

9 index = new int[maxN + 1];

10

11 for(int i = 0; i <= maxN; ++i){

12 index[i] = -1;

13 }

14 }

15

16 IndexMinPQ::˜IndexMinPQ(){

17 delete [] keys;

18 delete [] heap;

19 delete [] index;

20 }

21

22 bool IndexMinPQ::contains(int i){

23 return index[i] != -1;

24 }

25 bool IndexMinPQ::isEmpty(){

26 return N == 0;

27 }

28

29 int IndexMinPQ::size(){

30 return N;

31 }

32

33 void IndexMinPQ::swap(int i, int j){

34 int t = heap[i];

35 heap[i] = heap[j];

36 heap[j] = t;

37 index[heap[i]] = i;

38 index[heap[j]] = j;

39 }

40

41 void IndexMinPQ::swim(int k){

42 while(k > 1 && keys[heap[k/2]] > keys[heap[k]]){

43 swap(k, k/2);

44 k = k/2;

45 }

46 }

47
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48 void IndexMinPQ::sink(int k){

49 int j;

50 while(2*k <= N){

51 j = 2*k;

52 if(j < N && keys[heap[j]] > keys[heap[j+1]]){

53 j++;

54 }

55 if(keys[heap[k]] <= keys[heap[j]]){

56 break;

57 }

58 swap(k, j);

59 k = j;

60 }

61 }

62

63 void IndexMinPQ::insert(int i, int key){

64 N++;

65 index[i] = N;

66 heap[N] = i;

67 keys[i] = key;

68 swim(N);

69 }

70

71 int IndexMinPQ::delMin(){

72 int min = heap[1];

73 swap(1, N--);

74 sink(1);

75 index[min] = -1;

76 heap[N+1] = -1;

77 return min;

78 }

79

80 void IndexMinPQ::decreaseKey(int i, int key){

81 keys[i] = key;

82 swim(index[i]);

83 }

Basic Theory and Notation 239



Models and Algorithms for Problems of Scheduling/Routing with Synchronizations

A.5.2 Topological Sorting

A topological sort is a digraph traversal in which each vertex is visited only after all its inneighbours

are visited. A topological ordering is possible if and only if the graph has no directed cycles. Any

acyclic digraph has at least one topological ordering, and it is possible to find a topological ordering

in linear time.

Algorithm 12: Topological sort algorithm
Input : A digraph G = (X, A).
Output: A topological order for the vertices of G.

1 L ← Nil. [List for the sorted elements]

2 S ← vertices with no incoming arcs.

3 while S ≠ ∅ do [Main loop]

4 Remove a vertex x from S.

5 Add x to L.

6 for each vertex y with a = (x, y) ∈ G do

7 Remove arc a from G.

8 if ∂−G(y) = ∅ then

9 Insert y into S.

10 if G has arcs then [G is not acyclic]

11 return error “The input digraph is not acyclic”

12 else [Return a topologically sorted order]

13 return L.

A.5.3 Dijkstra’s Algorithm

Dijkstra’s algorithm is an algorithm for finding minimum weight paths of a digraph with nonnega-

tive weight on the arcs. For a given source vertex in the digraph, the algorithm finds the minimum

weight path between that vertex and every other. It was conceived by computer scientist Edsger

W. Dijkstra in 1956 and published three years later [70].

Algorithm 13: Dijkstra’s algorithm
Input : A digraph G, weight function c ∶ A(G)→ R+ and a vertex s ∈ V (G).
Output: Shortest paths from s to all v ∈ V (G) with their lengths. More precisely, we get

the outputs l(v) ∈ R+ and p(v) ∈ V (G) for all v ∈ V (G) ∖ {s}. l(v) is the length

of a shortest s-v-path, which consists of a shortest s-p(v)-path together with the

arc (p(v), v). If v is not reachable from s, then l(v) = +∞ and p(v) is undefined.

1 Set l(s)← 0. Set l(v)←∞ for all v ∈ V (G) ∖ {s}. Set S ← ∅. [Initialization]

2 Find a vertex v ∈ V (G) ∖ S such that l(v) =minw∈V (G)∖S l(w). [Next vertex]

3 Set S ← S ∪ {v}. [Update S]

4 for all w ∈ V (G) ∖ S such that (v, w) ∈ A(G) do [Explore ∂+(v)]
5 if l(w) > l(v) + c((v, w)) then [Improved distance?]

6 set l(w)← l(v) + c((v, w)) and p(w)← v. [Update l(w) and p(w)]

7 if S ≠ V (G) then go to the step 2. [Done?]

240 Basic Theory and Notation



Models and Algorithms for Problems of Scheduling/Routing with Synchronizations

A.5.4 Ford-Fulkerson Algorithm

The Ford–Fulkerson algorithm is a greedy algorithm that computes the maximum flow in capacited

network. It is sometimes called a “method” instead of an “algorithm” because the way for finding

augmenting paths in a residual graph is not fully specified or it is specified in several implementa-

tions with different running times. The algorithm was published in 1956 by L. R. Ford Jr. and D.

R. Fulkerson [93].

In order to describe the algorithm, we need the following definitions.

For a given digraph G = (X, A), we define a digraph
←→
G = (X, A ⊔ {←Ða ∶ a ∈ A}), where for

a = (x, y) ∈ A(G) we define ←Ða to be a new arc from y to x. We call ←Ða the reverse arc of a and

vice versa.

Given a digraph G with capacities cap ∶ A(G) → R+ and a flow f , we define residual capacities

capf ∶ A(
←→
G) → R+ by capf(a) = cap(a) − f(a) and capf(a) = f(a) for all a ∈ A(G). The residual

digraph Gf is the digraph (X,{a ∈ A(
←→
G) ∶ capf(a) > 0}).

Given a flow f and a path P in Gf , to augment f along P by a positive quantity ϑ means to

do the following for each a ∈ A(P ): if a ∈ A(G) then increase f(a) by ϑ, otherwise, if a = ←→a0 for

a0 ∈ A(G) then decrease f(a0) by ϑ.

Given a network N(ŝ, p̂) on a digraph G = (X, A) and an ŝ-p̂-flow f , an f-augmenting path is

an ŝ-p̂-path in the residual digraph Gf .

Algorithm 14: Ford-Fulkerson Algorithm
Input : A network N(ŝ, p̂) on a digraph G = (X, A) with a capacity function

cap ∶ A(G) → R+.

Output: An ŝ-p̂-flow f of maximum value.

1 Set f(a) = 0 for all a ∈ A(G). [Initialization]

2 Find an f -augmenting path P . If none exists then stop.

3 Compute ϑ =mina∈A(P ) capf(a). Augment f along P by ϑ and go to the step 2.

It is known that if the capacities of a network are integers, then there exists an integral

maximum flow that can be found with the Ford-Fulkerson algorithm.

Still, the Ford-Fulkerson algorithm may attain an exponential complexity (or even iterate

infinitely if the capacities are not integral) if we do not select carefully the augmenting paths for

augmenting the flow at each iteration.

For that reason, Edmonds and Karp [80] developed the following two heuristics for selecting

augmenting paths and avoid the worst-case scenarios.

• The “fat pipe” heuristic: choose the augmenting path with the largest bottleneck value (i.e.,

the value ϑ computed in the step 3 of the algorithm) at each iteration.

• The “fewest pipes” heuristic: choose an augmenting path with a minimum number of arcs

at each iteration.

Using one of these heuristics the Ford-Fulkerson algorithm becomes a polynomial-time algo-

rithm.
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Detailed computational results

Numerical results

Tables legends

Id: Index of the instance.

n: Parameter for the size of the integer grid used for the instance. A natural number n in this

column indicates that, the points of the instance were taken from the set {(a, b) ∈ Z×Z, 0 ≤

a, b,≤ n}.

∣X ∣ : Numbers of points in the instance.

∣V ∣: Number of tours in the instance.

Ω: Upper limit of the time horizon.

V Av: Average number of vertices by tour.

or: Coordinates of the origin or of the request

dr: Coordinates of the destination dr of the request

ℓr: load of the request

A Av: Average number of available arcs by tour (i.e., arcs with enough capacity to transport the

load of the request)

tour weight av.: Average time weight of a tour.

ρ: ∣V ∣ times the maximum time available for traversing a tour divided by the sum of the tours

time weight

∣A′∣: Number of pre-existing transfers in the instance

strat: Strategy used for generating the instance.

No Transfer The cost of the solution without transfers computed through enumeration.

VAL A* The value computed by the Virtual A* algorithm.

CPU A* The running time used for computing VAL A* with the Virtual A* algorithm.
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Transfer A* Number of transfers in the optimal solution found with the Virtual A* algorithm.

VAL DI The minimum cost between the best cost of a solution without transfers and the solution

computed by Dijkstra 1-PDPT.

CPU DI The running time used for computing VAL DI with the Dijkstra 1-PDPT algorithm.

Transfer DI Number of transfers in the solution with cost VAL DI.

V min Minimum number of vertices in a tour.

V max Maximum number of vertices in a tour.

LoadAv Average load in a tour.

Load min Minimum load in a tour.

Load max Maximum load in a tour.

DistAv Average distance of a tour.

Dist min Minimum distance of a tour.

Dist max Maximum distance of a tour.

TimeAv Average duration of a tour (including waiting times).

Time min Minimum duration of a tour (including waiting times).

Time max Maximum duration of a tour (including waiting times).

∣R∣ Number of requests in the instance.

NA: This legend means the data cannot be obtained because either there is no solution, or the

algorithms can’t be initialized (i.e. if there aren’t any arcs with enough capacity to pick up

or deliver the current request).

CG10: Best cost solution obtained from 10 iterations of the naive GRASP search algorithm.

RG10: Number of inserted requests in the solution with cost CG10.

TG10: Running time (in seconds) used for computing CG10.

CG100: Best cost solution obtained from 100 iterations of the naive GRASP search algorithm.

RG100: Number of inserted requests in the solution with cost CG100.

TG100: Running time (in seconds) used for computing CG100.

CG1K: Best cost solution obtained from 1000 iterations of the naive GRASP search algorithm.

RG1K: Number of inserted requests in the solution with cost CG1K.

TG1K: Running time (in seconds) used for computing CG1K.

CW10: Best cost solution obtained from 10 iterations of the random walk search algorithm.

RW10: Number of inserted requests in the solution with cost CW10.

TW10: Running time (in seconds) used for computing CW10.

CW100: Best cost solution obtained from 100 iterations of the random walk search algorithm.

RW100: Number of inserted requests in the solution with cost CW100.

TW100: Running time (in seconds) used for computing CW100.
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CW1K: Best cost solution obtained from 1000 iterations of the random walk search algorithm.

RW1K: Number of inserted requests in the solution with cost CW1K.

TW1K: Running time (in seconds) used for computing CW1K.

CD10: Best cost solution obtained from 10 iterations of the descent search algorithm.

RD10: Number of inserted requests in the solution with cost CD10.

TD10: Running time (in seconds) used for computing CD10.

CD100: Best cost solution obtained from 100 iterations of the descent search algorithm.

RD100: Number of inserted requests in the solution with cost CD100.

TD100: Running time (in seconds) used for computing CD100.

CD1K: Best cost solution obtained from 1000 iterations of the descent search algorithm.

RD1K: Number of inserted requests in the solution with cost CD1K.

TD1K: Running time (in seconds) used for computing CD1K.

CSA: Best cost solution obtained with the threshold accepting algorithm with parameters: batch size

= 15, temperature = 4 ⋅ n, cooling factor = 0.85, and freezing point = n; where n is

the size of the integral grid that was considered for constructing the instance..

RSA: Number of inserted requests in the solution with cost CSA.

TSA: Running time (in seconds) used for computing CSA.
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[88] J. L. Figueroa González, A. Quilliot, H. Toussaint, and A. Wagler. Managing time ex-

panded networks through project and lift: the lift issue. Procedia Computer Science, 223:

241–249, 2023. ISSN 1877-0509. XII Latin-American Algorithms, Graphs and Optimization

Symposium (LAGOS 2023).

References 273



Models and Algorithms for Problems of Scheduling/Routing with Synchronizations
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Glossary

Black Death The Black Death was the most fatal pandemic recorded in human history. It was

a bubonic plague pandemic occurring in Western Eurasia and North Africa from 1346 to

1353 . 4

clean hydrogen Also known as Green hydrogen, is hydrogen generated by powering the electrol-

ysis of water with renewable energy or with low-carbon power. It has significantly lower

carbon emissions than “grey hydrogen”, which is primarily produced by steam reforming of

natural gas . 8

electrolysis A technique that uses direct electric current to drive an otherwise non-spontaneous

chemical reaction . 8

greenhouse gases Usually abbreviated GHG or GhG. Gases that absorb and emit radiant energy

within the thermal infrared range. The primary greenhouse gases in Earth’s atmosphere are

water vapor (H2O), carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and ozone

(O3). 3

Homo sapiens Homo sapiens (humans) are the most abundant and widespread species of pri-

mate. Although some scientists use the term “humans” with all members of the genus

Homo, in common usage it generally refers to Homo sapiens, the only non-extinct member.

4

Industrial Revolution The Industrial Revolution was the transition to new manufacturing pro-

cesses that started in Great Britain, continental Europe, and the United States. It occurred

during the period from around 1760 to about 1820–1840 . 4

La Niña An oceanic and atmospheric phenomenon. During a La Niña period, the sea surface

temperature across the eastern equatorial part of the central Pacific Ocean will be lower

than normal by 3–5 °C (5.4–9 °F). An appearance of La Niña often persists for longer than

five months. 3

megacity An urban agglomeration with more than 10 million inhabitants. 5
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arc progression, 40, 221
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of a cut, 222
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certificate, 227

circulation, 58, 222

collection, 212

commodities, 59

component
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strong components, 222

cost

of a MILP solution, 46

cover, 212

covering, 212

cut

x-y-cut, 222

in a flow network, 222

cutting plane, 47

cycle, 220

degree, 217

deviation coefficients, 156

digraph, 220

dimension, 215
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definiteness of a distance, 215

positivity of a distance, 215

symmetry of a distance, 215

taxicab distance, 216

upper rounded Euclidean distance, 216
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edge, 216

adjacent edges, 217

edge progression, 219

parallel edges, 217

empty set, 211

endpoint

of a walk, 219

of an arc, 221

of an edge, 217

feasible-path-decomposable, 93

field, 214

flow, 58, 222

conservation rule, 58, 222

excess of a flow, 58, 222

maximum flow, 222

value of an ŝ-p̂-flow, 58, 222

forest, 220

function, 212

objective function, 46

bijective functon, 213

capacity function, 222

ceiling function, 213

characteristic function, 213

current cost function, 40

estimated completion cost function, 40

floor function, 213

incidence function, 216

injective function, 213

surjective function, 213

good characterization, 228

graph, 216

bipartite, 219

bipartite complete, 219

complete, 219

connected, 220

directed graph, 220

disconnected, 220

disjoint graphs, 218

edge-disjoint graphs, 218

isomorphic graphs, 218

of states, 40

orientation of a graph, 221

simple graph, 217

underlying graph, 221

weighted graph, 220

group, 214

abelian group, 214

head, 221

heuristic

admissible heuristic, 41

hexagon, 220

in-neighbours, 221

incumbent, 47

incut, 222

indegree, 221

inequality

triangle inequality, 215

valid inequality, 46

instance, 226

“no”-instance, 226

“yes”-instance, 226

inverse, 214

leaf, 220

length

of a cycle, 220

of a walk, 219

letters, 224

link, 217

loop, 217

matrix, 213

identity matrix, 214

mod-2 vertex-edge incidence matrix, 218

transposed matrix, 213

zero matrix, 214

member, 212

maximal member of a collection, 212

minimal member of a collection, 212

metric

see distance, 215

MILP, 45

move

transfer move, 170

vehicle move, 170

waiting move, 152

multiset, 212

neighbors, 217

network, 220

flow network, 222
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operation

associative, 214

binary, 214

commutative, 214

outcut, 222

outdegree, 221

outneighbours, 221

part

of a bipartite graph, 219

parts of a finite partition, 212

partition

finite partition, 212

coarser partition, 212

finer partition, 212

refinement of a partition, 212

path, 219

X-Y -path, 219

feasible-path, 93

PDP

dynamic PDP, 16

offline PDP, 16

online PDP, 16

static PDP, 16

pentagon, 220

point

dynamic transfer point, 18

transfer point, 17

transshipment point, 17

polynomial-time reduction, 229

power set, 212

preemptive

load preemptive, 17

vehicle preemptive, 17

problem, 226

decision problem, 226

finding problem, 226

product

cartesian product, 212

program

mixed integer linear program, 45

progression

arc progression, 221

edge progression, 219

proper subset, 211

quadrilateral, 220

relation, 212

relaxation

natural linear programming relaxation, 46

stronger linear relaxation, 47

set, 211

difference of sets, 212

intersection of sets, 211

union of sets, 211

singleton, 211

space

metric space, 215

vector space, 214

vector space of dimension r over F, 215

standard basis, 215

state, 40

step

basic step, 226

string, 224

subgraph

edge-induced, 218

subgraph, 218

vertex-induced, 218

subset, 211

succesor

of a word, 227

supergraph, 218

symbols, 224

symmetric difference, 212

synchronization

strong synchornization, 18

weak synchornization, 18

tail, 221

taxicab geometry, 216

terminals, 59

transfer, 17

with detours, 18

without detours, 17

triangle, 220

union

of sets, 211

of two graphs, 218

unit element, 214

vector, 215

feasibility-path vector, 93
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linearly independent vectors, 215

vector space, 214

vector space of dimension r over F, 215

vertex, 216

adjacent vertices, 217

head vertex, 221

isolated vertex, 217

reachable vertex, 221

strongly connected vertices, 221

tail vertex, 221

walk

x-y-walk, 219

x-walk, 219

initial vertex of a walk, 219

internal vertices of a walk, 219

segment of a walk, 219

terminal vertex of a walk, 219

weight, 220

word, 224
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Introduction et contexte

Au cours des dernières décennies, une augmentation des températures a été ob-

servée dans le monde entier [29] et il a été estimé que plus de 50% de l’augmentation

observée est très probablement due à l’augmentation des concentrations des gaz à

effet de serre (GES) anthropiques dans l’atmosphère [1].

La principale source de ces émissions de GES anthropiques est la combustion de

combustibles fossiles (comme le charbon, le pétrole et le gaz naturel), et est forte-

ment influencée par certains phénomènes démographiques tels que les taux accélérés

de croissance démographique et d’urbanisation. Ces problématiques sont générale-

ment très complexes et entretiennent des relations avec d’autres activités humaines

comme, par exemple, le transport.

Les problèmes de transport urbain ne sont pas particulièrement récents, en 1977

Michael Thomson [28] a publié une étude sur le trafic dans les grandes villes et a

inventé l’expression « plus la ville est grande, plus les problèmes sont importants et

plus les coûts de transport sont élevés ». De nos jours, les problèmes de transport

persistent et sont devenus plus préoccupants.

En France, les Contrats de plan État-Région (CPER) sont des plans régionaux

pour programmer et financer les grands projets de développement, tels que la créa-

tion d’infrastructures et le soutien de secteurs clés pour l’avenir. Les CPER de la

région Auvergne-Rhône-Alpes [23], [25] et [24] intègrent le financement d’opérations

liées à l’écologie et à la transition énergétique.

En matière d’énergies renouvelables, l’un des objectifs du CPER-Auvergne-Rhône-

Alpes 2021-2027 est de faire passer le recours aux énergies alternatives de 19% à 36%

d’ici 2030. Aussi, ce CPER considère que l’hydrogène est un technologie clé de la

transition écologique, et pour mener à bien le développement des technologies de

l’hydrogène, le CPER se fixe les défis suivants.

1. La transition de l’industrie vers l’hydrogène propre.

2. Mobilité, infrastructures de distribution et véhicules (spécialement pour les

poids lourds).

3. L’énergie hydrogène, la production par électrolyse à un prix compétitif, les

infrastructures de stockage et de transport, les applications stationnaires, les

services réseaux et marchands.
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Cette thèse contribue à relever le troisième défi ci-dessus en fournissant des mo-

dèles pour résoudre les problèmes de tournées des véhicules avec des transferts et

un horizon temporel, en renforçant la prise de décision informée sur la gestion des

réseaux de transport.

Les transferts peuvent contribuer à diminuer le nombre de véhicules en circulation

car généralement on peut satisfaire plus de demandes de transport avec le même

nombre de véhicules ; les transferts peuvent également contribuer à économiser du

carburant en réduisant la distance parcourue. Cependant, une meilleure gestion des

contraintes de temps est nécessaire pour garantir qu’un transfert aura lieu.

D’autre part, en imposant un horizon de temps, nous pouvons concevoir des plans

de transport à exécuter dans une période de temps particulière où des ressources

peuvent être disponibles.

Dans cette thèse, deux problèmes de collecte et de livraison avec des transferts

et un horizon temporel sont analysés et de nouvelles méthodes et algorithmes sont

proposés pour traiter ces problèmes.

Problème de repositionnement d’objets avec transferts et ho-

rizon de temps

Le premier problème abordé est un Problème de repositionnement d’objets avec

transferts et horizon de temps. Dans un premier temps, il est proposé un modèle

multiflots sur un réseau étendu dans le temps. Ce modèle est significatif mais il est

très difficile à résoudre dans la pratique. Pour cette raison, nous avons proposé une

approche Projection et Remontage pour le gérer de manière flexible.

Projection. Le modèle multiflots est « projeté » sur le réseau de transport d’origine

pour obtenir un modèle multiflots plus simple que nous avons appelé le Modèle pro-

jété de repositionnement d’objets (PIRP). Pour récupérer une partie des contraintes

temporelles, nous avons introduit les contraintes étendus de sous-tours qui lient

l’horizon temporel et le nombre de véhicules circulant à travers tout sous-ensemble

de sommets non-dépôts. Nous avons montré comment ces contraintes peuvent être

séparées en temps polynomial, et nous avons observé l’efficacité de l’algorithme de

séparation et coupe ainsi que la qualité des solutions calculées.

Remontage. Les problèmes de remontage consistent à construire une solution au

problème de repositionnement d’objets à partir d’une solution du modèle projeté.

Nous avons introduit deux problèmes de remontage : le problème du Remontage Fort

et le problème du Remontage Faible, qui se distinguent par leur degré de compati-

bilité avec une solution PIRP. De ces problèmes, nous avons déduit les contraintes
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de décomposition en chemins réalisables qui peuvent être séparées et ajoutés pour

renforcer le modèle projeté. Cette fois, le problème de séparation est NP-difficile,

mais ces contraintes peuvent être séparées en pratique par génération de colonnes

avec un effort de calcul modéré (complexité pseudo-polynomial).

Pour le problème du Remontage Forte, nous avons proposé un programme linéaire

mixte en nombres entiers exacte. Cependant, nous avons observé que la plupart

du temps, ce programme est non réalisable. D’autre part, nous avons proposé la

méthode Covering/Weak pour gérer le problème de Remontage Faible de manière

flexible. Nous avons introduit le concept de remontage-faible-consistance et nous

avons conjecturé que, sous certains conditions, les modèles Covering/Weak peuvent

donner des solutions optimales lorsque nous partons de solutions PIRP qui sont

remontage-faible-consistantes.

La bibliographie qui a été plus relevante pour cette partie de la thèse est la

suivante : Ford and Fulkerson [16], Hu [18], Aronson [2], Powell et al. [22], Fleischer

and Skutella [15], Benchimol et al. [3], Chemla et al. [6], Rainer-Harbach et al. [26],

Krumke et al. [19], Bsaybes et al. [5], and Gouveia et al. [17].

Les résultats de cette partie de la thèse ont été présentés au 7th International

Symposium on Combinatorial Optimization (ISCO 2022), au 24ème Congrès An-

nuel de la Société Française de Recherche Opérationnelle et d’Aide à la Décision

(ROADEF 2023), au 19th Cologne-Twente Workshop on Graphs and Combinatorial

Optimization (CTW 2023) et au XII Latin-American Algorithms, Graphs and Opti-

mization Symposium (LAGOS 2023). Certaines parties de ce travail ont été publiées

dans Lecture Notes in Computer Science [12] (Springer), Graphs and Combinato-

rial Optimization : from Theory to Applications [14] (AIRO Springer Series 13), et

Procedia Computer Science [13] (Elsevier).

Comme travaux futurs, il reste à identifier d’autres problèmes où les contraintes

étendus de sous-tour ou la borne inférieure fournie par le coût d’une solution PIRP

optimale peuvent être appliquées. De plus, il serait intéressant de trouver de nou-

veaux types de contraintes pour renforcer le modèle projeté et augmenter la proba-

bilité d’obtenir des solutions donnant des problèmes du Remontage Fort réalisables.

En outre, l’approche proposée peut être utilisée pour d’autres problèmes impliquant

des multiflots sur des réseaux étendus dans le temps.

291



Modèles et Algorithmes pour Problèmes de Scheduling/Routing avec Synchronizations

Problème de tournées de véhicules avec collecte et livraison,

transferts et horizon de temps

Le deuxième problème abordé est le 1-Request Insertion PDPT qui se présente

comme un sous-problème du Problème de tournées de véhicules avec collecte et li-

vraison, transferts et horizon de temps (PDPT). Nous avons montré que ce problème

peut être vu comme un cas particulier d’une problématique plus générale que nous

avons appelée le « problème du chemin virtuel » et qui consiste à rechercher un

chemin optimal parmi une collection de chemins qui satisfont et impactent une sys-

tème de contraintes donnée. Nous avons proposé l’algorithme Virtual A*, qui est un

algorithme de type A* pour résoudre le problème de chemin virtuel, et nous avons

montré comment l’adapter pour résoudre le 1-Request Insertion PDPT. Puisque

la complexité de cet algorithme est exponentielle, nous avons montré comment le

modifier pour obtenir des heuristiques avec une complexité polynomiale.

Nous avons testé l’algorithme Virtual A* de manière intensive sur un ensemble

de 300 instances aléatoires, et nous avons analysé son comportement. Nous avons

confirmé que la plupart du temps, le nombre de transferts dans une solution op-

timale est petit et que les temps d’exécution présentent une forte variance. Nous

avons également confirmé comment les temps d’exécution sont réduits lorsque nous

limitons le nombre de transferts à une petite constante (par exemple deux ou trois).

Nous avons également observé l’impact sur la qualité de la solution lorsque nous

filtrons les arcs de transfert en fonction d’un paramètre de seuil de poids.

Aussi, nous avons montré comment l’algorithme Virtual A* peut être combiné

avec des heuristiques de recherche classiques pour obtenir des algorithmes d’inser-

tion pour gérer le PDPT. Nous avons implémenté ces algorithmes et analysé leur

comportement. En conséquence, nous disposons d’un solveur capable de gérer des

instances PDPT de taille petite/moyenne.

La bibliographie qui a été plus relevante pour cette partie de la thèse est la

suivante : Shang and Cuff [27], Laporte and Mitrović-Minić [20], [7], Deschamps

et al. [9], Bouros et al. [4], Lehuédé et al. [21], Chemla et al. [6], and Deleplanque

and Quilliot [8].

Les résultats de cette partie de la thèse ont été présentés pour la première fois au

22ème Congrès Annuel de la Société Française de Recherche Opérationnelle et d’Aide

à la Décision (ROADEF 2021), et au 11th International Conference on Operations

Research and Enterprise Systems ( ICORES 2022). Deux articles ont été publiés :

l’un dans les ICORES 2022 proceedings [10] et l’autre dans Operations Research

and Enterprise Systems (Springer Communications in Computer and Information

Science series)[11].
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En tant que futures lignes de recherche, il reste à identifier d’autres problèmes

où l’algorithme Virtual A * peut être appliqué. Il reste également à analyser le

cas des fortes contraintes de synchronisation qui interviennent lorsque des véhicules

doivent se croiser dans une fenêtre temporelle donnée pour effectuer un transfert.

Aussi, il serait intéressant d’analyser le comportement des algorithmes de recherche

proposés lorsqu’ils sont pourvus d’un composant (e.g., liste tabou) pour pénaliser la

réinsertion de requêtes difficiles/non réalisables.

Commentaires finaux

Dans ce travail nous nous sommes limités aux problèmes génériques. Cependant,

les modèles et algorithmes que nous avons décrits peuvent être appliqués dans des

contextes pratiques. Par conséquent, il reste également à identifier le type d’appli-

cations concrètes où les modèles et algorithmes proposés peuvent être appliqués.
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