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Introduction

When approaching the solution of a partial di�erential equation (PDE), by any numerical
method (�nite elements, �nite volumes, ...), the user may wish, on the one hand, to be able
to guarantee the quality of the computation, by imposing for example that a certain norm
of the error between the exact solution (called φ̂ in what follows) and the computed solution
(called φh in what follows) is lower than a prescribed tolerance, and, on the other hand, to
minimize the computer resources that are needed to �nd a numerical solution that satis�es
this tolerance, by using a mesh well adapted to the solution.

For this purpose, a priori error estimation does not help a lot: they are generally written
under the form ∥∥∥φ̂− φh

∥∥∥ ≤ Chα
∥∥∥φ̂∥∥∥ ,

with norms that need not be speci�ed in this general introduction, and are obtained by sup-
posing some regularity properties to the solution of the considered PDE (a regularity which
may not be veri�ed in practice, for example due to the presence of shocks, of geometrical
singularities, ...). Moreover, the generic constant C which appears in the above estimation
is either unknown or very di�cult to estimate. But the main di�culty is that the norm of

the exact solution (the term
∥∥∥φ̂∥∥∥ above) is very often not computable, because the exact

solution is unknown, and it does not provide any local information that could show where
to re�ne the mesh in priority.

It is the purpose of a posteriori error estimation to give some answers to the wishes
discussed above. Some of the �rst investigators who developed rigorous analysis in that
direction were Babuska and Rheinboldt more than thirty years ago [3, 4]. The aim of this
kind of estimation is to obtain a general expression of the form

∥∥∥φ̂− φh

∥∥∥ ≤ η (τh, φh, f) =

(∑
i

Ci (ωi) η
β
i (φh, f)

)1/β

, (1)

where τh is the mesh on which the solution φh was calculated, f represents the data of
the problem (source term, boundary conditions, initial conditions in the case of a time-
dependant problem, coe�cients in the equations, ...). The sum over i is a sum over some
elements (named here ωi) of the mesh (of the domain Ω if the problem is stationary, or of
the space-time domain Ω× [0, T ], where T is the �nal time of the simulation, if the problem
is time-dependent). These elements of the mesh may not always be the cells themselves, but
some neighbors of a given cell, for example. In general, the constants Ci (ωi) depend on the
shape and/or size of the cells included in ωi. The local estimators ηi depend only on the
numerical solution φh and of its variations on ωi, and on the data of the continuous problem,

3



INTRODUCTION 4

but they never depend on the exact solution. As far as the real number β is concerned, it
may depend on the type of PDE considered, but also on the type of norm in which the error
is measured. When the constants Ci are unknown or may not be easily computed, we may
not ensure that the actual error is lower than a given tolerance because one is unable to
entirely compute the right-hand side in the above inequality. On the contrary, if one may
compute them, the bound is said to be fully computable, or guaranteed. But in both cases,
one may use the local estimator ηi, which is always computable, to determine the zones of
the mesh which have to be re�ned in priority: these will be the zones where ηi is �large� with
respect to other zones. What "large" means and the strategy that may be achieved to re�ne
the mesh may depend on the problem.

In order to ensure that the global estimator η is useful to estimate the error in practice,
it is interesting to consider the ratio

E :=
η (τh, φh, f)∥∥∥φ̂− φh

∥∥∥ ,

which is named e�ciency of the estimator. In particular, it is important to verify that this
quantity is bounded by above: the estimator is then said to be e�cient. Indeed, if this
quantity could be arbitrarily large, it wouldn't mean much to estimate the error by the
estimator. One is also interested in the local e�ciency

Ei :=
ηi∥∥∥φ̂− φh

∥∥∥
ωi

,

which allows to ensure that the local estimator ηi does not overestimate too much the error
on ωi; if this quantity is bounded independently of the index i, then a re�nement strategy
based on the local values of the quantities ηi may lead to almost optimal meshes in terms of
number of degrees of freedom for a given error tolerance. Moreover, the ideal wish is that
the estimator E should be asymptotically exact, meaning that limh→0E = 1; indeed, one
would then have an almost exact estimation of the error.

A last property which is desirable for the estimators ηi is that they should be cheap to
compute (much cheaper than solving the global problem on the given mesh), so that the
overall computational cost is not seriously increased by the error estimation.

The PDEs that we consider in this thesis are all related to �uid dynamics. They may all
be considered as submodels of the more general compressible Navier-Stokes equations, where
the unknowns ρ, u, p, which are respectively the density, the velocity and the pressure of
the �uid, are related by the following equations

∂ρ

∂t
+∇ · (ρu) = 0, (2)

∂ρu

∂t
+∇ · (ρu⊗ u)− ν∆u+∇p = f , (3)

p = p(ρ). (4)

Equation (2) is the continuity, or mass conservation equation, while (3) is the momentum
equation, in which ν is the viscosity. Finally, (4) is a constitutive law that relates the pressure
to the density.
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In Chapter 1, we consider a very usual submodel of (2)�(4): the stationary Stokes prob-
lem. It is obtained by considering that ρ is a constant with respect to both time and space
(the �uid is then said to be incompressible), so that (2) simply becomes ∇ · u = 0. Then
neglecting the non-linear term in (3), we get the simpler equation −ν∆u+∇p = f .

In Chapter 2, we consider the non-linear Darcy equation. It is a model for incompress-
ible �ows (∇ · u = 0) in porous media and is widely used to modelize water �ow in the
underground, with applications in the petroleum industry, or in the �eld of nuclear waste
storage, among others. In the linear setting, this law was obtained by Darcy through experi-
ments and expresses a linear relationship between the �uid velocity and the pressure gradient
(u = k∇p). It was later justi�ed by the mathematical theory of homogenization (see for
example [6] and the references therein) by considering that the viscosity ν of the �uid in
the Navier-Stokes equations is related to the size ε of the pores in the media by the (nondi-
mensionalized) relationship ν = εβ, with some constant β > 0. We understand from [6]
that the critical value β = 3/2 plays a special role in this theory because the homogenized
system is then non-linear. On the other hand, for β < 3/2, the limit system is the linear
Darcy law, but for β close to 3/2, it is argued that non-linear terms may not completely be
neglected if one wishes an accurate modeling. Therefore, it is natural to consider non-linear
corrections to this law under the form: u = H(p)∇p. Note that non-linear equations of the
form u = H(∇p)∇p may also be considered, but not in this work.

Finally, in Chapter 3, we consider only the mass conservation equation, where we suppose
that the velocity u is given. Then, this is a linear transport equation for the variable ρ. We
shall actually consider the non-conservative form of this equation: ∂tρ + u · ∇ρ = 0, which
is equivalent to the conservative form, for a regular solution and a divergence free velocity
�eld. However, for more generality, we shall consider the transport equation with a non
divergence free velocity.

Finally, the numerical methods we consider in this work are all of �nite volume (FV)
type. A general overview of these methods is given in [14]. These methods are very popular
in various engineering �elds, and in particular in computational �uid dynamics for various
reasons, among which we may cite the following: they are based on local balance of very
concrete physical quantities, like mass, momentum, energy, so that the conservativity prop-
erties of the continuous model are transferred to the discrete one; they may be designed
to reproduce certain physical properties, like the maximum principle, which provides them
with an acknowledged robustness; they may be used on very general meshes and are thus
applicable on complex geometries.

The general idea of these methods is �rst to split the domain of computation (which
may possibly be a space-time domain for time-dependent problems) into small volumes and
associate one unknown per volume. Then the PDE is integrated over each control volume
and volume integrals of spatial derivatives are transformed into integrals over the edges
through the Green-Gauss formula. The di�culty is then to evaluate these so-called �uxes
with the help of the unknowns of the scheme in a consistent way. This is particularly di�cult
when di�usive �uxes have to be evaluated, because one has to approach the gradient of the
unknowns, rather than the unknowns themselves, and one thus has to go through some
reconstruction step.

In our work, we focus on the traditional upwind scheme for the transport equation, and
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on a more recent method, namely the discrete duality �nite volume method (DDFV) for
the Stokes and non-linear di�usion equations (although the theory developed here for the
non-linear Darcy problem also applies to more general conservative methods). The DDFV
schemes have been introduced to facilitate the reconstruction step of the gradient on general
meshes when one has to evaluate di�usive �uxes, see [12, 18, 19].

Let us now give more details on the subjects treated in the chapters of this work.

In Chapter 1, we consider the Stokes equations in a two dimensional simply connected
polygonal domain Ω with boundary Γ:

−∆û+∇p̂ = f in Ω, (5)

∇ · û = 0 in Ω, (6)

û = g on Γ, (7)∫
Ω

p̂(x)dx = 0, (8)

where û is the �uid velocity, p̂ is the pressure, f is the body forces per unit mass, and the
function g satis�es

∫
Γ
g(σ) · ndσ = 0. With f ∈ H−1(Ω) and g ∈ H1/2(Γ), this problem is

well-posed due to the so-called inf-sup condition: there exists β > 0 such that:

β = inf
q∈L2

0(Ω)
sup

v∈(H1
0 (Ω))2

∫
Ω
q∇ · v(x)dx

‖v‖(H1
0 (Ω))2‖q‖L2(Ω)

. (9)

Our purpose in this chapter is to compute an a posteriori error estimation between the
exact solution û, p̂ of (5)�(8) and its numerical approximation by the penalized discrete
duality �nite volume scheme (DDFV) as presented in [21].

Like for other equations, the development of a posteriori error estimations for the Stokes
problem has followed the a priori investigation of numerical methods. As far as �nite element
methods are concerned, R. Verfürth [29] made one the very �rst contributions by getting two
a posteriori error estimations for the mini-element discretization: one is based on a suitable
evaluation of the residual, the other is based on the solution of local Stokes problems. Later
on, R. Verfürth [30] generalized the �rst estimator developed in [29] to the nonconforming
Crouzeix�Raviart �nite element method, neglecting however the consistency error in the
estimator. It was shown however in E. Dari et al. [10] that this consistency error may not
always be neglected, and, in order to take it into account properly, they use a Helmholtz-
Hodge like decomposition (adapted to the Stokes problem) of the velocity error. In the
resulting error estimator, this gives rise to terms related to the jumps of the tangential
velocity components from one cell to another, in addition to the usual jumps of the normal
components of the stress tensor. The case of the non-conforming Fortin�Soulie quadratic
elements is also treated.

All the above-cited �nite element methods satisfy a uniform discrete inf-sup condition.
However, it is often found useful in practice to consider discretizations (especially low-order
ones) that do not verify a uniform discrete inf-sup condition. In this context, C. Bernardi
et al. [5] consider the �nite element approximation of the Stokes equations when a penalty
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term is added to stabilize the variational formulation. The a posteriori error estimation they
obtain includes two contributions: one related to the discretization on a given mesh, the
other related to the penalty term. Based on these two contributions, the mesh re�nement
and the decrease of the penalty term are linked within an adaptive process.

A very recent contribution by A. Hannukainen et al. [17] sets a general framework
for obtaining a posteriori error estimations for the discretization of the Stokes equations.
The method is based on the reconstruction of postprocessed H1

0 conforming velocity and
H − div conforming stress tensor �elds deduced from the numerical approximation, and it
may be applied to various conforming and conforming stabilized �nite element methods, the
discontinuous Galerkin method, the Crouzeix�Raviart nonconforming �nite element method,
the mixed �nite element method, and a general class of �nite volume methods.

However, as far as �nite volume methods are concerned, the use of arbitrary meshes in [17]
requires �rst to solve local Stokes problems on a conforming subtriangulation of each control
volume, and then to apply the above-cited reconstruction on this subtriangulation. Instead,
we would like to obtain error estimates for the solution of the DDFV scheme presented in
[21] without having to solve any local problem or to compute any reconstruction. To do
this, we shall adapt to the Stokes problem the a posteriori error estimation investigated
in [27] for the DDFV discretization of the Laplace equation, using the discrete variational
formulation veri�ed by this scheme. The non-conformity of the method is dealt with using
the the Helmholtz-Hodge like decomposition introduced in [10]. Our estimator also includes
a term related to the stabilization term in the incompressibility equation.

In Chapter 2, we consider an approximate solution of the following nonlinear equation:{
−div(H(û)∇û)(x) = f(x), x ∈ Ω

û(x) = 0, x ∈ Γ
(10)

under the following assumptions

A1. Let H : R 7→ R be continuous such that there exist constants C1, C2 > 0 satisfying

C1 ≤ H(û) ≤ C2 for all û ∈ R. (11)

Moreover, we will assume that there exists a positive constant C such that

|H(û)−H(v̂)| ≤ C|û− v̂| for all û, v̂ ∈ R. (12)

A2. Let f belong to L2(Ω).

The discrete solution of the nonlinear di�usion equation is investigated by the mixed
�nite element method in [25], and, more generally, in [28]. More recently, �nite volume
discretizations have been developed for linear di�usion equations, such as �nite volume
schemes on admissible meshes [14], DDFV schemes [27] and multipoint �ux approximation
(MPFA) schemes [1] on arbitrary meshes, etc. Then we are interested in solving the nonlinear
di�usion equations by such �nite volume discretizations. In this work, we will deal with
the above three methods. The discretization process of the problem leads to a system of
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nonlinear equations, which is linearized by the �xed point method. These schemes have
local conservative property, which is the important ingredient to obtain an a posteriori error
estimation.

The theory of a posteriori error estimation is not very developed for the nonlinear di�usion
equation. L. El Alaoui et al. [13] have obtained a posteriori error estimate by using a �nite
element method in the p-Laplace case. D. Kim et al. [20] give an estimate for the mixed
�nite element discretization. For the �nite volume methods, although there are not many
important results for the nonlinear di�usion equations, essential development steps on a
posteriori error estimation have been achieved for the linear di�usion equations. Nicaise [26]
gave an a posteriori error estimation for Morley-type interpolations of the original piecewise
constant �nite volume approximation. P. Omnes and al. [27] used the equivalence of the
DDFV scheme with a �nite element like method to derive fully computable a posteriori error
estimate for this method applied to the Laplace equation. For local conservative methods,
M. Vohralík [32] built an approximate function which depends only on the �ux through the
segments of the cells and on the values of the unknowns at some control points and provides
error estimation with respect to this reconstruction. In addition, the e�ectivity index is very
close to one, which demonstrates a good estimation. M. Vohralík's idea will be applied in
this work to estimate the error of �nite volume techniques applied to the non-linear di�usion
equations.

Given a discrete solution, a stage of iterative process and a given mesh, our a poste-
riori error estimation is split into 2 terms: the discretization and linearization estimators.
This splitting has two main advantages. The �rst one is that, in practice, when the num-
ber of iteration is large enough, the linearization estimator is negligible compared with the
discretization one. Thus the balance of these two estimators is an important key to avoid
performing an excessive number of nonlinear solver iterations. The other one is that, as
a result, the mesh re�nement is only based on the discretization estimator, since the lin-
earization estimator is then negligible. This type of analysis is considered in [13] for the
p-Laplace case. In this work, we don't deal with the convergence of the linearization and the
discretization processes. We only mention them in our numerical experiments.

In Chapter 3, we consider the following transport equation in N space dimensions (N ≥
1), with initial condition:{

∂u
∂t

+ a(x, t) · ∇u = 0, ∀x ∈ RN , t ∈ R+,

u(x, 0) = u0(x), ∀x ∈ RN .
(13)

We shall consider here, following [23], the unique entropy solution to (13).
The upwind scheme is a standard method to solve in a approximate way this problem,

and, more generally, conservation laws (see [14]), but the a priori and a posteriori error
estimations have been investigated only recently on scalar equations.

In the case of a conservation law with a divergence free �ux function and no source term,
C. Chainais-Hillairet [7] derived an a priori error estimate with a convergence order of 1/4
in the L1 norm. Based on [7], an a posteriori error estimation is achieved by D. Kröner and
M. Ohlberger [22] for the upwind explicit scheme. This result is used to de�ne an algorithm
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with an adaptive grid for the �nite volume scheme. Recently, in Mamaghani's Ph.D. thesis
[24], an a posteriori error estimate is obtained for the implicit upwind �nite volume scheme.

Otherwise, in [8], the a priori error estimation was also treated for a conservation law
with a non divergence free �ux function and with a source term.

In our work, we will deal with the transport equation with a non divergence free velocity
�eld, written as a conservation law with the source term ∇ · a(x, t)u(x, t), and we obtain an
a posteriori error estimation for the explicit upwind scheme.

In Chapter 4, we consider the following two Poincaré inequalities: The Friedrichs (also
called Poincaré) inequality∫

Ω

u2(x)dx ≤ cF

∫
Ω

|∇u(x)|2dx , ∀u ∈ H1
0 (Ω) (14)

and the Poincaré (also called mean Poincaré) inequality∫
Ω

u2(x)dx ≤ cP

∫
Ω

|∇u(x)|2dx , ∀u ∈ H1(Ω) such that

∫
Ω

u(x)dx = 0, (15)

where cF and cP are constants depending only on Ω. These two inequalities play an important
role in the theory of partial di�erential equations.

This chapter considers discrete versions of Poincaré inequalities for the DDFV method
of discretization on arbitrary meshes, as presented, e.g., in [12].

The originality of these schemes is that they work well on all kind of meshes, including
very distorted, degenerating, or highly nonconforming meshes (see the numerical tests in
[12]). The name DDFV comes from the fact that these schemes are based on the de�nition
of discrete gradient and divergence operators which verify a discrete Green formula.

In this introduction, let us only mention that in the DDFV discretization, scalar functions
are discretized by their values both at the centers and at the vertices of a given mesh, and
their gradients are evaluated on the so-called �diamond-cells� associated to the edges of the
mesh. Each internal diamond-cell is a quadrilateral; its vertices are the two nodes of a given
internal edge and the centers of the two cells which share this edge. Each boundary diamond
cell is a degenerated quadrangle (i.e. a triangle); its vertices are the two nodes of a given
boundary edge and the center of the corresponding cell and that of the boundary edge.

Then, the discrete version of the L2 norm on the left-hand side of (14) and (15) is the half-
sum of the L2 norms of two piecewise constant functions, one de�ned with the discrete values
given at the centers of the original ("primal" in what follows) cells, and the other de�ned
with the discrete values given at the vertices of the primal mesh, to which we associate cells
of a dual mesh. Moreover, the discrete version of the gradient L2 norm on the right-hand
side of (14) and (15) is the L2 norm of the piecewise constant gradient vector �eld de�ned
with it discrete values on the diamond-cells.

In the �nite volume context, discrete Poincaré-Friedrich inequalities have previously been
proved in [14, Lemma 9.1, Lemma 10.2] and [16], respectively for so-called "admissible"
meshes (roughly speaking, meshes such that each edge is orthogonal to the segment joining
the centers of the two cells sharing that edge, see the precise de�nition in [14, De�nition
9.1]) and for Voronoi meshes. Similar results on duals of general simplicial triangulations are
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proved in [31]. In the DDFV context, a discrete version of (14) is given for arbitrary meshes
in [2]. However, the discrete constant cF which appears in that paper depends on the mesh
regularity in a rather intricate way, see [2, Formula (2.6) and Lemma 3.3].

The main result of our contribution is the proof of discrete versions of both (14) and (15)
in the DDFV context, with constants cF and cP depending only on the domain and on the
minimum angle in the diagonals of the diamond cells of the mesh.

Our proof of the discrete version of (14) is very similar to those given in [14] or [31]. We
also prove a discrete version of (14) in a slightly more general situation when the domain
is not simply connected and the discrete values of the function vanish only on the exterior
boundary of the domain and are constant on each of the internal boundaries (this will have
a subsequent application in the last section of the present chapter).

However, the task is more di�cult for the mean-Poincaré inequality. Like in [14], it is
divided into three steps. The �rst is the proof of this inequality on a convex subdomain; in
the second, our proof di�ers from that in [14] because we actually do not need to prove a
bound on the L2 norm of the di�erence of discrete functions and their discrete mean value
on the boundary of a convex subset, but rather an easier bound on the L1 norm of this
di�erence. The �nal step consists in dividing a general polygonal domain into several convex
polygonal subdomains and in combining the �rst two steps to obtain the result.

As a consequence of these results, we derive a discrete equivalent of the following result
(which is a particular case of a result given in [15]): Let us consider open, bounded, simply
connected, convex polygonal domains (Ωq)q∈[0,Q] of R

2 such that Ωq ⊂ Ω0 for all q ∈ [1, Q]

and Ω̄q1∩Ω̄q2 = ∅ for all (q1, q2) ∈ [1, Q]2 with q1 6= q2. Let Ω be de�ned by Ω = Ω0\(∪Q
q=1Ωq).

Let us denote by Γ = ∂Ω = ∪Q
q=0Γq, with Γq = ∂Ωq for all q ∈ [0, Q]. Then, there exists a

constant C, depending only on Ω, such that for all vector �eld u in H(div,Ω) ∩ H(rot,Ω)
with u · n = 0 on Γ and (u · τ , 1)Γq = 0 for all q ∈ [1, Q], there holds

||u||L2(Ω) ≤ C(||∇ · u||L2(Ω) + ||∇ × u||L2(Ω)). (16)

The discrete equivalent has applications in the derivation of a priori error estimates for the
DDFV method applied to the Stokes equations ([11]).
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Chapter 1

Stokes Equations

We derive an a posteriori error estimation for the discrete duality �nite volume (DDFV) dis-
cretization of the stationary Stokes equations on very general twodimensional meshes, when
a penalty term is added in the incompressibility equation to stabilize the variational formu-
lation. Two di�erent estimators are provided: one for the error on the velocity and one for
the error on the pressure. They both include a contribution related to the error due to the
stabilization of the scheme, and a contribution due to the discretization itself. The estimators
are globally upper as well as locally lower bounds for the errors of the DDFV discretization.
Numerical experiments illustrate the theoretical results and we especially consider the in�u-
ence on the error of the penalty parameter for a �xed mesh and also of the mesh size for a
�xed value of the penalty parameter.

1.1 Introduction

Let Ω be a two dimensional simply connected polygonal domain with boundary Γ. We
consider the Stokes equations

−∆û+∇p̂ = f in Ω, (1.1)

∇ · û = 0 in Ω, (1.2)

û = g on Γ, (1.3)∫
Ω

p̂(x)dx = 0, (1.4)

where û is the �uid velocity, p̂ is the pressure, f is the body forces per unit mass, and the
function g stati�es

∫
Γ
g(σ) · ndσ = 0. With f ∈ H−1(Ω) and g ∈ H1/2(Γ), this problem is

well-posed (see [5]) due to the so-called inf-sup condition: there exists β > 0 such that:

β = inf
q∈L2

0(Ω)
sup

v∈(H1
0 (Ω))2

∫
Ω
q∇ · v(x)dx

‖v‖(H1
0 (Ω))2‖q‖L2(Ω)

. (1.5)

Our purpose in this work is to compute an a posteriori error estimation between the
exact solution û, p̂ of (1.1)�(1.4) and its numerical approximation by the penalized discrete
duality �nite volume scheme (DDFV) as presented in [7].

14
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Like for other equations, the development of a posteriori error estimations for the Stokes
problem has followed the a priori investigation of numerical methods. As far as �nite ele-
ments methods are concerned, R. Verfürth [10] made one of the very �rst contributions by
getting two a posteriori error estimations for the mini-element discretization: one is based
on a suitable evaluation of the residual, the other is based on the solution of local Stokes
problems. Later on, R. Verfürth [11] generalized the �rst estimator developped in [10] to the
nonconforming Crouzeix�Raviart �nite element method, neglecting however the consitency
error in the estimator. It was shown however in E. Dari et al. [4] that this consistency
error may not always be neglected, and, in order to take it into account properly, they use a
Helmholtz-Hodge like decomposition (adapted to the Stokes problem) of the velocity error.
In the resulting error estimator, this gives rise to terms related to the jumps of the tangential
velocity components from one cell to another, in addition to the usual jumps of the normal
components of the stress tensor. The case of the non-conforming Fortin�Soulie quadratic
elements is also treated.

All the above-cited �nite element methods satisfy a uniform discrete inf-sup condition.
However, it is often found useful in practise to consider discretizations (especially low-order
ones) that do not verify a uniform discrete inf-sup condition. In this context, C. Bernardi
et al. [1] consider the �nite element approximation of the Stokes equations when a penalty
term is added to stabilize the variational formulation. The a posteriori error estimation they
obtain includes two contributions: one related to the discretization on a given mesh, the
other related to the penalty term. Based on these two contributions, the mesh re�nement
and the decrease of the penalty term are linked within an adaptive process.

A very recent contribution by A. Hannukainen et al. [6] sets a general framework for
obtaining a posteriori error estimations for the discretization of the Stokes equations. The
method is based on the reconstruction of postprocessed H1

0 conforming velocity and H −
div conforming stress tensor �elds deduced from the numerical approximation, and it may
be applied to various conforming and conforming stabilized �nite element methods, the
discontinous Galerkin method, the Crouzeix�Raviart nonconforming �nite element method,
the mixed �nite element method, and general class of �nite volume methods.

However, as far as �nite volume methods are concerned, the use of arbitrary meshes in [6]
requires �rst to solve local Stokes problems on a conforming subtriangulation of each control
volume, and then to apply the above-cited reconstruction on this subtriangulation. Instead,
we would like to obtain error estimates for the solution of the DDFV scheme presented in
[7] without having to solve any local problem or to compute any reconstruction. To do
this, we shall adapt to the Stokes problem the a posteriori error estimation investigated
in [8] for the DDFV discretization of the Laplace equation, using the discrete variational
formulation veri�ed by this scheme. The non-conformity of the method is dealt with using
the the Helmholtz-Hodge like decomposition introduced in [4]. Our estimator also includes
a term related to the stabilization term in the incompressibility equation.

This chapter is organized as follows. Section 1.2 sets some notations and de�nitions
related to the meshes, to discrete di�erential operators, and to discrete functions. In section
1.3, we present the DDVF scheme and its equivalent variational formula is recalled. In
section 1.4, representations of the errors are elaborated. This is used in section 1.5 to �nd a
computational upper bound of these errors. In section 1.6, the local e�ciency of the error
estimators is veri�ed. Numerical experiments are presented in section 1.7.
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1.2 Notations and de�nitions

Let Ω be covered by a primal mesh with polygonal cells denoted by Ti, i ∈ [1, I], we associate
a point Gi located in the interior of Ti. With any Sk, k ∈ [1, K], we associate a dual cell Pk

by joining points Gi associate with the primal cells surrounding Sk to the midpoints of the
edges of which Sk is a node. the notations are summarized in Fig. 1.1 and 1.2.

With any primal edge Aj with j ∈ [1, J ], we associate a so-called diamond-cell Dj ob-
tained by joining the vertices Sk1(j) and Sk2(j) of Aj to the points Gi1(j) and Gi2(j) associated
with the primal cells that share Aj as a part of their boundaries. When Aj is a boundary
edge (there are JΓ such edges), the associated diamond-cell is a �at quadrilateral (i.e. a
triangle) and we denote by Gi2(j) the midpoint of Aj (thus, there are JΓ such additional
points Gi). The unit normal vector to Aj is nj and points from Gi1(j) to Gi2(j). We denote
by A′

j1 (resp. A′
j2) the segment joining Gi1(j) (resp. Gi2(j)) and the midpoint of Aj. Its

associated unit normal vector, pointing from Sk1(j) to Sk2(j), is denoted by n′
j1 (resp. n′

j2).
In the case of a boundary diamond-cell, A′

j2 reduces to {Gi2(j)} and does not play any role.
Finally, for any diamond-cell Dj, we shall denote by Miαkβ the midpoint of [Giα(j)Skβ(j)],
with (α, β) ∈ {1; 2}2. With nj, n

′
j1 and n′

j2, we associate orthogonal unit vectors τ j, τ
′
j1 and

τ ′
j2, such that the corresponding orthonormal bases are positively oriented. For any primal

Ti such that Aj ⊂ ∂Ti, we shall de�ne nji := nj if i = i1(j) and nji := −nj if i = i2(j), so
that nji is always exterior to Ti. With nji, we associate τ ji such that (nji, τ ji) is positively
oriented. Similarly, when A′

j1 and A′
j2 belong to ∂Pk, we de�ne (n′

jk1, τ
′
jk1) and (n′

jk2, τ
′
jk2)

so that n′
jk1 and n′

jk2 are orthogonal to A
′
j1 and A

′
j2 and exterior to Pk.

Sk
Ti

Pk

Gi

Dj

Figure 1.1: A nonconforming primal mesh and its associated dual mesh (left) and diamond
mesh (right).

For v ∈ (H2(Ω))2 with v = (v1, v2)
t, we de�ne

∇v =

(
∂v1/∂x ∂v1/∂y
∂v2/∂x ∂v2/∂y

)
, ∇× v =

(
∂v1/∂y −∂v1/∂x
∂v2/∂y −∂v2/∂x

)
,

∆v =

(
∆v1
∆v2

)
.
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1
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M
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M
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Figure 1.2: Notations for the inner diamond-cell (left) and a boundary diamond mesh (right).

If A and B are two matrices with dimension M , we de�ne the inner product

A : B =
M∑

i,j=1

AijBij.

For future use, we recall Green's formulae∫
Ω

∆v ·wdx = −
∫
Ω

∇v : ∇w +

∫
∂Ω

(∇v n) ·wds, (1.6)

∫
Ω

∇v : ∇×wdx = −
∫
∂Ω

(∇vτ ) ·wds, (1.7)

for any v ∈ (H2(Ω))2 and w ∈ (H1(Ω))2. Here, n is the outward normal to ∂Ω and τ is the
tangent vector to ∂Ω such that (n, τ ) is positively oriented.

In the de�nition of the DDFV scheme, we shall associate the velocity unknowns to the
points Gi and Sk and the pressure unknowns to the diamond-cells. Moreover the gradient
and divergence of the velocity will be de�ned on the diamond-cells. This leads us to the
following de�nitions.

De�nition 1.1. Let u = (uT
i ,u

P
k ), and v = (vT

i ,v
P
k ) be in (R2)I × (R2)K. Let Φ = (Φj) and

Ψ = (Ψj) be in (R2×2)J . And let p = (p)j and q = (q)j be in RJ . We de�ne the following
scalar products

(u,v)T,P :=
1

2

∑
i∈[1,I]

|Ti|uT
i · vT

i +
∑

k∈[1,K]

|Pk|uP
k · vP

k

 , (1.8)

(Φ,Ψ)D :=
∑

j∈[1,J ]

|Dj|Φj : Ψj, (p, q)D =
∑

j∈[1,J ]

|Dj|pjqj. (1.9)
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De�nition 1.2. Let u = (uT
i ,u

P
k ) be in (R2)I+JΓ × (R2)K. For any boundary edge Aj, with

the notation of Fig 2.1, we de�ne ũj as the trace of u over Aj by

ũj =
1

4

(
uP
k1(j)

+ 2uT
i2(j)

+ uP
k2(j)

)
. (1.10)

Let u = (uT
i ,u

P
k ) be in (R2)I+JΓ × (R2)K and let w = (wj) be de�ned on the boundary Γ.

We de�ne the following boundary scalar products

(w, ũ)Γh
:=
∑
j∈Γ

|Aj|wj · ũj. (1.11)

De�nition 1.3. Let Φ = (Φj) be in (R2×2)J . We de�ne divergence and curl of the tensor
�eld Φ on the primal and dual cells by

(∇T
h · Φ)i :=

1

|Ti|
∑
j∈∂Ti

|Aj|Φjnji,

(∇P
h · Φ)k :=

1

|Pk|

(∑
j∈∂Pk

(|A′
j1
|Φjn

′
j1 + |A′

j2
|Φjn

′
j2) +

∑
j∈∂Pk∩Γ

|Aj|
2

Φjnj

)
,

(∇T
h × Φ)i :=

1

|Ti|
∑
j∈∂Ti

|Aj|Φjτ ji,

(∇P
h × Φ)k :=

1

|Pk|

(∑
j∈∂Pk

(|A′
j1
|Φjτ

′
j1
+ |A′

j2
|Φjτ

′
j2
) +

∑
j∈∂Pk∩Γ

|Aj|
2

Φjτ j

)
,

where the unit vectors τ j (respectively τ ji, τ ′
j1k, τ ′

j2k) are such that (nj,τ j) (resp. (nji,τ ji),
(n′

j1k,τ ′
j1k), (n′

j2k,τ ′
j2k)) are orthonormal positively oriented bases of R2.

De�nition 1.4. Let u = (u1, u2) be in (R2)I+K+JΓ
with u1 = ((u1)

T
i , (u1)

P
k ) ∈ RI+K+JΓ

and
u2 = ((u2)

T
i , (u2)

P
k ) ∈ RI+K+JΓ

, the discrete gradient ∇D
h u and the discrete curl ∇D

h × u are
de�ned by their values in the diamond-cells Dj by

(∇D
h u)j =

(
(∇D

h u1)
t
j

(∇D
h u2)

t
j

)
, (∇D

h × u)j =

(
(∇D

h × u1)tj
(∇D

h × u2)tj

)
,

where, for φ ∈ RI+K+JΓ
, we de�ne

(∇D
h φ)j :=

1

2|Dj|
{
[φP

k2
− φP

k1
](|A′

j1
|n′

j1 + |A′
j2
|n′

j2) + [φT
i2
− φT

i1
]|Aj|nj

}
,

(∇D
h × φ)j :=

1

2|Dj|
{
[φP

k2
− φP

k1
](|A′

j1
|τ ′

j1
+ |A′

j2
|τ ′

j2
) + [φT

i2
− φT

i1
]|Aj|τ j

}
.

From basic geometrical arguments, we obtain some properties of the discrete gradient:

φP
k2
− φP

k1
= ∇D

h φ ·
−−−−→
Sk1Sk2 , (1.12)

φT
i2
− φT

i1
= ∇D

h φ ·
−−−−→
Gi1Gi2 . (1.13)

We also need a discrete divergence of a vector, which is de�ned using the discrete gradient

(∇D
h · u)j = Trace((∇D

h u)j).
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1I (k)

 K (k)

K (k) 

Figure 1.3: Notation for a boundary dual cell in formula (1.22).

For the penalization of the scheme, we need to de�ne the following Laplacian-type oper-
ator.

De�nition 1.5. Let p = (pj) ∈ RJ , we de�ne:

(∆D
h p)j =

1

|Dj|
∑

j′∈∂Dj

d2j + d2j′

d2j
(pj′ − pj), (1.14)

where ∂Dj is the set of diamond cells which have a common segment with Dj, dj = diam(Dj)
and dj′ = diam(Dj′). In addition, we construct piecewise constant functions corresponding
to the approximate pressure and to the penalty term:

ph(x) = pj, ∀ x ∈ Dj, j ∈ [1, J ], (1.15)

(∆D
h p)h(x) = (∆D

h p)j, ∀ x ∈ Dj, j ∈ [1, J ]. (1.16)

Proposition 1.6. For Φ ∈ (R2×2)J and = (uT ,uP ) ∈ (R2)I+JΓ × (R2)K and p ∈ RJ , the
following discrete Green formula hold:

(∇T,P
h · Φ,u)T,P = −(∇D

h u,Φ)D + (Φn, ũ)Γ,h, (1.17)

(∇T,P
h × Φ,u)T,P = (∇D

h × u,Φ)D + (Φτ , ũ)Γ,h, (1.18)

(∇T,P
h · pI2,u)T,P = −(∇D

h · u, p)D + (pn, ũ)Γ,h, (1.19)

where I2 is the 2×2 identity matrix. The formula (1.17) is called discrete Stokes formula
and is proved in [7]; it can also be found in [3]. The formulae (1.18) and (1.19) can be
demonstrated in the same way.

Next proposition may be found in [3].
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Proposition 1.7. For all u = (uT
i ,u

P
k ) ∈ (R2)I+JΓ × (R2)K, there holds

(∇T
h × (∇D

h u))i = 0 ∀i ∈ [1, I], (1.20)

(∇P
h × (∇D

h u))k = 0 ∀k 6∈ Γ. (1.21)

In addition, for k ∈ Γ, the following equality holds (see Fig. 1.3 for the notations)

(∇P
h × (∇D

h u))k =
1

|Pk|

[
(uT

I2(k)
− uT

I1(k)
) +

1

2
(uP

K1(k)
− uP

K2(k)
)

]
. (1.22)

De�nition 1.8. With any u = (uT
i ,u

P
k ) ∈ (R2)I+JΓ × (R2)K, we associate the function uh

de�ned by

(uh)|Dj
∈ (P 1(Dj))

2 ∀j ∈ [1, J ],

uh(Miα(j)kβ(j)) =
1

2
(uT

iα(j) + uP
kβ(j)

) ∀j ∈ [1, J ], (α, β) ∈ {1, 2}2.

Proposition 1.9. Let u = (uT
i ,u

P
k ) ∈ (R2)I+JΓ × (R2)K and let uh be de�ned by De�nition

1.8. There holds

(∇D
h u)j = ∇uh|Dj

, ∀ j ∈ [1, J ], (1.23)

(∇D
h · u)j = ∇ · uh|Dj

, ∀ j ∈ [1, J ]. (1.24)

De�nition 1.10. Let uh be in (P 1(Dj))
2, ∀j ∈ [1, J ], and not necessarily continous over

the interfaces of neighboring diamond-cells. We de�ne its piecewise gradient and divergence
over Ω by:

∇huh(x) = ∇uh|Dj
(x) and ∇h · uh(x) = ∇ · uh|Dj

(x), ∀x ∈ Dj, j ∈ [1, J ]. (1.25)

1.3 The �nite volume scheme on general meshes

We recall the �nite volume scheme used for the numerical approximation of equations (1.1)�
(1.4). This scheme is constructed on the basis of the discrete di�erential operators de�ned
in section 1.2.

(∇T
h · (−∇D

h u+ pI2))i = fTi , ∀i ∈ [1, I], (1.26)

(∇P
h · (−∇D

h u+ pI2))k = fPk , ∀k ∈ [1, K], (1.27)

(∇D
h · u)j + ε(∆D

h p)j = 0 , ∀j ∈ [1, J ], (1.28)

uP
k1(j)

+ 2uT
i2(j)

+ uP
k2(j)

4
= gj , ∀j ∈ Γ, (1.29)

J∑
j=1

|Dj|pj = 0, (1.30)
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with an appropriate choice of ε > 0. We suppose that g is regular enough, so that we can
set gj = g(Gi2(j)) in (1.29), while in (1.26) and (1.27), fTi and fPk are the mean values of f
over Ti and Pk, respectively:

fTi =
1

|Ti|

∫
Ti

f(x)dx and fPk =
1

|Pk|

∫
Pk

f(x)dx. (1.31)

In [7], it is proved that if ε > 0, then the scheme (1.26)�(1.30) has a unique solution.

Proposition 1.11. Let u = (uT
i ,u

P
k ) and p = (pj)j∈[1,J ] be the solution of the scheme

(1.26)-(1.30). Let v = (vT
i ,v

P
k ) such that ṽj = 0 for all j ∈ Γ. Let uh and vh be the solution

associated to u and v by De�nition 1.8. Let us set in addition

v∗
h(x) :=

1

2

∑
i∈[1,I]

vT
i θ

T
i (x) +

∑
k∈[1,K]

vP
k θ

P
k (x)

 , (1.32)

where θTi and θPk are respectively the characteristic function of the cells Ti and Pk. Then,
there holds∑

j

∫
Dj

∇huh : ∇hvh(x)dx−
∑
j

∫
Dj

∇h · vh ph(x)dx =

∫
Ω

f · v∗
h(x)dx. (1.33)

Proof. We can apply Eq. (1.26) and (1.27), we have

−(∇T
h · (∇D

h u)i · vT
i + (∇T

h · (pI2)i) · vT
i = fTi · vT

i ∀i ∈ [1, I], (1.34)

−(∇P
h · (∇D

h u))i · vP
k + (∇P

h · (pI2))k · vP
k = fPk · vP

k ∀k ∈ [1, K]. (1.35)

Multiplying (1.34) by |Ti| and (1.35) by |Pk| and summing over all i and all k, we obtain

−(∇T,P
h · (∇D

h u),v)T,P + (∇T,P
h · (pI2),v)T,P = (f ,v)T,P .

We can apply (1.17), (1.19) and ṽj = 0 for all j ∈ Γ, we obtain

(∇D
h (u),∇D

h (v))D − (∇D
h · v, p)D = (f ,v)T,P ,

or, using the property in (1.23), we have∑
j

∫
Dj

∇huh : ∇hvh(x)dx−
∑
j

∫
Dj

∇h · vh ph(x)dx =

∫
Ω

f · v∗
h(x)dx.

1.4 A representation of the error

1.4.1 A representation of the velocity error

The variational formula of (1.1) reads:∫
Ω

∇û : ∇vdx−
∫
Ω

p̂∇ · vdx =

∫
Ω

f · v(x)dx, (1.36)
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for all v ∈ (H1
0 (Ω))

2. We shall estimate the H1 semi norm of the error between the exact
solution û and the function uh associated to the solution of the DDFV scheme. For this,
We shall denote by e = û − uh and ep = p̂ − ph the error in the velocity and pressure,
respectively. We have

‖∇he‖L2(Ω) =

(∑
j

∫
Dj

|∇û−∇huh|2(x)dx

)1/2

. (1.37)

Since Ω is a simply connected domain and since ∇he = ∇û−∇huh belongs to (L2(Ω))2×2,
we may decompose it in the following way (see Lemma 3.2 in [4]):

∇he = ∇Φ̂− qI2 +∇× Ψ̂, (1.38)

where q ∈ L2
0(Ω), Φ̂ ∈ (H1

0 (Ω))
2 with ∇ · Φ̂ = 0 and Ψ̂ ∈ (H1(Ω))2 with integral zero

satisfying

‖∇Φ̂‖L2(Ω) ≤ ‖∇he‖L2(Ω),

‖q‖L2(Ω) ≤
2

β
‖∇he‖L2(Ω),

‖∇ × Ψ̂‖L2(Ω) ≤ (1 +
2
√
2

β
)‖∇he‖L2(Ω),

(1.39)

where β is de�ned by (1.5).
Now, we estimate the velocity error using the decomposition (1.38). First observe that∫

Ω

∇he : I2q(x)dx =

∫
Ω

∇h · e q(x)dx =

∫
Ω

(∇ · û−∇h · uh)q(x)dx.

From (1.2) and (1.28), we have∫
Ω

∇he : I2q(x)dx = ε

∫
Ω

(∆D
h p)hq(x)dx. (1.40)

Multiplying the term ∇he(x) with (1.38) side by side and integrating over Ω, there holds

‖∇he‖2L2(Ω) =

∫
Ω

∇he : (∇Φ̂ +∇× Ψ̂− qI2)dx

= i1 + i2 − ε
∫
Ω

(∆D
h p)hq(x)dx, (1.41)

where

i1 =
∑
j

∫
Dj

(∇û−∇uh) : ∇Φ̂(x)dx

and

i2 =
∑
j

∫
Dj

(∇û−∇uh) : ∇× Ψ̂(x)dx.

In order to �nd a suitable representation of i1 and i2, we shall need the following de�nitions
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De�nition 1.12. The boundary ∂Dj of any diamond-cell Dj is composed of the four seg-
ments [Giα(j)Skβ(j)] with (β, α) ∈ {1, 2} (see Fig. 1.2). Let us de�ne by S the set of these

edges when j runs over the whole set of diamond-cells and
◦
S those edges that do not lie in

the boundary Γ. Each s ∈
◦
S is thus a segment that we shall denote by [Gi(s)Sk(s)]. We shall

also write s ∈
◦
Ti (resp. s ∈

◦
Pk) if s ⊂ Ti (s ⊂ Pk) and s 6⊂ Γ. Finally, we shall denote by ns

one of the two unit normal vectors to s, arbitrarily chosen among the two possible choices
but then �xed for the sequel, and [(∇uh − phI2)ns]s is the jump of the normal component of
∇uh − phI2 through segment s.

Proposition 1.13. Let Φ̂ be de�ned in equation (1.38). Let Φ = (ΦT
i ,Φ

P
k ) ∈ (R2)I+JΓ ×

(R2)K be such that

Φ̃j = 0 for all j ∈ Γ. (1.42)

Then, it holds that

i1 =
1

2

∑
i∈[1,I]

∫
Ti

f · (Φ̂− ΦT
i )(x)dx+

1

2

∑
k∈[1,K]

∫
Pk

f · (Φ̂− ΦP
k )(x)dx

− 1

2

∑
i∈[1,I]

∑
s⊂

◦
Ti

∫
s

[(∇huh − phI2)ns]s · (Φ̂− ΦT
i )(σ)dσ

− 1

2

∑
k∈[1,K]

∑
s⊂

◦
Pk

∫
s

[(∇huh − phI2)ns]s · (Φ̂− ΦP
k )(σ)dσ.

(1.43)

Proof. First, Since Φ̂ ∈ (H1
0 (Ω))

2 and ∇ · Φ̂ = 0, we can apply (1.36), we have

i1 =
∑
j

∫
Dj

∇û : ∇Φ̂(x)dx−
∑
j

∫
Dj

∇huh : ∇Φ̂(x)dx

=

∫
Ω

∇û : ∇Φ̂(x)dx−
∑
j

∫
Dj

∇huh : ∇Φ̂(x)dx

=

∫
Ω

f · Φ̂(x)dx−
∑
j

∫
Dj

∇huh : ∇Φ̂(x)dx.

For any Φ = (ΦT
i ,Φ

P
k ) satisfying (1.42), formula (1.33) leads to

i1 =

∫
Ω

f · (Φ− Φ∗
h)(x)dx−

∑
j

∫
Dj

ph∇h · Φh(x)dx

−
∑
j

∫
Dj

∇huh : (∇Φ̂−∇hΦh)(x)dx.

We know that ph∇h · Φh = phI2 : ∇hΦh and phI2 : ∇Φ̂ = 0 (since ∇ · Φ̂ = 0), then

i1 =

∫
Ω

f · (Φ− Φ∗
h)(x)dx−

J∑
j=1

H1(j), (1.44)
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where

H1(j) =

∫
Dj

(∇huh − phI2) : (∇Φ̂−∇hΦh)(x)dx. (1.45)

Let us consider a diamond-cell Dj. Since ∇huh − phI2 is constant over Dj, we may write,
using Green's formula over Dj,

H1(j) =

∫
∂Dj

(∇huh − phI2)n∂Dj
· (Φ̂− Φh)(σ)dσ,

where n∂Dj
is the unit normal vector exterior to Dj on its boundary. Moreover, let each

s be one of the four boundary edges of Dj, the function Φh belongs to P 1 over s and the
quantity ∇uh − phI2 is a constant; the integral of (∇uh − phI2)n∂Dj

· Φh along this edge
may thus exactly be computed by the midpoint rule; using the de�nition of Φh, this function
equals 1

2
(ΦT

i(s) + ΦT
k(s)) at the midpoint of s. There holds:

H1(j) =
∑

s∈∂Dj

∫
s

(∇huh − phI2)ns,j ·
[
Φ̂− 1

2

(
ΦT

i(s) + ΦP
k(s)

)]
(σ)dσ, (1.46)

where ns,j is the unit normal vector exterior to Dj on s.
In the sum of the H1(j) in (1.44) over j ∈ [1, J ], there are two types of edges s: those

in
◦
S and those included in Γ. First, each s ∈

◦
S is the common edge of two diamond-cells;

then, in the sum, there are two corresponding integrals over s, in which we can factorize by[
Φ̂− 1

2

(
ΦT

i(s) + ΦP
k(s)

)]
(σ). Indeed, the jump of this function through s vanishes because

Φ̂ ∈ (H1
0 (Ω))

2. Secondly, each diamond-cell Dj whose boundary intersects Γ has two edges
of equal length s = [Gi2(j)Skβ(j)] with β ∈ {1, 2} which are included in Γ, and their union

is exactly Aj. Since (∇huh − phI2)nj is a constant, and
∑

β∈{1,2}
∫
[Gi2(j)

Skβ(j)]
(Φ̂− 1

2
(ΦT

i2(j)
+

ΦP
kβ(j)

))(σ)dσ =
∫
Aj
(Φ̂− Φ̃h)(σ)dσ, we have

∑
s∈∂Dj∩Γ

∫
s

(∇huh − phI2)ns,j ·
[
Φ̂− 1

2

(
ΦT

i(s) + ΦP
k(s)

)]
(σ)dσ

=
∑

β∈{1,2}

∫
[Gi2(j)

Skβ(j)]

(∇huh − phI2)nj ·
[
Φ̂− 1

2

(
ΦT

i2(j)
+ ΦP

kβ(j)

)]
(σ)dσ

=

∫
Aj

(∇huh − phI2)nj · (Φ̂− Φ̃h)(σ)dσ = 0, (1.47)

thanks to (1.42) and to the fact that Φ̂ ∈ (H1
0 (Ω))

2. With these remarks, we can write∑
j∈[1,J ]

H1(j) =
∑
s∈

◦
S

[(∇huh − phI2)ns]s

[
Φ̂− 1

2
(ΦT

i(s) + ΦP
k(s))

]
. (1.48)
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Then, we may write Φ̂ − 1
2

(
ΦT

i(s) + ΦP
k(s)

)
= 1

2

[(
Φ̂− ΦT

i(s)

)
+
(
Φ̂− ΦP

k(s)

)]
. Summing in

the right-hand side of (1.48) the various contributions of ΦT
i for a �xed i and the various

contributions of ΦP
k for a �xed k, we obtain the following formula

J∑
j=1

H1(j) =
1

2

∑
i∈[1,I]

∑
s⊂

◦
Ti

∫
s

[(∇huh − phI2)ns]s · (Φ̂− ΦT
i )(σ)dσ

+
1

2

∑
k∈[1,K]

∑
s⊂

◦
Pk

∫
s

[(∇huh − phI2)ns]s · (Φ̂− ΦP
k )(σ)dσ.

(1.49)

Finally, according to (1.44) and de�nition (1.32) of Φ∗
h, we obtain (1.43).

Before we turn to a representation formula for i2 in (1.41), we need some technical lemmas
related to the L2(Ω) scalar product of discrete gradients and curls.

Lemma 1.14. Let u = (uT
i ,u

P
k ) be the velocity component of the solution of the scheme

(1.26)�(1.30) and Ψ = (ΨT
i ,Ψ

P
k ) ∈ (R2)I+JΓ × (R2)K. There holds

(∇T,P
h × (∇D

h u),Ψ)T,P = −
∑
k∈Γ

∫
∂Pk∩Γ

(∇g(σ)−∇D
h uh(σ))τ k ·ΨP

k dσ, (1.50)

where τ k is the tangent vector to ∂Pk ∩Γ which is positively oriented with respect to the unit
normal vector exterior to ∂Pk ∩ Γ.

Proof. According to Eq. (1.20) and (1.21), there holds

(∇T
h × (∇D

h u))i = 0 ∀i ∈ [1, I] and (∇P
h × (∇D

h u))k = 0 ∀k 6∈ Γ. (1.51)

On the other hand, since the solution of the discrete problem veri�es (1.29), there holds, for
k ∈ Γ, with the notations of Fig. 1.3:

uT
I1(k)

= 2g(GI1(k))−
1

2
(uP

k + uP
K1(k)

) and uT
I2(k)

= 2g(GI2(k))−
1

2
(uP

k + uP
K2(k)

). (1.52)

Following (1.22) and (1.52), we obtain that

(∇P
h × (∇D

h u))k =
1

|Pk|
[
2(g(GI2(k))− g(GI1(k))) + (uP

K1(k)
− uP

K2(k)
)
]
, ∀ k ∈ Γ. (1.53)

From (1.51), and using de�nition of scalar product in (1.8), we obtain

(∇T,P
h × (∇D

h u),Ψ)T,P =
1

2

∑
k∈Γ

|Pk|(∇P
h × (∇D

h u))k ·ΨP
k .

Using (1.53) leads to

(∇T,P
h × (∇D

h u),Ψ)T,P =
∑
k∈Γ

(g(GI2(k))− g(GI1(k))) ·ΨP
k +

1

2

∑
k∈Γ

(uP
K1(k)

− uP
K2(k)

) ·ΨP
k .

(1.54)
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In addition, we have

g(GI2(k))− g(GI1(k)) = (g(GI2(k))− g(Sk)) + (g(Sk)− g(GI1(k)),

so that

g(GI2(k))− g(GI1(k)) = −
∫
∂Pk∩Γ

∇g(σ)τ kdσ, (1.55)

In the same way, we have

uP
K1(k)

− uP
K2(k)

= (uP
K1(k)

− uP
k ) + (uP

k − uP
K2(k)

)

Applying the property (1.12) of the discrete gradient:

|SkSK1(k)|∇huh(σ)τ k = uP
K1(k)

− uP
k , ∀σ ∈ [SkSK1(k))] (1.56)

and

|SK2(k)Sk|∇huh(σ)τ k = uP
k − uP

K2(k)
, ∀σ ∈ [SK2(k)Sk)], (1.57)

there holds

uP
K1(k)

− uP
K2(k)

= 2

∫
∂Pk∩Γ

∇D
h uh(σ)τ kdσ. (1.58)

Combining (1.54) with (1.55) and (1.58) come to

(∇T,P
h × (∇D

h u),Ψ)T,P = −
∑
k∈Γ

∫
∂Pk∩Γ

(∇g(σ)−∇D
h uh(σ))τ k ·ΨP

k dσ.

This implies our lemma.

Lemma 1.15. Let u = (uT
i ,u

P
k ) be the velocity component of the solution of the scheme

(1.26)�(1.30) and Ψ = (ΨT
i ,Ψ

P
k ) ∈ (R2)I+JΓ × (R2)K. Let uh and Ψh be their associated

functions through Def. 1.8. There holds∑
j

∫
Dj

∇huh : ∇h ×Ψh(x)dx =−
∑
k∈Γ

∫
∂Pk∩Γ

(∇g(σ)−∇D
h uh(σ))τ k ·ΨP

k dσ

− (∇D
h uτ , Ψ̃)Γ,h. (1.59)

Proof. Applying the discrete Green formula (1.18), there holds∑
j

∫
Dj

∇huh : ∇h ×Ψh(x)dx = (∇D
h u,∇D

h ×Ψ)D

= (∇T,P
h × (∇D

h u),Ψ)T,P − (∇D
h uτ , Ψ̃)Γ,h.

Following the lemma 1.14, we have completed our lemma.
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Proposition 1.16. Let u = (uT
i ,u

P
k ) be the velocity component of the solution of the scheme

(1.26)�(1.30) and uh the function associated to u by the de�nition 1.8. Let Ψ̂ be de�ned in
equation (1.38). Let Ψ = (ΨT

i ,Ψ
P
k ) ∈ (R2)I+JΓ × (R2)K and Ψh be its associated function.

Then, the following representation holds

i2 =
1

2

∑
i∈[1,I]

∑
s∈

◦
Ti

∫
s

[∇huhτ s]s · (Ψ̂−ΨT
i )(σ)dσ

+
1

2

∑
k∈[1,K]

∑
s∈

◦
Pk

∫
s

[∇huhτ s]s · (Ψ̂−ΨP
k )(σ)dσ

−
∑
k∈Γ

∫
∂Pk∩Γ

(∇g(σ)−∇D
h uh(σ))τ k · (Ψ̂(σ)−ΨP

k )dσ.

(1.60)

Proof. From (1.41), there holds

i2 =
∑
j

∫
Dj

(∇û−∇huh) : ∇× Ψ̂(x)dx

=

∫
Ω

∇û : ∇× Ψ̂(x)dx−
∑
j

∫
Dj

∇huh : ∇h ×Ψh(x)dx−
∑
j

H2(j), (1.61)

where

H2(j) =

∫
Dj

∇huh : (∇× Ψ̂−∇h ×Ψh)(x)dx. (1.62)

By application of the continuous Green formula, there holds∫
Ω

∇û : ∇× Ψ̂(x)dx = −
∫
∂Ω

∇û τ · Ψ̂(σ)dσ = −
∫
Γ

∇ĝ τ · Ψ̂(σ)dσ. (1.63)

We can evaluate the sum of H2(j) over j just like we evaluated the sum of H1(j) in Propo-

sition 1.13. There are only two di�erences. The �rst is that the gradients of Φ̂ and Φh are
replaced by the curls of Ψ̂ and Ψh, which implies that normal vectors ns are replaced by
tangent vectors −τ s. The second di�erence is that the boundary integrals do not vanish any
more, but can be evaluated like in the discussion that leads to (1.47). Then noting that∑

j∈JΓ

∫
Aj

∇huhτ j · Ψ̂(σ)dσ =
∑
k∈Γ

∫
Pk∩Γ
∇huhτ k · Ψ̂(σ)dσ,

we obtain the following formula∑
j

H2(j) =−
1

2

∑
i∈[1,I]

∑
s∈

◦
Ti

∫
s

[∇huhτ s]s · (Ψ̂−ΨT
i )(σ)dσ

− 1

2

∑
k∈[1,K]

∑
s∈

◦
Pk

∫
s

[∇huhτ s]s · (Ψ̂−ΨP
k )(σ)dσ

−
∑
k∈Γ

∫
Pk∩Γ
∇huhτ k · Ψ̂(σ)dσ + (∇D

h uτ , Ψ̃)Γ,h.

(1.64)



CHAPTER 1. STOKES EQUATIONS 28

Combining (1.61), (1.59), (1.63) and (1.64), we have

i2 =
1

2

∑
i∈[1,I]

∑
s∈

◦
Ti

∫
s

[∇huhτ s]s · (Ψ̂−ΨT
i )(σ)dσ

+
1

2

∑
k∈[1,K]

∑
s∈

◦
Pk

∫
s

[∇huhτ s]s · (Ψ̂−ΨP
k )(σ)dσ (1.65)

−
∑
k∈Γ

∫
Pk∩Γ

(∇g(σ)−∇D
h uh(σ))τ k · (Ψ̂(σ)−ΨP

k )dσ.

We have �nished this proposition.

1.4.2 A representation of the pressure error

Proposition 1.17. Let v̂ ∈ (H1
0 (Ω))

2 and v = (vT
i ,v

P
k ) ∈ (R2)I+JΓ × (R2)K be such that

ṽj = 0 for all j ∈ Γ. We have that∫
Ω

ep∇ · v̂(x)dx =

∫
Ω

∇he : ∇v̂(x)dx− 1

2

∑
i∈[1,I]

∫
Ti

f · (v̂ − vT
i )(x)dx

− 1

2

∑
k∈[1,K]

∫
Pk

f · (v̂ − vP
k )(x)dx

+
1

2

∑
i∈[1,I]

∑
s⊂

◦
Ti

∫
s

[(∇huh − phI2)ns]s · (v̂ − vT
i )(σ)dσ

+
1

2

∑
k∈[1,K]

∑
s⊂

◦
Pk

∫
s

[(∇huh − phI2)ns]s · (v̂ − vP
k )(σ)dσ.

(1.66)

Proof. We can use the formula (1.36) to obtain∫
Ω

ep∇ · v̂(x)dx =

∫
Ω

p∇ · v̂(x)dx−
∫
Ω

ph∇ · v̂(x)dx

=

∫
Ω

∇he : ∇v̂(x)dx−
∫
Ω

f · v̂(x)dx +
∫
Ω

∇huh : ∇v̂(x)dx

−
∫
Ω

ph∇ · v̂(x)dx.

(1.67)

Using Eq. (1.33), we have∫
Ω

ep∇ · v̂(x)dx(x)dx =

∫
Ω

∇he : ∇v̂(x)dx−
∫
Ω

f · (v̂ − v∗
h)(x)dx

+

∫
Ω

(∇huh − phI2) : (∇v̂ −∇hvh)(x)dx.

(1.68)
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Just like in Proposition 1.13 (see (1.45) and (1.49)), we have∫
Ω

(∇huh − phI2) : (∇v̂ −∇hvh)(x)dx =
1

2

∑
i∈[1,I]

∑
s⊂

◦
Ti

∫
s

[(∇huh − phI2)ns]s · (v̂ − vT
i )(σ)dσ

+
1

2

∑
k∈[1,K]

∑
s⊂

◦
Pk

∫
s

[(∇huh − phI2)ns]s · (v̂ − vP
k )(σ)dσ.

(1.69)

From (1.68) and (1.69), we obtain the following formula∫
Ω

ep∇ · v̂(x)dx =

∫
Ω

∇he : ∇v̂(x)dx− 1

2

∑
i∈[1,I]

∫
Ti

f · (v̂ − vT
i )(x)dx

− 1

2

∑
k∈[1,K]

∫
Pk

f · (v̂ − vP
k )(x)dx

+
1

2

∑
i∈[1,I]

∑
s⊂

◦
Ti

∫
s

[(∇huh − phI2)ns]s · (v̂ − vT
i )(σ)dσ

+
1

2

∑
k∈[1,K]

∑
s⊂

◦
Pk

∫
s

[(∇huh − phI2)ns]s · (v̂ − vP
k )(σ)dσ.

This implies our proposition.

1.5 A computable error bound

1.5.1 Preliminaries

In this subsection, we will present some Poincare-type inequalities which are useful to
obtain a computable error bound.

Lemma 1.18. Let ω be an open bounded set which is star-shaped with respect to one of its
point. Let u ∈ (H1(ω))2 and let uω be the mean-value of u over ω. Then,

∃C(ω), s.t . ‖u− uω‖L2(ω) ≤ C(ω)diam(ω)‖∇u‖L2(ω). (1.70)

Note that when ω is convex, a universal constant C(ω) is given by 1
π
(see in [9]). When ω is

not convex, we may use explicitly computable formulas given, for example, by [2, 13]. The
constant C(ω) only denpends on the shape of ω, not on its diameter.

Finally, we will also need a trace inequality (see [8]).

Lemma 1.19. Let T be a triangle and let E be one of its edges; let ρ be the distance from
E to the vertex of T opposite to E, and let σ be the longest among the two other sides if T .
Let ε > 0 be an arbitrary real valued number; then for all u ∈ (H1(T ))2, there holds

‖u‖2L2(E) ≤
1

ρ

(
(2 + ε−2)‖u‖2L2(T ) + ε2σ2‖∇u‖2L2(T )

)
. (1.71)
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1.5.2 A computable bound for the velocity error

In the expression (1.43) of i1, the values of (Φ
T
i ,Φ

P
k ) are arbitrary, except for the boundary

midpoint values chosen so that (1.42) holds. In the expression of i2 in (1.60), the values of
(ΨT

i ,Ψ
P
k ) are arbitrary.

De�nition 1.20. Since Φ̂, Ψ̂ are not necessarily more regular than (H1(Ω))2, we choose as
an interpolation their L2 projection on the primal and dual cells:

ΦT
i =

1

|Ti|

∫
Ti

Φ̂(x)dx ∀i ∈ [1, I], ΦP
k =

1

|Pk|

∫
Pk

Φ̂(x)dx ∀k ∈ [1, K], (1.72)

ΨT
i =

1

|Ti|

∫
Ti

Ψ̂(x)dx ∀i ∈ [1, I], ΨP
k =

1

|Pk|

∫
Pk

Ψ̂(x)dx ∀k ∈ [1, K]. (1.73)

In order to complete the de�nition of (ΦT
i ,Φ

P
k ), for any i ∈ Γ, the boundary value of ΦT

i are
given by (1.42). In this problem, it is not necessary to de�ne the value of ΨT

i for all i ∈ Γ.

Proposition 1.21. Let hTi := diam(Ti), hPk := diam(Pk). There exist computable constant
C(Ti), and C(Pk) such that∣∣∣∣∣∣

∑
i∈[1,I]

∫
Ti

f · (Φ̂− ΦT
i )(x)dx

∣∣∣∣∣∣ ≤ osc(f , T,Ω)‖∇Φ̂‖L2(Ω), (1.74)

∣∣∣∣∣∣
∑

k∈[1,K]

∫
Pk

f · (Φ̂− ΦP
k )(x)dx

∣∣∣∣∣∣ ≤ osc(f , P,Ω)‖∇Φ̂‖L2(Ω), (1.75)

where

osc(f , T,Ω) =

∑
i∈[1,I]

(C(Ti)h
T
i )

2‖f − fTi ‖L2(Ti)

1/2

(1.76)

and

osc(f , P,Ω) =

 ∑
k∈[1,K]

(C(Pk)h
P
k )

2‖f − fPk ‖L2(Pk)

1/2

. (1.77)

Proof. Since ΦT
i was chosen as the mean-value of Φ̂ over Ti (see (1.72)), we have∫

Ti

f · (Φ̂− ΦT
i )(x)dx =

∫
Ti

(f − fTi ) · (Φ̂− ΦT
i )(x)dx.

Applying the Cauchy-Schwarz inequality, Lemma 1.18 to Φ̂ over Ti and the discrete Cauchy-
Schwarz inequality, we are lead to (1.74).
Similarly, we also obtain (1.75).
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Propositions 1.22 and 1.24 below are proved just like Propositions 5.9 and 5.10 in [8].

Proposition 1.22. For any primal cell Ti and any dual Pk such that Ti ∩ Pk 6= ∅, Let
s = [GiSk] and tik,1 and tik,2 be the triangles de�ned in Fig. 1.4 such that tik,1∪tik,2 = Ti∩Pk.
Let ρik,α be the distance from s to the vertex of tik,α opposite to s and σik,α be the length of
the longest among the two other edges of tik,α. C(Ti) is the constant that appears in (1.70).
For any strictly positive µ, let us de�ne

Cs(µ) =

(
1 +

√
1 +

σ2
ik,1

µ

)(
1 +

√
1 +

σ2
ik,2

µ

)
(
1 +

√
1 +

σ2
ik,1

µ

)
ρik,2 +

(
1 +

√
1 +

σ2
ik,2

µ

)
ρik,1

, (1.78)

χi(µ) = (C(Ti)h
T
i )

2 + µ. (1.79)

(1.80)

We de�ne the local and global error estimators related to the primal mesh:

(ηTi )
2 = inf

µ>0

χi(µ)
∑
s∈

◦
Ti

Cs(µ)‖[(∇huh − phI2)ns]s‖2L2(s)

 and (ηT )2 =
∑
i

(ηTi )
2, (1.81)

(η′
T
i )

2 = inf
µ>0

χi(µ)
∑
s∈

◦
Ti

Cs(µ)‖[∇huhτ s]s‖2L2(s)

 and (η′
T
)2 =

∑
i

(η′
T
i )

2. (1.82)

With these de�nitions, there holds:∣∣∣∣∣∣∣
∑
i∈[1,I]

∑
s∈

◦
Ti

∫
s

[(∇huh − phI2)ns]s · (Φ̂− ΦT
i )(σ)dσ

∣∣∣∣∣∣∣ ≤ ηT‖∇Φ̂‖L2(Ω), (1.83)

∣∣∣∣∣∣∣
∑
i∈[1,I]

∑
s∈

◦
Ti

∫
s

[∇huhτ s]s · (Ψ̂−ΨT
i )(σ)dσ

∣∣∣∣∣∣∣ ≤ η′
T‖∇Ψ̂‖L2(Ω). (1.84)

Remark 1.23. The minimization in (1.81) is performed numerically when we e�ectively
compute the estimators. However, we may already get an idea of the behaviour of this quantity
by choosing µ = h2Ti

to evaluate ηTi . By de�nition of σik,α, this length is lower than the
diameter of Ti, which implies

Cs

((
hTi
)2) ≤ (1 +

√
2)2

2(ρik,1 + ρik,2)
. (1.85)

Under the hypothesis that the ratios ρik,α
hT
i

are all bounded by below by the same constant which
does not depend on the mesh, we obtain the following bound

ηTi ≤ KhTi
∑
s∈

◦
Ti

‖[(∇huh − phI2)ns]s‖
2
L2(s)

,
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Ti Sk

Pk

Gi

tik,2

tik,1

s

tik,2

tik,1

ρ
ik,2

ρ
ik,1

σ

s

σ

ik,2

ik,1

Figure 1.4: For each cell Ti and each vertex Sk of Ti, Ti∩Pk is split in two triangles tik,1 and
tik,2.

where the constant K does not depend on the mesh. The same remark holds for η′Ti .

Proposition 1.24. Let us set the same notations as in Prop. 1.22. Let Cs be de�ned by
(1.78). Let C(Pk) be the constant involved in (1.70). Let us de�ne for any strictly positive
µ,

χk(µ) = (C(Pk)h
P
k )

2 + µ. (1.86)

We de�ne the local and global error estimators related to the dual mesh:

(ηPk )
2 = inf

µ>0

χk(µ)
∑
s∈

◦
Pk

Cs(µ)‖[(∇huh − phI2)ns]s‖2L2(s)

 and (ηP )2 =
∑
k

(ηPk )
2, (1.87)

(η′
P
k )

2 = inf
µ>0

χk(µ)
∑
s∈

◦
Pk

Cs(µ)‖[∇huhτ s]s‖2L2(s)

 and (η′
P
)2 =

∑
k

(η′
P
k )

2. (1.88)

With these de�nitions, there holds:∣∣∣∣∣∣∣
∑

k∈[1,K]

∑
s∈

◦
Pk

∫
s

[(∇huh − phI2)ns]s · (Φ̂− ΦP
k )(σ)dσ

∣∣∣∣∣∣∣ ≤ ηP‖∇Φ̂‖L2(Ω), (1.89)

∣∣∣∣∣∣∣
∑

k∈[1,K]

∑
s∈

◦
Pk

∫
s

[∇huhτ s]s · (Ψ̂−ΨP
k )(σ)dσ

∣∣∣∣∣∣∣ ≤ η′
P‖∇Ψ̂‖L2(Ω). (1.90)
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k 1

2

2I (k)

1I (k)

 K (k)

K (k) 

 
σ

σ
1

 j2( )k

j ( )k

qj (k)2

qj (k)1

bj (k)1

bj (k)2

Figure 1.5: For any k ∈ Γ, Sk is the common vertex of qj1(k) and qj2(k).

Proposition 1.25. For any k ∈ Γ, let us denote by Dj1(k) and Dj2(k) the two diamond
cells whose boundary intersect Γ and which have Sk as a vertex. Let qj1(k) = Pk ∩ Dj1(k),
qj2(k) = Pk∩Dj2(k) and the segment bjα(k) be the intersection between ∂qjα(k) and Γ. Let ρjα(k)
be the distance from bjα(k) to the vertex of qjα(k) opposite to bjα(k) and σjα(k) be the length of
the longest among the two other edges of qjα(k) (see Fig. 1.5). C(Pk) is the constant that
appears in (1.70). For any strictly positive µ, let us de�ne

Cα(µ) =

2 +
σ2
jα(k)

µ+
√

µ2+µσ2
jα(k)

ρjα(k)
, (1.91)

λk(µ) = (C(Pk)h
P
k )

2 + µ. (1.92)

We de�ne the local and global error estimator related to the boundary:

(ζPk )
2 = inf

µ

[
λk(µ)

2∑
α=1

Cα(µ)‖(∇g −∇uh)τ jα(k)‖2L2(bjα(k))

]
and (ζP )2 =

∑
k∈Γ

(ζPk )
2. (1.93)

With these de�nitions, there holds:∑
k∈Γ

∫
∂Pk∩Γ

∣∣∣(∇g −∇huh)τ k · (Ψ̂−ΨP
k )(σ)

∣∣∣ dσ ≤ ζP‖∇Ψ̂‖L2(Ω). (1.94)

Proof. By application of the Cauchy-Schwarz inequality on each edge bjα(k) and the weighted
discrete Cauchy-Schwarz inequality, we obtain for any set of strictly positive real-valued
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numbers CP
α∫

∂Pk∩Γ

∣∣∣(∇g −∇huh)τ k · (Ψ̂−ΨP
k )(σ)

∣∣∣ dσ =
2∑

α=1

∫
bjα(k)

∣∣∣(∇g −∇huh)τ jα(k)
· (Ψ̂−ΨP

k )(σ)
∣∣∣ dσ

≤

[
2∑

α=1

CP
α ‖(∇g −∇huh)τ jα(k)‖2L2(bjα(k))

]1/2 [ 2∑
α=1

1

CP
α

‖Ψ̂−ΨP
k ‖2L2(bjα(k))

]1/2
. (1.95)

Now, for each segment bjα(k), we can apply the trace inequality (1.71) on each triangle

qjα(k), for all α ∈ {1, 2} and for all strictly positive εjα(k). With C1,jα(k) =
2+ε−2

jα(k)

ρjα(k)
and

C2,jα(k) =
ε2
jα(k)

σ2
jα(k)

ρjα(k)
, we obtain

‖Ψ̂−ΨP
k ‖2L2(bjα(k))

≤ C1,jα(k)‖Ψ̂−ΨP
k ‖2L2(qjα(k))

+ C2,jα(k)‖∇Ψ̂‖2L2(qjα(k))
.

Let µ > 0 be arbitrary. For bjα(k) for α ∈ {1, 2}, let us choose εjα(k) so that

ε2jα(k) =
µ+

√
µ2 + µσ2

jα(k)

σ2
jα(k)

⇐⇒ C2,jα(k) = µC1,jα(k) (1.96)

and CP
α = C1,jα(k). There holds:

2∑
α=1

1

CP
α

‖Ψ̂−ΨP
k ‖2L2(bjα(k))

≤
2∑

α=1

(
‖Ψ̂−ΨP

k ‖2L2(qjα(k))
+ µ‖∇Ψ̂‖2L2(qjα(k))

)
≤ ‖Ψ̂−ΨP

k ‖2L2(Pk)
+ µ‖∇Ψ̂‖2L2(Pk)

≤
[
(C(Pk)h

P
k )

2 + µ
]
‖∇Ψ̂‖2L2(Pk)

. (1.97)

Taking (1.97) into (1.95) and applying the discrete Cauchy-Schwarz inequality leads to (1.94).

Before estimating the velocity error, we now de�ne the indicator related to the penaliza-
tion:

ζε = ε‖(∆D
h p)h‖L2(Ω). (1.98)

In the term in the right-hand side of (1.41), it is easy to see that∣∣∣∣ε ∫
Ω

(∆D
h p)hq(x)dx

∣∣∣∣ ≤ ζε‖q‖L2(Ω). (1.99)

Theorem 1.26. Let ‖∇he‖L2(Ω) be de�ned by (1.37), let the de�nitions (1.76)-(1.77), (1.78)-
(1.82), (1.86)-(1.88), (1.91)-(1.93) and (1.98) hold. We have

‖∇he‖L2(Ω) ≤ η = ηh + ηε. (1.100)
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where

ηh =
1

2

(
osc(f, T,Ω) + osc(f, P,Ω) + ηT + ηP

)
+

(
1

2
+

√
2

β

)(
η′

T
+ η′

P
+ 2ζP

)
(1.101)

ηε =
2

β
ζε. (1.102)

η, ηh, and ηε are called the total estimator, the discretization estimator, and the penalization
estimator for the velocity, respectively.

Proof. Using (1.41), (1.39), (1.43), (1.60), (1.74)-(1.75), (1.83)-(1.84), (1.89)-(1.90), (1.94)
and (1.99), we �nish the proof of this theorem.

1.5.3 A computable bound for the pressure error

Proposition 1.27. The following estimate holds:

‖ep‖L(Ω) ≤
1

2β

(
2‖∇he‖L2(Ω) + osc(f , T,Ω) + osc(f , P,Ω) + ηT + ηP

)
. (1.103)

Proof. Since ep ∈ L2
0(Ω), there exists v̂ ∈ (H1

0 (Ω))
2, such that

‖ep‖L2(Ω) ≤
1

β

∫
Ω
ep∇ · v̂(x)dx
‖∇v̂‖L2(Ω)

. (1.104)

Using (1.66), we obtain that∫
Ω

ep∇ · v̂(x)dx =

∫
Ω

∇he : ∇v̂(x)dx− 1

2

∑
i∈[1,I]

∫
Ti

f · (v̂ − vT
i )(x)dx

− 1

2

∑
k∈[1,K]

∫
Pk

f · (v̂ − vP
k )(x)dx

+
1

2

∑
i∈[1,I]

∑
s⊂

◦
Ti

∫
s

[(∇huh − phI2)ns]s · (v̂ − vT
i )(σ)dσ

+
1

2

∑
k∈[1,K]

∑
s⊂

◦
Pk

∫
s

[(∇huh − phI2)ns]s · (v̂ − vP
k )(σ)dσ.

We choose v = (vT
i ,v

P
k ) ∈ (R2)I+JΓ × (R2)K such that

vT
i =

1

|Ti|

∫
Ti

v̂(x)dx ∀i ∈ [1, I], vP
k =

1

|Pk|

∫
Pk

v̂(x)dx ∀k ∈ [1, K] (1.105)

and the boundary values of vi, i ∈ Γ are chosen so that ṽj = 0 for all j ∈ Γ. Similarly to
the calculations involved in propositions 1.21, 1.22 and 1.24, we obtain∣∣∣∣∫

Ω

ep∇ · v̂(x)dx
∣∣∣∣ ≤ 1

2

(
2‖∇he‖L2(Ω) + osc(f , T,Ω) + osc(f , P,Ω) + ηT + ηP

)
‖∇v̂‖L2(Ω).

(1.106)

Taking (1.106) into (1.104), we have �nished our proposition.
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1.6 E�ciency of the estimators

Since the estimator ηTi involves jumps of ∇huh−phI2 through the common edge s = [GiSk] of
two neighboring diamond-cells, we shall use functions with a support included in the triangle
tik,α with α = 1 or 2, de�ned in the Fig. 1.4. Since we consider a �xed s in what follows,
we simplify the notations to t1 and t2. For any triangle t in {t1, t2}, we denote by λt,β the
barycentric coordinates associated with the tree vertices of t, with β ∈ {1, 2, 3}. We suppose
that the vertices of t1 and t2 are locally numbered so that the two nodes of the edge s are
the vertices 1 and 2 of each of the triangles t1 and t2.

De�nition 1.28. We de�ne the following bubble functions

bt = 27λt,1λt,2λt,3 for t = t1 or t = t2, (1.107)

bs =

{
4λtα,1λtα,2 on tα, α = {1, 2}

0 elsewhere.
(1.108)

There holds ωt = supp(bt) ⊂ t and ωs := supp(bs) = Ti ∩ Pk = t1 ∪ t2. The following
propositions are given for example, in [12].

Proposition 1.29. There holds

0 ≤ bt ≤ 1, 0 ≤ bs ≤ 1, (1.109)∫
s

bs(σ)dσ =
2

3
|s|. (1.110)

Proposition 1.30. There exists a constant C > 0 only depending on the minimal angle in
the couple (t1, t2) such that, for t = t1 or t = t2 and ht = diam(t)

1

C
h2t ≤

∫
t

bt(x)dx =
9

20
|t| ≤ Ch2t , (1.111)

1

C
s2 ≤

∫
t

bs(x)dx =
1

3
|t| ≤ Cs2, (1.112)

‖∇bt‖L2(t) ≤ Ch−1
t ‖bt‖L2(t), (1.113)

‖∇bs‖L2(t) ≤ Cs−1‖bs‖L2(t). (1.114)

In order to prove the local e�ciency of the error estimator we shall make the following
hypothesis:

Hypothesis 1.31. We suppose that the triangulation of Ω composed of all the triangles
tik,α is regular in the sense that the minimum angles in those triangles are bounded by below
independently of the mesh.

From this hypothesis, we derive the following propositions.

Proposition 1.32. For any primal cell Ti and any dual cell Pk such that Ti ∩ Pk 6= ∅, let
s = [GiSk] and tik,1 and tik,2 be the triangles in Fig. 1.4 such that tik,1 ∪ tik,2 = Ti ∩ Pk. Let
hTi = diam(Ti), h

P
k = diam(Pk) and Sik = |Ti ∩ Pk|. Let Hypothesis 1.31 hold. Then, there

exists a constant C independent of the mesh such that

(hTi )
2S−1

i,k ≤ C and (hPk )
2S−1

i,k ≤ C.
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Figure 1.6: Notations of Prop. 1.32.

Proof. We will only prove the �rst inequality, since the second one can be treated in the
same way.

Let α0 > 0 be the lower bound of all the angles of all the triangles tik,α.
For any i ∈ [i, I], let Vi be the number of vertices of the primal cell Ti. First, we note

that

Vi ≤ V :=
2π

2α0

, for all i ∈ [1, I]. (1.115)

Let Sk` , with ` ∈ [1, Vi] be the vertices of the primal cell Ti and Mk`,`+1
be the midpoint of

segment [Sk`Sk`+1
], then

Sik` = |Ti ∩ Pk`| = |GiSk`Mk`,`+1
|+ |GiSk`Mk`−1,`

|. (1.116)

Now, let us estimate the area of triangle GiSk`Mk`,`+1
. Following Hypothesis 1.31, all the

angles of triangle GiSk`Mk`,`+1
are greater than α0. Let hGi

be the the maximum distance
from point Gi to the boundary of Ti, i.e.,

hGi
:= max{|GiSk` |, ` ∈ [1, Vi]}. (1.117)

We have

|GiSk`Mk`,`+1
| = 1

2
sin( ̂Sk`GiMk`,`+1

)|GiSk` ||GiMk`,`+1
|. (1.118)

By a calculation on triangles GiSk`Mk`,`+1
and GiSk`+1

Mk`,`+1
, there holds

|GiMk`,`+1
| ≥ |GiSk` | sinα0, |GiSk`+1

| ≥ |GiMk`,`+1
| sinα0. (1.119)
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From (1.119), we have the recurrence formula

|GiSk`| ≥ (sinα0)
2|GiSk`+1

|. (1.120)

Starting from the vertex Sk which reaches the max in de�nition (1.117), the shortest way to
go to a given vertex Sk` contains at most Vi/2 neighboring vertices for which we may apply
(1.120), and we obtain:

|GiSk` | ≥ (sinα0)
VihGi

. (1.121)

Then, from (1.119), we get that

|GiSk`||GiMk`,`+1
| ≥ (sinα0)

2Vi+1 h2Gi
. (1.122)

Combining (1.115), (1.118) and (1.122), and noting that from the de�nition of hGi
, then

hGi
≥ hT

i

2
, we obtain

|GiSk`Mk`,`+1
| ≥ (sinα0)

2V+2 (h
T
i )

2

8
. (1.123)

In the same way, we have

|GiSk`Mk`−1,`
| ≥ (sinα0)

2V+2 (h
T
i )

2

8
. (1.124)

Using (1.116), (1.123)�(1.124), we obtain:

Sik` ≥ (sinα0)
2V+2 (h

T
i )

2

4
. (1.125)

Thus, the inequality is proved with C = 4 (sinα0)
− 2π

α0
−2
.

Proposition 1.33. Under Hypothesis 1.31, the positive constants C(Ti) and C(Pk) are
bounded independently of the mesh, and the constant C in Prop. 1.30 is bounded by above
and by below independently of the mesh.

Proof. The constants C(Ti), C(Pk) coming from (1.70) were bounded explicitly in [13]. From
these expressions, it is easily seen that they are bounded if Hyp. 1.31 holds. Moreover, it is
proved in [12] that C in Prop. 1.30 depends only on the regularity of the triangles tik,α.

Now, we will consider the e�ciency of the estimators.

Theorem 1.34. For any primal cell Ti, let hTi := diam(Ti) and fTi be the mean-value of f
over Ti. Let ηTi (resp. η′Ti ) be de�ned in (1.81) (resp. in (1.82)). For any dual cell Pk, let
hPk := diam(Pk) and fPk be the mean-value of f over Pk. Let ηPk (resp. η′Pk ) be de�ned in
(1.87) (resp. in (1.88)). And for any boundary dual cell Pk, let ζPk be de�ned in (1.93). Let
Hypothesis 1.31 hold. Then, there exists a constant C independent of the mesh such that

(ηTi )
2 ≤ C

(
‖∇huh −∇û‖2L2(Ti)

+ ‖ph − p̂‖2L2(Ti)

)
+ C(hTi )

2‖f − fTi ‖2L2(Ti)
, (1.126)

(η′Ti )2 ≤ C‖∇huh −∇û‖2L2(Ti)
, (1.127)

(ηPk )
2 ≤ C

(
‖∇huh −∇û‖2L2(Pk)

+ ‖ph − p̂‖2L2(Pk)

)
+ C(hPk )

2‖f − fPk ‖2L2(Pk)
, (1.128)

(η′Pk )2 ≤ C‖∇huh −∇û‖2L2(Pk)
, (1.129)

(ζPk )
2 ≤ C‖∇huh −∇û‖2L2(Pk)

. (1.130)
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Proof. Let us consider an element Ti of the primal mesh and a diamond edge s in
◦
Ti. Let us

recall that by de�nition, such an edge s does not belong to Γ. Let us consider the function
ws = [(∇huh−I2ph)ns]sbs, where bs is de�ned by (1.108). This function belongs to (H1

0 (Ω))
2

and we may thus apply (1.36), which, taking into account the support of ws, reduces to∫
ωs

(∇û− I2p̂) : ∇ws(x)dx =

∫
ωs

f ·ws(x)dx. (1.131)

Moreover, uh belongs to (P 1(Dj))
2, ph is a constant in each Dj and ws vanishes on Γ. Thus

there holds:∫
Ω

(∇huh − I2ph) : ∇ws(x)dx =
∑
j

∫
Dj

(∇uh − I2ph) : ∇ws(x)dx

=
∑
j

∫
∂Dj

[(∇uh − I2ph)n∂Dj
] ·ws(σ)dσ

=
∑
i

∑
s′⊂

◦
Ti

∫
s′
[(∇huh − I2ph)ns′ ]s′ ·ws(σ)dσ.

But since ws vanishes on all the other edges s′ 6= s, taking into account the de�nition of ws

and the property of bs in (1.110), there holds∫
Ω

(∇huh − I2ph) : ∇ws(x)dx =

∫
s

[(∇huh − I2ph)ns]s ·ws(σ)dσ

= |[(∇huh − I2ph)ns]s|2
∫
s

bs(σ)σ

=
2

3
|s | |[(∇huh − I2ph)ns]s|2

=
2

3
‖[(∇huh − I2ph)ns]s‖2L2(s).

(1.132)

And taking into account (1.131), we have

M2 : = ‖[(∇huh − I2ph)ns]s‖2L2(s)

=
3

2

∫
Ω

(∇huh − I2ph) : ∇ws(x)dx =
3

2

∫
ωs

(∇huh − I2ph) : ∇ws(x)dx

=
3

2

[∫
ωs

(∇huh −∇û) : ∇ws(x)dx−
∫
ωs

(ph − p̂)∇ ·ws(x)dx +

∫
ωs

f ·ws(x)dx

]
.

(1.133)

Using the Cauchy-Schwarz inequality leads to

M2 ≤ 3

2

[(
‖∇huh −∇û‖L2(ωs) +

√
2‖ph − p̂‖L2(ωs)

)
‖∇ws‖L2(ωs)

]
+

3

2
‖f‖L2(ωs)‖ws‖L2(ωs).

(1.134)
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Let us now bound ‖∇ws‖L2(ωs) and ‖ws‖L2(ωs). There holds, thank to (1.114),

‖∇ws‖L2(ωs) = |[(∇us − I2ph)ns]s|‖∇bs‖L2(ωs) ≤ |[(∇us − I2ph)ns]s|C|s|−1‖bs‖L2(ωs),
(1.135)

‖ws‖L2(ωs) = |[(∇us − I2ph)ns]s|‖bs‖L2(ωs). (1.136)

So there remains to �nd a bound for ‖bs‖L2(ωs). In order to do this, we �rst infer from (1.109)
that b2s ≤ bs. This implies, using (1.112)

‖bs‖L2(ωs) =
[
‖bs‖2L2(t1)

+ ‖bs‖2L2(t2)

]1/2
≤
[∫

t1∪t2
bs(x)dx

]1/2
≤ C|s|. (1.137)

Taking into account that |[(∇huh− I2ph)ns]s| = |s|−1/2M and considering (1.134) to (1.137),
we obtain

M ≤ C
[
|s|−1/2(‖∇huh −∇û‖L2(ωs) +

√
2‖ph − p̂‖L2(ωs)) + |s|1/2‖f‖L2(ωs)

]
. (1.138)

One usually expresses ‖f‖L2(ωs)
as a function of ‖∇huh −∇û‖L2(ωs)

+ ‖ph − p̂‖L2(ωs) and of
higher order terms. Let t = t1 or t2, and let us denote by ft the mean value of f over t. Then,

‖f‖L2(t) ≤ ‖f − ft‖L2(t) + ‖ft‖L2(t) . (1.139)

Then, consider wt = ftbt, where bt is de�ned by (1.107). The function wt belongs to (H1
0 )

2.
Thus, taking into account the support of bt, Eq. (1.36) reduces to∫

t

(∇û− I2p̂) : ∇wt (x)dx =

∫
t

f ·wt(x)dx. (1.140)

Moreover, since ∇huh−I2ph is a constant over each t, and since wt vanishes on the boundary
of t, there holds ∫

t

(∇huh − I2ph) : ∇wt (x)dx = 0. (1.141)

Since ft is a constant over t, there holds, thanks to (1.111), (1.140) and (1.141),

‖ft‖2L2(t) = |t| (ft)
2 = C (ft)

2

∫
t

bt(x)dx = C

∫
t

ft ·wt(x)dx

= C

[∫
t

f ·wt(x)dx +

∫
t

(ft − f) ·wt(x)dx

]
= C

[∫
t

(∇û−∇huh) : ∇wt (x)dx−
∫
t

(p̂− ph)∇ ·wt(x)dx +

∫
t

(ft − f) ·wt(x)dx

]
≤ C

(
‖∇û−∇huh‖L2(t) +

√
2‖p̂− ph‖L2(t)

)
‖∇wt‖L2(t) + C ‖ft − f‖L2(t) ‖wt‖L2(t) ,

(1.142)

with C = 20/9 in the above expressions. Let us now bound ‖wt‖L2(t) and ‖∇wt‖L2(t). With
(1.113), there holds

‖∇wt‖L2(t) = |ft| ‖∇bt‖L2(t) ≤ |ft|Ch−1
t ‖bt‖L2(t) , (1.143)

‖wt‖L2(t) = |ft| ‖bt‖L2(t) . (1.144)
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The remaining term that has to be bounded is ‖bt‖L2(t). For this, we �rst infer from (1.109)

that b2t (x) ≤ bt(x) and then

|ft| ‖bt‖L2(t) ≤ |ft|
(∫

t

bt(x)dx

)1/2

≤ C |ft| |t|1/2 = C ‖ft‖L2(t) , (1.145)

in which C =
√
9/20. Combining (1.142)�(1.143)�(1.144)�(1.145), we �nally get

‖ft‖L2(t) ≤ C
(
‖ft − f‖L2(t) + h−1

t ‖∇û−∇huh‖L2(t) + h−1
t ‖p̂− ph‖L2(t)

)
.

Since s is an edge of t, there holds |s| ≤ ht; applying (1.139), we obtain

‖f‖L2(t) ≤ C
(
‖ft − f‖L2(t) + |s|

−1 ‖∇û−∇huh‖L2(t) + |s|
−1‖p̂− ph‖L2(t)

)
.

Thus, taking into account that ωs = t1 ∪ t2, there holds

‖f‖L2(ωs)
≤ ‖f‖L2(t1)

+ ‖f‖L2(t2)

≤ C
(
‖ft1 − f‖L2(t1)

+ ‖ft2 − f‖L2(t2)

)
+ C|s|−1 ‖∇û−∇huh‖L2(t1)

+ C|s|−1
(
‖p̂− ph‖L2(t1) + ‖∇û−∇huh‖L2(t2)

+ ‖p̂− ph‖L2(t2)

)
≤ C|s|−1

(
‖∇û−∇huh‖L2(ωs)

+ ‖p̂− ph‖L2(ωs)

)
+ C ‖fωs − f‖L2(ωs)

. (1.146)

In this sequence of inequalities, we have used the fact that ft minimizes ‖c− f‖L2(t) when

c runs over R2; in particular, ‖ft − f‖L2(t) ≤ ‖fωs − f‖L2(t), where fωs is the mean value of f
over ωs. Combining (1.138) and (1.146), we obtain

M = ‖[∇h(uh − ph)ns]s‖L2(s) ≤ C|s|1/2 ‖f − fωs‖L2(ωs)

+ C|s|−1/2
(
‖∇huh −∇û‖L2(ωs)

+ ‖p̂− ph‖L2(ωs)

)
.

(1.147)

By de�nition, the local estimator (ηTi )
2 is lower than the value taken by the function in

(1.81) in µ = (hTi )
2. In (1.81), we may bound C(Ti) by 1/π since the primal cells have been

supposed to be convex, and with (1.85) and (1.147), we obtain(
ηTi
)2 ≤ C

(
hTi
)2∑

s∈
◦
Ti

|s|−1

ρik,1 + ρik,2

(
‖∇huh −∇û‖2L2(ωs)

+ ‖ph − p̂‖2L2(ωs)

)

+ C
(
hTi
)2∑

s∈
◦
Ti

|s|
ρik,1 + ρik,2

‖f − fωs‖
2
L2(ωs)

.

Using Prop. 1.32, and since by de�nition Sik = 1
2
|s| (ρik,1 + ρik,2) and |s| ≤ hTi , the above

inequality leads to (1.126). As far as (1.127) is concerned, let us consider the function
vs = [∇huhτ s]sbs. There obviously holds∫

Ω

∇û : ∇× vs(x) dx =

∫
ωs

∇û : ∇× vs(x) dx = 0 . (1.148)
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Eq. (1.148) and the calculations that previously led to (1.132) may be used to yield

‖[∇huhτ s]s‖2L2(s) =
3

2

∫
ωs

∇huh : ∇×vs(x)dx

=
3

2

∫
ωs

(∇huh −∇û) : ∇× vs(x)dx

≤ 3

2
‖∇huh −∇û‖L2(ωs)

‖∇vs‖L2(ωs)
. (1.149)

Just like (1.134) led to (1.138) and then to (1.126), the inequality (1.149) leads to (1.127).
The dual inequalities (1.128), (1.129) and (1.130) may be obtained in the same way. We
note that in (1.130), we obtained the result so far only in the case g = 0. The proof is very
similar to that of (1.127) and (1.129), but some de�nitions have to be changed because the
segment bjα(k) in the de�nition (1.93) is a boundary segment, and is thus the edge of only
one triangle t; the function bs is thus de�ned only in that triangle t.

1.7 Numerical results

In the part of numerical experiments, �rst, we study the in�uence of the parameter ε for a
�xed mesh and of the mesh size for a �xed value of the penalty parameter. Secondly, we
give an overall process to recursively adapt the value of the penalty parameter and the mesh
re�nement.

1.7.1 In�uence of the penalty parameter

In this subsection, we will work on the domain Ω = [0; 1]2. A triangular mesh with rather
uniform triangles is used. The exact solution (û, p̂) is regular with û = (∂yϕ,−∂xϕ) given
by

ϕ(x, y) = 100x2y2(1− x)2(1− y)2 and p̂(x, y) = 10(x2 + y2 − 2

3
). (1.150)

Fig. 1.7 presents the plots of the errors and the estimators when the penalty parameter ε
goes from 10−2 to 10−8. They include the actual errors in the H1(Ω) and L2(Ω) norms for
the velocity, i.e. the error in the velocity gradient ‖∇û − ∇huh‖L2(Ω) and in the velocity
‖û−uh‖L2(Ω), the total estimator, the discretization estimator and the penalization estimator
which are given by Theorem 1.26 when we estimate the velocity error. The left (resp. right)
�gure corresponds to the mesh size h = 5.69 × 10−2 (resp. h = 3.125 × 10−2). We see that
for a given mesh, the ratio between the penalization estimator and the penalty parameter ε
asymptoticaly tends to a constant, while the discretization estimator is nearly independent of
ε. Moreover, the actual errors decrease with ε until a certain level. Then, the discretization
error is the dominant error and decreasing ε further does not have any in�uence on the
overall error. As expected, when the mesh size is smaller (right part of the Figure), then the
value of the penalty parameter for which the errors saturate is also smaller.



CHAPTER 1. STOKES EQUATIONS 43

1

1
2

ε

 1e−05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1e−08  1e−06  0.0001  0.01

dis. est.
pen. est.

E
rr

or
s

est. H 

err. H 
err. L 

Value of penalty parameter

2
1

1

 1e−05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1e−08  1e−06  0.0001  0.01

dis. est.

E
rr

or
s

pen. est.

Value of penalty parameter 

err. H 
err. L 

est. H 

Figure 1.7: Actual errors in H1(Ω) and L2(Ω) norms, total estimator, discritization estimator
and penalization estimator for the velocity. Left: h = 5.69× 10−2, right: h = 3.125× 10−2.

1.7.2 In�uence of the mesh size

On the same square domain Ω and with the same exact solution as previously, we work with
a �xed ε = 10−3 (resp. ε = 10−7) in the left (resp. right) part of Fig. 1.8. Since the solution
is regular, only uniformly re�ned triangular meshes will be considered. Figure 1.8 presents
the same curves as in Fig. 1.7, but now as a funtion of h, varying from 0.25 to 1.6× 10−2.
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Figure 1.8: Actual errors in H1(Ω) and L2(Ω) norms, total estimator, discritization estimator
and penalization estimator for the velocity. Left: ε = 10−3, right: ε = 10−7.

The actual errors decrease until the mesh size h is so small that the penalization error
will dominate the discretization error, and the total error thus stagnates to a certain level.
The penalization estimator is nearly independent of h in the left �gure but behaves roughly
like h−1 in the right �gure. This behaviour remains unexplained and further investigations
have to be conducted about this. The total estimator and the discretization estimator
decrease regularly when h decreases, roughly like h, but, then, when h is small enough the
total estimator starts to stagnate because the penalization estimator stops being negligeable
(better seen in Fig. 1.9, where ε = 10−2).
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Figure 1.9: Actual errors in H1(Ω) and L2(Ω) norms, total estimator, discritization estimator
and penalization estimator for the velocity for ε = 10−2.

1.7.3 Adaptive penalty parameter and mesh

We propose the following computational process. We start with a given coarse mesh and an
initial value of ε, and we �x some ratio 0 < γ ≤ 1.
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Figure 1.10: Actual errors in H1(Ω) and total estimator for the velocity. Left: γ = 1/10,
right: γ = 1/500.

Then, we compute the numerical solution, and we get ηh and ηε. Then,

• If ηε ≥ γηh, we adapt a new ε by multiplying the old ε with the ratio γηh
2ηε

and keep the
same mesh for a new computation. This has the e�ect of maintaining the error due to
the penalization below a certain ratio of the error due to the discretization.

• Otherwise, we adaptively re�ne the mesh based on the discretization estimator ηh.
For this, on the given mesh, we compute the local discretization estimators ηi,h with
η2h =

∑
i η

2
i,h and ask to re�ne a given primal cell Ti by a factor 4 in terms of area if

ηi,h ≥ (maxi ηi,h)/2.
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The test we present to illustrate this strategy is also on the domain Ω = [0; 1]2, The exact
solution (û, p̂) is regular with û = (ϕy,−ϕx), and ϕ is given by

ϕ(x, y) = x2(1− x)2y2(1− y)2 and p̂(x, y) = 5(x2 + y2 − 2

3
). (1.151)

For accuracy reasons, the ratio γ may be chosen so that the penalization error is much lower
than the discretization error like in the right �gure of Fig. 1.10 obtained with γ = 1/500. We
observe that the actual error and the total estimator are not a�ected by the penalty term.
Moreover, we made a test with γ = 1/10 and we present the result in the left �cture of Fig.
1.10 to show the interplay between the mesh re�nement and the decrease of ε.

In the following test, we will compare the exact error and total estimator in H1(Ω) for
uniform and adaptive re�nements. We will combine this work with the adaptive penalty and
mesh with γ = 1/500. Our test is in the domain Ω = [0, 1[2 and the exact couple solution
(û, p̂) is singular with û = (ϕy,−ϕx), and ϕ is

ϕ(x, y) = x
7
4 (1− x)2y2(1− y)2 and p̂(x, y) = x+ y − 1

10
.

We observe that the velocity û is in [H
5
4 (Ω)]2 and there is a boundary singularity on the

edge x = 0.
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Figure 1.11: Estimated and exact errors in uniform/adaptive re�nement (left) and an adap-
tived mesh (right).

In Fig. 1.11, the penalty parameter ε decreases from 10−3 to 7.98×10−11 for the adaptive
re�nement (from 10−3 to 1.80× 10−7 for the uniform re�nement). The curve of convergence
rate corresponding to the uniform mesh re�nement is parallel to N−1/8 curve, while the curve
of convergence rate corresponding to the adaptive mesh re�nement is parallel to N−1/3 curve.
Moreover, the e�ectivity of both re�nements is almost 15.

Normally, the plot of exact error corresponding to a adaptive mesh re�nement is paralell
to N−1/2, but in our singular case, it is not satis�ed. We would like to determine that
this problem is caused by our dicretization estimator or not, we include in Fig. 1.12. We
compare two exact error corresponding two adaptive re�nement process which are driven
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Figure 1.12: Exact errors in the adaptive process using the discretization estimator and exact
error.

by our dicretization estimator and the exact error. Clearly, the exact error is not mostly
a�ected by the applied adaptive process.
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Chapter 2

Nonlinear Darcy Equations in Two

dimensions

We present in this chapter several schemes for the discrete solution of nonlinear di�usion
equations along with related a posteriori error estimation. The estimator includes two terms:
discretization and linearization estimators. Hence, the iterative linearization can be stopped
whenever the linearization estimator drops below a fraction of the discretization estimator.
Thus, this stopping criterion ensures that the actual error and the estimators are only a�ected
by the space discretization. Moreover, this leads to computational savings, because it avoids
unnecessary linearization iterations. Numerical tests are performed with several types of
nonlinear di�usion equations.

2.1 Introduction

Let Ω be an open bounded polygonal subset of R2, Γ = ∂Ω, f be a given function from Ω
to R and H a given function speci�ed below. We consider an approximate solution of the
following nonlinear equation:{

−div(H(û)∇û)(x) = f(x), x ∈ Ω,

û(x) = 0, x ∈ Γ.
(2.1)

This nonlinear di�usion equation appears in several physical models such as Darcy �ows in
porous medias.

Let us give some assumptions on this problem.

A1. Let H : R 7→ R be continuous such that there exist constants C1, C2 > 0 satisfying

C1 ≤ H(û) ≤ C2, for all û ∈ R. (2.2)

Moreover, we will assume that there exists a positive constant C such that

|H(û)−H(v̂)| ≤ C|û− v̂|, for all (û, v̂) ∈ R2. (2.3)

A2. Let f belong to L2(Ω).

49
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Under assumptions (A1) and (A2), there exist û ∈ V = H1
0 (Ω) such that û is the unique

weak solution of problem (2.1), in the sense that∫
Ω

H(û)∇û · ∇v̂(x)dx =

∫
Ω

fv̂(x)dx for all v̂ ∈ V. (2.4)

The existence of weak solution of this problem is proved in [9] and results about uniqueness
of the solution may be found in [4].

The discrete solution of the nonlinear di�usion equation is investigated by the mixed
�nite element method in [12], and, more generally, in [15]. More recently, �nite volume
discretizations have been developed for linear di�usion equations, such as �nite volume
schemes on admissible meshes [7], DDFV schemes [14] and multipoint �ux approximation
(MPFA) schemes [1] on arbitrary meshes, etc. Then we are interested in solving the nonlinear
di�usion equations by such �nite volume discretizations. In this work, we will deal with
the above three methods. The discretization process of the problem leads to a system of
nonlinear equations, which is linearized by the �xed point method. These schemes have a
local conservation property, which is the important ingredient to obtain an a posteriori error
estimation.

The theory of a posteriori error estimation is not very developed for the nonlinear di�usion
equation. L. El Alaoui et al. [6] have obtained a posteriori error estimate for a �nite element
method in the p-Laplace case. D. Kim et al. [11] gave an estimate for the mixed �nite
element discretization. As far as �nite volume methods are considered, although there are
not many important results for the nonlinear di�usion equations, essential development steps
on a posteriori error estimation have been achieved for linear di�usion equations. Nicaise
[13] gave a posteriori error estimation for Morley-type interpolations of the original piecewise
constant �nite volume approximation. P. Omnes et al. [14] used the equivalence of the DDFV
scheme with a �nite element like method to derive fully computable a posteriori error estimate
for this method applied to the Laplace equation. For the local conservative methods, M.
Vohralík [19] built an approximate function which depends only on the �ux through the
edges of the cells and the �nite volume unknowns at some control points in the cells and
provides error estimation with respect to this reconstruction. In addition, the e�ectivity
index is very close to one, which demonstrates an accurate estimation. M. Vohralík's idea
will be applied in this work to estimate the error of �nite volume techniques applied to the
non-linear di�usion equations.

Given a discrete solution, a stage of iterative process and a mesh, our a posteriori error
estimation is split into 2 terms: the discretization and linearization estimators. This splitting
has two main advantages. The �rst one is that, in practice, when the number of iterations is
large enough, the linearization estimator is negligible compared with the discretization one.
Thus the balance of these two estimators is an important key to avoid performing an excessive
number of nonlinear solver iterations. The other one is that the mesh re�nement is then only
based on the discretization estimator. This type of analysis is considered in [6] for the p-
Laplace case. In this work, we do not deal with the convergence of the linearization iterations
and of the discretization processes. We only mention them in our numerical experiments.

This chapter is organized as follows. Section 2.2 sets some notations and de�nitions re-
lated to the meshes, the non-linear problem together with its discretization and linearization.
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Section 2.3 is devoted to our a posteriori error estimation, and its e�ciency is veri�ed in
Section 2.4. In Section 2.5, we present results of some numerical tests.

2.2 Construction of the schemes

2.2.1 Notations and de�nitions

We will follow the de�nition of general meshes given in [14]. Let Ω be covered by a primal
mesh with cells denoted by Ti, i ∈ [1, I]. To each Ti, we associate a point Gi located in the
interior of Ti and V (i) is set of the vertices of Ti. With any vertex Sk, with k ∈ [1, K], we
associate a dual cell Pk by joining points Gi associated with the primal cells surrounding Sk

to the midpoints of the edges of which Sk is a node. The notations are summarized in Fig.
2.1 and Fig. 2.2.

Let hi denote the diameter of Ti and ρi denote the diameter of the largest ball inscribed
in Ti. We make the following shape regularity assumption on the mesh:

Assumption A (shape-regularity of the meshes). There exists a positive constant θ inde-
pendent of the mesh such that maxi∈[1,I] hi/ρi ≤ θ.

With any primal edge Aj with j ∈ [1, J ], we associate a so-called diamond-cell Dj ob-
tained by joining the vertices Sk1(j) and Sk2(j) of Aj to the points Gi1(j) and Gi2(j) associated
with the primal cells Ti1(j) and Ti2(j) that share Aj as a part of their boundaries. When Aj is
a boundary edge (there are JΓ such edges), the associated diamond-cell is a �at quadrilateral
(i.e. a triangle) and we denote by Gi2(j) the midpoint of Aj (thus, there are JΓ such addi-
tional points Gi). The unit normal vector to Aj is nj and points from Gi1(j) to Gi2(j). We
denote by A′

j1 (resp. A′
j2) the segment joining Gi1(j) (resp. Gi2(j)) and the midpoint of Aj.

Its associated unit normal vector, pointing from Sk1(j) to Sk2(j), is denoted by n′
j1 (resp. n

′
j2).

In the case of a boundary diamond-cell, A′
j2 reduces to {Gi2(j)} and does not play any role.

Finally, for any diamond-cell Dj, we shall denote by Miαkβ the midpoint of [Giα(j)Skβ(j)],
with (α, β) ∈ {1; 2}2. For any primal Ti, such that Aj ⊂ ∂Ti, we denote nji := nj if i = i1(j)
and nji := −nj if i = i2(j) so that nij is always exterior to Ti.

Moreover, for the MPFA O scheme, we will set some more de�nitions. For any j ∈ [1, J ],
and any k ∈ [1, K] such that Sk ∈ ∂Aj, we associate the segment Ak

j which is obtained by
joining the vertex Sk and the midpoint Mj of Aj. For any i ∈ [1, I], k ∈ V (i), we denote

by Ai,k
j1
, Ai,k

j2
the two boundary segments of Ti having Sk as common vertex, and M i,k

j1
,M i,k

j2

as midpoints. Let νi,kj1
(resp. νi,kj2

) be the interior unit normal vector located on the segment

opposite to vertex M i,k
j1

(resp. M i,k
j2
) in the triangle GiM

i,k
j1
M i,k

j2
(see Fig. 2.3).

Finally, we shall also consider the case in which the primal mesh (Ti)i∈[1,I] is an admissible
mesh (see [7]). In that case, for i ∈ [1, I], such that Aj ⊂ ∂Ti, let di,j be the distance between
the control point Gi and the segment Aj.

By a slight abuse of notations, we shall write k ∈ Γ if the vertex Sk belongs to Γ.
Identically, we shall write i ∈ Γ (resp. j ∈ Γ) if Gi ∈ Γ (resp. Aj ⊂ Γ).

We recall here the discrete di�erential operators which have been constructed on fairly
general two dimensional meshes and some of their properties. For more details, see [5, 1].

De�nition 2.1. Let u = (uj) be in (R2)J . We de�ne its discrete divergence on primal and
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Figure 2.1: A nonconforming primal mesh and its associated dual mesh (left) and diamond-
mesh (right).

jA’
2

j1
n’

n j

j2
n’

Aj

jA’
1

Aj

n j

Sk1 j1
n’

S
k2  

iG
1

i2  
G

jA’
1

i1

i2  

k1

i2  k1
M

i1k1
M

i2  k2
M

i1k2
M k2

S

G

S

G

Figure 2.2: Notations for the inner diamond-cell (left) and a boundary diamond mesh (right).

dual cells by

(∇T
h · u)i :=

1

|Ti|
∑
j∈∂Ti

|Aj|uj · nji,

(∇P
h · u)k :=

1

|Pk|

(∑
j∈∂Pk

(|A′
j1|uj · n′

j1k + |A′
j2|uj · n′

j2k) +
∑

j∈∂Pk∩Γ

|Aj|
2

uj · nj

)
.

De�nition 2.2. Let φ = (φT
i , φ

P
k ) be in RI+JΓ ×RK, its discrete gradient ∇D

h φ is de�ned by
its values on the cells Dj by

(∇D
h φ)j :=

1

2|Dj|

{
[φP

k2
− φP

k1
](|A′

j1|n′
j1 + |A′

j2|n′
j2) + [φT

i2
− φT

i1
]|Aj|nj

}
.

De�nition 2.3. Let φ = (φT
i , φ

k
j ) ∈ RI × R2J with k ∈ ∂Aj, its discrete gradient ∇i,k

h φ is
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Figure 2.3: Notations for the triangle GiM
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.

de�ned by its values on the triangle GiM
i,k
j1
M i,k

j2
by

∇i,k
h φ =

1

2|GiM
i,k
j1
M i,k

j2
|

{
(φk

j1
− φT

i )ν
i,k
j1
|GiM

i,k
j2
|+ (φk

j2
− φT

i )ν
i,k
j2
|GiM

i,k
j1
|
}
.

We will de�ne the broken Sobolev space which we use to compute a posteriori error
estimation.

De�nition 2.4 (Broken Sobolev space).

H1
h(Ω) :=

{
φ ∈ L2(Ω);φ|Ti

∈ H1(Ti) ∀i ∈ [1, I]
}
. (2.5)

2.2.2 The schemes and their linearizations by a �xed point method

Let us now de�ne three schemes. We set

V D
h =

{
uh = ((uTh,i), (u

P
h,k)) ∈ RI+JΓ × RK/ s.t.

uTh,i = 0 , ∀i ∈ Γ and uPh,k = 0 , ∀k ∈ Γ
}
,

V O
h =

{
uh = ((uTh,i), (u

k
h,j)) ∈ RI × R2J/ s.t. ukh,j = 0 , ∀j ∈ Γ, Sk ∈ ∂Aj

}
,

Vh =
{
uh = ((uh,i), uh,j) ∈ RI × RJ/ s.t. uh,j = 0 , ∀j ∈ Γ

}
.

At a given stage m of the iterative scheme, if we know an approximate solution umh , we
de�ne some um,∗

h ∈ V D
h (resp. V O

h , Vh) at which the nonlinear function H is linearized. How
um,∗
h is chosen depends on the method considered, for example one may choose um,∗

h = umh or
um,∗
h = αmum−1

h + (1− αm)umh with αm ∈ [0, 1) (relaxation method), etc. Then the discrete
linearized scheme is: �nd um+1

h ∈ V D
h (resp. V O

h , Vh) such that

DDFV



−(∇T
h ·H(um,∗

h )(∇D
h u

m+1
h ))i = fT

i ∀i ∈ [1, I],

−(∇P
h ·H(um,∗

h )(∇D
h u

m+1
h ))k = fP

k ∀k /∈ Γ,

um,∗
h,j =

(um,∗)Ph,k2(j) + (um,∗
h )Ph,k1(j)

2
.

(2.6)
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MPFA O


−1
|Ti|

∑
j∈∂Ti

∑
k∈∂Aj

|Ak
j |H((um,∗

h )kj )∇
i,k
h u

m+1
h · nji = fT

i ∀i ∈ [1, I],

∇i1(j),k
h um+1

h · nji1(j) +∇
i2(j),k
h um+1

h · nji2(j) = 0 ∀j /∈ Γ, k ∈ ∂Aj.

(2.7)

FV



−1
|Ti|

∑
j∈∂Ti

|Aj|H(um,∗
h,j )

um+1
h,j − u

m+1
h,i

di,j
= fT

i ∀i ∈ [1, I],

um+1
h,j − u

m+1
h,i1(j)

di1(j),j
+
um+1
h,j − u

m+1
h,i2(j)

di2(j),j
= 0 ∀j /∈ Γ,

(2.8)

where fT
i and fP

k are the mean-values of f over Ti and Pk, respectively. For a given mesh,
following the idea of the authors [6], in practice, starting from an initial guess u0,∗h ∈ Vh,
a sequence of discrete solutions (umh )m≥1 ∈ Vh is generated through the following iterative
algorithm: for m ≥ 0,

(1) Linearize the nonlinear problem at um,∗
h .

(2) Solve the discrete linearized problem (2.6), (2.7) or (2.8) for um+1
h .

(3) If desired precision is reached, then stop. Else set m← (m+ 1) and go to step (1).

We assume this process will be stopped; it means that there exists Nh ∈ N such that the
discrete solution uNh ∈ Vh satis�es the desired precision. It is convenient to set uh = uNh

and wh = uNh−1,∗
h ; then in all three schemes above, uh and wh satisfy that∑

j∈∂Ti

|Aj|Fji(wh, uh) = −|Ti|fT
i ∀i ∈ [1, I],

Fji1(j)(wh, uh) + Fji2(j)(wh, uh) = 0 ∀j ∈ [1, J − JΓ],

(2.9)

where Fji1(j) and Fji2(j) are the �uxes through the edge Aj shared by the two cells Ti1(j) and
Ti2(j), where for i ∈ [1, I] and j ∈ ∂Ti, we denote by Fji the �ux from control volume Ti
through the segment Aj:

Fji(wh, uh) =



H(wh,j)(∇D
h uh)j · nji for the DDFV scheme,

1

2

∑
k∈∂Aj

H(wk
h,j)∇

i,k
h uh · nji for the MPFA O scheme,

H(wh,j)
uh,j − uh,i

dij
for the FV scheme.

(2.10)



CHAPTER 2. NONLINEAR DARCY EQUATIONS IN TWO DIMENSIONS 55

2.3 An a posteriori error estimate

In this part, we restrict to the case where all (primal) cells Ti are triangular. An extension to
non triangular cells may be performed exactly like in [19] by dividing each cell into triangles
by joining its center to its vertices, and by solving a local scheme discretizing the original
equation with Neumann boundary conditions coming from the numerical scheme on the
global mesh.

2.3.1 The construction of an approximate function

In order to de�ne an approximate function whose gradient is a good approximation of
H(û)∇û and which depends on the discrete solutions uh and wh, we will rely on the ideas
of R. Eymard et al. [8]. For any i ∈ [1, I] and j ∈ ∂Ti, let φi,j ∈ H1(Ti)/R be the variational
solution of the following Neumann problem

∆φi,j(x) =
|Aj|
|Ti|

for a.e x ∈ Ti,

∇φi,j(y) · nji = 1 for a.e y ∈ Aj,

∇φi,j(y) · nj1i = 0 for a.e y ∈ Aj1 , j1 ∈ ∂Ti, j1 6= j.

Since (Ti)i∈[1,I] is a family of triangular cells, following [17] and [8], the functions φi,j are the
usual polynomial basis functions for the �ux in the classical mixed �nite element approxi-
mation, and their gradient may be written explicitly. Let a be the vertex which is opposite
to segment Aj. Then,

∇φi,j(x) =
x− a

d(a, Aj)
for any x ∈ Ti,

where d(x, Aj) denotes the distance between Aj and a.
Next we de�ne the functions Mi,Wi ∈ H1(Ti) by: for all x ∈ Ti

Mi(x) =
∑
j∈∂Ti

Fji(uh, uh)φi,j(x) + Ci,

Wi(x) =
∑
j∈∂Ti

Fji(wh, uh)φi,j(x).

For any i ∈ [1, I], we choose the constant Ci such that

Mi(Gi) =

∫ uh,i

0

H(t)dt,

where uh,i is the value of uh on the primal cell Ti and we also de�ne M ∈ H1
h(Ω) by

M(x) =Mi(x), for all x ∈ Ti and i ∈ [1, I]. (2.11)

It is clear from the de�nition of Wi, that for any i ∈ [1, I]

∇Wi · nji(x) = Fji(wh, uh) for all x ∈ Aj, j ∈ ∂Ti. (2.12)

and

∆Wi(x)|Ti
=

1

|Ti|
∑
j∈∂Ti

|Aj|Fji(wh, uh) = −fT
i . (2.13)
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2.3.2 Poincaré inequality

Lemma 2.5. Let ω be a polygonal domain. Let ϕ ∈ H1(ω) and let ϕω be the mean-value of
ϕ over ω. Then, there exists a constant Cω depending only on the shape of ω such that

‖ϕ− ϕω‖L2(ω) ≤ Cωdiam(ω)‖∇ϕ‖L2(ω). (2.14)

Note that when ω is convex, a constant cω is given by 1
π
; for more details, see [16].

2.3.3 Averaging interpolation operator

Let P 2
h (Ω) denote the space of polynomials of degree at most 2 on each element. The

averaging interpolation operator IOs : P
2
h (Ω)→ P 2

h (Ω) ∩H1
0 (Ω) has been considered in [10].

Given a function ϕh ∈ P 2
h (Ω), the value of IOs(ϕh) at a Lagrangian node is the average of

the values of ϕh at this node.
Let [ϕh]j be the jump of the function ϕh through the edge Aj: [ϕh]j is the di�erence of

the value of ϕh in Ti1(j) and Ti2(j) and if Aj ⊂ Γ, then [ϕh]j = ϕh. We mention the following
result which has been proved in [10] and that will be used to prove the e�ciency of the
estimators.

Lemma 2.6. Let ϕ ∈ P 2
h (Ω), and let IOs(ϕh) ∈ P 2

h (Ω) ∩ H1
0 (Ω) be constructed as above.

Then

‖∇(ϕh − IOs(ϕh))‖2L2(Ti)
≤ C

∑
Aj∩Ti 6=∅

|Aj|−1‖[ϕh]j‖2L2(Aj)
, (2.15)

where C depends only on the shape regularity parameter θ de�ned in subsection 2.2.1.

2.3.4 A posteriori error estimate

We set

B(φ, ϕ) =
∑
i∈[1,I]

(∇φ,∇ϕ)Ti
∀φ, ϕ ∈ H1

h(Ω) (2.16)

and the corresponding energy norm

|||φ|||2Ω = B(φ, φ). (2.17)

Let û be the weak solution of (2.1), we set

F (x) =

∫ û(x)

0

H(t)dt. (2.18)

It is easy to see that F ∈ H1
0 (Ω) and

∇F (x) = H(û(x))∇û(x). (2.19)
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For i ∈ [1, I], let the estimators be de�ned as

ηR,i := CTi
hi‖f − fi‖L2(Ti), η

2
R
=
∑
i∈[1,I]

η2
R,i, (2.20)

ηNC,i := ‖∇M −∇IOs(M)‖L2(Ti), η
2
NC

=
∑
i∈[1,I]

η2
NC,i, (2.21)

ηL,i := ‖∇Mi −∇Wi‖L2(Ti), η
2
L
=
∑
i∈[1,I]

η2
L,i. (2.22)

Moreover, the (local) discretization estimators is de�ned following:

ηD,i = ηNC,i + ηR,i and ηD = ηNC + ηR. (2.23)

Now we can state the main result of this section, which is a bound for the L2 norm of the
error between the exact �ux ∇F = H(û)∇û and the �ux that can be deduced from the
solution uh through the gradient of M de�ned by (2.11).

Theorem 2.7. There holds

‖∇F −∇M‖L2(Ω) ≤ ηNC + ηR + ηL. (2.24)

2.3.5 Balancing discretization and linearization estimators

To balance the discretization and linearization estimators, we follow the idea in [6]: we
choose a positive parameter γD and stop the iterative loop in Subsection 2.2.2 whenever

ηL ≤ γDηD. (2.25)

With this condition, unnecessary linearization iterations can be avoided, which can lead to
important computational savings.

2.3.6 Proof of the a posteriori error estimate

From the de�nition of the operator B, there holds (see Lemma 7.1 in [18]):

Theorem 2.8 (Abstract framework). Let F, S ∈ H1
0 (Ω) and let M ∈ H1

h(Ω) be arbitrary.
Then

|||F −M |||Ω ≤ |||M − S|||Ω +

∣∣∣∣B(F −M,
F − S

|||F − S|||Ω
)

∣∣∣∣ . (2.26)

Lemma 2.9. Let Φ ∈ H1
0 (Ω) be arbitrary such that ‖∇Φ‖L2(Ω) = 1. Then

|B (F −M,Φ)| ≤ ηR + ηL. (2.27)
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Proof. Using the bilinearity of B(., .), combining the property of F in (2.19) with the varia-
tional formulation involving the exact solution û in (2.3) and the de�nition of M in (2.11),
we obtain

B (F −M,Φ) =
∑
i∈[1,I]

∫
Ti

(∇F −∇M) · ∇Φ(x)dx

=

∫
Ω

fΦ(x)dx−
∑
i∈[1,I]

∫
Ti

∇Wi(x) · ∇Φ(x)dx

−
∑
i∈[1,I]

∫
Ti

(∇Mi −∇Wi) · ∇Φ(x)dx. (2.28)

Let Y be de�ned by

Y :=
∑
i∈[1,I]

∫
Ti

∇Wi(x) · ∇Φ(x)dx.

Applying the Green formula on each Ti, i ∈ [1, I], there holds

Y =
∑
i∈[1,I]

∑
j∈∂Ti

∫
Aj

∇Wi · njiΦ(σ)dσ −
∑
i∈[1,I]

∫
Ti

∆WiΦ(x)dx.

Using the property of Wi in (2.12)-(2.13), for each i ∈ [1, I] and j ∈ ∂Tj, Fji(wh, uh) is
constant for all Aj; thus we come to

Y =
∑
i∈[1,I]

∑
j∈∂Ti

Fji(wh, uh)

∫
Aj

Φ(σ)dσ +
∑
i∈[1,I]

∫
Ti

fiΦ(x)dx

=
∑
j 6∈Γ

[
Fji1(j)(wh, uh) + Fji2(j)(wh, uh)

] ∫
Aj

Φ(σ)dσ +
∑
j∈Γ

Fji(wh, uh)

∫
Aj

Φ(σ)dσ

+
∑
i∈[1,I]

∫
Ti

fiΦ(x)dx.

For any edge Aj 6⊂ Γ, from the second equation in (2.9), the summation of the �ux from
Ti1(j) to Ti2(j) and from Ti2(j) to Ti1(j) vanishes. In addition, since Φ ∈ H1

0 (Ω), then for any
boundary edge Aj, there holds ∫

Aj

Φ(σ)dσ = 0.

Thus, ∑
i∈[1,I]

∫
Ti

∇Wi(x) · ∇Φ(x)dx =
∑
i∈[1,I]

∫
Ti

fiΦ(x)dx. (2.29)
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Combining (2.28) and (2.29), there holds

B(F −M,Φ) =
∑
i∈[1,I]

∫
Ti

(f − fi)(Φ− Φi)(x)dx−
∑
i∈[1,I]

∫
Ti

(∇Mi −∇Wi) · ∇Φ(x)dx,

where Φi is the mean value of Φ over Ti for all i ∈ [1, I]. Applying the Cauchy-Schwarz
inequality, there holds

B(F −M,Φ) ≤
∑
i∈[1,I]

‖f − fi‖L2(Ti)‖Φ− Φi‖L2(Ti) +
∑
i∈[1,I]

‖∇Mi −∇Wi‖L2(Ti)‖∇Φ‖L2(Ti).

Using Lemma 2.5, we obtain that

‖Φ− Φi‖L2(Ti) ≤ CTi
hi‖∇Φ‖L2(Ti). (2.30)

Finally, applying the discrete Cauchy-Schwarz inequality and taking into account the fact
that ‖∇Φ‖L2(Ω) ≤ 1, there holds

|B (F −M,Φ)| ≤

∑
i∈[1,I]

η2R,i

1/2

+

∑
i∈[1,I]

η2L,i

1/2

, (2.31)

which completes the lemma. Note that in practice, this bound can be improved to

|B (F −M,Φ)| ≤

∑
i∈[1,I]

(ηR,i + ηL,i)
2

1/2

.

Now, we come back to the proof of Theorem 2.7. We choose S = IOs(M) ∈ P 2
h (Ω)∩H1

0 (Ω)
and apply Theorem 2.8 and Lemma 2.9.

2.4 E�ciency of the estimators

Lemma 2.10. There exists a positive constant C independent of the mesh such that

|Aj|−1/2‖[M ]j‖L2(Aj) ≤ C
∑

α∈{1,2}

‖∇M −∇F‖L2(Tiα(j)) + |Aj|−1/2‖〈[M − F ]j, 1〉Aj
|Aj|−1‖L2(Aj).

Proof. Applying the triangle inequality and the fact that 〈[F ], 1〉Aj
= 0, there holds

‖[M ]j‖L2(Aj) ≤ ‖[M ]j − [M ]j‖L2(Aj) + ‖〈[M − F ]j, 1〉Aj
|Aj|−1‖L2(Aj), (2.32)

where [M ]j =
1

|Aj |

∫
Aj
[M ]j(σ)dσ.
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We will next use the inequality

‖[Ψh]j‖L2(Aj) ≤ C|Aj|1/2
∑

α∈{1,2}

‖∇Ψh −∇Φ‖L2(Tiα (j)) (2.33)

where C only depends on the parameter θ and j ∈ [1, J ], Ψh ∈ H1
h(Ω) such that 〈[Ψh], 1〉Aj

=
0 and Φ ∈ H1

0 (Ω) are arbitrary, for more detail, see Theorem 10 in [2]. Applying this
inequality to the �rst term in the right-hand of (2.32) with Ψh|Tiα(j)

= M |Tiα(j)
−MAj ,Tiα(j)

and F = Ψ, where MAj ,Tiα(j)
= 1

|Aj |

∫
Aj
M |Tiα(j)

(σ)dσ, we obtain

‖[M ]j‖L2(Aj) ≤ C|Aj|1/2
∑

α∈{1,2}

‖∇M −∇F‖L2(Tiα (j)) + ‖〈[M − F ]j, 1〉Aj
|Aj|−1‖L2(Aj),

(2.34)

which concludes the proof.

Using the Lemma 2.6 and Lemma 2.10, we obtain the following theorem.

Theorem 2.11. There exists a positive constant C depending only on the parameter θ such
that

η2
NC,i ≤ C

∑
Tk∩Ti 6=∅

‖∇M −∇F‖2L2(Tk)
+ C

∑
Aj∩Ti 6=∅

‖〈[M − F ]j, 1〉Aj
|Aj|−1‖L2(Aj). (2.35)

Remark 2.12. In this section, we consider the e�ciency of ηNC only, because ηR will be of
higher order as soon as f is more regular that L2(Ω) and because ηL is controlled by ηNC and
ηR through (2.25).

2.5 Numerical results

We show here some numerical results obtained on a domain Ω =]−1; 1[×]−1; 1[\[0; 1]×[−1; 0].
The exact solution is û(r, θ) = r2/3 sin(2θ/3), expressed in cylindrical coordinates (r, θ)
centered on (0, 0). We use the Triangle mesh generator and the DDFV scheme for all
tests. Our tests have two parts. In the �rst, we compare the estimated and actual errors,
the e�ectivity indices for a uniform and an adaptive re�nement. On the mesh given, we
compute the discretization estimator ηD,i = ηNC,i + ηR,i and ask to re�ne a given Ti by a
factor 4 in terms of area if ηD,i ≥ (maxi ηD,i)/2. To stop the iteration in the �xed point
method in Subsection 2.2.2, we choose the parameter value γD = 0.01. In the second test,
we will discuss our stopping criterion with the parameter value γD = 0.01 for the �xed point
iteration by comparing it to a classical stopping criterion, namely that the balance equation
are satis�ed by un+1

h up to a certain relative tolerance in the discrete L2 norm:(∑
i∈[1,I] |Ti|

[∑
j∈∂Ti

|Aj |
Ti
Fi,j(u

n+1
h , un+1

h )− fT
i

]2)1/2

(∑
i∈[1,I] |Ti||fT

i |2
)1/2 ≤ 10−8. (2.36)
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Figure 2.4: Estimated and actual errors for uniform and adaptive re�nements (left) and e�ectivity

indices for uniform and adaptive re�nements (right) for H(x) = 1 + 1/(1 + x2).

In �gure 2.4(left), we have plotted the curves of the actual errors and the estimators for
a uniform and for an adaptive mesh re�nement. The curve corresponding to the uniform
mesh re�nement is parallel to the N−1/3 curve, while the curve corresponding to the adaptive
mesh re�nement is parallel to the N−1/2 curve. In Figure 2.4(right), we plot the e�ectivity
indices for the uniform and adaptive re�nement. The e�ciency for the adaptive re�nement
is around 1.15 while the e�ciency for uniform re�nement is around 1.4.

Next, Figure 2.5 presents the true error, the total estimator η, the discretization esti-
mator ηD, and the linearization estimator ηL on a given mesh as a function of the number
of �xed-point iterations. Firstly, we clearly see that the discretization estimator decreases
along with the linearization one only during the �rst few iterations, then while the lineariza-
tion estimator continues to decrease, the total error and the discretization estimator remain
almost constant, and we note that they are almost equal.
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Figure 2.5: Total error, total estimator, discretization and linearization estimators as a function

of the �xed point iteration. Left: H(x) = 1 + 1/(1 + x2) and right: H(x) = 2 + sin(10x).

Moreover, the number of iterations necessary to reach the stopping criterion increases as
the function H becomes more oscillatory. For instance, in the left part of Figure 2.5, the
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stopping criterion (2.25) is reached after 3 iterations and the classical one after 8 iterations;
in the right part of this �gure, these numbers become respectively 7 and 14. This con�rms
that the �xed point iteration can be stopped earlier than classical iteration.
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Chapter 3

Transport Equations

In this chapter, we will consider a posteriori error estimation for the transport equation ∂tu+
a(x, t) · ∇u = 0 with the initial data u0 ∈ L∞ ∩BVloc and the divergence of the velocity �eld
a is not equal to zero. An a posteriori estimate for the error between the exact solution and
the solution of an upwind �nite volume scheme is derived in the L1 norm.

3.1 Introduction

We consider here the following transport equation in N space dimensions (N ≥ 1), with
initial condition: {

∂u
∂t

+ a(x, t) · ∇u = 0, ∀x ∈ RN , t ∈ R+,

u(x, 0) = u0(x), ∀x ∈ RN .
(3.1)

The following hypotheses are made on the data:

(i) u0 ∈ L∞(RN) ∩BVloc(RN); we call (Um, UM) ∈ R2 such that Um ≤ u0 ≤ UM a.e.

(ii) a ∈ C1(RN × R+,RN), there exist V, La <∞ such that

|a(x, t)| ≤ V, ∀(x, t) ∈ RN × R+,

|a(x, t)− a(y, s)| ≤ La(|x− y|+ |t− s|) ∀(x, t), (y, s) ∈ RN × R+

and ∇ · a ∈ L∞(RN × R+).

(3.2)

We shall now de�ne the functional spaces BV (Ω) and BVloc(Ω).

De�nition 3.1. Let Ω ⊂ Rp, with p ∈ N; the functional space BV (Ω) is de�ned as follows:

BV (Ω) =

{
g : sup

{∫
Ω

g(x)∇ · ϕ(x)dx, ϕ ∈ C∞
c (Ω,Rp), ‖ϕ‖∞ ≤ 1

}
<∞

}
.

On BV (Ω), we de�ne a seminorm:

|g|BV (Ω) = sup

{∫
Ω

g(x)∇ · ϕ(x), ϕ ∈ C∞
c (Ω,Rp), ‖ϕ‖∞ ≤ 1

}
.

65
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We also consider BVloc(Ω):

BVloc(Ω) = {g; g ∈ BV (K) for all compact K ⊂ Ω} .

Following [5], we say that u ∈ L∞(RN × R+) is the unique entropy solution to (3.1), if
for all κ ∈ R, ϕ ∈ C1

c (RN × R+,R+), we have∫
RN×R+

[
|u(x, t)− κ|ϕt(x, t) + (u(x, t)>κ− u(x, t)⊥κ)a(x, t) · ∇ϕ(x, t)

+(u(x, t)>κ− u(x, t)⊥κ)∇ · a(x, t)ϕ(x, t)
]
dxdt+

∫
RN

|u0(x)− κ|ϕ(x, 0)dx ≥ 0,

(3.3)

where for a, b ∈ R, we set a>b := max{a, b} and a⊥b := min{a, b}.
The upwind scheme is a standard method to solve in a approximate way this problem,

and, more generally, conservation laws (see [3]), but the a priori and a posteriori error
estimations have been investigated only recently on scalar equations.

In the case of a conservation law with a divergence free �ux function and no source term,
C. Chainais-Hillairet [1] derived an a priori error estimate with a convergence order of 1/4
in the L1 norm. Based on [1], an a posteriori error estimation is achieved by D. Kröner and
M. Ohlberger [4] for the upwind explicit scheme. This result is used to de�ne an algorithm
with an adaptive grid for the �nite volume scheme. Recently, in Mamaghani's Ph.D. thesis
[6], an a posteriori error estimate is obtained for the implicit upwind �nite volume scheme.

Otherwise, in [2], the a priori error estimation was also treated for a conservation law
with a non divergence free �ux function and with a source term (both "sti�" and "non sti�"
source terms are treated). However, the authors did not obtain explicit bounds that could
be used in a posteriori error estimates, and they used the property that with the initial data
belonging to BVloc(RN), then the entropy solution also belongs to BVloc(RN × R+) but did
not actually prove it.

In our work, we will deal with the transport equation with a non divergence free velocity
�eld, written as a conservation law with the source term ∇ · a(x, t)u(x, t), and we obtain
an a posteriori error estimation for the explicit upwind scheme. To obtain this result, we
shall prove the property that with the initial data belonging to BVloc(RN), then the entropy
solution also belongs to BVloc(RN × R+).

3.2 De�nition and stability of the upwind scheme

3.2.1 Notations and de�nition of the scheme

Firstly, let {tn : n ∈ N s.t. 0 = t0 < t1 < t2 < · · · } be a partition of R+ and ∆tn = tn+1 − tn
be the steps of this partition. Further, for all n ∈ N, let T be a mesh of RN such that the
common interface of any two elements (which are called control volumes in what follows) of T
is included in a hyperplane of RN and the elements are convex subdomains. Let N (p) denote
the set of neighbours of the control volume p; for q ∈ N (p), we denote by σp,q the common
interface between p and q, and by np,q the unit normal vector to σp,q oriented from p to q.
For any (p, q) ∈ T 2, let hp be the diameter of control volume p and h = max{hp : p ∈ T }
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and let hp,p be the diameter of common interface σp,q. We assume that there exist α > 0
such that, for all p ∈ T :

αhN ≤ |p|,
α|∂p| ≤ hN−1.

(3.4)

Now, we de�ne the upwind scheme. The discrete unknowns are denoted by unp , n ∈ N,
p ∈ T . The set {u0p, p ∈ T } is given by the initial condition:

u0p =
1

|p|

∫
p

u0(x)dx. (3.5)

Assume the CFL condition

∆tn ≤ (1− ξ)α
2h

V
, ∀ n ∈ N, (3.6)

where ξ ∈ (0, 1). Let us consider the following explicit numerical scheme:

un+1
p − unp
∆tn

+
1

|p|
∑

q∈N (p)

anp,qu
n
p,q −

1

|p|
∑

q∈N (p)

anp,qu
n
p = 0, (3.7)

where

anp,q =
1

∆tn

∫ tn+1

tn

∫
σp,q

a(γ, t) · np,qdγdt (3.8)

and

unp,q =



unp if anp,q > 0,

unp + unq
2

if anp,q = 0,

unq if anp,q < 0.

(3.9)

We note that the sum
1

|p|
∑

q∈N (p)

anp,qu
n
p,q is an upwind discretization of ∇ · (au) and the sum

− 1

|p|
∑

q∈N (p)

anp,qu
n
p is a discretization of −u∇ · a.

The approximate solution, denoted by uh, is de�ned from RN × R+ to R with the help of
the discrete unknowns of the scheme by:

uh(x, t) = unp if x ∈ p, t ∈ [tn, tn+1[, ∀ p ∈ T , n ∈ N, and uT ,0(x) = uh(x, 0) (3.10)
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3.2.2 L∞-stability of the scheme

Lemma 3.2. Under assumption (3.2), (3.4) and CFL condition (3.6), let uh be given
by (3.10), then

Um ≤ unp ≤ UM , ∀n ∈ N, p ∈ T (3.11)

and

‖uh‖L∞(RN×R+) ≤ ‖u0‖L∞(RN ). (3.12)

Proof. From the relation (3.7), we express un+1
p as a function of unp and unq , q ∈ N (p),

un+1
p = unp −

∆tn
|p|

∑
q∈N (p)

anp,qu
n
p,q +

∆tn
|p|

∑
q∈N (p)

anp,qu
n
p .

By the de�nition of unp,q, there holds

un+1
p = unp −

∆tn
|p|

∑
q∈N (p)

[anp,q]
−(unq − unp),

where [anp,q]
− = min(0, anp,q). Or

un+1
p = unp (1 +

∆tn
|p|

∑
q∈N (p)

[anp,q]
−) +

∑
q∈N (p)

−∆tn
|p|

[anp,q]
−unq . (3.13)

Following the CFL condition, then

1 +
∆tn
|p|

∑
q∈N (p)

[anp,q]
− ≥ 0,

−∆tn
|p|

[anp,q]
− ≥ 0

and 1 +
∆tn
|p|

∑
q∈N (p)

[anp,q]
− +

∑
q∈N (p)

−∆tn
|p|

[anp,q]
− = 1.

Hence, under the CFL condition, un+1
p is a convex combination of {unq : q ∈ T } and we

obtain

inf
q∈T

unq ≤ un+1
p ≤ sup

q∈T
unq , ∀p ∈ T .

This concludes the proof of (3.11), which, in turn, yields (3.12).

3.2.3 A "weak BV" estimate

We set some notations that will be used in all the sequel. Let T > 0 and R > 0 be given,
and let B(0, R) be the ball of radius R centered on the origin, we de�ne

NT = max{n ∈ N, tn ≤ T},
TR = {p ∈ T , p ⊂ B(0, R)},
En∗ = {(p, q) ∈ (T )2, q ∈ N (p), unp > unq },
EnR = {(p, q) ∈ (T )2, p or q ∈ B(0, R), q ∈ N (p), σp,q ⊂ B(0, R) and unp > unq },
ER,h = {(p, q) ∈ (T )2, p ⊂ B(0, R) and q 6⊂ B(0, R), q ∈ N (p)}
E =

{
(p, q) ∈ (T )2, q ∈ N (p)

}
.
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Lemma 3.3. Under assumption (3.2), (3.4) and CFL condition (3.6), then there exists a
constant Cbv such that

NT∑
n=0

∆tn
∑

(p,q)∈En
R

|anp,q||unp − unq | ≤
Cbv√
h
, ∀h ∈ R (3.14)

NT∑
n=0

∑
p∈TR

|p||un+1
p − upn| ≤

Cbv√
h
, ∀h ∈ R. (3.15)

Proof. In this proof, we shall denote by Ci (i ∈ N) various quantities only depending on a,
u0, ξ, R, T . The mesh size is chosen small enough (h < R) so that TR is not empty. We �rst
prove (3.14). Multiplying 3.7 by δtn|p|unp and summing the result over p ∈ TR, n ∈ 0, · · · , NT

yields

B1 +B2 = 0, (3.16)

with

B1 =

NT∑
n=0

∑
p∈TR

|p|unp (un+1
p − unn)

and

B2 =

NT∑
n=0

∆tn
∑
p∈TR

∑
q∈N (p)

anp,q(up,q − up)unp .

Gathering the last two summations by edges in B2, since a
n
p,q = −anq,p and unp,q = unq,p, we

have

B2 = B3 −
NT∑
n=0

∆tn
∑

(p,q)∈ER,h

anq,p(up,q − uq)unq , (3.17)

where

B3 =

NT∑
n=0

∆tn
∑

(p,q)∈En
R

[
anp,q(up,q − up)unp − anp,q(up,q − uq)unq

]
.

Then

|B2 −B3| ≤
NT∑
n=0

∆tn
∑

(p,q)∈ER,h

|anq,p(up,q − uq)unq |

We consider that elements p in ER,h are included in B(0, R) \B(0, R− h), since the measure
of B(0, R) \ B(0, R − h) is less than C2h, then number of the elements in ER,h, for �xed n,
is lower than C2h/(αh

N) = C3h
1−N . Thanks to (3.4), using the fact that |∂p| ≤ (1/α)hN−1,

that a(x, t) ≤ V and (up,q − uq)unq ≤ 2max{U2
m, U

2
M}. Then∑

(p,q)∈ER,h

|anq,p(up,q − uq)unq | ≤ 2V max{U2
m, U

2
M}

1

α
C3h

1−NhN−1 = C4.
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Moreover, since
∑NT

n=0 ∆tn = tNT+1 ≤ 2T , we deduce that

|B2 −B3| ≤ 2TC4 = C5.

We now express the term B3, we have

anp,q(up,q − up)unp − anp,q(up,q − uq)unq =anp,q
[
(unp − unq )(unp,q −

unp + unq
2

)
]

−
anp,q
2

[
(unp)

2 − (unq )
2
]
,

then

B3 = B4 +B5, (3.18)

where

B4 = −
NT∑
n=0

∆tn
∑

(p,q)∈En
R

anp,q
2

[
(unp )

2 − (unq )
2
]

and

B5 =

NT∑
n=0

∆tn
∑

(p,q)∈En
R

anp,q
[
(unp − unq )(unp,q −

unp + unq
2

)
]
.

We have

B4 = −
1

2

NT∑
n=0

∆tn
∑

q∈N (p)

anp,q(u
n
p)

2 +
1

2

NT∑
n=0

∆tn
∑

(p,q)∈ER,h

aq,p(u
n
q )

2. (3.19)

The second term of the expression of B2 can be bounded in same way when we estimated
the term |B2 −B3|, then

|
NT∑
n=0

∆tn
∑

(p,q)∈ER,h

aq,p(u
n
q )

2| ≤ C6. (3.20)

Therefore,
NT∑
n=0

∆tn
∑

q∈N (p)

anp,q(u
n
p)

2 =

NT∑
n=0

∑
p∈TR

(unp )
2

∫ tn+1

tn

∫
p

∇ · a(x, t)dxdt

By the property of ∇ · a in (3.2), there holds

|
NT∑
n=0

∆tn
∑

q∈N (p)

anp,q(u
n
p)

2| ≤ 2T |B(0, R)|max{U2
M , U

2
m}‖∇ · a‖L∞(RN×R+) = C7. (3.21)

Combining (3.19)-(3.21), we obtain

|B4| ≤
C6 + C7

2
= C8. (3.22)
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Using the de�nition of unp,q, we have

anp,q
[
(unp − unq )(unp,q −

unp + unq
2

)
]
≥
|anp,q|
2

(unp − unq )2.

Then, there holds

B5 ≥
NT∑
n=0

∆tn
∑

(p,q)∈En
R

|anp,q|
2

(unp − unq )2.

Using (3.2.3), (3.18), (3.22) and (3.2.3), there holds

B2 ≥
NT∑
n=0

∆tn
∑

(p,q)∈En
R

|anp,q|
2

(unp − unq )2 − C9, (3.23)

where C9 = C5 + C8.
Let us now turn to B1. We have

B1 =
1

2

NT∑
n=0

∑
p∈TR

|p|unp(un+1
p − unp )−

1

2

NT∑
n=0

∑
p∈TR

|p|un+1
p (un+1

p − unp)

+
1

2

NT∑
n=0

∑
p∈TR

|p|unp (un+1
p − unp ) +

1

2

NT∑
n=0

∑
p∈TR

|p|un+1
p (un+1

p − unp)

Combining the �rst term and the second term, the third term and fourth term in the previous
expression, we obtain

B1 = −
1

2

NT∑
n=0

∑
p∈TR

|p|(un+1
p − unp)2 +

1

2

∑
p∈TR

|p|(uNT+1
p )2 − 1

2

∑
p∈TR

|p|(u0p)2. (3.24)

Using (3.7) and the Cauchy-Schwarz inequality yields the following inquality:

(un+1
p − unp)2 ≤

(∆tn)
2

|p|2
∑

q∈N (p)

|anp,q|
∑

q∈N (p)

|[anp,q]−|(unp − unq )2. (3.25)

By the de�nition of anp,q, we have ∑
q∈N (p)

|anp,q| ≤ V |∂p|. (3.26)

Using the CFL condition (3.6) and the inequality (3.26) gives

(un+1
p − unp)2 ≤ (1− ξ)∆tn

∑
q∈N (p)

|[anp,q]−|(unp − unq )2. (3.27)
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Summing inequality (3.27) over p ∈ TR and over n = 0, · · · , NT and reordering the summ-
ation leads to

−1

2

NT∑
n=0

∑
p∈TR

|p|(un+1
p − unp)2 ≤ −

1− ξ
2

NT∑
n=0

∆tn
∑

(p,q)∈En
R

|anp,q|(unp − unq )2

+
1− ξ
2

NT∑
n=0

∆tn
∑

(p,q)∈ER,h

|[anq,p]−|(unp − unq )2
(3.28)

Using (3.24) and (3.28), we have

B1 ≥ −
1− ξ
2

NT∑
n=0

∆tn
∑

(p,q)∈En
R

|anp,q|(unp − unq )2 − C10, (3.29)

where C10 ≥ 1
2

∑
p∈TR |p|(u

0
p)

2.
Adding (3.23) and (3.29) side by side, and using the equality (3.16), there holds:

ξ

2

NT∑
n=0

∆tn
∑

(p,q)∈En
R

|anp,q|(up − uq)2 ≤ C11, (3.30)

where C11 = C9 + C10.
Applying the Cauchy-Schwarz inequality to the left-hand side of (3.14), and using (3.30)
yields

NT∑
n=0

∆tn
∑

(p,q)∈En
R

|anp,q||unp − unq | ≤ C12

( NT∑
n=0

∆tn
∑

(p,q)∈En
R

|anp,q|
)1/2

, (3.31)

where C12 =
√

2C11

ξ
.

Noting that ∑
(p,q)∈En

R

|anp,q| ≤
∑
p∈TR

V |∂p| ≤ V
hN−1

α

|B(0, R)|
αhN

=
C13

h

and
∑NT

n=0 ∆tn = tNT+1 ≤ 2T , one obtians (3.14) from (3.31) with Cbv = C12

√
C13.

The estimate on the derivative time (3.15) is a straightforword consequence of (3.7) and
(3.15).
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3.3 Entropy inequalities for the approximate solution

3.3.1 Discrete entropy inequality

Lemma 3.4. Under assumption (3.2), (3.4) and CFL condition (3.6), for all κ ∈ R, p ∈ T ,
n ∈ N, the following inequality holds:

|un+1
p − κ| − |unp − κ|

∆tn
+

1

|p|
∑

q∈N (p)

anp,q(u
n
p,q>κ− unp,q⊥κ)

− 1

|p|
∑

q∈N (p)

anp,q(u
n
p>κ− unp⊥κ) ≤ 0.

(3.32)

Proof. We recall the expression of un+1
p in (3.13),

un+1
p = unp (1 +

∆tn
|p|

∑
q∈N (p)

[anp,q]
−) +

∑
q∈N (p)

−∆tn
|p|

[anp,q]
−unq . (3.33)

The coe�cients of (unp , u
n
q ) are positive and their sum is equal to one. Hence

un+1
p >κ ≤ unp>κ(1 +

∆tn
|p|

∑
q∈N (p)

[anp,q]
−) +

∑
q∈N (p)

−∆tn
|p|

[anp,q]
−unq>κ (3.34)

and

un+1
p ⊥κ ≥ unp⊥κ(1 +

∆tn
|p|

∑
q∈N (p)

[anp,q]
−) +

∑
q∈N (p)

−∆tn
|p|

[anp,q]
−unq⊥κ. (3.35)

Subtracting (3.35) from (3.34) side by side, one has

un+1
p >κ− un+1

p ⊥κ ≤ (unp>κ− unp⊥κ)(1 +
∆tn
|p|

∑
q∈N (p)

[anp,q]
−)

+
∑

q∈N (p)

−∆tn
|p|

[anp,q]
− (unq>κ− unq⊥κ),

(3.36)

or

(un+1
p >κ− un+1

p ⊥κ)− (unp>κ− unp⊥κ) +
∑

q∈N (p)

∆tn
|p|

[anp,q]
−(unq>κ− unq⊥κ)

−∆tn
|p|

∑
q∈N (p)

[anp,q]
− (unp>κ− unp⊥κ) ≤ 0.

Noting that un+1
p >κ− un+1

p ⊥κ = |un+1
p − κ| and unp>κ− unp⊥κ = |unp − κ|, we obtain

|un+1
p − κ| − |unp − κ|

∆tn
+

1

|p|
∑

q∈N (p)

anp,q(u
n
p,q>κ− unp,q⊥κ)

− 1

|p|
∑

q∈N (p)

anp,q(u
n
p>κ− unp⊥κ) ≤ 0.

We have the statement of the lemma.
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3.3.2 Continuous entropy estimates for the approximate solution

For Ω = RN or RN × R+, we denote byM(Ω) the set of positive measures on Ω, that is of

σ-additive mappings from the Borel σ-algebra of Ω in R+
. If µ ∈M(Ω) and g ∈ Cc(Ω), one

sets 〈µ, g〉 =
∫
gdµ.

Theorem 3.5. Under assumption (3.2), (3.4) and CFL condition (3.6), let uh be given
by (3.10), there exist µh ∈M(RN × R+) and µT ∈M(RN) such that:∫

RN×R+

[
|uh − κ|ϕt(x, t) + (uh(x, t)>κ− uh(x, t)⊥κ)a(x, t) · ∇ϕ(x, t)

+(uh(x, t)>κ− uh(x, t)⊥κ)∇ · a(x, t)ϕ(x, t)
]
dxdt+

∫
RN

|u0(x)− κ|ϕ(x, 0)dx

≥ −
∫
RN×R+

(|ϕt(x, t)|+ |∇ϕ(x, t)|)dµh(x, t)−
∫
RN

ϕ(x, 0)dµT (x),

(3.37)

for all κ ∈ R and ϕ ∈ C1
c (RN × R+,R+). The measures µh and µT satisfy the following

properties:

1. For all R > 0 and T > 0, there exists Cm depending only on a, u0, α, ξ, R, T such
that, for h ≤ R:

µh(B(0, R)× [0, T ]) ≤ Cm(h+
√
h). (3.38)

2. The measure µT is the measure of density |u0(·)− uT ,0(·)| w.r.t the Lebesgue measure.
Moreover, for all R > 0, there exists Dm depending only on u0, α and R such that:

µT (B(0, R)) ≤ Dmh|u0|BV (B(0,R+4h)). (3.39)

Proof. Let ϕ ∈ C1
c (RN × R+,R+) and κ ∈ R. Let T and R be such that ϕ 6= 0 implies

|x| ≤ R− h and t ≤ T . Let us multiply (3.32) by
∫ tn+1

tn

∫
p
ϕ(x, t)dxdt, and sum the result for

all p ∈ T and n ∈ N. One obtains:

T1 + T2 ≤ 0, (3.40)

with

T1 =

NT∑
n=0

∑
p∈TR

|un+1
p − κ| − |unp − κ|

∆tn

∫ tn+1

tn

∫
p

ϕ(x, t)dxdt, (3.41)

T2 =

NT∑
n=0

∑
p∈TR

1

|p|

∫ tn+1

tn

∫
p

ϕ(x, t)dxdt
∑

q∈N (p)

anp,q(u
n
p,q>κ− unp>κ− unp,q⊥κ+ up⊥κ). (3.42)

We set

T ∗
1 = −

∫
RN×R+

|uh(x, t)− κ|ϕt(x, t)dxdt−
∫
RN

|u0(x)− κ|ϕ(x, 0)dx (3.43)
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T ∗
2 = −

∫
RN×R+

(uh(x, t)>κ− uh(x, t)⊥κ)a(x, t) · ∇ϕ(x, t)dxdt

−
∫
RN×R+

(uh(x, t)>κ− uh(x, t)⊥κ)∇ · a(x, t)ϕ(x, t)dxdt.
(3.44)

Comparison between T1 and T ∗
1

We note that uh is constant in p × [tn, tn+1[ for all p ∈ T and n ∈ N, then T ∗
1 may be

rewritten

T ∗
1 = −

∑
p∈TR

NT∑
n=0

∫
p

∫ tn+1

tn

|unp − κ|ϕt(x, t)dtdx−
∫
RN

|u0(x)− κ|ϕ(x, 0)dx

=
∑
p∈TR

NT∑
n=0

∫
p

|unp − κ|
(
ϕ(x, tn)− ϕ(x, tn+1)

)
dtdx−

∫
RN

|u0(x)− κ|ϕ(x, 0)dx

In the �rst term in the right-hand side of this expression, for all n ∈ 0, NT , in each p ∈ T ,
we factorize by ϕ(·, tn). Recalling that uT ,0(x) = u0p ∀x ∈ p, and noting that ϕ(x, tNT+1) = 0
for all x ∈ RN , we get:

T ∗
1 =

NT∑
n=0

∑
p∈TR

|un+1
p − κ| − |unp − κ|

∆tn

∫ tn+1

tn

∫
p

ϕ(x, tn+1)dxdt

+

∫
RN

(
|uT ,0(x)− κ| − |u0(x)− κ|

)
ϕ(x, 0)dxdt.

(3.45)

Subtracting (3.41) and (3.45) side by side and applying the triangle inequality, there holds

|T1 − T ∗
1 | ≤

NT∑
n=0

∑
p∈TR

|un+1
p − unp |
∆tn

∫ tn+1

tn

∫
p

|ϕ(x, tn+1)− ϕ(x, t)|dxdt

+

∫
RN

|uT ,0(x)− u0(x)|ϕ(x, 0)dx.

We know that, for all t ∈ [tn, tn+1], there holds:

|ϕ(x, tn+1)− ϕ(x, t)| = |
∫ tn+1

t

ϕs(x, s)ds| ≤
∫ tn+1

tn

|ϕs(x, s)|ds.

Hence,

|T1 − T ∗
1 | ≤

NT∑
n=0

∑
p∈TR

|un+1
p − unp |

∫ tn+1

tn

∫
p

|ϕt(x, t)|dxdt

+

∫
RN

|uT ,0(x)− u0(x)|ϕ(x, 0)dx.

(3.46)

We de�ne two measures µT ∈ M(RN) and λh ∈ M(RN × R+) by their action on Cc(RN)
and Cc(RN × R+):
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〈µT , g〉 =
∫
RN

|u0(x)− uT ,0(x)|g(x)dx, ∀g ∈ Cc(RN), (3.47)

〈λh, g〉 =
∑
n∈N

∑
p∈T

|un+1
p − unp |

∫ tn+1

tn

∫
p

g(x, t)dxdt, ∀g ∈ Cc(RN × R+). (3.48)

Inequality (3.46) gives

|T1 − T ∗
1 | ≤

∫
RN×R+

|ϕt(x, t)|dλh(x, t) +
∫
RN

ϕ(x, 0)dµT (x). (3.49)

Since u0 ∈ BVloc(RN), we follow Lemma 6.8 in [3], then, there exists a constant Dm such
that

µT (B(0, R)) ≤ Dmh|u0|BV (B(0,R+4h)).

Furthermore, we apply inequality (3.15), we have

λh(B(0, R)× [0, T ]) ≤ (1− ξ)α
2Cbv

√
h

V
, ∀h < R, ∀R > 0.

Comparison between T2 and T ∗
2

In T2 we gather the terms by edges. Since unp,q = unq,p and a
n
p,q = −anq,p, we have T2 = T21−T22,

with:

T21 =

NT∑
n=0

∑
(p,q)∈En

R

anp,q
|p|

[unp,q>κ− unp>κ− unp,q⊥κ+ up⊥κ]
∫ tn+1

tn

∫
p

ϕ(x, t)dxdt,

T22 =

NT∑
n=0

∑
(p,q)∈En

R

anp,q
|q|

[unp,q>κ− unq>κ− unp,q⊥κ+ uq⊥κ]
∫ tn+1

tn

∫
q

ϕ(x, t)dxdt.

Applying Green's formula on each p in T ∗
2 , there holds

T ∗
2 = −

NT∑
n=0

∑
p∈TR

(unp>κ− unp⊥κ)
∑

q∈N (p)

∫
σp,q

∫ tn+1

tn

a(γ, t) · np,qϕ(γ, t)dtdγ.

We can also gather the terms of T ∗
2 by edges and afterwards decompose T ∗

2 as T ∗
21−T ∗

22 with:

T ∗
21 =

NT∑
n=0

∑
(p,q)∈En

R

(
unp,q>κ− unp>κ− unp,q⊥κ+ unp⊥κ

)∫
σp,q

∫ tn+1

tn

a(γ, t) · np,qϕ(γ, t)dtdγ,

T ∗
22 =

NT∑
n=0

∑
(p,q)∈En

R

(
unp,q>κ− unq>κ− unp,q⊥κ+ unq⊥κ

)∫
σp,q

∫ tn+1

tn

a(γ, t) · np,qϕ(γ, t)dtdγ.

We introduce the di�erences of the averages of ϕ on p and on σp,q

rnp,q =
anp,q

∆tn|p|

∫ tn+1

tn

∫
p

ϕ(x, t)dxdt− 1

∆tn

∫ tn+1

tn

∫
σp,q

a(γ, t) · np,qϕ(γ, t)dγdt. (3.50)
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Hence

T21 − T ∗
21 =

NT∑
n=0

∆tn
∑

(p,q)∈En
R

(
unp,q>κ− unp>κ− unp,q⊥κ+ unp⊥κ

)
rnp,q. (3.51)

From the de�nition of unp,q in (3.9), for all κ ∈ R, we have the following inequalities:

|unp,q>κ− unp>κ| ≤ max{−sgn(anp,q), 0}|unp − unq |, (3.52)

|unp,q⊥κ− unp⊥κ| ≤ max{−sgn(anp,q), 0}|unp − unq |, (3.53)

where for all a ∈ R, we set the unusual de�nition of sgn(a):

sgn(a) =


1 if a > 0,

−1 if a < 0,

−1
2

if a = 0.

In (3.50), we add the term − anp,q
∆tn|σp,q |

∫ tn+1

tn

∫
σp,q

ϕ(γ, s)dγds in the �rst term and the second

term and change the integration variable t into s in the second term. There holds:

rnp,q =
anp,q

(∆tn)2|σp,q||p|

∫ tn+1

tn

∫ tn+1

tn

∫
p

∫
σp,q

[
ϕ(x, t)− ϕ(γ, s)

]
dγdxdtds

− 1

(∆tn)2|σp,q|

∫ tn+1

tn

∫
σp,q

[
a(γ, s) · np,q −

anp,q
|σp,q|

] ∫ tn+1

tn

∫
σp,q

[
ϕ(γ, s)− ϕ(ζ, τ)

]
dζdτ dγds.

(3.54)

From the de�nition of anp,q, and the conditon in (3.2), there holds: for all (γ, s) ∈ σp,q ×
[tn, tn+1[, ∣∣∣a(γ, s) · np,q −

anp,q
|σp,q|

∣∣∣ ≤ 1

∆tn|σp,q|

∫ tn+1

tn

∫
σp,q

|a(γ, s)− a(ζ, τ)|dζdτ

≤ La(∆tn + hp,q).

(3.55)

Moreover, for all (γ, s, ζ, τ) ∈ (σp,q)
n × [tn, tn+1[

2, we have:

|ϕ(γ, s)− ϕ(ζ, τ)| ≤
∫ 1

0

(∆tn + hp,q)(|∇xϕ|+ |ϕt|)(ζ + θ(γ − ζ), τ + θ(s− τ))dθ (3.56)

and for all (x, γ, t, s) ∈ p× σp,q × [tn, tn+1[
2:

|ϕ(x, t)− ϕ(γ, s)| ≤
∫ 1

0

(hp +∆tn)(|∇xϕ|+ |ϕt|)(x + θ(γ − x), t+ θ(s− t))dθ (3.57)
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For all p ∈ T , q ∈ N (p), n ∈ N, we de�ne some measures µn
p,q ∈ M(RN × R+) and

νnp,q ∈M(RN × R+) by their action on Cc(RN × R+):

〈µn
p,q, g〉 =

1

(∆tn)2|σp,q||p|

∫ tn+1

tn

∫ tn+1

tn

∫
p

∫
σp,q

∫ 1

0

(hp +∆tn)g(x + θ(γ − x),

t+ θ(s− t))dθdγdxdtds, (3.58)

〈νnp,q, g〉 =
La

(∆tn)2|σp,q|

∫ tn+1

tn

∫
σp,q

∫ tn+1

tn

∫
σp,q

∫ 1

0

(σp,q +∆tn)
2g(ζ + θ(γ − ζ),

τ + θ(s− τ))dθdζdτdγds. (3.59)

We have

µn
p,q(B(0, R)× [0, T ]) ≤ hp +∆tn, ∀h < R (3.60)

and

νnp,q(B(0, R)× [0, T ]) ≤ (hp,q +∆tn)
2, ∀h < R. (3.61)

Combing (3.54), (3.55), (3.56), (3.57) and de�nition of µn
p,q and ν

n
p,q, we have:

|rnp,q| ≤ |anp,q|〈µn
p,q, |∇xϕ|+ |ϕt|〉+ 〈νnp,q, |∇xϕ|+ |ϕt|〉 (3.62)

Then, (3.51)�(3.53) and (3.62) lead to

|T21 − T ∗
21| ≤ 2

NT∑
n=0

∆tn
∑

(p,q)∈En
R

max{−sgn(anp,q), 0}|anp,q||unp − unq |〈µn
p,q, |∇ϕ|+ |ϕt|〉

+ 2

NT∑
n=0

∆tn
∑

(p,q)∈En
R

max{−sgn(anp,q), 0}|unp − unq |〈νnp,q, |∇ϕ|+ |ϕt|〉. (3.63)

We obtain as well

|T22 − T ∗
22| ≤ 2

NT∑
n=0

∆tn
∑

(p,q)∈En
R

max{−sgn(anq,p), 0}|anp,q||unp − unq |〈µn
p,q, |∇ϕ|+ |ϕt|〉

+ 2

NT∑
n=0

∆tn
∑

(p,q)∈En
R

max{−sgn(anq,p), 0}|unp − unq |〈νnq,p, |∇ϕ|+ |ϕt|〉. (3.64)

Finally, we can de�ne µh ∈M(RN × R+) by its action on Cc(RN × R+):

〈µh, g〉 = 〈λh, g〉+ 2
∑
n∈N

∆tn
∑

(p,q)∈En
∗

|anp,q||unp − unq |

×
[
max{−sgn(anp,q), 0}〈µn

p,q, g〉+max{−sgn(anq,p), 0}〈µn
q,p, g〉

]
+2
∑
n∈N

∆tn
∑

(p,q)∈En
∗

|unp − unq |
[
max{−sgn(anp,q), 0}〈νnp,q, g〉+max{−sgn(anq,p), 0}〈νnq,p, g〉

]
.

(3.65)
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From inequality (3.14), (3.3.2), (3.60)�(3.61), and property of operator sgn, there exists
constant Cm such that

µh(B(0, R)) ≤ Cm(h+
√
h), ∀h < R, R > 0. (3.66)

Let us call A the left-hand side of (3.37), then

A = −T ∗
1 − T ∗

2 = −T1 − T2 + (T1 − T ∗
1 ) + (T2 − T ∗

2 ). (3.67)

From (3.40), (3.49), (3.63) and (3.64), we obtain

A ≥ −
∫
RN×R+

(|ϕt(x, t)|+ |∇ϕ(x, t)|)dµh(x, t)−
∫
RN

ϕ(x, 0)dµT (x).

3.4 An a posteriori error estimation

3.4.1 An entropy estimate between approximation and entropy so-

lution

We start with the following lemma which is useful for this subsection.

Lemma 3.6. For all ε > 0, there exist ρ̄1 ∈ C∞
c (R,R) and ρN ∈ C∞

c (RN ,R) such that

supp(ρ̄1) ⊂ [−1, 0], ρ̄1 ≥ 0,

∫
R
ρ̄1(x)dx = 1,

supp(ρN) ⊂ {x ∈ RN : |x| ≤ 1}, ρN ≥ 0,

∫
RN

ρN(x)dx = 1,

(3.68)

with

K̄1 :=

∫
R+

|∂tρ̄1(t)|dt ≤ 4 + ε, KN :=

∫
RN

|∇ρN(x)|dx ≤ N + 1 + ε. (3.69)

Theorem 3.7. Assume (3.2) and u0 ∈ BV (RN). Let ũ ∈ L∞(RN × R) be such that Um ≤
ũ ≤ UM a.e. Assume there exist µ ∈M(RN × R+) and µ0 ∈M(RN) such that∫

RNR+

[
|ũ(x, t)− κ|ϕt(x, t) +

[
ũ(x, t)>κ− ũ(x, t)⊥κ

]
a(x, t) · ∇ϕ(x, t)

+
[
ũ(x, t)>κ− ũ(x, t)⊥κ

]
∇ · a(x, t)ϕ(x, t)

]
dxdt+

∫
RN

|u0(x)− κ|ϕ(x, 0)dx

≥ −
∫
RN×R+

[
|ϕt(x, t)|+ |∇ϕ(x, t)|

]
dµ(x, t)−

∫
RN

|ϕ(x, 0)|dµ0(x)

(3.70)

for all κ ∈ R and ϕ ∈ C1
c (RN ×R+,R+). Let u be the unique entropy weak solution of (3.1),

that is:∫
RN×R+

[
|u(y, s)− κ|ϕs(y, s) +

[
u(y, s)>κ− u(y, s)⊥κ

]
a(y, s) · ∇ϕ(y, s)+[

u(y, s)>κ− u(y, s)⊥κ
]
∇ · a(y, s)ϕ(y, s)

]
dyds+

∫
RN

|u0(y)− κ|ϕ(y, 0)dy ≥ 0

(3.71)
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for all κ ∈ R, ϕ ∈ C1
c (RN × R+,R+). Let ω, R, T ∈ R+, x0 ∈ RN be given, and

ρ ∈ C1
0 (R+, [0, 1]) be such that ρ′ ≤ 0 and

ρ = 1 on [0, R],

ρ = 0 on [R + 1,∞],

‖ρ′‖∞ ≤ 2.

(3.72)

Let

ψ(x, t) :=
T − t
T

e−Htρ(|x− x0|+ ωt) on RN × [0, T ],

ψ(x, t) := 0 on RN × [T,∞),
(3.73)

with H = max
{
[∇ · a(x, t)]+ : x ∈ RN , t ∈ R+

}
. Then we have∫

RN×R+

[
|ũ(x, t)− u(x, t)|ψt(x, t) +

[
ũ(x, t)>u(x, t)− ũ(x, t)⊥u(x, t)

]
×a(x, t) · ∇ψ(x, t) + |ũ(x, t)− u(x, t)|∇ · a(x, t)ψ(x, t)

]
dxdt

≥ −a0µ0({ψ(·, 0) 6= 0})− (b+ c)(µ({ψ 6= 0}))
1
2 − aµ({ψ 6= 0}),

(3.74)

where

a :=2ω +
1

T
+H + 2,

a0 :=1,

b :=N + 5

c :=
[
2ω +

1

T
+H + 4‖a‖∞ + 3‖∇ · a‖∞ + La(N + 1)

]
|u|BV (Kr)

+
[
(N + 1)‖a‖∞ + ‖∇ · a‖∞ + 1

]
|u0|BV (K0,r),

(3.75)

with

K = {(x, t) ∈ RN × R+ : ψ(x, t) 6= 0}, K0 = {x ∈ RN : ψ(x, 0) 6= 0},

K0,r = {x ∈ RN : ∃y ∈ K0, d(x, y) ≤
1

r
},

Kr = {(x, t) ∈ RN × R+ : ∃(y, s) ∈ K, d(x, y) ≤ 1

r
, d(t, s) ≤ 1

r
},

r =

√
1

µ(K)
.

We remark that |u|BV (Kr) can be estimated by an explicit constant in Theorem 3.13.

Proof. For all ε > 0, let ρ̄1 ∈ C∞
0 (R,R) and ρp ∈ C∞

0 (Rp,R) satisfy Lemma 3.6. For
r ∈ R, r > 0, one de�nes ρ̄1,r, ρp,r as

ρ̄1,r(t) = rρ̄1(rt), ρp,r(x) = rpρp(rx). (3.76)
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One sets

ϕ(x, t, y, s) = ψ(x, t)ρN,r(x− y)ρ̄1,r(t− s). (3.77)

First of all, we state the following lemma.

Lemma 3.8. From de�nitions (3.68), (3.72), (3.73) and (3.76), we have the following prop-
erties:

‖ψ‖∞ ≤ 1, ‖ψ(·, 0)‖∞ ≤ 1,

‖ψt‖∞ ≤ 2ω +
1

T
+H, ‖∇ψ‖∞ ≤ 2,

(3.78)∫
RN×R+

ρp,r(x− y)ρ̄1,r(t− s)dyds = 1, ∀ (x, t) ∈ RN × R+, ∀r > 0, (3.79)∫
RN×R+

|∇ρN,r(x− y)|ρ̄1,r(t− s)dyds ≤ rKN , ∀ (x, t) ∈ RN × R+, ∀r > 0, (3.80)∫
RN×R+

ρN,r(x− y)|ρ̄t,1,r(t− s)|dyds ≤ rK̄1, ∀ (x, t) ∈ RN × R+, ∀r > 0. (3.81)

Now, let us take ϕ(·, ·, y, s) for the test function ϕ and κ = u(y, s) in (3.70), then we
integrate (3.70) for (y, s) ∈ RN × R+; there holds:∫

(RN×R+)2

[
|ũ(x, t)− u(y, s)|ψt(x, t)ρN,r(x− y)ρ̄1,r(t− s)+

|ũ(x, t)− u(y, s)|ψ(x, t)ρN,r(x− y)ρ̄′1,r(t− s)+
[ũ(x, t)>u(y, s)− ũ(x, t)⊥u(y, s)] a(x, t) · ∇ψ(x, t)ρN,r(x− y)ρ̄1,r(t− s)+
[ũ(x, t)>u(y, s)− ũ(x, t)⊥u(y, s)]ψ(x, t)a(x, t) · ∇xρN,r(x− y)ρ̄1,r(t− s)+

[ũ(x, t)>u(y, s)− ũ(x, t)⊥u(y, s)]∇ · a(x, t)ψ(x, t)ρN,r(x− y)ρ̄1,r(t− s)
]
dxdtdyds

+

∫
RN×R+×RN

|u0(x)− u(y, s)|ψ(x, 0)ρN,r(x− y)ρ̄1,r(−s)dxdyds ≥

−
∫
RN×R+

∫
RN×R+

[∣∣ρN,r(x− y)
[
ψt(x, t)ρ̄1,r(t− s) + ψ(x, t)ρ̄′1,r(t− s)

]∣∣+∣∣ρ̄1,r(t− s) [∇ψ(x, t)ρN,r(x− y) + ψ(x, t)∇xρN,r(x− y)]
∣∣]dµ(x, t)dyds

−
∫
RN×R+

∫
RN

∣∣ψ(x, 0)ρN,r(x− y)ρ̄1,r(−s)
∣∣dµ0(x)dyds.

(3.82)

Let us take ϕ(x, t, ·, ·) for the test function ϕ and κ = ũ(x, t) in (3.71), then we integrate (3.71)
for (x, t) ∈ RN × R+; there holds:∫

(RN×R+)2

[
−|ũ(x, t)− u(y, s)|ψ(x, t)ρN,r(x− y)ρ̄′1,r(t− s)+

[ũ(x, t)>u(y, s)− ũ(x, t)⊥u(y, s)]ψ(x, t)a(y, s) · ∇yρN,r(x− y)ρ̄1,r(t− s)+

[ũ(x, t)>u(y, s)− ũ(x, t)⊥u(y, s)]ψ(x, t)∇ · a(y, s)ρN,r(x− y)ρ̄1,r(t− s)
]
dydsdxdt+∫

RN×R+×RN

|u0(y)− ũ(x, t)|ψ(x, t)ρN,r(x− y)ρ̄1,r(t)dydxdt ≥ 0.

(3.83)
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The sum of the second term in the left-hand side of (3.82) and the �rst term in the left-hand
side of (3.83) vanishes. Moreover ρ̄1,r(t) = 0 for all t ∈ R+, so that the �nal term in the
left-hand side of (3.83) is zero. In addition, ∇yρN,r(x − y) = −∇xρN,r(x − y). Adding the
inequalities (3.82) and (3.83) thus yields:

E11 + E12 + E13 + E14 + E15 ≥ −E2, (3.84)

where:

E11 =

∫
(RN×R+)2

[
|ũ(x, t)− u(y, s)|ψt(x, t)ρN,r(x− y)ρ̄1,r(t− s)

]
dxdtdyds, (3.85)

E12 =

∫
(RN×R+)2

[
[ũ(x, t)>u(y, s)− ũ(x, t)⊥u(y, s)]

a(x, t) · ∇ψ(x, t)ρN,r(x− y)ρ̄1,r(t− s)
]
dxdtdyds,

(3.86)

E13 = −
∫
(RN×R+)2

[
[ũ(x, t)>u(y, s)− ũ(x, t)⊥u(y, s)]ψ(x, t)

[a(y, s)− a(x, t)] · ∇xρN,r(x− y)ρ̄1,r(t− s)
]
dxdtdyds+∫

(RN×R+)2

[
[ũ(x, t)>u(y, s)− ũ(x, t)⊥u(y, s)]ψ(x, t)

∇ · a(y, s)ρN,r(x− y)ρ̄1,r(t− s)
]
dxdtdyds,

(3.87)

E14 =

∫
(RN×R+)2

[
[ũ(x, t)>u(y, s)− ũ(x, t)⊥u(y, s)]ψ(x, t)

∇ · a(x, t)ρN,r(x− y)ρ̄1,r(t− s)
]
dxdtdyds,

(3.88)

E15 =

∫
RN×R+×RN

|u0(x)− u(y, s)|ψ(x, 0)ρN,r(x− y)ρ̄1,r(−s)dydsdx, (3.89)

E2 =

∫
RN×R+

∫
RN×R+

[∣∣ρN,r(x− y)
[
ψt(x, t)ρ̄1,r(t− s) + ψ(x, t)ρ̄′1,r(t− s)

]∣∣+∣∣ρ̄1,r(t− s) [∇ψ(x, t)ρN,r(x− y) + ψ(x, t)∇xρN,r(x− y)]
∣∣]dµ(x, t)dyds

+

∫
RN×R+

∫
RN

∣∣ψ(x, 0)ρN,r(x− y)ρ̄1,r(−s)
∣∣dµ0(x)dyds.

(3.90)

One has to study, now, the �ve terms of (3.84).
Using Lemma 3.8, equality (3.90) leads to:

E2 ≤
∫
RN×R+

[∣∣ψt(x, t)
∣∣+ ∣∣∇ψ(x, t)∣∣]dµ(x, t) + r(KN + K̄1)

∫
RN×R+

ψ(x, t)dµ(x, t)

+

∫
RN

ψ(x, 0)dµ0(x) ≤
{[

2ω +
1

T
+H + 2

]
+ r
[
KN + K̄1

]}
µ(K) + µ0(K0).

(3.91)
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Let us now handle the term E11; from (3.79), we obtain∣∣∣∣E11 −
∫
RN×R+

|ũ(x, t)− u(x, t)|ψt(x, t)dxdt

∣∣∣∣
≤
∫
(RN×R+)2

[
|u(x, t)− u(y, s)||ψt(x, t)|ρN,r(x− y)ρ̄1,r(t− s)dxdtdyds

]
=

∫
RN×R+

[
|ψt(x, t)|

[∫
RN×R+

|u(x, t)− u(y, s)|ρN,r(x− y)ρ̄1,r(t− s)dyds
]]
dxdt.

We change the integration variables (y, s) into (η, τ) such that y = x + η and s = t+ τ , we
rewrite the previous inequality as∣∣∣∣E11 −

∫
RN×R+

|ũ(x, t)− u(x, t)|ψt(x, t)dxdt

∣∣∣∣
≤
∫
RN×R+

[
|ψt(x, t)|

[∫
RN×R+

|u(x, t)− u(x + η, t+ τ)|ρN,r(−η)ρ̄1,r(−τ)dηdτ
]]
dxdt

=

∫
RN×R+

[
ρN,r(−η)ρ̄1,r(−τ)

[∫
RN×R+

|ψt(x, t)||u(x, t)− u(x + η, t+ τ)|dxdt
]]
dηdτ.

From the de�nition of ρN,r and ρ̄1,r, there holds:

ρN,r(−η) = 0 if |η| ≥ 1

r
and ρ̄1,r(−τ) = 0 if τ ≥ 1

r
.

Then ∣∣∣∣E11 −
∫
RN×R+

|ũ(x, t)− u(x, t)|ψt(x, t)dxdt

∣∣∣∣ ≤ ‖ψt‖∞ε(r,K), (3.92)

with

ε(r,K) = sup
(η,τ)

{∫
K

|u(x, t)− u(x + η, t+ τ)|dxdt : |η| ≤ 1

r
, 0 ≤ τ ≤ 1

r

}
. (3.93)

Combining (3.92) and (3.78) yields:∣∣∣∣E11 −
∫
RN×R+

[|ũ(x, t)− u(x, t)|ψt(x, t)] dxdt

∣∣∣∣ ≤ (2ω +
1

T
+H)ε(r,K). (3.94)

To treat E12, we may proceed in the same way. We note that ũ(x, t)>u(y, s)− ũ(x, t)⊥u(y, s)
= |ũ(x, t)−u(y, s)| and we can treat the term a(x, t) ·∇ψ(x, t) in E12 as we treated the term
ψt(x, t) in E11; using that ‖a · ∇ψ‖∞ ≤ 2‖a‖∞, one obtains:∣∣∣∣E12 −

∫
RN×R+

[
ũ(x, t)>u(x, t)− ũ(x, t)⊥u(x, t)

]
a(x, t) · ∇ψ(x, t)dxdt

∣∣∣∣ ≤ 2‖a‖∞ε(r,K).

(3.95)
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Let us now turn to E13. We compare this term with

E13b = −
∫
(RN×R+)2

[[
ũ(x, t)>u(x, t)− ũ(x, t)⊥u(x, t)

]
ψ(x, t)

×(a(y, s)− a(x, t)) · ∇xρN,r(x− y)ρ̄1,r(t− s)
]
dxdtdyds

+

∫
(RN×R+)2

[[
ũ(x, t)>u(x, t)− ũ(x, t)⊥u(x, t)

]
ψ(x, t)

×∇ · a(y, s) ρN,r(x− y)ρ̄1,r(t− s)
]
dxdtdyds.

(3.96)

In the �rst integral of (3.96), we use ∇xρN,r(x − y) + ∇yρN,r(x − y) = 0, then we apply
Green's formula with respect to y. Noting that ∇y · (a(y, s)− a(x, t)) = ∇y · a(y, s), one has
E13b = 0. Subtracting E13b from E13, there holds

E13 ≤
∫
(RN×R+)2

|u(x, t)− u(y, s)|ψ(x, t)|(a(y, s)− a(x, t)) · ∇xρN,r(x− y)|ρ̄1,r(t− s)dxdtdyds

+

∫
(RN×R+)2

|u(x, t)− u(y, s)|ψ(x, t)|∇y · a(y, s)|ρN,r(x− y)ρ̄1,r(t− s)dxdtdyds. (3.97)

The �rst term in the right-hand side of (3.97) is then smaller than 2KNLa‖ψ‖∞ε(r,K) since
|(a(y, s)− a(x, t)| is bounded by 2La/r and (3.80) holds. The second term can be treated in
the same way as E11. One has:

E13 ≤ (2LaKN‖ψ‖∞ + ‖∇ · a‖∞‖ψ‖∞)ε(r,K) ≤ (2LaKN + ‖∇ · a‖∞)ε(r,K). (3.98)

We can estimate E14 in the same way as we estimated E11, replacing the expression ϕt(x, t)
by ϕ(x, t)∇ · a(x, t). There holds:∣∣∣∣E14 −

∫
RN×R+

|ũ(x, t)− u(x, t)|ψ(x, t)∇ · a(x, t)dxdt
∣∣∣∣ ≤ ‖∇ · a‖∞ε(r,K). (3.99)

In order to study E15, for any given x ∈ RN , let us de�ne ϕ(x, y, s) = ψ(x, 0)ρN,r(x −
y)
∫∞
s
ρ̄1,r(−τ)dτ and κ = u0(x). Let us take in (3.71) the function ϕ(x, ·, ·) which is in

C∞(RN × R+,R+) with a compact support in RN × R+. We then integrate the resulting
inequality with respect to x ∈ RN . We get:

−E15 + E16 + E17 + E18 ≥ 0, (3.100)

with:

E16 = −
∫
RN×R+×RN

∫ ∞

s

(u(y, s)>u0(x)− u(y, s)⊥u0(x))ψ(x, 0)

×a(y, s) · ∇xρN,r(x− y)ρ̄1,r(−τ)dτdydxds,
(3.101)

E17 =

∫
RN×R+×RN

∫ ∞

s

(u(y, s)>u0(x)− u(y, s)⊥u0(x))ψ(x, 0)

∇ · a(y, s)ρN,r(x− y)ρ̄1,r(−τ)dτdydxds,
(3.102)
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E18 =

∫
RN×R+

∫ ∞

0

|u0(x)− u0(y)|ψ(x, 0)ρN,r(x− y)ρ̄1,r(−τ)dτdydx. (3.103)

In order to obtain a bound on E16, one introduces E16b de�ned as:

E16b =

∫
RN×R+×RN

∫ ∞

s

(u(y, s)>u0(y)− u(y, s)⊥u0(y))ψ(x, 0)

×a(y, s) · ∇xρN,r(x− y)ρ̄1,r(−τ)dτdydxds.
(3.104)

Integrating by parts with respect to the x variable yields:

E16b = −
∫
RN×R+×RN

∫ ∞

s

(u(y, s)>u0(y)− u(y, s)⊥u0(y))

(a(y, s) · ∇xψ(x, 0))ρN,r(x− y)ρ̄1,r(−τ)dτdydxds.
(3.105)

Then, noting that the time support of this integration is reduced to [0, 1
r
], one has:

E16b ≤ ‖a‖∞‖∇ψ‖∞ε(r,K) ≤ 2‖a‖∞ε(r,K). (3.106)

Furthermore, one has:

|E16 + E16b| ≤
∫
RN×R+×RN

∫ ∞

s

|u0(x)− u0(y)|ψ(x, 0)

|a(y, s) · ∇xρN,r(x− y)|ρ̄1,r(−τ)dτdydxds,
(3.107)

which is bounded by KN‖a‖∞ε0(r,K0) (since the time support of the integration is reduced
to [0, 1

r
]), where ε0(r,K0) is de�ned by:

ε0(r,K0) = sup
η

{∫
K0

|u0(x)− u0(x + η)|dx : |η| ≤ 1

r

}
. (3.108)

Combining (3.106) and (3.107), we obtain

E16 ≤ ‖a‖∞
[
2ε(r,K) +KNε0(r,K0)

]
. (3.109)

In the same way, one introduces E17b de�ned as:

E17b =

∫
RN×R+×RN

∫ ∞

s

(u(y, s)>u0(y)− u(y, s)⊥u0(y))ψ(x, 0)

∇ · a(y, s)ρN,r(x− y)ρ̄1,r(−τ)dτdydxds.
(3.110)

There holds

E17b ≤ ‖∇ · a‖∞‖ψ(·, 0)‖∞ε(r,K) ≤ ‖∇ · a‖∞ε(r,K) (3.111)

and

|E17 − E17b| ≤
∫
RN×R+×RN

∫ ∞

s

|u0(x)− u0(y)|ψ(x, 0)

|∇ · a(y, s)|ρN,r(x− y)ρ̄1,r(−τ)dτdydxds,
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which is bounded by ‖ψ(·, 0)‖∞‖∇ · a‖∞ε0(r,K0). With (3.111), one has

E17 ≤ ‖∇ · a‖∞
[
ε(r,K) + ε0(r,K0)

]
. (3.112)

It is easily seen that

E18 ≤ ε0(r,K0). (3.113)

From (3.100), (3.109), (3.112) and (3.113), there holds

E15 ≤
[
2‖a‖∞ + ‖∇ · a‖∞

]
ε(r,K) +

[
KN‖a‖∞ + ‖∇ · a‖∞ + 1

]
ε0(r,K0). (3.114)

Using (3.84), (3.91), (3.94), (3.95), (3.98), (3.99), (3.114), there holds∫
RN×R+

[
|ũ(x, t)− u(x, t)|ψt(x, t) + [ũ(x, t)>u(x, t)− ũ(x, t)⊥u(x, t)]

×a(x, t) · ∇ψ(x, t) + |ũ(x, t)− u(x, t)|∇ · a(x, t)ψ(x, t)
]
dxdt

≥ −(2ω +
1

T
+H + 2 + r(KN + K̄1))µ(K)− µ0(K0)− E,

(3.115)

with
E =

[
2ω+ 1

T
+H+4‖a‖∞+3‖∇·a‖∞+2LaKN

]
ε(r,K)+

[
KN‖a‖∞+‖∇·a‖∞+1

]
ε0(r,K0).

Since u0 ∈ BVloc(RN), From Theorem 3.13 and Lemma 3.12, there holds:

ε0(r,K0) ≤
|u0|BV (K0,r)

r
, ε(r,K) ≤

|u|BV (Kr)

r
. (3.116)

And From (3.69), we have:

K̄1 +KN ≤ N + 5 + 2ε. (3.117)

Choosing r =
√

1
µ(K)

, and realizing that the left-hand side in (3.115) does not depend on ε,

then letting ε tend to zero, we obtain (3.74).
This concludes the proof of Theorem 3.7.

3.4.2 An a posteriori error estimation

Now we can present the a posteriori error estimate, the main result of this document. Let
R, ω, T and x0 be de�ned in Theorem 3.7, it is convenient to set

I0 :=

{
n : 0 ≤ tn ≤ min

{
R + 1

ω
, T

}}
,

DR+1 := {(x, t) : |x− x0|+ ωt < R + 1} ,
M(t) := {p ∈ T : there exists x ∈ p such that (x, t) ∈ DR+1} .

(3.118)
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Theorem 3.9. Assume (3.2) and u0 ∈ BV (RN). Assume there exist µ ∈ M(RN × R+)
and µ0 ∈ M(RN) satisfying (3.70) and let u ∈ BV (RN × R+) be the unique entropy weak
solution of (3.1) and let uh be given by (3.10). Let K ⊂⊂ RN ×R+, ω = V and choose T, R
and x0 such that T ∈]0, R

ω
[ and

K ⊂
⋃

0≤t≤T

BR−ωt(x0)× {t}. (3.119)

Then we have∫
K

|u(x, t)− uh(x, t)|dxdt ≤ TeTH

[
a0

∫
|x−x0|≤R+1

|u0(x)− uT ,0(x)|dx + (b+ c)
√
Q+ aQ

]
(3.120)

where a0, a, b, c are de�ned in (3.75),

Q =
∑
n∈I0

∑
p∈M(tn)

|un+1
p − unp |∆tn|p|

+ 2
∑
n∈I0

∑
(p,q)∈E

[
|anp,q||unp − unq |∆tn(∆tn +max{hp, hq})|σp,q|δnp,q

]
+ 2La

∑
n∈I0

∑
(p,q)∈E

[
|unp − unq |∆tn(∆tn + hp,q)

2|σp,q|δnp,q
]
,

(3.121)

and

δnp,q = 0 if p ∪ q × [tn, tn+1] ∩DR+1 = ∅,
δnp,q = 1 otherwise.

(3.122)

Proof. Let ψ be de�ned by (3.73). Theorem 3.7 holds for ũ(x, t) := uh(x, t), µ0 = µT and
µ = µh, where µT , µh are de�ned by (3.47) and (3.65). This means that∫

RN×R+

[
|uh(x, t)− u(x, t)|

[T − t
T

e−tHρ′ω − 1

T
e−tHρ−H t− T

T
e−tHρ

]
+
[
uh(x, t)>u(x, t)− uh(x, t)⊥u(x, t)

]T − t
T

ρ a(x, t) · x− x0
|x− x0|

e−tH

+ |ũh(x, t)− u(x, t)|∇ · a(x, t)
T − t
T

e−Htρ

]
dxdt

≥ −a0µT ({ψ 6= 0})− (b+ c)(µh({ψ 6= 0}))1/2 − aµh({ψ 6= 0}), (3.123)

with ρ = ρ(|x− x0|+ ωt) and ρ′ = ρ′(|x− x0|+ ωt). Let us estimate the second term in the
left-hand side of the previous inequality. One has:[

uh(x, t)>u(x, t)− uh(x, t)⊥u(x, t)
]T − t

T
ρ′a(x, t) · x− x0

|x− x0|
e−tH

≤ V |uh(x, t)− u(x, t)|
T − t
T
|ρ′|e−tH

≤ −ω|uh(x, t)− u(x, t)|
T − t
T

ρ′e−tH .

(3.124)
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So that ∣∣uh(x, t)− u(x, t)∣∣T − t
T

e−tHρ′ω +
[
uh(x, t)>u(x, t)− uh(x, t)⊥u(x, t)

]
×T − t

T
ρ a(x, t) · x− x0

|x− x0|
e−tH ≤ 0, ∀ (x, t) ∈ RN × [0, T ]. (3.125)

In addition, from the de�nition of H, we have

|uh(x, t)− u(x, t)|(−H +∇ · a(x, t))T − t
T

e−tHρ ≤ 0, ∀ 0 ≤ t ≤ T, x ∈ RN . (3.126)

Combining (3.123), (3.125) and (3.126), there holds∫
RN×R+

|uh(x, t)− u(x, t)|e−tHρdxdt

≤ T
[
a0µT ({ψ 6= 0}) + (b+ c)(µh({ψ 6= 0}))1/2 + aµh({ψ 6= 0})

]
.

(3.127)

If (x, t) ∈ K, there holds (x, t) ∈ BR−ωt(x0) × {t}, ρ(|x − x0| + ωt) = 1, and e−tH ≥ e−HT ,
then ∫

K

|uh(x, t)− u(x, t)|dxdt ≤ eTH

∫
RN×R+

|uh(x, t)− u(x, t)|e−tHρdxdt. (3.128)

Hence∫
K

|uh(x, t)− u(x, t)|dxdt

≤ TeTH
[
a0µT ({ψ(·, 0) 6= 0}) + (b+ c)(µh({ψ 6= 0}))1/2 + aµh({ψ 6= 0})

]
.

(3.129)

Now the theorem follows from the following two lemmas.

Lemma 3.10. Let ψ be de�ned as in (3.73). Then

µT ({ψ(·, 0) 6= 0}) ≤
∫
|x−x0|≤R+1

|uT ,0(x)− u0(x)|dx. (3.130)

Proof. Using the de�nition of ρ in (3.72), we obtain

µT ({ψ(·, 0) 6= 0}) ≤ µT ({|x− x0|+ ωt < R + 1|t=0})

and from the de�nition of µT , we have

µT ({|x− x0| < R + 1}) =
∫
|x−x0|<R+1

|uT ,0(x)− u0(x)|dx.
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Lemma 3.11. Let ψ be de�ned as in (3.73). Then

µh({ψ 6= 0}) ≤
∑
n∈I0

∑
p∈M(tn)

∆tn|un+1
p − unp ||p|

+ 2
∑
n∈I0

∑
(p,q)∈E

[
|anp,q||unp − unq |∆tn(∆tn +max{hp, hq})|σp,q|δnp,q

]
2La

∑
n∈I0

∑
(p,q)∈E

[
|unp − unq |∆tn(∆tn + hp,q)

2|σp,q|δnp,q
]
.

(3.131)

Proof. The de�nition of µh is given by (3.65). Let us consider λh, which is part of µh (see
de�nition in (3.48)). Since DR+1 = {(x, t) : |x− x0|+ ωt < R + 1}, we obtain

λh({ψ 6= 0}) ≤ λh(DR+1) =
∑
n∈I0

∑
p∈M(tn)

|un+1
p − unp |

∫ tn+1

tn

∫
p

χDR+1
dxdt

≤
∑
n∈I0

∑
p∈M(tn)

∆tn|un+1
p − unp ||p|. (3.132)

This proves the estimate concerning λh. Now we have to estimate µn
p,q which is also part

of µh. This measure is de�ned in (3.58) and we have

〈µn
p,q, ψ〉 =

1

(∆tn)2|σp,q||p|

∫ tn+1

tn

∫ tn+1

tn

∫
p

∫
σp,q

∫ 1

0

(∆tn + hp)ψ(x + θ(γ − x),

t+ θ(s− t))dθdγdxdtds.

First we consider the case when p× [tn, tn+1]∩DR+1 = ∅ and q× [tn, tn+1]∩DR+1 = ∅. Since
(x, t) ∈ p× [tn, tn+1[, (γ, s) ∈ σp,q × [tn, tn+1[, p is convex and 0 ≤ θ ≤ 1, we get

(x + θ(γ − x), t+ θ(s− t)) ∈ p× [tn, tn+1]

and therefore
ψ(x + θ(γ − x), t+ θ(s− t)) = 0.

Otherwise, there holds
|ψ(x + θ(γ − x), t+ θ(s− t))| ≤ 1.

Hence, using the de�nition of δp,q in (3.122), we obtain

〈µn
p,q, ψ〉 ≤ (∆tn + hp)δ

n
p,q. (3.133)

In the same way, one has

〈µn
q,p, ψ〉 ≤ (∆tn + hq)δ

n
p,q, (3.134)

〈νnp,q, ψ〉 ≤ La(∆tn + hp,q)
2|σp,q|δnp,q, (3.135)

〈νnq,p, ψ〉 ≤ La(∆tn + hp,q)
2|σp,q|δnp,q. (3.136)
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Using the estimates (3.132), (3.133), (3.134) and the de�nition of µh, one has

µh({ψ 6= 0}) ≤
∑
n∈I0

∑
p∈M(tn)

∆tn|un+1
p − unp ||p|

+2
∑
n∈I0

∑
(p,q)∈En

∗

[
max{−sgn(anp,q), 0}|anp,q||unp − unq |∆tn(∆tn + hp)|σp,q|δnp,q

]
+2
∑
n∈I0

∑
(p,q)∈En

∗

[
max{−sgn(anq,p), 0}|anp,q||unp − unq |∆tn(∆tn + hq)|σp,q|δnp,q

]
+2La

∑
n∈I0

∑
(p,q)∈En

∗

[
(max{−sgn(anp,q), 0}+max{−sgn(anq,p), 0})∆tn(∆tn + hp,q)

2|σp,q|δnp,q
]
.

From the de�nitions of En∗ and noting that max{−sgn(anp,q), 0} + max{−sgn(anq,p), 0} = 1,
there holds

µh({ψ 6= 0}) ≤
∑
n∈I0

∑
p∈M(tn)

∆tn|un+1
p − unp ||p|

+2
∑
n∈I0

∑
(p,q)∈E

[
|anp,q||unp − unq |∆tn(∆tn +max{hp, hq})δnp,q

]
+2La

∑
n∈I0

∑
(p,q)∈E

[
|unp − unq |∆tn(∆tn + hp,q)

2|σp,q|δnp,q
]
.

This completes this lemma.

Now the proof of Theorem 3.9 follows if we use (3.129), (3.130) and (3.131).

3.5 Properties of the entropy solution

Our problem is a special case of what the authors of [2] call the non sti� case, which they
discretized by the explicit upwind scheme. But in that paper, the authors didn't give the
reason why the term ε(r,K) de�ned by (3.93) can bounded by an explicit constant that
depends on a, r, K and u0. In this section, we will determine this constant. We note
that we will use one property obtained in [2] for the non sti� case: the convergence of the
approximation solution to the entropy solution in weak L∞.

We follow the proof presented by Chainais�Hillairet in [1], but we do not suppose that
the velocity is divergence free and we were able to improve the bounds given in [1].

We start with the following lemma:

Lemma 3.12. Let v ∈ BVloc(Rp), p ∈ N∗. Then, for every bounded subset Ω of Rp and for
all η > 0, ∫

Ω

|v(x + η)− v(x)|dx ≤ |v|BV (Ωη)|η|, (3.137)

where Ωη = {x ∈ Rp; d(x,Ω) ≤ η} and d(x,Ω) = inf{|x− y|, y ∈ Ω} is the distance from x
to Ω. This Lemma was proved in [3, Lemma 6.9].
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Let us now consider the main theorem of this section.

Theorem 3.13. Under assumption (3.2), then the entropy solution u to (3.1) belongs to
BVloc(RN × [0, T ]) for all T > 0. Further, for all compact set K ⊂ RN ×R+, there exists an
explicit constant CK,u0,a such that

|u|BV (K) ≤ CK,u0,a. (3.138)

Proof. Theorem 3.13 is proved through the following steps: �rst, we build a discrete solution
of the transport equation by a particular scheme and on a particular family of meshes. This
solution satis�es a strong BV estimate and veri�es a property like (3.37). Secondly, using
the uniqueness of the entropy solution and the properties of the dicrete solution, then, when
the size of the particular family of meshes tends to 0, the discrete solution will converge to
the unique entropy solution, and moreover, the discrete solution will transfer its properties
to the entropy solution.

For the sake of simplicity, we will prove the theorem with N = 2. Let us set z = (x, y)
a point in R2. We consider Cartesian meshes made up of squares of size h. We denote pij
to be the cell of center (xi = ih, yj = jh) with (i, j) ∈ Z2. The vertices of this cell are the
points with coordinates (xi− 1

2
, yj− 1

2
), (xi− 1

2
, yj+ 1

2
), (xi+ 1

2
, yj− 1

2
), (xi+ 1

2
, yj+ 1

2
). We set k to be

the time step and tn = kn for all n ∈ N.
Let the transport velocity be a(z, t) = (a1(z, t), a2(z, t)); then the problem (3.1) rewrites:

∂u

∂t
+ (a1(z, t)u(z, t))x + (a2(z, t)u(z, t))y = [(a1(z, t))x + (a2(z, t))y]u(z, t),∀(z, t) ∈ R2 × R+,

u(z, 0) = u0(z), ∀z ∈ R2.

We split each component of velocity a into two parts: the �rst part must be non negative
and the second part non positive:

a1(z, t) = b(z, t) + c(z, t),

a2(z, t) = d(z, t) + f(z, t).

For instance, we can take:

b(z, t) =
1

2
(a1(z, t) + V ), c(z, t) =

1

2
(a1(z, t)− V ),

d(z, t) =
1

2
(a2(z, t) + V ), f(z, t) =

1

2
(a2(z, t)− V ),

(3.139)

where V is de�ned by (3.2).
The discrete unknowns are the uni,j, where (i, j) ∈ Z2 and n ∈ N. From the positive and

negative property of the functions b, c, d and f , we construct the explicit upwind scheme:

un+1
i,j = uni,j −

k

h

[
bn
i+ 1

2
,j
uni,j − bni− 1

2
,j
uni−1,j + cn

i+ 1
2
,j
uni+1,j − cni− 1

2
,j
uni,j

]
− k

h

[
dn
i,j+ 1

2
uni,j − dni,j− 1

2
uni,j−1 + fn

i,j+ 1
2
uni,j+1 − fn

i,j− 1
2
uni,j

]
+
k

h

[
bn
i+ 1

2
,j
− bn

i− 1
2
,j
+ cn

i+ 1
2
,j
− cn

i− 1
2
,j

]
uni,j

+
k

h

[
dn
i,j+ 1

2
− dn

i,j− 1
2
+ fn

i,j+ 1
2
− fn

i,j− 1
2

]
uni,j.

(3.140)
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with the initial condition:

u0i,j =
1

h2

∫
pi,j

u0(z)dz, (3.141)

and the following de�nitions of the edge velocities:

bn
i+ 1

2
,j
=

1

h

∫ y
j+1

2

y
j− 1

2

b(xi+ 1
2
, y, tn)dy, (3.142)

cn
i+ 1

2
,j
=

1

h

∫ y
j+1

2

y
j− 1

2

c(xi+ 1
2
, y, tn)dy, (3.143)

dn
i,j+ 1

2
=

1

h

∫ x
i+1

2

x
i− 1

2

d(x, yj+ 1
2
, tn)dx, (3.144)

fn
i,j+ 1

2
=

1

h

∫ x
i+1

2

x
i− 1

2

f(x, yj+ 1
2
, tn)dx. (3.145)

The approximation solution uT ,k is de�ned by:

uT ,k(x, t) = uni,j , ∀x ∈ pij, t ∈ [tn, tn+1[. (3.146)

The BV-norm on R2 × [0, T [ can be writen as follows:

|uT ,k|BV (R2×[0,T [) =
∑

tn,tn+1∈[0,T [

∑
i,j∈Z

h2|un+1
i,j − uni,j|

+
∑

tn∈[0,T [

k
∑
i,j∈Z

(
h|uni+1,j − uni,j|+ h|uni,j+1 − uni,j|

)
.

(3.147)

Let Ω be a compact set in R2 and T > 0. The BV-norm of uT ,k on Ω× [0, T [ is given by:

|uT ,k|BV (Ω×[0,T [) =
∑

tn,tn+1∈[0,T [

∑
pi,j∩Ω6=∅

h2|un+1
i,j − uni,j|

+
∑

tn∈[0,T [

k
∑

pi,j∩Ω6=∅,pi+1,j∩Ω 6=∅

h|uni+1,j − uni,j|+
∑

tn∈[0,T [

k
∑

pi,j∩Ω 6=∅,pi,j+1∩Ω6=∅

h|uni,j+1 − uni,j|.

(3.148)

Shortening the expression of un+1
i,j in (3.140), there holds:

un+1
i,j = uni,j −

k

h

[
bn
i− 1

2
,j
uni,j − bni− 1

2
,j
uni−1,j + cn

i+ 1
2
,j
uni+1,j − cni+ 1

2
,j
uni,j

]
− k

h

[
dn
i,j− 1

2
uni,j − dni,j− 1

2
uni,j−1 + fn

i,j+ 1
2
uni,j+1 − fn

i,j+ 1
2
uni,j

]
.

(3.149)

Thanks to their de�nitions in (3.139), all functions b, c, d and f are bounded by V , and we
obtain that the CFL condition

k ≤ h

4V
(3.150)

ensures the L∞ stability of the scheme.
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Lemma 3.14. Assume (3.2), u0 ∈ BV (Rn). Then, there exists Ca depending only on a
such that∑

i,j∈Z

(
h|uni+1,j − uni,j|+ h|uni,j+1 − uni,j|

)
≤ (1 + Cak)

n|u0|BV (R2), (3.151)∑
i,j∈Z

h2|un+1
i,j − uni,j| ≤ 2kV (1 + Cak)

n|u0|BV (R2). (3.152)

Moreover, the function uT ,k, de�ned by (3.146) satis�es:

|uT ,k|BV (R2×[0,T [) ≤ (1 + 2V )min{ 1

Ca

, T}eCaT |u0|BV (R2). (3.153)

Proof. From the BV semi norm of uT ,k (3.147), the inequality (3.153) is a straightforward
consequence of (3.151) and (3.152).

Next, we shall prove (3.151) and (3.152). We set BV (u, n) = BV (u, n)x + BV (u, n)y
with:

BV (u, n)x :=
∑
i,j∈Z

h|uni+1,j − uni,j| and BV (u, n)y :=
∑
i,j∈Z

h|uni,j+1 − uni,j|.

Then, we have

BV (u, 0)x =
∑
i,j∈Z

h|u0i+1,j − u0i,j|

=
∑
i,j∈Z

1

h

∣∣∣∣∣
∫
pi+1,j

u0(x, y)dxdy −
∫
pi,j

u0(x, y)dxdy

∣∣∣∣∣ .
With a change of variable respect to x, there holds

BV (u, 0)x ≤
∑
i,j∈Z

1

h

∫
pi,j

∣∣u0(x+ h, y)− u0(x, y)
∣∣dxdy

≤ 1

h

∫
R2

∣∣u0(x+ h, y)− u0(x, y)
∣∣dxdy. (3.154)

By using the same technique with respect to y, we also obtain

BV (u, 0)y ≤
1

h

∫
R2

∣∣u0(x, y + h)− u0(x, y)
∣∣dxdy. (3.155)

Thanks to (3.154) and (3.155), we estimate BV (u, 0):

BV (u, 0) ≤ 1

h

[∫
R2

∣∣u0(x+ h, y)− u0(x, y)
∣∣dxdy

+

∫
R2

∣∣u0(x, y + h)− u0(x, y)
∣∣dxdy]. (3.156)
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From (3.156) and Lemma 6.9 in [3] (see Lemma 3.12 in this work), there holds:

BV (u, 0) ≤ |u0|BV (R2). (3.157)

In order to prove inequality (3.151), we use the induction method. First, the case when
n = 0 is given by (3.157). Let us now assume that (3.151) holds for a �xed n, it means that

BV (u, n) ≤ (1 + Cak)
n|u0|BV (R2). (3.158)

We shall now estimate BV (u, n + 1). Thanks to the de�ntions of b, c and the CFL condi-
tion (3.150), for all (i, j) ∈ Z we have

αn
i− 1

2
,j
:=

k

h
bn
i− 1

2
,j
∈ [0,

1

4
],

βn
i+ 1

2
,j
:=

k

h
cn
i+ 1

2
,j
∈ [−1

4
, 0].

Then we can rewrite (3.149) as:

un+1
i,j = uni,j − αn

i− 1
2
,j
(uni,j − uni−1,j)− βn

i+ 1
2
,j
(uni+1,j − uni,j)

− k

h
dn
i,j− 1

2
(uni,j − uni,j−1)−

k

h
fn
i,j+ 1

2
(uni,j+1 − uni,j)

(3.159)

and we also have

un+1
i+1,j = uni+1,j − αn

i+ 1
2
,j
(uni+1,j − uni,j)− βn

i+ 3
2
,j
(uni+2,j − uni+1,j)

− k

h
dn
i+1,j− 1

2
(uni+1,j − uni+1,j−1)−

k

h
fn
i+1,j+ 1

2
(uni+1,j+1 − uni+1,j).

(3.160)

Let us subtract (3.160) and (3.159) side by side; there holds:

un+1
i+1,j − un+1

i,j = (1− αn
i+ 1

2
,j
+ βn

i+ 1
2
,j
)(uni+1,j − uni,j) + αn

i− 1
2
,j
(uni,j − uni−1,j)

−βn
i+ 3

2
,j
(uni+2,j − uni+1,j) +Nd +Nf ,

(3.161)

where

Nd =
k

h

[
dn
i,j− 1

2
(uni,j − uni,j−1)− dni+1,j− 1

2
(uni+1,j − uni+1,j−1)

]
, (3.162)

Nf =
k

h

[
fn
i,j+ 1

2
(uni,j+1 − uni,j)− fn

i+1,j+ 1
2
(uni+1,j+1 − uni+1,j)

]
. (3.163)

We set

N∗
d =

k

h

[
dn
i,j− 1

2
(uni,j − uni+1,j)− dni,j− 3

2
(uni,j−1 − uni+1,j−1)

]
, (3.164)

N∗
f =

k

h

[
fn
i,j+ 1

2
(uni+1,j − uni,j)− fn

i,j+ 3
2
(uni+1,j+1 − uni,j+1)

]
. (3.165)
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Let us denote γn
i,j− 1

2

:= k
h
dn
i,j− 1

2

∈ [0, 1
4
] and δn

i,j+ 1
2

:= k
h
fn
i,j+ 1

2

∈ [−1
4
, 0]; then we can write

N∗
d = γn

i,j− 1
2
(uni,j − uni+1,j)− γni,j− 3

2
(uni,j−1 − uni+1,j−1),

N∗
f = δn

i,j+ 1
2
(uni+1,j − uni,j)− δni,j+ 3

2
(uni+1,j+1 − uni,j+1).

(3.166)

Thanks to (3.161) and (3.166), we have

un+1
i+1,j − un+1

i,j = (1− αn
i+ 1

2
,j
+ βn

i+ 1
2
,j
− γn

i,j− 1
2
+ δn

i,j+ 1
2
)(uni+1,j − uni,j)

+ αn
i− 1

2
,j
(uni,j − uni−1,j)− βn

i+ 3
2
,j
(uni+2,j − uni+1,j) + γn

i,j− 3
2
(uni+1,j−1 − uni,j−1)

− δn
i,j+ 3

2
(uni+1,j+1 − uni,j+1) +Nd −N∗

d +Nf −N∗
f .

(3.167)

Now, we will focus on bounding |Nd −N∗
d | and |Nf −N∗

f |. We have

Nd −N∗
d =

k

h

[
(dn

i,j− 1
2
− dn

i+1,j− 1
2
)uni+1,j + (dn

i,j− 3
2
− dn

i,j− 1
2
)uni,j−1 + (dn

i+1,j− 1
2
− dn

i,j− 3
2
)uni+1,j−1

]
.

We may express the last term in the right hand-side of the previous equality as:

(dn
i+1,j− 1

2
− dn

i,j− 3
2
)uni+1,j−1 = (dn

i+1,j− 1
2
− dn

i,j− 1
2
)uni+1,j−1 + (dn

i,j− 1
2
− dn

i,j− 3
2
)uni+1,j−1.

Then,

Nd −N∗
d =

k

h

[
(dn

i,j− 1
2
− dn

i+1,j− 1
2
)(uni+1,j − uni+1,j−1) + (dn

i,j− 3
2
− dn

i,j− 1
2
)(uni,j−1 − uni+1,j−1)

]
.

(3.168)

Moreover, from the de�nitions of d and dn
i,j+ 1

2

, with a change of variable in x, there holds

|dn
i,j− 1

2
− dn

i+1,j− 1
2
| ≤ 1

h

∫ x
i+1

2

x
i− 1

2

∣∣a2(x, yj− 1
2
, tn)− a2(x+ h, yj− 1

2
, tn)

∣∣dx.
Let us now denote Lx

a1
and Lx

a2
(resp. Ly

a1
and Ly

a2
) the Lipschitz constants of a1 and a2 with

respect to x (resp. y); we get

|dn
i,j− 1

2
− dn

i+1,j− 1
2
| ≤ Lx

a2
h. (3.169)

In the same way, we have

|dn
i,j− 3

2
− dn

i,j− 1
2
| ≤ Ly

a2
h. (3.170)

Combining (3.168), (3.169) and (3.170), there holds:

|Nd −N∗
d | ≤ k

[
Lx
a2
|uni+1,j − uni+1,j−1|+ Ly

a2
|uni,j−1 − uni+1,j−1|

]
. (3.171)



CHAPTER 3. TRANSPORT EQUATIONS 96

To bound Nf −N∗
f , we use the same trick as for Nd −N∗

d and obtain

|Nf −N∗
f | ≤ k

[
Lx

a2
|uni+1,j+1 − uni+1,j|+ Ly

a2
|uni+1,j+1 − uni,j+1|

]
. (3.172)

Then, taking the absolute value of (3.167), setting L = maxw∈{a1,a2}{Lx
ω, L

y
ω} and using the

fact that (1 − αn
i+ 1

2
,j
+ βn

i+ 1
2
,j
− γn

i,j− 1
2

+ δn
i,j+ 1

2

), αn
i− 1

2
,j
, −βn

i+ 3
2
,j
, γn

i,j− 3
2

and −δn
i,j+ 3

2

are all

positive, we get:

|un+1
i+1,j − un+1

i,j | ≤ (1− αn
i+ 1

2
,j
+ βn

i+ 1
2
,j
− γn

i,j− 1
2
+ δn

i,j+ 1
2
)|uni+1,j − uni,j|

+ αn
i− 1

2
,j
|uni,j − uni−1,j| − βn

i+ 3
2
,j
|uni+2,j − uni+1,j|

+ γn
i,j− 3

2
|uni+1,j−1 − uni,j−1| − δni,j+ 3

2
|uni+1,j+1 − uni,j+1|

+ kL
[
|uni+1,j − uni+1,j−1|+ |uni,j−1 − uni+1,j−1|

+ |uni+1,j+1 − uni+1,j|+ |uni+1,j+1 − uni,j+1|
]
.

(3.173)

Summing (3.173) over i and j and noting that some sums cancel because
∑
αn
i+ 1

2
,j
|uni+1,j −

uni,j| =
∑
αn
i− 1

2
,j
|uni,j − uni−1,j|, etc, we obtain

BV (u, n+ 1)x ≤ BV (u, n)x + 2kL
[
BV (u, n)x +BV (u, n)y

]
. (3.174)

We obtain a similar bound for BV (u, n+ 1)y and combining with (3.158) this leads to

BV (u, n+ 1) ≤ (1 + 4kL)(1 + kCa)
n|u0|BV (R2),

which completes (3.151) if we choose Ca = 4L.
In the next step, we prove (3.152); thanks to (3.149), applying the bound of b, c, d and

f , we have

|un+1
i,j − uni,j| ≤

kV

h

[
|uni,j − uni−1,j|+ |uni+1,j − uni,j|

+|uni,j − ui,j−1|+ |uni,j+1 − uni,j|
]
.

By multiplying this inequality side by side with h2 and after summing over i and j, we have∑
i,j∈Z

h2|un+1
i,j − uni,j| ≤ 2kV [BV (u, n)]. (3.175)

Using (3.151), we have �nished this lemma.

Lemma 3.15. Assume (3.2). Then, for all compact set Ω ⊂ R2, for all T > 0, there exists
Ca depending only on a and a compact set Ωh

0 ⊂ RN depending only on Ω, T , k
h
and h such

that

|uT ,k|BV (Ω×[0,T [) ≤ (1 + 2V )min{ 1

Ca

, T}eCaT |u0|BV (Ωh
0 )
. (3.176)
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Proof. We set

Ω0 =
⋃
x∈Ω

Bmax(x,
h

k
T ),

Ωh
0 =

⋃
pij∩Ω0 6=∅

pij,

where Bmax(x,
h
k
T ) = {|y − x|max <

h
k
T} and |y − x|max = max{|y1 − x1|, |y2 − x2|}, with

x = (x1, x2) and y = (y1, y2). Following the proof of Lemma 3.14 without using inequality
(3.157), we get

|uT ,k|BV (Ω×[0,T [) ≤ (1 + 2V )min{ 1

Ca

, T}eCaT |uT ,0|BV (Ω0).

Noting that

|uT ,0|BV (Ω0) ≤ |u0|BV (Ωh
0 )
,

then, we obtain

|uT ,k|BV (Ω×[0,T [) ≤ (1 + 2V )min{ 1

Ca

, T}eCaT |u0|BV (Ωh
0 )
.

We have �nished the proof of the lemma.

Now, we return to Theorem 3.13. Lemma 3.15 generalized to RN shows that uT ,k belongs
to BV (Ω × [0, T [) for all compact set Ω ⊂ RN and for all T > 0. Therefore for all ϕ ∈
C∞

c (Ω × [0, T [,R) such that ‖ϕ‖∞ ≤ 1, from the norm BV of uT ,k on Ω × [0, T [ in (3.148),
there holds, thanks to (3.176):

N∑
j=1

∫
Ω×[0,T [

uT ,k(x, t)
∂ϕ

∂xj
(x, t)dxdt+

∫
Ω×[0,T [

uT ,k(x, t)
∂ϕ

∂t
(x, t)dxdt

≤ (1 + 2V )min{ 1

Ca

, T}eCaT |u0|BV (Ωh
0 )
.

(3.177)

Since uT ,k converges toward u in weak L∞(RN× [0, T [) (Theorem 3 in [2]) and we can choose
the ratio k

h
to be a constant, we can pass to the limit in (3.177); then we get the same

inequalities with u (resp. infh>0 |u0|BV (Ωh
0 )
) instead of uT ,k (resp. |u0|BV (Ωh

0 )
). This proves

that u belongs to BVloc(RN × [0, T [), for all T > 0.
Moreover, since K ⊂ RN ×R+ is a compact set, then, there exist a compact set Ω ⊂ RN

and T > 0 such that K ⊂ Ω× [0, T [ and

|u|BV (K) ≤ |u|BV (Ω×[0,T [) ≤ (1 + 2V )min{ 1

Ca

, T}eCaT inf
h>0
|u0|BV (Ωh

0 )
.

Then we complete this theorem with CK,u0,a = (1+2V )min{ 1
Ca
, T}eCaT infh>0 |u0|BV (Ωh

0 )
.
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Chapter 4

Discrete Poincaré Inequalities

We establish discrete Poincaré type inequalities on a twodimensional polygonal domain cov-
ered by arbitrary, possibly nonconforming meshes. On such meshes, discrete scalar �elds
are de�ned by their values both at the cell centers and vertices, while discrete gradients are
associated with the edges of the mesh, like in the discrete duality �nite volume scheme. We
prove that the constants that appear in these inequalities depend only on the domain and on
the angles in the diagonals of the diamond cells constructed by joining the two vertices of
each mesh edge and the centers of the cells that share that edge.

4.1 Introduction

Let Ω be a two dimensional polygonal domain. Let us introduce the following two Poincaré
inequalities which will be mentioned throughout this chapter: The Friedrichs (also called
Poincaré) inequality ∫

Ω

u2(x)dx ≤ cF

∫
Ω

|∇u(x)|2dx , ∀u ∈ H1
0 (Ω) (4.1)

and the Poincaré (also called mean Poincaré) inequality∫
Ω

u2(x)dx ≤ cP

∫
Ω

|∇u(x)|2dx , ∀u ∈ H1(Ω) such that

∫
Ω

u(x)dx = 0, (4.2)

where cF and cP are constants depending only on Ω. These two inequalities play an important
role in the theory of partial di�erential equations. Here, H1(Ω) is the Sobolev space of L2(Ω)
functions with generalized derivatives in (L2(Ω))2, and H1

0 (Ω) is the subspace of H
1(Ω) with

zero boundary values in the sense of traces on ∂Ω. More details on the Sobolev spaces H1(Ω),
H1

0 (Ω) may be found, e.g., in [1].
This chapter considers discrete versions of Poincaré inequalities for the so-called discrete

duality �nite volume (DDFV) method of discretization on arbitrary meshes, as presented,
e.g., in [9]. Originally developed for the discretization of (possibly heterogeneous, anisotropic,
nonlinear) di�usion equations on arbitrary meshes [2, 5, 9, 13, 14, 18], this technique has
found applications in other �elds, like electromagnetics [15], div-curl problems [7] and Stokes
�ows [6, 16, 17], drift di�usion and energy transport models [3].
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The originality of these schemes is that they work well on all kind of meshes, including
very distorted, degenerating, or highly nonconforming meshes (see the numerical tests in
[9]). The name DDFV comes from the fact that these schemes are based on the de�nition
of discrete gradient and divergence operators which verify a discrete Green formula.

Details about this method are recalled in section 4.2. In this introduction, let us only
mention that in the DDFV discretization, scalar functions are discretized by their values
both at the centers and at the vertices of a given mesh, and their gradients are evaluated on
the so-called �diamond-cells� associated to the edges of the mesh. Each internal diamond-cell
is a quadrilateral; its vertices are the two nodes of a given internal edge and the centers of the
two cells which share this edge. Each boundary diamond cell is a degenerated quadrangle
(i.e. a triangle); its vertices are the two nodes of a given boundary edge and the center of
the corresponding cell and that of the boundary edge.

Then, the discrete version of the L2 norm on the left-hand side of (4.1) and (4.2) is
the half-sum of the L2 norms of two piecewise constant functions, one de�ned with the
discrete values given at the centers of the original ("primal" in what follows) cells, and the
other de�ned with the discrete values given at the vertices of the primal mesh, to which we
associate cells of a dual mesh. Moreover, the discrete version of the gradient L2 norm on the
right-hand side of (4.1) and (4.2) is the L2 norm of the piecewise constant gradient vector
�eld de�ned with it discrete values on the diamond-cells.

In the �nite volume context, discrete Poincaré-Friedrich inequalities have previously been
proved in [10, Lemma 9.1, Lemma 10.2] and [12], respectively for so-called "admissible"
meshes (roughly speaking, meshes such that each edge is orthogonal to the segment joining
the centers of the two cells sharing that edge, see the precise de�nition in [10, De�nition
9.1]) and for Voronoi meshes. Similar results on duals of general simplicial triangulations
are proved in [19]. In the DDFV context, a discrete version of (4.1) is given for arbitrary
meshes in [2]. However, the discrete constant cF which appears in that paper depends on
the mesh regularity in a rather intricate way, see [2, Formula (2.6) and Lemma 3.3].

The main result of our contribution is the proof of discrete versions of both (4.1) and (4.2)
in the DDFV context, with constants cF and cP depending only on the domain and on the
minimum angle in the diagonals of the diamond cells of the mesh.

Our proof of the discrete version of (4.1) is very similar to those given in [10] or [19]. We
also prove a discrete version of (4.1) in a slightly more general situation when the domain
is not simply connected and the discrete values of the function vanish only on the exterior
boundary of the domain and are constant on each of the internal boundaries (this will have
a subsequent application in the last section of the present work).

However, the task is more di�cult for the mean-Poincaré inequality. Like in [10], it is
divided into three steps. The �rst is the proof of this inequality on a convex subdomain; in
the second, our proof di�ers from that in [10] because we actually do not need to prove a
bound on the L2 norm of the di�erence of discrete functions and their discrete mean value
on the boundary of a convex subset, but rather an easier bound on the L1 norm of this
di�erence. The �nal step consists in dividing a general polygonal domain into several convex
polygonal subdomains and in combining the �rst two steps to obtain the result.

As a consequence of these results, we derive a discrete equivalent of the following result
(which is a particular case of a result given in [11]): Let us consider open, bounded, simply
connected, convex polygonal domains (Ωq)q∈[0,Q] of R

2 such that Ωq ⊂ Ω0 for all q ∈ [1, Q]
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and Ω̄q1∩Ω̄q2 = ∅ for all (q1, q2) ∈ [1, Q]2 with q1 6= q2. Let Ω be de�ned by Ω = Ω0\(∪Q
q=1Ωq).

Let us denote by Γ = ∂Ω = ∪Q
q=0Γq, with Γq = ∂Ωq for all q ∈ [0, Q]. Then, there exists a

constant C, depending only on Ω, such that for all vector �eld u in H(div,Ω) ∩ H(rot,Ω)
with u · n = 0 on Γ and (u · τ , 1)Γq = 0 for all q ∈ [1, Q], there holds

||u||L2(Ω) ≤ C(||∇ · u||L2(Ω) + ||∇ × u||L2(Ω)). (4.3)

The discrete equivalent has applications in the derivation of a priori error estimates for the
DDFV method applied to the Stokes equations ([8]).

This chapter is organized as follows. Section 4.2 sets some notations and de�nitions re-
lated to the meshes, to discrete di�erential operators and to discrete functions. In section 4.3,
discrete Poincaré inequalities are presented. First, we prove a discrete Poincaré inequality
for discrete functions vanishing on the boundary of the polygonal domain and then extend
this result to the slightly more general case mentioned above. Then, we prove the discrete
mean Poincaré inequality with the 3 steps described above. Finally, we present in section 4.4
an application of the previous results to the derivation of another discrete inequality, relating
the norm of discrete vector �elds de�ned on the diamond cells and verifying special boundary
conditions, to that of their divergence and curls de�ned on the primal and dual meshes. In
section 4.5, we present the details of the proof of a Lemma involved in our main results.

4.2 Notations and de�nitions

The following notations are summarized in Fig. 4.1 and Fig. 4.2. Let Ω be de�ned as above
and be covered by a primal mesh with polygonal cells denoted by Ti, i ∈ [1, I]. With each
Ti, we associate a point Gi located in the interior of Ti. let us denote by Sk, with k ∈ [1, K]
the nodes of the cells. With any Sk, we associate a dual cell Pk by joining the points Gi

associated with the primal cells surrounding Sk to the midpoints of the edges of which Sk is
a node.

Sk
Ti

Pk

Gi

Dj

Figure 4.1: A nonconforming primal mesh and its associated dual mesh (left) and diamond-
mesh (right).

With any primal edge Aj with j ∈ [1, J ], we associate a so-called diamond-cell Dj ob-
tained by joining the vertices Sk1(j) and Sk2(j) of Aj to the points Gi1(j) and Gi2(j) associated
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Figure 4.2: Notations for the inner diamond-cell (left) and a boundary diamond mesh (right).

with the primal cells that share Aj as a part of their boundaries. When Aj is a boundary
edge (there are JΓ such edges), the associated diamond-cell is a �at quadrilateral (i.e. a
triangle) and we denote by Gi2(j) the midpoint of Aj (thus, there are JΓ such additional
points Gi). The unit normal vector to Aj is nj and points from Gi1(j) to Gi2(j). We denote
by A′

j1 (resp. A′
j2) the segment joining Gi1(j) (resp. Gi2(j)) and the midpoint of Aj. Its as-

sociated unit normal vector, pointing from Sk1(j) to Sk2(j), is denoted by n′
j1 (resp. n

′
j2). We

also de�ne vectors τ j, τ
′
j1 and τ ′

j2 such that (nj, τ j), (n
′
j1, τ

′
j1) and (n′

j2, τ
′
j2) are orthonor-

mal, positively oriented basis of R2. In the case of a boundary diamond-cell, A′
j2 reduces

to {Gi2(j)} and does not play any role. Finally, for any diamond-cell Dj, we shall denote
by Miαkβ the midpoint of [Giα(j)Skβ(j)], with (α, β) ∈ {1; 2}2, Mj the midpoint of Sk1(j)Sk2(j)

and θj1 (resp θj2) is de�ned by the angle, lower than π/2, between segment Sk1(j)Sk2(j) and
segment Gi1(j)Mj (resp Gi2(j)Mj).

We shall use the following de�nition

De�nition 4.1. We denote by θ∗ > 0 the greatest angle in the mesh such that

θj1 ≥ θ∗ and θj2 ≥ θ∗ for all j ∈ [1, J ].

Now we shall associate discrete scalar values to the points Gi and Sk and discrete twodi-
mensional vector �elds to the diamond-cells. This leads us to the following de�nitions.

De�nition 4.2. Let φ = (φT
i , φ

P
k ), and ψ = (ψT

i , ψ
P
k ) be in RI × RK. Let u = (uj) and
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w = (wj) be in
(
RJ
)2
. We de�ne the following scalar products and associated norms

(φ, ψ)T,P :=
1

2

∑
i∈[1,I]

|Ti|φT
i ψ

T
i +

∑
k∈[1,K]

|Pk|φP
k ψ

P
k

 , (4.4)

‖φ‖2T,P := (φ, φ)T,P ,

(w,u)D :=
∑

j∈[1,J ]

|Dj|wj · uj , ‖u‖2D := (u,u)D. (4.5)

De�nition 4.3. Let φ = (φT
i , φ

P
k ) be in RI+JΓ × RK. We de�ne the trace φ̃ of φ on the

boundary edges Aj ⊂ Γ with φ̃j :=
1
4

(
φP
k1(j)

+ 2φT
i2(j)

+ φP
k2(j)

)
We also de�ne a discrete scalar product for the traces of u · n and φ̃ on the boundaries

Γq

(u · n, φ̃)Γq ,h :=
∑
j∈Γq

|Aj|uj · nj × φ̃j

and on Γ
(u · n, φ̃)Γ,h :=

∑
q∈[0,Q]

(u · n, φ̃)Γq ,h . (4.6)

In the proof of discrete Poincaré inequalities, we often use the piecewise constant functions
based on the discrete functions de�ned at the centers of each mesh; we set the following
de�nitions

De�nition 4.4. Let φ ∈ RI+JΓ × RK. The piecewise constant functions φT (x) and φP (x)
are de�ned following, respectively,

φT (x) = φT
i , ∀x ∈ Ti and i ∈ [1, I];

φP (x) = φP
k , ∀x ∈ Pk and k ∈ [1, K].

(4.7)

We recall here the discrete gradient [4, 9] and (vector) curl operators [7] which have been
constructed on the diamond cells.

De�nition 4.5. Let φ = (φT
i , φ

P
k ) be in RI+JΓ

, its discrete gradient ∇D
h φ and discrete curl

∇D
h × φ are de�ned by their values in the cells Dj through

(∇D
h φ)j :=

1

2|Dj|
{
[φP

k2
− φP

k1
](|A′

j1|n′
j1 + |A′

j2|n′
j2) + [φT

i2
− φT

i1
]|Aj|nj

}
,

(∇D
h × φ)j := −

1

2|Dj|
{
[φP

k2
− φP

k1
](|A′

j1|τ ′
j1 + |A′

j2|τ ′
j2) + [φT

i2
− φT

i1
]|Aj|τ j

}
.

In the proof of our results, we shall use the following theorem which is exactly [7, Theorem
4.7]
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Theorem 4.6. Let (uj)j∈[1,J ] be a discrete vector �eld de�ned by its values on the diamond-
cells Dj. There exist unique φ = (φT

i , φ
P
k )i∈[1,I+JΓ],k∈[1,K], ψ = (ψT

i , ψ
P
k )i∈[1,I+JΓ],k∈[1,K] and

(cTq , c
P
q )q∈[1,Q] such that:

uj = (∇D
h φ)j + (∇D

h × ψ)j, ∀j ∈ [1, J ] , (4.8)∑
i∈[1,I]

|Ti|φT
i =

∑
k∈[1,K]

|Pk|φP
k = 0 , (4.9)

ψT
i = 0 , ∀i ∈ Γ0 , ψP

k = 0 , ∀k ∈ Γ0 , (4.10)

and
∀q ∈ [1, Q] , ψT

i = cTq , ∀i ∈ Γq , ψP
k = cPq , ∀k ∈ Γq . (4.11)

Moreover, the decomposition (4.8) is orthogonal.

We shall also need the following construction of discrete divergence and (scalar) curl
operators on both primal and dual cells:

De�nition 4.7. Let u = (uj) be de�ned in (R2)J by its values on the diamond-cells. We
de�ne (

∇T
h · u

)
i

:=
1

|Ti|
∑
j∈∂Ti

|Aj|uj · nji, (4.12)

(
∇P

h · u
)
k

:=
1

|Pk|

(∑
j∈∂Pk

(
|A′

j1|uj · n′
j1k + |A′

j2|uj · n′
j2k

)
+

∑
j∈∂Pk∩Γ

|Aj|
2

uj · nj

)
, (4.13)

(
∇T

h × u
)
i

:=
1

|Ti|
∑
j∈∂Ti

|Aj|uj · τ ji, (4.14)

(
∇P

h × u
)
k

:=
1

|Pk|

(∑
j∈∂Pk

(
|A′

j1|uj · τ ′
j1k + |A′

j2|uj · τ ′
j2k

)
+

∑
j∈∂Pk∩Γ

|Aj|
2

uj · τ j

)
. (4.15)

The following result [7, Proposition 4.1], which consists in discrete Green formulas, has
motivated the name "discrete duality":

Theorem 4.8. For u ∈ (R2)J and φ = (φT , φP ) ∈ RI+JΓ × RK, it holds that

(u,∇D
h φ)D = −(∇T,P

h · u, φ)T,P + (u · n, φ̃)Γ,h, (4.16)

(u,∇D
h × φ)D = (∇T,P

h × u, φ)T,P − (u · τ , φ̃)Γ,h. (4.17)
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4.3 Discrete Poincaré inequalities

We �rst start with a discrete version of (4.1). Our result is a special case of that proved in
[2, Lemma 3.3], but our expression of the discrete constant cF is more precise and simple,
in that its dependence on the geometry of the cells occurs only through the angles in the
diagonals of the diamond-cells. This is an important result in the DDFV context, since a
priori error estimations of the discrete solution of the Laplace equation obtained with this
method also only depend on the cell geometries through angles in the diamond-cells (see [9]).

Theorem 4.9 (Discrete Poincaré-Friedrichs Inequality). Let Ω be an open bounded
polygonal domain; let us consider u = (uTi , u

P
k ) ∈ RI+JΓ × RK such that

uPk = 0, ∀k ∈ Γ and uTi = 0, ∀i ∈ Γ. (4.18)

Let θ∗ be de�ned by De�nition 4.1. Then, there exists a constant C only depending on Ω and
θ∗ such that

‖u‖T,P ≤ C‖∇D
h u‖D. (4.19)

Proof. Let uT (·) and uP (·) be the piecewise constant functions de�ned in De�nition 4.4.
Then obviously ‖u‖2T,P = (‖uT‖2L2(Ω) + ‖uP‖2L2(Ω))/2, so that, in order to prove (4.19), it
su�ces to prove

‖uT‖L2(Ω) ≤ C‖∇D
h u‖D, (4.20)

‖uP‖L2(Ω) ≤ C‖∇D
h u‖D. (4.21)

We shall �rst prove (4.20). Let d1 = (0, 1)t and d2 = (1, 0)t; for x ∈ Ω, let D1
x and D2

x be the
straight lines going through x and parallel to the vectors d1 and d2. For any edge j ∈ [1, J ]
and any x ∈ Ω, let us de�ne χT,1

j (x) and χT,2
j (x) by

χT,`
j (x) =

{
1 if Aj ∩ D`

x 6= ∅
0 if Aj ∩ D`

x = ∅
for ` = 1, 2. (4.22)

Remark 4.10. For any x = (x1, x2) ∈ Ω, we note that χT,1
j (x) only depends on x1 and

χT,2
j (x) only depends on x2.

From the �rst formula of de�nition 4.5 and simple geometry, it is easy to see that

(∇D
h u)j ·

−−−−−−−→
Gi1(j)Gi2(j) = uTi2(j) − u

T
i1(j)

, ∀j ∈ [1, J ]. (4.23)

Then, for any i ∈ [1, I] and a.e. x ∈ Ti, let us follow the straight line D`
x until it intersects the

boundary Γ, and let us denote by v1(i) := i, v2(i), · · · , vn−1(i) the indices of the primal cells
that it intersects (in the order they are intersected) and by vn(i) the index in [I + 1, I + JΓ]
corresponding to the �rst boundary segment intersected by D`

x (see Fig. 4.3). Then, since
uTvn(i) = 0 because of the boundary conditions, we may write

uTi = uTv1(i) = (uTv1(i)−u
T
v2(i)

)+(uTv2(i)−u
T
v3(i)

)+ · · ·+(uTvn−1(i)
−uTvn(i)) =

n−1∑
m=1

(uTvm(i)−uTvm+1(i)
),
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Figure 4.3: Straight line D2
x intersecting primal cells from point x to the boundary.

so that, since any couple (uTvm(i), u
T
vm+1(i)

) is a pair of neighboring values through an edge Aj

intersected by D`
x, there holds, thanks to (4.23)

|uT (x)| = |uTi | ≤
J∑

j=1

∣∣∣(∇D
j u)j ·

−−−−−−−→
Gi1(j)Gi2(j)

∣∣∣χT,`
j (x)

for ` = 1, 2. Then, setting vj :=
∣∣∣(∇D

j u)j ·
−−−−−−−→
Gi1(j)Gi2(j)

∣∣∣, one has
(uT (x))2 ≤

(
J∑

j=1

vj χ
T,1
j (x)

) (
J∑

j=1

vj χ
T,2
j (x)

)
. (4.24)

Integrating the above inequality over Ti and summing over i ∈ [1, I] yields

‖uT‖2L2(Ω) ≤
∫
Ω

[(
J∑

j=1

vj χ
T,1
j (x)

) (
J∑

j=1

vj χ
T,2
j (x)

)]
dx. (4.25)

Let α = inf{x1; (x1, x2) ∈ Ω} and β = sup{x1; (x1, x2) ∈ Ω}. For each x1 ∈ (α, β), we
denote by H(x1) the set of x2 such that x = (x1, x2) ∈ Ω. From Remark 4.10 and the fact

that
∫
H(x1)

χT,2
j (x2)dx2 ≤ |Aj| and

∫ β

α
χT,1
j (x1)dx1 ≤ |Aj|, we infer that (4.25) may be written
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in the following way:

‖uT‖2L2(Ω) ≤
∫ β

α

dx1

∫
H(x1)

dx2

[
J∑

j=1

vj χ
T,1
j (x1)

J∑
j=1

vj χ
T,2
j (x2)

]

≤
∫ β

α

J∑
j=1

vj χ
T,1
j (x1)

(∫
H(x1)

J∑
j=1

vj χ
T,2
j (x2)dx2

)
dx1

≤
∫ β

α

J∑
j=1

vj χ
T,1
j (x1)

(
J∑

j=1

vj

∫
H(x1)

χT,2
j (x2)dx2

)
dx1

≤
∫ β

α

J∑
j=1

vj χ
T,1
j (x1)

(
J∑

j=1

vj|Aj|

)
dx1

≤

(
J∑

j=1

vj|Aj|

)
J∑

j=1

vj

∫ β

α

χT,1
j (x1)dx1 ≤

(
J∑

j=1

vj|Aj|

)(
J∑

j=1

vj|Aj|

)
.

We thus obtain

‖uT‖2L2(Ω) ≤

(
J∑

j=1

|(∇D
h u)j.

−−−−−−−→
Gi1(j)Gi2(j)||Aj|

)2

. (4.26)

Finally, Using the Cauchy-Schwarz inequality, we have

‖uT‖2L2(Ω) ≤

(
J∑

j=1

|(∇D
h u)j|2|Gi1(j)Gi2(j)||Aj|

)(
J∑

j=1

|Gi1(j)Gi2(j)||Aj|

)
. (4.27)

Since |Dj| = 1
2
(|Aj||Gi1Mj| sin θj1 + |Aj||Gi2Mj| sin θj2), we have that |Aj||Gi1Gi2 | ≤

2|Dj |
sin θ∗

by De�nition 4.1 and the triangle inequality. Moreover, since
∑J

j=1 |Dj| = |Ω|, there holds

‖uT‖2L2(Ω) ≤
4

sin2 θ∗
|Ω|

J∑
j=1

|(∇D
h u)j|2|Dj|.

We have completed inequality (4.20) with C = 2
sin θ∗
|Ω|1/2. We now turn to inequality (4.21).

We shall use a very similar process to that employed in the proof of (4.20). A slight di�erence
comes from the fact that dual cells may be non-convex, and that the straight lines D`

x may
thus intersect twice the boundary A′

j1 ∪ A′
j2 between two adjacent dual cells (see Fig. 4.4),

in which case it is not useful to introduce the di�erence uPk2(j)− u
P
k1(j)

in the calculation. We

thus de�ne χP,1
j (x) and χP,2

j (x) by

χP,`
j (x) =

{
1 if only A′

j1 ∩ D`
x 6= ∅ or A′

j2 ∩ D`
x 6= ∅

0 if
(
A′

j1 ∪ A′
j2

)
∩ D`

x = ∅
for ` = 1, 2.

In the above de�nition, it is meant that if D`
x intersects both A′

j1 and A
′
j2, then χ

P,`
j (x) = 0.

From the �rst formula of de�nition 4.5, it is easy to see that

(∇D
j u)j ·

−−−−−−−→
Sk1(j)Sk2(j) = uPk2(j) − u

P
k1(j)

, ∀j ∈ [1, J ].
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Figure 4.4: The straight line D2
x intersects twice the boundary A′

j1 ∪ A′
j2 of a non convex

dual.

Thus, for any k ∈ [1, K] and a.e. x ∈ Pk, one has

|uPk | ≤
J∑

j=1

|(∇D
h u)j ·

−−−−−−−→
Sk1(j)Sk2(j)| χ

P,`
j (x) , ` = 1, 2.

Using a similar process as in the proof of (4.20) and taking into account that∫ β

α

χP,1
j (x1)dx1 ≤ |A′

j1
|+ |A′

j2
| and

∫
H(x1)

χP,2
j (x2)dx2 ≤ |A′

j1
|+ |A′

j2
|,

we obtain

‖uP‖2L2(Ω) ≤

(
J∑

j=1

|(∇D
h u)j||Aj|(|A′

j1
|+ |A′

j2
|)

)2

which allows to obtain, similarly as above

‖uP‖2L2(Ω) ≤
4

sin2 θ∗
|Ω|

J∑
j=1

|(∇D
h u)j|2|Dj|,

which concludes the proof of inequality (4.21) with C = 2
sin θ∗
|Ω|1/2.

We now turn to a generalization of Theorem 4.9 which will be useful in the last section
of this work.

Theorem 4.11 (Discrete Poincaré-Friedrichs Inequality). Let us consider open, bounded,
simply connected, convex polygonal domains (Ωq)q∈[0,Q] of R2 such that Ωq ⊂ Ω0 for all
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q ∈ [1, Q] and Ω̄q1 ∩ Ω̄q2 = ∅ for all (q1, q2) ∈ [1, Q]2 with q1 6= q2. Let Ω be de�ned by
Ω = Ω0\(∪Q

q=1Ωq). Let us denote by Γ = ∂Ω = ∪Q
q=0Γq, with Γq = ∂Ωq for all q ∈ [0, Q].

Let u = (uT , uP ) ∈ RI+JΓ × RK be such that

uPk = 0, ∀k ∈ Γ0 and uTi = 0, ∀i ∈ Γ0,

uPk = cPq , ∀k ∈ Γq, and uTi = cTq , ∀i ∈ Γq,∀q ∈ [1, Q].
(4.28)

With θ∗ given by De�nition 4.1, there exists a constant C depending only on Ω and θ∗ such
that (4.19) holds.

Proof. Like in Theorem 4.9, it su�ces to prove both (4.20) and (4.21). We shall only prove
(4.20), since the proof of (4.21) follows exactly the same lines.

The only di�erence in the proof of (4.20) in Theorem 4.11 with respect to Theorem 4.9
is that the straight line D`

x may now intersect one or several internal boundary(ies) Γq, with
q ∈ [1, Q], before intersecting the external boundary Γ0 (see Fig. 4.5). For the sake of
simplicity, we shall consider only one intersection with an internal boundary Γq (since the
alternative may be treated exactly in the same way), and we denote by vnq(i) and vnq+1(i)
the indices in [I + 1, I + JΓ] corresponding to those intersected boundary edges of Γq. We
may still write

uTi =
n−1∑
m=1

(uTvm(i) − uTvm+1(i)
),

but, now, the couple (uTvnq (i)
, uTvnq+1(i)

) is not a pair of neighboring values through an edge

Aj intersected by D`
x. However, these two values are equal because of (4.28), so that

uTi =
∑

m ∈ [1, n− 1]
m 6= nq

(uTvm(i) − uTvm+1(i)
).

Now, any couple (uTvm(i), u
T
vm+1(i)

) in the above sum is a pair of neighboring values through

an edge Aj of the mesh, intersected by D`
x, so that there holds, thanks to (4.23)

|uTi | ≤
J∑

j=1

∣∣∣(∇D
j u)j ·

−−−−−−−→
Gi1(j)Gi2(j)

∣∣∣χT,`
j (x)

for ` = 1, 2 and we �nish the proof just like in the proof of (4.20).

Let us now turn to a discrete version of (4.2). As announced in the Introduction, the
proof will be divided in three steps. The �rst step is to prove it in the case of a convex
polygonal domain (Theorem 4.12), then we shall prove an inequality related to the mean
value on the boundary of a convex polygonal domain (Theorem 4.15) and we shall conclude
by the general case of a possibly non-convex polygonal domain (Theorem 4.17).

Theorem 4.12 (Discrete mean Poincaré Inequality for a convex polygonal do-
main). Let Ω be an open bounded polygonal connected domain, and ω be an open convex
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Figure 4.5: Straight line D2
x intersecting primal cells from point x to the boundary through

internal boundary Γq.

polygonal subset of Ω, with ω 6= ∅. Let u = (uTi , u
P
k ) ∈ RI+JΓ × RK; the associated piece-

wise constant functions uT , uP are de�ned through De�nition 4.4. Let θ∗ be de�ned through
De�nition 4.1. Let us de�ne the following mean-values:

mT
ω(u) :=

1

|ω|

∫
ω

uT (x) dx , mP
ω (u) :=

1

|ω|

∫
ω

uP (x) dx.

Then, there exists a constant C only depending on Ω and θ∗ such that

‖uT −mT
ω(u)‖L2(ω) ≤ C‖∇D

h u‖D, (4.29)

and
‖uP −mP

ω (u)‖L2(ω) ≤ C‖∇D
h u‖D, . (4.30)

(Choosing ω = Ω proves the discrete equivalent of (4.2) if Ω is convex.)

Proof. We only prove inequality (4.29). The proof of (4.30) may be adapted just like in the
proof of Theorem 4.9. We �rst note that∫

ω

|uT (x)−mT
ω(u)|2dx =

∫
ω

∣∣∣∣uT (x)− 1

|ω|

∫
ω

uT (y)dy

∣∣∣∣2 dx
≤ 1

|ω|

∫
ω

∫
ω

|uT (x)− uT (y)|2dydx.
(4.31)

We de�ne points A, B, C, D belonging to ω in the following way

xA = inf{x1; (x1, x2) ∈ ω}, xC = sup{x1; (x1, x2) ∈ ω},
yB = inf{y2; (y1, y2) ∈ ω}, yD = sup{y2; (y1, y2) ∈ ω}.

Remark 4.13. Up to a rotation of ω, we may always suppose that those four points are
di�erent one from the other, except if ω is triangular; in that case, up to a rotation of ω, we
may set A = B and the proof is exactly the same as that below.
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Figure 4.6: Notation for points A, B, C, D and points xAC , xBD, yAC , yBD.

For any x = (x1, x2) ∈ ω, we de�ne xAC ∈ [AC] such that (xAC)1 = x1 and xBD ∈ [BD]
such that (xBD)2 = x2. The notations are summarized in Fig 4.6.
Applying the triangle inequality leads to

|uT (x)− uT (y)| ≤ |uT (x)− uT (xBD)|+ |uT (xBD)− uT (yAC)|
+ |uT (yAC)− uT (y)|,

(4.32)

and also to

|uT (x)− uT (y)| ≤ |uT (x)− uT (xAC)|+ |uT (xAC)− uT (yBD)|
+ |uT (yBD)− uT (y)|.

(4.33)

From (4.32) and (4.33), we have∫
ω

∫
ω

|uT (x)− uT (y)|2dxdy ≤
9∑

i=1

Ii (4.34)

where I1�I9 are de�ned and estimated in what follows:

1.

I1 =

∫
ω

∫
ω

|uT (x)− uT (xBD)| |uT (x)− uT (xAC)| dxdy. (4.35)

Using again (4.22) and (4.23), we may write

|uT (x)− uT (xAC)| ≤
J∑

j=1

χT,1
j (x)

∣∣∣(∇D
h u)j ·

−−−−−−−→
Gi1(j)Gi2(j)

∣∣∣ . (4.36)
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and

|uT (x)− uT (xBD)| ≤
J∑

j=1

χT,2
j (x)

∣∣∣(∇D
h u)j ·

−−−−−−−→
Gi1(j)Gi2(j)

∣∣∣ . (4.37)

Henceforth, we set for convenience vj =
∣∣∣(∇D

h u)j ·
−−−−−−−→
Gi1(j)Gi2(j)

∣∣∣. Recalling that χT,1
j (x)

only depends on x1 and χ
T,2
j (x) only depends on x2, and noting that the integrand in

(4.35) does not depend on y, there holds

I1 ≤ |ω|

(∫ xA

xC

J∑
j=1

χT,1
j (x)vjdx1

)(∫ yD

yB

J∑
j=1

χT,2
j (x)vjdx2

)

≤ |ω|

(
J∑

j=1

vj

∫ xA

xC

χT,1
j (x)dx1

)(
J∑

j=1

vj

∫ yD

yB

χT,2
j (x)dx2

)
.

We use that ∫ xC

xA

χT,1
j (x)dx1 ≤ |Aj| (4.38)

and ∫ yD

yB

χT,2
j (x)dx2 ≤ |Aj| (4.39)

and obtain

I1 ≤ |ω|

(
J∑

j=1

|Aj|vj

)2

. (4.40)

2.

I2 =

∫
ω

∫
ω

|uT (x)− uT (xBD)| |uT (xAC)− uT (yBD)| dxdy.

Using inequality (4.37), we have

I2 ≤
∫
ω

∫
ω

(
J∑

j=1

χ2
j(x) vj

)
|uT (xAC)− uT (yBD)| dxdy.

By de�nition, χ2
j(x) only depends on x2 (which is in [yB, yD]), while xAC only depends

on x1 (which is in [xA, xC ]); of course, yBD does not depend on x, so that

I2 ≤

(
J∑

j=1

vj

∫ yD

yB

χT,2
j (x)dx2

)∫
ω

∫ xC

xA

|uT (xAC)− uT (yBD)| dx1dy.

Thanks to (4.39), we thus have

I2 ≤

(
J∑

j=1

|Aj|vj

)∫
ω

∫ xC

xA

|uT (xAC)− uT (yBD)| dx1dy.
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Since yBD only depends on y2 and xAC does not depend on y, the integration with
respect to y1 (which is in [xA, xC ]) is straightforward and yields

I2 ≤ (xC − xA)

(
J∑

j=1

|Aj|vj

)∫ yD

yB

∫ xC

xA

|uT (xAC)− uT (yBD)| dx1dy2. (4.41)

3.

I3 =

∫
ω

∫
ω

|uT (x)− uT (xBD)| |uT (yBD)− uT (y)| dxdy.

This integral clearly decouples into two independent integrals

I3 =

∫
ω

|uT (x)− uT (xBD)| dx
∫
ω

|uT (yBD)− uT (y)| dy

which may be treated like in the estimation of I1 thanks to (4.37), (4.39) and the fact
that χT,2 depends only on x2. We obtain

I3 = (xC − xA)2
(

J∑
j=1

|Aj|vj

)2

. (4.42)

4.

I4 =

∫
ω

∫
ω

|uT (xBD)− uT (yAC)| |uT (x)− uT (xAC)| dxdy.

We may proceed very similarly to the estimation of I2 and we obtain that

I4 ≤ (yD − yB)

(
J∑

j=1

|Aj|vj

)∫ xC

xA

∫ yD

yB

|uT (xBD)− uT (yAC)| dx2dy1. (4.43)

5.

I5 =

∫
ω

∫
ω

|uT (xBD)− uT (yAC)| |uT (xAC)− uT (yBD)| dxdy.

On the one hand, xBD and yAC do not depend on x1; on the other hand, xAC and yBD

do not depend on x2, so that the integration with respect to x decouples into

I5 ≤
∫
ω

(∫ yD

yB

|uT (xBD)− uT (yAC)| dx2
)(∫ xC

xA

|uT (xAC)− uT (yBD)| dx1
)
dy.

We also note that yBD and xAC do not depend on y1 and that yAC and xBD do not
depend on y2, so that the integration with respect to y decouples into

I5 ≤
∫ xC

xA

∫ yD

yB

|uT (xBD)− uT (yAC)| dx2dy1
∫ yD

yB

∫ xC

xA

|uT (xAC)− uT (yBD)| dx1dy2.

(4.44)
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6.

I6 =

∫
ω

∫
ω

|uT (xBD)− uT (yAC)| |uT (yBD)− uT (y)| dxdy.

We may proceed very similarly to the estimations of I2 and I4 and we obtain that

I6 ≤ (xC − xA)

(
J∑

j=1

|Aj|vj

)∫ xC

xA

∫ yD

yB

|uT (xBD)− uT (yAC)| dx2dy1. (4.45)

7.

I7 =

∫
ω

∫
ω

|uT (yAC)− uT (y)| |uT (x)− uT (xAC)| dxdy.

We may proceed very similarly to the estimation of I3 and we obtain that

I7 ≤ (yD − yB)2
(

J∑
j=1

|Aj|vj

)2

. (4.46)

8.

I8 =

∫
ω

∫
ω

|uT (yAC)− uT (y)| |uT (xAC)− uT (yBD)| dxdy.

We may proceed very similarly to the estimations of I2, I4 and I6 and we obtain that

I8 ≤ (yD − yB)

(
J∑

j=1

|Aj|vj

)∫ yD

yB

∫ xC

xA

|uT (xAC)− uT (yBD)|dx1dy2. (4.47)

9.

I9 =

∫
ω

∫
ω

|uT (yAC)− uT (y)| |uT (yBD)− uT (y)| dxdy.

We may proceed very similarly to the estimations of I1 and we obtain that

I9 ≤ |ω|

(
J∑

j=1

|Aj|vj

)2

. (4.48)

In order to conclude the proof of Theorem 4.12, we need the following lemma, a proof of
which is postponed to 4.5.

Lemma 4.14. There exists a constant C1 depending only on Ω such that∫ yD

yB

∫ xC

xA

|uT (xAC)− uT (yBD)| dx1dy2 ≤ C1diam(ω)

(
J∑

j=1

|Aj|vj

)
,

∫ xC

xA

∫ yD

yB

|uT (xBD)− uT (yAC)| dx2dy1 ≤ C1diam(ω)

(
J∑

j=1

|Aj|vj

)
.
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Applying Lemma 4.14 and combining estimations (4.40) to (4.48) with the bound (4.34)
results in ∫

Ω

∫
Ω

|uT (x)− uT (y)|2dxdy ≤ C2
2

(
J∑

j=1

|Aj|vj

)2

,

where C2
2 = (4+4C1+C

2
1)diam

2(ω). Now this inequality may be treated exactly like (4.26),
and there holds ∫

ω

∫
ω

|uT (x)− uT (y)|2dxdy ≤ 4C2
2

sin2 θ∗
|ω|

J∑
j=1

|(∇D
h u)j|2|Dj|

From (4.31), we have∫
ω

(uT (x)−mT
ω(u))

2dx ≤ 4C2
2

sin2 θ∗

J∑
j=1

|(∇D
h u)j|2|Dj|,

which implies the desired result with C = 2C2

sin θ∗
.

The second step in the proof of a discrete version of (4.2) is to establish an inequality
related to the mean value on the boundary of a convex polygonal domain

Theorem 4.15 (Mean boundary Inequality). Let Ω be an open bounded polygonal con-
nected subset of R2 and let ω be an open polygonal convex subset of Ω and I ⊂ ∂ω, with
|I| > 0 (|I| is the one-dimensional Lebesgue measure of I). Assume that I is included in
a hyperplane of R2. Let u = (uT , uP ) ∈ RI+JΓ × RJ be given and the associated piecewise
constant functions uT and uP be de�ned through De�nition 4.4. Let γT (u)(σ) = uTi for all
σ ∈ T i ∩ ∂ω. (If σ ∈ T i ∩ T i′, then the choice of uTi or uTi′ in the de�nition of γT does not
matter). Let γP (u)(σ) = uPk for all σ ∈ P k ∩ ∂ω. (If σ ∈ P k ∩ P k′, then the choice of uPk
or uPk′ in the de�nition of γP does not matter). Let mT

I (u) (resp m
P
I (u)) be the mean value

of γT (u) (resp γP (u)) on I. Let θ∗ be de�ned through De�nition 4.1. Then, there exists a
constant C, only depending on Ω, ω, I and θ∗ such that

‖uT −mT
I (u)‖L1(ω) ≤ C‖∇D

h u‖D, (4.49)

‖uP −mP
I (u)‖L1(ω) ≤ C‖∇D

h u‖D. (4.50)

Proof. Since I is included in a hyperplane, it may be assumed, without loss of generality,
that I = {0} × [a, b] and ω ⊂ R+ × R (the convexity of ω is used here). We choose points
A, B, C and D, belonging to ω, such that

xA = inf{x1; (x1, x2) ∈ ω}, xC = sup{x1; (x1, x2) ∈ ω},
yB = inf{x2; (x1, x2) ∈ ω}, yD = sup{x2; (x1, x2) ∈ ω}.

Remark 4.16. It may happen in particular cases that those four points are not di�erent
one from the other, but this does not change the general idea of the proof. If A = B and
I = [BD], then it even simpli�es the proof since in that case, we do not have to introduce
the point σBD de�ned below.
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Figure 4.7: Notation for points A, B, C, D and points xAC , σBD.

For any x = (x1, x2) ∈ ω and σ = (σ1, σ2) ∈ I, we de�ne xAC ∈ AC such that (xAC)1 = x1
and σBD ∈ BD such that (σBD)2 = σ2. The notations are summarized in Fig 4.7. The
following triangle inequality holds:

|uT (x)− γuT (σ)| ≤ |uT (x)− uT (xAC)|
+ |uT (xAC)− uT (σBD)|+ |γuT (σ)− uT (σBD)|.

Moreover, there holds

‖uT −mT
I (u)‖L1(ω) =

∫
ω

∣∣∣∣uT (x)− 1

|I|

∫
I
γuT (σ)dσ

∣∣∣∣ dx
=

∫
ω

∣∣∣∣ 1|I|
∫
I
[uT (x)− γuT (σ)]dσ

∣∣∣∣ dx
≤ 1

|I|

∫
ω

∫
I

∣∣uT (x)− γuT (σ)∣∣ dσdx,
so that, taking into account the above triangle inequality, we obtain:

‖uT −mT
I (u)‖L1(ω) ≤

1

|I|

∫
ω

∫
I
|uT (x)− uT (xAC)| dσdx

+
1

|I|

∫
ω

∫
I
|uT (xAC)− uT (σBD)| dσdx+

1

|I|

∫
ω

∫
I
|γuT (σ)− uT (σBD)| dσdx.

We �rst observe that the function |uT (x)−uT (xAC)| doesn't depend on the variable σ; then,
using similar techniques to those which led to (4.36), and the fact that

∫ xC

xA
χT,1
j (x)dx1 ≤ |Aj|,

there holds

1

|I|

∫
ω

∫
I
|uT (x)− uT (xAC)| dσdx ≤ diam(ω)

(
J∑

j=1

|Aj|vj

)
, (4.51)
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where we recall the notation vj = |(∇D
h u)j ·

−−−−−−−→
Gi1(j)Gi2(j)|.

Then, we know that the function |γuT (σ)−uT (σBD)| only depends on the variable σ; then,
using similar techniques to those which led to (4.37), and the fact that

∫
I χ

T,2
j (σ)dσ ≤ |Aj|,

we have

1

|I|

∫
ω

∫
I
|γuT (σ)− uT (σBD)| dσdx ≤

|ω|
|I|

(
J∑

j=1

|Aj|vj

)
. (4.52)

Now, xAC doesn't depend on the variable x2, so that

1

|I|

∫
ω

∫
I
|uT (xAC)− uT (σBD)| dσdx ≤

diam(ω)

|I|

∫ xC

xA

∫
I
|uT (xAC)− uT (σBD)| dσdx1.

Applying an inequality like in Lemma 4.14 leads to

1

|I|

∫
ω

∫
I
|u(xAC)− u(σBD)| dσdx ≤

C1diam
2(ω)

|I|

(
J∑

j=1

|Aj|vj

)
. (4.53)

Using (4.51), (4.52) and (4.53), we conclude that

‖uT −mT
I (u)‖L1(ω) ≤

[
diam(ω) +

|ω|
|I|

+
C∗diam2(ω)

|I|

]( J∑
j=1

|Aj|vj

)
.

Then, the Cauchy-Schwarz inequality yields (4.49). Similarly, we also obtain (4.50).

Now, we come to the �nal step of our result.

Theorem 4.17 (Mean Poincaré Inequality). Let Ω be an open bounded polygonal con-
nected subset of R2; let u = (uT , uP ) be in RI+JΓ ×RK, and uT (x), uP (x) be de�ned through
De�nition 4.4. Let θ∗ be de�ned through de�nition 4.1. Then, there exists a constant C only
depending on Ω and θ∗ such that

‖uT −mT
Ω(u)‖L2(Ω) ≤ C‖∇D

h u‖D (4.54)

and
‖uP −mP

Ω(u)‖L2(Ω) ≤ C‖∇D
h u‖D, (4.55)

where mT
Ω(u) (resp. m

P
Ω(u)) is the mean-value of uT (resp. uP ) on Ω.

Proof. Since Ω is polygonal, there exists a �nite number of disjoint convex polygonal sets,
denoted by {Ω1, ...,Ωn}, such that Ω = ∪n

i=1Ωi. Let Ii,j = Ωi ∩ Ωj and B be the set of
couples (i, j) ∈ {1, ..., n}2 such that i 6= j and the one-dimensional Lebesgue measure of Ii,j,
denoted by |Ii,j| is strictly positive.
Let mi denote the mean value of uT on Ωi, i ∈ {1, ..., n}, and mi,j denote the mean value of
uT on Ii,j, (i, j) ∈ B. Note that mi,j = mj,i for all (i, j) ∈ B.
Theorem 4.12 gives the existence of Ci, i ∈ {1, ..., n} only depending on Ω (since the Ωi only
depend on Ω) and θ∗, such that

‖uT −mi‖L2(Ωi) ≤ Ci ‖∇D
h u‖D, ∀i ∈ {1, ..., n}. (4.56)
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Applying the Cauchy-Schwarz inequality, we have

‖uT −mi‖L1(Ωi) ≤ |Ωi|1/2Ci ‖∇D
h u‖D, ∀i ∈ {1, ..., n}. (4.57)

Moreover, Theorem 4.15 gives the existence of Ci,j, (i, j) ∈ B, only depending on Ω and θ∗,
such that

‖uT −mi,j‖L1(Ωi) ≤ Ci,j ‖∇D
h u‖D, ∀(i, j) ∈ B. (4.58)

Then, one has, by a triangle inequality

|Ωi| |mi −mi,j| = ‖mi −mi,j‖L1(Ωi) ≤
(
|Ωi|1/2Ci + Ci,j

)
‖∇D

h u‖D, (4.59)

for all (i, j) ∈ B. Applying a triangular inequality and using the fact that mi,j = mj,i, we
get from (4.59) that there exists a constant C ′

i,j only depending on Ω and θ∗ such that

|mi −mj| ≤ C ′
i,j ‖∇D

h u‖D, (4.60)

for all (i, j) ∈ B.
Since Ω in connected, we can always connect any (i, j) ∈ {1, ..., n}2 by a �nite set

of couples belonging to B. Applying triangular inequalities and the related inequalities
(4.60), we obtain the existence of Ki,j, only depending on Ω and θ∗, such that |mi −mj| ≤
Ki,j‖∇D

h u‖D for all (i, j) ∈ {1, ..., n}2, and therefore, the existence of a constant Mi, only
depending on Ω and θ∗, such that

∣∣mT
Ω(u)−mi

∣∣ =
∣∣∣∣∣∣ 1|Ω|

∑
j∈[1,n]

|Ωj|(mj −mi)

∣∣∣∣∣∣ ≤Mi‖∇D
h u‖D. (4.61)

Then, (4.56), (4.61) and a triangle inequality yield

‖uT −mT
Ω(u)‖L2(Ωi) ≤ ‖uT −mi‖L2(Ωi) + |Ωi|1/2

∣∣mT
Ω(u)−mi

∣∣ ≤ (Ci +Mi|Ωi|1/2
)
‖∇D

h u‖D.
(4.62)

Summing up the squares of inequalities (4.62) over i ∈ {1, ..., n} yields (4.54). We obtain
(4.55) in a similar way. This completes the proof of Theorem 4.17.

Corollary 4.18. Let Ω be an open bounded polygonal connected subset of R2; let u = (uT , uP )
be in RI+JΓ × RK, and such that

I∑
i=1

|Ti|uTi =
K∑
k=1

|Pk|uPk = 0.

Let θ∗ be de�ned through de�nition 4.1. Then, there exists a constant C only depending on
Ω and θ∗ such that

‖u‖T,P ≤ C‖∇D
h u‖D. (4.63)
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4.4 Application

Theorem 4.19. Let Ω be a two-dimensional polygonal domain with exterior boundary de-
noted by Γ0 and internal connected components denoted by Γq, with q ∈ [1, Q]. There exists a
constant C depending only on Ω and θ∗ de�ned by De�nition 4.1, such that for any discrete
vector �eld (uj)j∈[1,J ] with u · n = 0 on Γ and (u · τ , 1)Γq ,h = 0 for all q ∈ [1, Q], there holds

||u||D ≤ C
(
||∇T,P · u||T,P + ||∇T,P × u||T,P

)
. (4.64)

Proof. Let (uj)j∈[1,J ] be given with u ·n = 0 on Γ and (u · τ , 1)Γq ,h = 0 for all q ∈ [1, Q]. Ac-
cording to Theorem 4.6, there exists φ = (φT

i , φ
P
k )i∈[1,I+JΓ],k∈[1,K], ψ = (ψT

i , ψ
P
k )i∈[1,I+JΓ],k∈[1,K]

and (cTq , c
P
q )q∈[1,Q] such that (4.8) holds, the decomposition being orthogonal. Then there

holds
||u||2D = (u,∇D

h φ)D + (u,∇D
h × ψ)D (4.65)

and
||∇D

h φ||D ≤ ||u||D and ||∇D
h × ψ||D = ||∇D

h ψ||D ≤ ||u||D. (4.66)

Using the discrete integration by part properties (4.16) and (4.17) in (4.65), we obtain

||u||2D = −(∇T,P
h · u, φT,P )T,P + (u · n, φ̃)Γ,h + (∇T,P

h × u, ψT,P )T,P − (u · τ , ψ̃)Γ,h. (4.67)

In (4.67), both boundary terms vanish. The �rst because u · n = 0 on Γ. As far as the
second is concerned, from (4.11) and the de�nition of the boundary scalar product (4.6) we
have

(u · τ , ψ̃)Γ,h = (u · τ , ψ̃)Γ0,h +
∑

q∈[1,Q]

(
cTq + cPq

2

)
(u · τ , 1)Γq ,h,

so that (4.10) and the fact that (u · τ , 1)Γq ,h = 0 for all q ∈ [1, Q] allow us to conclude that

(u · τ , ψ̃)Γ,h = 0. Thus, we have

||u||2D = −(∇T,P
h · u, φT,P )T,P + (∇T,P

h × u, ψT,P )T,P (4.68)

Using the Cauchy-Schwarz inequality in (4.68), and then applying Theorem 4.11 for ψ and
Corollary 4.18 for φ, we get (4.64) from (4.66).

4.5 Proof of Lemma 4.14

We shall only give the proof of the �rst inequality in Lemma 4.14, since the proof of the other
inequality follows exactly the same lines. If the four points (A,B,C,D) are all di�erent, then
we may denote by I the intersection of AC and BD, and the angle α between the diagonals
AC and BD is di�erent from 0. This is also the case of the angles βi and γi displayed on
Fig. 4.8. If ω is a triangle, up to a rotation, we have that A = B and we set I = A = B.
Then, the angles α, β1 and γ1 are all di�erent from 0 and evaluating the term G in (4.69)
reduces to the evaluation of H1, which simpli�es the proof. Let us go back to the general
case. We set

G =

∫ yD

yB

∫ xC

xA

|uT (xAC)− uT (yBD)| dx1dy2 = H1 +H2 +H3 +H4, (4.69)
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Figure 4.8: xACxMxM1 intersects DC before it intersects yBDyPyP1 .

where

H1 =

∫ yD

yI

∫ xC

xI

|uT (xAC)− uT (yBD)| dx1dy2,

H2 =

∫ yD

yI

∫ xI

xA

|uT (xAC)− uT (yBD)| dx1dy2,

H3 =

∫ yI

yB

∫ xI

xA

|uT (xAC)− uT (yBD)| dx1dy2,

H4 =

∫ yI

yB

∫ xC

xI

|uT (xAC)− uT (yBD)| dx1dy2.

We only estimate the �rst term in the right-hand side of inequality (4.69), since the other
may be treated similarly. For any xAC ∈ IC and yBD ∈ ID, let xM (resp. yP ) be the
intersection of DC with the straight line going though xAC (resp. yBD) and parallel to the
segment [ID] (resp. [IC] ), and let xM1 (resp. yP1) be the intersection of ID (resp. IC) with
the straight line going through xM (resp. xP ) and parallel to the segment IC (resp. ID).
Then, we shall examine two cases, according to where the broken line xACxMxM1 intersects
with the broken line yBDyPyP1 at point N .

Case 1: The broken line xACxMxM1 intersects DC at xM before it intersects the broken
line yBDyPyP1 , (see Fig. 4.8). Then, using the triangle inequality leads to

|uT (xAC)− uT (yBD)| ≤ |uT (xAC)− uT (xM)|+ |uT (xM)− uT (N)|
+ |uT (N)− uT (yP )|+ |uT (yP )− u(yBD)|.
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Let the function χj from R2 × R2 to {0, 1} be de�ned by

χj(x, y) =

{
1 if [x, y] ∩ Aj 6= ∅
0 if [x, y] ∩ Aj = ∅

(4.70)

Recalling once again the notation vj = |(∇D
h u

T )j ·
−−−−−−−→
Gi1(j)Gi2(j)|, we have that

|uT (xM)− uT (N)| ≤
J∑

j=1

χj(xM , N) vj ≤
J∑

j=1

χj(xM , xM1) vj, (4.71)

due to the fact that since N ∈ [xMxM1 ] then χj(xM , N) ≤ χj(xM , xM1).
Similarly, we obtain that

|uT (N)− uT (yP )| ≤
J∑

j=1

χj(yP , yP1) vj. (4.72)

We also have

|uT (xAC)− uT (xM)| ≤
J∑

j=1

χj(xAC , xM) vj, (4.73)

and

|uT (yP )− uT (yBD)| ≤
J∑

j=1

χj(yBD, yP ) vj. (4.74)

From (4.71)-(4.74), we have

|uT (xAC)− uT (yBD)| ≤
J∑

j=1

χj(xAC , xM) vj +
J∑

j=1

χj(xM , xM1) vj

+
J∑

j=1

χj(yBD, yP ) vj +
J∑

j=1

χj(yP , yP1) vj.

Case 2: The broken line xACxMxM1 intersects the broken line yBDyPyP1 at N before it
intersects DC (seeFig 4.9). We use the triangle inequality to obtain

|uT (xAC)− uT (yBD)| ≤ |uT (xAC)− uT (N)|+ |uT (N)− uT (yBD)|. (4.75)

Similarly to Case 1, since N ∈ [xACxM ] and N ∈ [yBDyP ], there holds

|uT (xAC)− uT (N)| ≤
J∑

j=1

χj(xAC , xM) vj (4.76)

|uT (N)− uT (yBD)| ≤
J∑

j=1

χj(yBD, yP ) vj. (4.77)
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Figure 4.9: xACxMxM1 intersects yBDyPyP1 before it intersects DC.

Adding (4.76) to (4.77), and combining with (4.75) we have

|uT (xAC)− uT (yBD)| ≤
J∑

j=1

χj(xAC , xM) vj +
J∑

j=1

χj(yBD, yP ) vj.

So that in both cases, we always obtain

|uT (xAC)− uT (yBD)| ≤
J∑

j=1

χj(xAC , xM) vj +
J∑

j=1

χj(xM , xM1) vj

+
J∑

j=1

χj(yBD, yP ) vj +
J∑

j=1

χj(yP , yP1) vj.

We thus always have

H1 =

∫ yD

yI

∫ xC

xI

|uT (xAC)− uT (yBD)| dx1dy2 ≤ L1 + L2 + L3 + L4, (4.78)
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Figure 4.10: How to estimate the term
∫ xC

xI
χj(xAC , xM)dx1.

where L1, L2, L3, and L4 are de�ned as follows:

L1 =

∫ yD

yI

∫ xC

xI

J∑
j=1

χj(xAC , xM) vjdx1dy2,

L2 =

∫ yD

yI

∫ xC

xI

J∑
j=1

χj(xM , xM1) vjdx1dy2,

L3 =

∫ yD

yI

∫ xC

xI

J∑
j=1

χj(yBD, yP ) vjdx1dy2,

L4 =

∫ yD

yI

∫ xC

xI

J∑
j=1

χj(yP , yP1) vjdx1dy2.

Observing that χj(xAC , xM) only depends on variable x1, we �nd

L1 ≤ (yD − yI)
∫ xC

xI

J∑
j=1

χj(xAC , xM) vjdx1

= (yD − yI)
J∑

j=1

∫ xC

xI

χj(xAC , xM)dx1vj.

Let us take a look at Fig. 4.10 and its associated notations. Simple geometrical arguments
show that ∫ xC

xI

χj(xAC , xM)dx1 =: d1 = d2 cosα1 = d3
cosα1

sinα
≤ cosα1|Aj|

sinα
.



CHAPTER 4. DISCRETE POINCARÉ INEQUALITIES 124

α
α1 x

y

I

C

D

Aj β1

γ1

α

β1

d
d

d

d

d

1

2

3

4

5

Figure 4.11: How to estimate the term
∫ xC

xI
χj(xM , xM1)dx1.

This results in

L1 ≤ (yD − yI)
cosα1

sinα

(
J∑

j=1

|Aj|vj

)
. (4.79)

Moreover, there holds

L2 ≤ (yD − yI)
∫ xC

xI

J∑
j=1

χj(xM , xM1) vjdx1

= (yD − yI)
J∑

j=1

∫ xC

xI

χj(xM , xM1)dx1vj.

Let us take a look at Fig. 4.11 and its associated notations. Simple geometrical arguments
show that∫ xC

xI

χj(xM , xM1)dx1 =: d1 = d2 cosα1 = d3
cosα1

sinα

= d4
cosα1 sin γ1

sinα
= d5

cosα1 sin γ1
sinα sin β1

≤ cosα1 sin γ1|Aj|
sinα sin β1

.

So that there holds

L2 ≤
cosα1 sin γ1
sinα sin β1

(yD − yI)

(
J∑

j=1

|Aj|vj

)
. (4.80)
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Similarly,

L3 ≤
cosα2

sinα
(xC − xI)

(
J∑

j=1

|Aj|vj

)
. (4.81)

L4 ≤
cosα2 sin β1
sinα sin γ1

(xC − xI)

(
J∑

j=1

|Aj|vj

)
. (4.82)

From (4.78)-(4.82), we conclude that there exists a constant C depending only on the geom-
etry of ω (since the angles depend only on the geometry of ω) such that

H1 ≤ Cdiam(ω)

(
J∑

j=1

|Aj|vj

)
. (4.83)

Using similar techniques, we also obtain that

H2 ≤ Cdiam(Ω)

(
J∑

j=1

|Aj|vj

)
, (4.84)

H3 ≤ Cdiam(Ω)

(
J∑

j=1

|Aj|vj

)
, (4.85)

H4 ≤ Cdiam(Ω)

(
J∑

j=1

|Aj|vj

)
. (4.86)

Combining (4.83)-(4.86) with (4.69), we have∫ yD

yB

∫ xC

xA

|uT (xAC)− uT (yBD)| dx1dy2 ≤ C1diam(Ω)

(
J∑

j=1

|Aj|vj

)
,

where C1 = 4C, which concludes the proof of Lemma 4.14.
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