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Introduction

When approaching the solution of a partial differential equation (PDE), by any numerical
method (finite elements, finite volumes, ...), the user may wish, on the one hand, to be able
to guarantee the quality of the computation, by imposing for example that a certain norm
of the error between the exact solution (called ¢ in what follows) and the computed solution
(called ¢y, in what follows) is lower than a prescribed tolerance, and, on the other hand, to
minimize the computer resources that are needed to find a numerical solution that satisfies
this tolerance, by using a mesh well adapted to the solution.

For this purpose, a priori error estimation does not help a lot: they are generally written
under the form

|6= ]| < on= |4
with norms that need not be specified in this general introduction, and are obtained by sup-
posing some regularity properties to the solution of the considered PDE (a regularity which
may not be verified in practice, for example due to the presence of shocks, of geometrical
singularities, ...). Moreover, the generic constant C' which appears in the above estimation
is either unknown or very difficult to estimate. But the main difficulty is that the norm of

the exact solution (the term HQZA)H above) is very often not computable, because the exact

solution is unknown, and it does not provide any local information that could show where
to refine the mesh in priority.

It is the purpose of a posteriori error estimation to give some answers to the wishes
discussed above. Some of the first investigators who developed rigorous analysis in that
direction were Babuska and Rheinboldt more than thirty years ago [3, 4]. The aim of this
kind of estimation is to obtain a general expression of the form

1/8
Hé—d)hH <0 (Th; P, f) = (ZQ (Wi)nf(¢h,f)> ; (1)

where 75, is the mesh on which the solution ¢, was calculated, f represents the data of
the problem (source term, boundary conditions, initial conditions in the case of a time-
dependant problem, coefficients in the equations, ...). The sum over ¢ is a sum over some
elements (named here w;) of the mesh (of the domain € if the problem is stationary, or of
the space-time domain €2 x [0, 7], where T is the final time of the simulation, if the problem
is time-dependent). These elements of the mesh may not always be the cells themselves, but
some neighbors of a given cell, for example. In general, the constants C; (w;) depend on the
shape and/or size of the cells included in w;. The local estimators 7; depend only on the
numerical solution ¢, and of its variations on w;, and on the data of the continuous problem,



INTRODUCTION 4

but they never depend on the exact solution. As far as the real number 3 is concerned, it
may depend on the type of PDE considered, but also on the type of norm in which the error
is measured. When the constants C; are unknown or may not be easily computed, we may
not ensure that the actual error is lower than a given tolerance because one is unable to
entirely compute the right-hand side in the above inequality. On the contrary, if one may
compute them, the bound is said to be fully computable, or guaranteed. But in both cases,
one may use the local estimator 7;, which is always computable, to determine the zones of
the mesh which have to be refined in priority: these will be the zones where 7; is “large” with
respect to other zones. What "large" means and the strategy that may be achieved to refine
the mesh may depend on the problem.

In order to ensure that the global estimator 7 is useful to estimate the error in practice,
it is interesting to consider the ratio

n (Th7 ¢h7 f)
¢ — ¢h‘
which is named efficiency of the estimator. In particular, it is important to verify that this
quantity is bounded by above: the estimator is then said to be efficient. Indeed, if this

quantity could be arbitrarily large, it wouldn’t mean much to estimate the error by the
estimator. One is also interested in the local efficiency

M
b — on

wi

F =

Y

Ei =

I

which allows to ensure that the local estimator 7; does not overestimate too much the error
on wy; if this quantity is bounded independently of the index ¢, then a refinement strategy
based on the local values of the quantities n; may lead to almost optimal meshes in terms of
number of degrees of freedom for a given error tolerance. Moreover, the ideal wish is that
the estimator E should be asymptotically exact, meaning that lim;, ,o £ = 1; indeed, one
would then have an almost exact estimation of the error.

A last property which is desirable for the estimators n; is that they should be cheap to
compute (much cheaper than solving the global problem on the given mesh), so that the
overall computational cost is not seriously increased by the error estimation.

The PDEs that we consider in this thesis are all related to fluid dynamics. They may all
be considered as submodels of the more general compressible Navier-Stokes equations, where
the unknowns p, u, p, which are respectively the density, the velocity and the pressure of
the fluid, are related by the following equations

%Jrv-(pu)zo’ )
85;:_,_v.(pu®u)—uAu+Vp=f, (3)
p =p(p). @)

Equation (2) is the continuity, or mass conservation equation, while (3) is the momentum
equation, in which v is the viscosity. Finally, (4) is a constitutive law that relates the pressure
to the density.
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In Chapter 1, we consider a very usual submodel of (2)—(4): the stationary Stokes prob-
lem. It is obtained by considering that p is a constant with respect to both time and space
(the fluid is then said to be incompressible), so that (2) simply becomes V - u = 0. Then
neglecting the non-linear term in (3), we get the simpler equation —vAu + Vp = f.

In Chapter 2, we consider the non-linear Darcy equation. It is a model for incompress-
ible flows (V - u = 0) in porous media and is widely used to modelize water flow in the
underground, with applications in the petroleum industry, or in the field of nuclear waste
storage, among others. In the linear setting, this law was obtained by Darcy through experi-
ments and expresses a linear relationship between the fluid velocity and the pressure gradient
(u = kVp). It was later justified by the mathematical theory of homogenization (see for
example [6] and the references therein) by considering that the viscosity v of the fluid in
the Navier-Stokes equations is related to the size € of the pores in the media by the (nondi-
mensionalized) relationship v = &”, with some constant 3 > 0. We understand from [6]
that the critical value 8 = 3/2 plays a special role in this theory because the homogenized
system is then non-linear. On the other hand, for 8 < 3/2, the limit system is the linear
Darcy law, but for /3 close to 3/2, it is argued that non-linear terms may not completely be
neglected if one wishes an accurate modeling. Therefore, it is natural to consider non-linear
corrections to this law under the form: u = H(p)Vp. Note that non-linear equations of the
form u = H(Vp)Vp may also be considered, but not in this work.

Finally, in Chapter 3, we consider only the mass conservation equation, where we suppose
that the velocity u is given. Then, this is a linear transport equation for the variable p. We
shall actually consider the non-conservative form of this equation: d;p +u - Vp = 0, which
is equivalent to the conservative form, for a regular solution and a divergence free velocity
field. However, for more generality, we shall consider the transport equation with a non
divergence free velocity.

Finally, the numerical methods we consider in this work are all of finite volume (FV)
type. A general overview of these methods is given in [14|. These methods are very popular
in various engineering fields, and in particular in computational fluid dynamics for various
reasons, among which we may cite the following: they are based on local balance of very
concrete physical quantities, like mass, momentum, energy, so that the conservativity prop-
erties of the continuous model are transferred to the discrete one; they may be designed
to reproduce certain physical properties, like the maximum principle, which provides them
with an acknowledged robustness; they may be used on very general meshes and are thus
applicable on complex geometries.

The general idea of these methods is first to split the domain of computation (which
may possibly be a space-time domain for time-dependent problems) into small volumes and
associate one unknown per volume. Then the PDE is integrated over each control volume
and volume integrals of spatial derivatives are transformed into integrals over the edges
through the Green-Gauss formula. The difficulty is then to evaluate these so-called fluxes
with the help of the unknowns of the scheme in a consistent way. This is particularly difficult
when diffusive fluxes have to be evaluated, because one has to approach the gradient of the
unknowns, rather than the unknowns themselves, and one thus has to go through some
reconstruction step.

In our work, we focus on the traditional upwind scheme for the transport equation, and
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on a more recent method, namely the discrete duality finite volume method (DDFV) for
the Stokes and non-linear diffusion equations (although the theory developed here for the
non-linear Darcy problem also applies to more general conservative methods). The DDFV
schemes have been introduced to facilitate the reconstruction step of the gradient on general
meshes when one has to evaluate diffusive fluxes, see |12, 18, 19].

Let us now give more details on the subjects treated in the chapters of this work.

In Chapter 1, we consider the Stokes equations in a two dimensional simply connected
polygonal domain 2 with boundary I':

—Au+Vp=_£inQ, (5)
V-u=0in(, (6)
u=gonl, (7)

(8)

/Q ple)dz =0,

where 1 is the fluid velocity, p is the pressure, f is the body forces per unit mass, and the
function g satisfies [.g(c) - ndo = 0. With f € H~'(Q2) and g € H'/*(T'), this problem is
well-posed due to the so-called inf-sup condition: there exists 5 > 0 such that:

V- d
b= inf sup qu vix)dx

9€LF(Q) ve(HL(0))? ||V||(H§(Q))2||Q||L2(Q).

(9)

Our purpose in this chapter is to compute an a posteriori error estimation between the
exact solution U, p of (5)—(8) and its numerical approximation by the penalized discrete
duality finite volume scheme (DDFV) as presented in [21].

Like for other equations, the development of a posteriori error estimations for the Stokes
problem has followed the a priori investigation of numerical methods. As far as finite element
methods are concerned, R. Verfiirth [29] made one the very first contributions by getting two
a posteriori error estimations for the mini-element discretization: one is based on a suitable
evaluation of the residual, the other is based on the solution of local Stokes problems. Later
on, R. Verfiirth [30] generalized the first estimator developed in [29] to the nonconforming
Crouzeix—Raviart finite element method, neglecting however the consistency error in the
estimator. It was shown however in E. Dari et al. [10] that this consistency error may not
always be neglected, and, in order to take it into account properly, they use a Helmholtz-
Hodge like decomposition (adapted to the Stokes problem) of the velocity error. In the
resulting error estimator, this gives rise to terms related to the jumps of the tangential
velocity components from one cell to another, in addition to the usual jumps of the normal
components of the stress tensor. The case of the non-conforming Fortin—Soulie quadratic
elements is also treated.

All the above-cited finite element methods satisfy a uniform discrete inf-sup condition.
However, it is often found useful in practice to consider discretizations (especially low-order
ones) that do not verify a uniform discrete inf-sup condition. In this context, C. Bernardi
et al. [5] consider the finite element approximation of the Stokes equations when a penalty
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term is added to stabilize the variational formulation. The a posteriori error estimation they
obtain includes two contributions: one related to the discretization on a given mesh, the
other related to the penalty term. Based on these two contributions, the mesh refinement
and the decrease of the penalty term are linked within an adaptive process.

A very recent contribution by A. Hannukainen et al. [17] sets a general framework
for obtaining a posteriori error estimations for the discretization of the Stokes equations.
The method is based on the reconstruction of postprocessed H} conforming velocity and
H — div conforming stress tensor fields deduced from the numerical approximation, and it
may be applied to various conforming and conforming stabilized finite element methods, the
discontinuous Galerkin method, the Crouzeix—Raviart nonconforming finite element method,
the mixed finite element method, and a general class of finite volume methods.

However, as far as finite volume methods are concerned, the use of arbitrary meshes in [17]
requires first to solve local Stokes problems on a conforming subtriangulation of each control
volume, and then to apply the above-cited reconstruction on this subtriangulation. Instead,
we would like to obtain error estimates for the solution of the DDFV scheme presented in
|21] without having to solve any local problem or to compute any reconstruction. To do
this, we shall adapt to the Stokes problem the a posteriori error estimation investigated
in [27| for the DDFV discretization of the Laplace equation, using the discrete variational
formulation verified by this scheme. The non-conformity of the method is dealt with using
the the Helmholtz-Hodge like decomposition introduced in [10]. Our estimator also includes
a term related to the stabilization term in the incompressibility equation.

In Chapter 2, we consider an approximate solution of the following nonlinear equation:

—div(H(a)Va)(z) = f(z), z€Q (10)
u(x) =0, «x€l
under the following assumptions

Al. Let H : R +— R be continuous such that there exist constants C7, C5 > 0 satisfying
Cy < H(a) < Cy forall u € R. (11)
Moreover, we will assume that there exists a positive constant C' such that

|H(i) — H®)| < Cla— | for all 4,9 € R. (12)

A2. Let f belong to L*(f2).

The discrete solution of the nonlinear diffusion equation is investigated by the mixed
finite element method in [25], and, more generally, in [28]. More recently, finite volume
discretizations have been developed for linear diffusion equations, such as finite volume
schemes on admissible meshes [14], DDFV schemes [27] and multipoint flux approximation
(MPFA) schemes |1] on arbitrary meshes, etc. Then we are interested in solving the nonlinear
diffusion equations by such finite volume discretizations. In this work, we will deal with
the above three methods. The discretization process of the problem leads to a system of
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nonlinear equations, which is linearized by the fixed point method. These schemes have
local conservative property, which is the important ingredient to obtain an a posteriori error
estimation.

The theory of a posteriori error estimation is not very developed for the nonlinear diffusion
equation. L. El Alaoui et al. [13] have obtained a posteriori error estimate by using a finite
element method in the p-Laplace case. D. Kim et al. [20] give an estimate for the mixed
finite element discretization. For the finite volume methods, although there are not many
important results for the nonlinear diffusion equations, essential development steps on a
posteriori error estimation have been achieved for the linear diffusion equations. Nicaise [26]
gave an a posteriori error estimation for Morley-type interpolations of the original piecewise
constant finite volume approximation. P. Omnes and al. [27] used the equivalence of the
DDFV scheme with a finite element like method to derive fully computable a posteriori error
estimate for this method applied to the Laplace equation. For local conservative methods,
M. Vohralik [32] built an approximate function which depends only on the flux through the
segments of the cells and on the values of the unknowns at some control points and provides
error estimation with respect to this reconstruction. In addition, the effectivity index is very
close to one, which demonstrates a good estimation. M. Vohralik’s idea will be applied in
this work to estimate the error of finite volume techniques applied to the non-linear diffusion
equations.

Given a discrete solution, a stage of iterative process and a given mesh, our a poste-
riori error estimation is split into 2 terms: the discretization and linearization estimators.
This splitting has two main advantages. The first one is that, in practice, when the num-
ber of iteration is large enough, the linearization estimator is negligible compared with the
discretization one. Thus the balance of these two estimators is an important key to avoid
performing an excessive number of nonlinear solver iterations. The other one is that, as
a result, the mesh refinement is only based on the discretization estimator, since the lin-
earization estimator is then negligible. This type of analysis is considered in [13] for the
p-Laplace case. In this work, we don’t deal with the convergence of the linearization and the
discretization processes. We only mention them in our numerical experiments.

In Chapter 3, we consider the following transport equation in N space dimensions (N >
1), with initial condition:
o ta(x,t)-Vu =0, Vo eRY, t eRY, (13)
u(z,0) =wup(x), Vo € RV,

We shall consider here, following [23], the unique entropy solution to (13).

The upwind scheme is a standard method to solve in a approximate way this problem,
and, more generally, conservation laws (see [14]), but the a priori and a posteriori error
estimations have been investigated only recently on scalar equations.

In the case of a conservation law with a divergence free flux function and no source term,
C. Chainais-Hillairet [7] derived an a priori error estimate with a convergence order of 1/4
in the L' norm. Based on |7], an a posteriori error estimation is achieved by D. Kroner and
M. Ohlberger |22] for the upwind explicit scheme. This result is used to define an algorithm
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with an adaptive grid for the finite volume scheme. Recently, in Mamaghani’s Ph.D. thesis
[24], an a posteriori error estimate is obtained for the implicit upwind finite volume scheme.
Otherwise, in [8], the a priori error estimation was also treated for a conservation law
with a non divergence free flux function and with a source term.
In our work, we will deal with the transport equation with a non divergence free velocity
field, written as a conservation law with the source term V - a(x, t)u(x, t), and we obtain an
a posteriori error estimation for the explicit upwind scheme.

In Chapter 4, we consider the following two Poincaré inequalities: The Friedrichs (also
called Poincaré) inequality

/QUQ(m)dm < CF/Q|VU(:1:)|2d:E , Yu € Hy(Q) (14)

and the Poincaré (also called mean Poincaré) inequality
/ w?(x)dr < Cp/ |Vu(z)]*de , Yu € H'(Q) such that / u(z)dz =0, (15)
Q Q Q

where cr and cp are constants depending only on 2. These two inequalities play an important
role in the theory of partial differential equations.

This chapter considers discrete versions of Poincaré inequalities for the DDFV method
of discretization on arbitrary meshes, as presented, e.g., in [12].

The originality of these schemes is that they work well on all kind of meshes, including
very distorted, degenerating, or highly nonconforming meshes (see the numerical tests in
[12]). The name DDFV comes from the fact that these schemes are based on the definition
of discrete gradient and divergence operators which verify a discrete Green formula.

In this introduction, let us only mention that in the DDFV discretization, scalar functions
are discretized by their values both at the centers and at the vertices of a given mesh, and
their gradients are evaluated on the so-called “diamond-cells” associated to the edges of the
mesh. Each internal diamond-cell is a quadrilateral; its vertices are the two nodes of a given
internal edge and the centers of the two cells which share this edge. Each boundary diamond
cell is a degenerated quadrangle (i.e. a triangle); its vertices are the two nodes of a given
boundary edge and the center of the corresponding cell and that of the boundary edge.

Then, the discrete version of the L? norm on the left-hand side of (14) and (15) is the half-
sum of the L? norms of two piecewise constant functions, one defined with the discrete values
given at the centers of the original ("primal" in what follows) cells, and the other defined
with the discrete values given at the vertices of the primal mesh, to which we associate cells
of a dual mesh. Moreover, the discrete version of the gradient L? norm on the right-hand
side of (14) and (15) is the L* norm of the piecewise constant gradient vector field defined
with it discrete values on the diamond-cells.

In the finite volume context, discrete Poincaré-Friedrich inequalities have previously been
proved in [14, Lemma 9.1, Lemma 10.2| and [16], respectively for so-called "admissible"
meshes (roughly speaking, meshes such that each edge is orthogonal to the segment joining
the centers of the two cells sharing that edge, see the precise definition in [14, Definition
9.1]) and for Voronoi meshes. Similar results on duals of general simplicial triangulations are
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proved in [31]. In the DDFV context, a discrete version of (14) is given for arbitrary meshes
in [2]. However, the discrete constant ¢y which appears in that paper depends on the mesh
regularity in a rather intricate way, see [2, Formula (2.6) and Lemma 3.3].

The main result of our contribution is the proof of discrete versions of both (14) and (15)
in the DDFV context, with constants cr and cp depending only on the domain and on the
minimum angle in the diagonals of the diamond cells of the mesh.

Our proof of the discrete version of (14) is very similar to those given in [14] or [31]. We
also prove a discrete version of (14) in a slightly more general situation when the domain
is not simply connected and the discrete values of the function vanish only on the exterior
boundary of the domain and are constant on each of the internal boundaries (this will have
a subsequent application in the last section of the present chapter).

However, the task is more difficult for the mean-Poincaré inequality. Like in [14], it is
divided into three steps. The first is the proof of this inequality on a convex subdomain; in
the second, our proof differs from that in [14] because we actually do not need to prove a
bound on the L? norm of the difference of discrete functions and their discrete mean value
on the boundary of a convex subset, but rather an easier bound on the L' norm of this
difference. The final step consists in dividing a general polygonal domain into several convex
polygonal subdomains and in combining the first two steps to obtain the result.

As a consequence of these results, we derive a discrete equivalent of the following result
(which is a particular case of a result given in [15]): Let us consider open, bounded, simply
connected, convex polygonal domains (QQ)qe[O,Q] of R? such that Q, C Qq for all ¢ € [1,Q)]

and Q,,NQ,, = 0 for all (¢1,¢2) € [1,Q]? with ¢1 # go. Let Q be defined by Q = Qo\(Uqulﬂq).

Let us denote by I' = 02 = UéQ:OFq, with I, = 0Q, for all ¢ € [0,Q]. Then, there exists a
constant C', depending only on 2, such that for all vector field u in H(div,Q) N H(rot, )
withu-n=0onI"and (u-7,1)p, =0 for all ¢ € [1,Q)], there holds

lulz20) < CUIV - ul[2) + [V X ul[20). (16)

The discrete equivalent has applications in the derivation of a priori error estimates for the
DDFYV method applied to the Stokes equations ([11]).
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Chapter 1

Stokes Equations

We derive an a posteriori error estimation for the discrete duality finite volume (DDFV) dis-
cretization of the stationary Stokes equations on very general twodimensional meshes, when
a penalty term is added in the incompressibility equation to stabilize the variational formu-
lation. Two different estimators are provided: one for the error on the velocity and one for
the error on the pressure. They both include a contribution related to the error due to the
stabilization of the scheme, and a contribution due to the discretization itself. The estimators
are globally upper as well as locally lower bounds for the errors of the DDFV discretization.
Numerical experiments illustrate the theoretical results and we especially consider the influ-
ence on the error of the penalty parameter for a fived mesh and also of the mesh size for a
fized value of the penalty parameter.

1.1 Introduction

Let €2 be a two dimensional simply connected polygonal domain with boundary I'. We
consider the Stokes equations

—Au+Vp="_{inQ, (1.1)

V.i=0inQ, (1.2)

u=gonl, (1.3)

/ﬁ(x)dx =0, (1.4)
Q

where u is the fluid velocity, p is the pressure, f is the body forces per unit mass, and the
function g statifies [.g(0) -ndo = 0. With f € H~*(Q) and g € H'/*(I'), this problem is
well-posed (see [5]) due to the so-called inf-sup condition: there exists § > 0 such that:

Jo aV - v(x)dx

f = inf sup . (1.5)
9€L () ve(HL(9))2 \|VH(H3(Q))2HQHL2(Q)

Our purpose in this work is to compute an a posteriori error estimation between the
exact solution U, p of (1.1)—(1.4) and its numerical approximation by the penalized discrete
duality finite volume scheme (DDFV) as presented in [7].

14
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Like for other equations, the development of a posteriori error estimations for the Stokes
problem has followed the a priori investigation of numerical methods. As far as finite ele-
ments methods are concerned, R. Verfiirth [10] made one of the very first contributions by
getting two a posteriori error estimations for the mini-element discretization: one is based
on a suitable evaluation of the residual, the other is based on the solution of local Stokes
problems. Later on, R. Verfiirth [11] generalized the first estimator developped in [10] to the
nonconforming Crouzeix-Raviart finite element method, neglecting however the consitency
error in the estimator. It was shown however in E. Dari et al. [4] that this consistency
error may not always be neglected, and, in order to take it into account properly, they use a
Helmholtz-Hodge like decomposition (adapted to the Stokes problem) of the velocity error.
In the resulting error estimator, this gives rise to terms related to the jumps of the tangential
velocity components from one cell to another, in addition to the usual jumps of the normal
components of the stress tensor. The case of the non-conforming Fortin—Soulie quadratic
elements is also treated.

All the above-cited finite element methods satisfy a uniform discrete inf-sup condition.
However, it is often found useful in practise to consider discretizations (especially low-order
ones) that do not verify a uniform discrete inf-sup condition. In this context, C. Bernardi
et al. [1] consider the finite element approximation of the Stokes equations when a penalty
term is added to stabilize the variational formulation. The a posteriori error estimation they
obtain includes two contributions: one related to the discretization on a given mesh, the
other related to the penalty term. Based on these two contributions, the mesh refinement
and the decrease of the penalty term are linked within an adaptive process.

A very recent contribution by A. Hannukainen et al. [6] sets a general framework for
obtaining a posteriori error estimations for the discretization of the Stokes equations. The
method is based on the reconstruction of postprocessed H! conforming velocity and H —
div conforming stress tensor fields deduced from the numerical approximation, and it may
be applied to various conforming and conforming stabilized finite element methods, the
discontinous Galerkin method, the Crouzeix-Raviart nonconforming finite element method,
the mixed finite element method, and general class of finite volume methods.

However, as far as finite volume methods are concerned, the use of arbitrary meshes in [6]
requires first to solve local Stokes problems on a conforming subtriangulation of each control
volume, and then to apply the above-cited reconstruction on this subtriangulation. Instead,
we would like to obtain error estimates for the solution of the DDFV scheme presented in
[7] without having to solve any local problem or to compute any reconstruction. To do
this, we shall adapt to the Stokes problem the a posteriori error estimation investigated
in [8] for the DDFV discretization of the Laplace equation, using the discrete variational
formulation verified by this scheme. The non-conformity of the method is dealt with using
the the Helmholtz-Hodge like decomposition introduced in [4]. Our estimator also includes
a term related to the stabilization term in the incompressibility equation.

This chapter is organized as follows. Section 1.2 sets some notations and definitions
related to the meshes, to discrete differential operators, and to discrete functions. In section
1.3, we present the DDVF scheme and its equivalent variational formula is recalled. In
section 1.4, representations of the errors are elaborated. This is used in section 1.5 to find a
computational upper bound of these errors. In section 1.6, the local efficiency of the error
estimators is verified. Numerical experiments are presented in section 1.7.
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1.2 Notations and definitions

Let € be covered by a primal mesh with polygonal cells denoted by T, i € [1, I], we associate
a point G; located in the interior of T;. With any S, k € [1, K], we associate a dual cell Py
by joining points (G; associate with the primal cells surrounding Sy to the midpoints of the
edges of which Si is a node. the notations are summarized in Fig. 1.1 and 1.2.

With any primal edge A; with j € [1,.J], we associate a so-called diamond-cell D; ob-
tained by joining the vertices Si, ;) and Si,(;) of A; to the points Gj, ;) and G, ;) associated
with the primal cells that share A; as a part of their boundaries. When A, is a boundary
edge (there are J' such edges), the associated diamond-cell is a flat quadrilateral (i.e. a
triangle) and we denote by Gj,(;) the midpoint of A; (thus, there are J' such additional
points ;). The unit normal vector to A; is n; and points from G (j) to Gi,;). We denote
by A’ (resp. Al,) the segment joining Gy, () (resp. Gi,j)) and the midpoint of A;. Its
associated unit normal vector, pointing from Sk, (jy to Sk,(;), is denoted by n’; (resp. n’,).
In the case of a boundary diamond-cell, AQQ reduces to {G,(;)} and does not play any role.
Finally, for any diamond-cell D;, we shall denote by M;,;, the midpoint of [Gi,(;)Sks()],
with (o, 8) € {1;2}?. With nj, n; and n’,, we associate orthogonal unit vectors 7;, 7/, and
T'y, such that the corresponding orthonormal bases are positively oriented. For any primal
T; such that A; C 0T;, we shall define nj; :=n; if ¢ = 4;(j) and nj; := —n; if ¢ = i5(j), so
that nj; is always exterior to 7;. With nj;, we associate 7 such that (nji7 sz-) is positively
oriented. Similarly, when A%, and A}, belong to 9P, we define (n);,,7/;,) and (0}, 7%;,)
so that n’;; and ny, are orthogonal to A}; and A, and exterior to Fj.

Figure 1.1: A nonconforming primal mesh and its associated dual mesh (left) and diamond
mesh (right).

For v € (H?(Q2))? with v = (v, v2)!, we define

[ Ov/Oox Ov /0y Ov, /0y —0vy/0x
VV_(@Ug/@JJ duy /0y )’ Vxv= Qv /0y —0vy [0z )’

i Avl
Av = ( Av, )
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Figure 1.2: Notations for the inner diamond-cell (left) and a boundary diamond mesh (right).

If A and B are two matrices with dimension M, we define the inner product

M
ij=1
For future use, we recall Green’s formulae
/AV~de:—/VV:VW+/ (Vv n) - wds, (1.6)
Q Q o9
/ Vv:V x wdr = —/ (VvT) - wds, (1.7)
Q o9

for any v € (H%(Q2))? and w € (H'(2))%. Here, n is the outward normal to 9 and 7 is the
tangent vector to 0§ such that (n,7) is positively oriented.

In the definition of the DDFV scheme, we shall associate the velocity unknowns to the
points GG; and Sy and the pressure unknowns to the diamond-cells. Moreover the gradient
and divergence of the velocity will be defined on the diamond-cells. This leads us to the
following definitions.

Definition 1.1. Let u = (ul,ul), and v = (vI',v]) be in (R*)! x (R*)X. Let ® = (®;) and
U = (U;) be in (R*?). And let p = (p); and ¢ = (q); be in R'. We define the following
scalar products

1
(W V)rp =5 Z Tijaf v+ Y BPifug v (1.8)
i€ [1,1] ke[L,K]
(@, W)p = Y [Dj|®;: 05, (pa)p= > |Djlpja;. (1.9)

JEN,J] jE,J]
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Definition 1.2. Let u = (u?, uf) be in (R?)™" x (R?)X. For any boundary edge A;, with
the notation of Fig 2.1, we define 0; as the trace of u over A; by

1
a; = 7 (ug ) + 2wy + ) (1.10)

Let u = (uF,ul) be in (R x (R)X and let w = (w;) be defined on the boundary T
We define the following boundary scalar products

(w, @), =D |4, |w; - 1. (1.11)
jer

Definition 1.3. Let ® = (®;) be in (R**?)’. We define divergence and curl of the tensor
field ® on the primal and dual cells by

1
(Vi - ®)i = T > 14;|0my;,

| Z| JEIT;

1 A,
(V) - @) = @ ( (A [0, + AL Bm's,) + > T]q)jnj) ;
jEOP, jeOP,NI’
(VT X (I) Z ’A ‘(I) T ji,
]68T
1 | A
(VP x @), = B ( A @ + AL |0+ ) chbm) ,
kI \jcop, JEOPLNT

where the unit vectors T; (respectively Tji, T' jik, T' jox) are such that (v;,7;) (resp. (M, Tji),
(M 16,7 11 ), (M jok,T jar)) are orthonormal positively oriented bases of R2.

Definition 1.4. Let u = (uy, uy) be in (R2) 5" with uy = ((uy)T, (uy)E) € RIHET gpgd
uy = ((ug)7, (ug)F) € RITFEH the discrete gradient VPu and the discrete curl VP x u are
defined by their values in the diamond-cells D; by

(Viur)', > D ( (V7 x ), )
V). = J ’ \V4 C— J 7
(Vi u); < (Vqu)tj (V5 xu); (V,? % u2)tj
where, for ¢ € RITETT" e define
1 ! ! / !
(Vi) = —2|D | {[¢t, — R ] (A, [n';, + |A), I0',) + [6F, — & 1 Ajn, )

(Vi x ) 2|D | {[0%, — o] (1A, |75, + 145, 17%,) + 167, — &3, ]| Asl 75} -

From basic geometrical arguments, we obtain some properties of the discrete gradient:

—
Gly = Oy = VRS Sky Sky, (1.12)
by, — 1, = Vi ¢ Gi, Gy (1.13)

We also need a discrete divergence of a vector, which is defined using the discrete gradient

(V7 -u); = Trace((Viu);).
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KAK)

k 1(K) K(K)

Figure 1.3: Notation for a boundary dual cell in formula (1.22).

For the penalization of the scheme, we need to define the following Laplacian-type oper-
ator.

Definition 1.5. Let p = (p;) € R, we define:

1
(AVp); = D] >
J 5!

€8Dj

d? + d?
¢ d2 : (pj’ _pj)7 (114)
J

where OD; is the set of diamond cells which have a common segment with D;, d; = diam(D;)
and dj = diam(Dj). In addition, we construct piecewise constant functions corresponding
to the approximate pressure and to the penalty term.:

pn(x) =p;, VxeD;, jell,J], (1.15)
(APp)n(x) = (AYp);, ¥V xe Dy jell, ). (1.16)

Proposition 1.6. For ® € (R*>?)7 and = (u”,u”) € (R)"*" x (R))X and p € R’, the
following discrete Green formula hold:

(VPP @ u)pp = —(VPu, ®)p + (dn, a)py, (1.17)
(VP x @ u)pp = (VP xu,®)p + (B1, @), (1.18)
(VPP phyw)rp = —(VP -u,p)p + (pn, @)p, (1.19)

where I is the 2 x 2 identity matrix. The formula (1.17) is called discrete Stokes formula
and is proved in [7]; it can also be found in [3]. The formulae (1.18) and (1.19) can be
demonstrated in the same way.

Next proposition may be found in |3].
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Proposition 1.7. For allu = (u?,ul) € (R2)*+/" x (R?)X, there holds

(Vi x (Viu)); =0 Viel[lI], (1.20)
(VP x (VPu)), =0 Vk¢gT. (1.21)

In addition, for k € I, the following equality holds (see Fig. 1.3 for the notations)

1 1
(Vi X (Vyu)) = 2 (Uh, — U ) + 5(‘12(@ — U, | - (1.22)

Definition 1.8. With any u = (ul,ul) € (R*)™7" x (R?)¥, we associate the function uy,
defined by
(wn)|p, € (P1(D;))* Vj € [L, ],

1 )
(uz;(j) + ukpﬁ(j)) Vi e [1,J], (o, B) € {1,2}2

U (Miaiika() = 5

Proposition 1.9. Let u = (u?,ul) € (R)™7" x (R)X and let uy, be defined by Definition
1.8. There holds

(vi?u)j = vuh|Dj7 Vije [17 J]? (123)

(V;?-u)j:V-uhbj, Vje [1,J] (124)

Definition 1.10. Let uy, be in (PY(D;))?, Vj € [1,J], and not necessarily continous over

the interfaces of neighboring diamond-cells. We define its piecewise gradient and divergence
over £ by:

Viup(x) = Vug|p,(x) and Vi, - up(x) = V- wp,(x), ¥x € Dy, je[l,J]. (1.25)

1.3 The finite volume scheme on general meshes

We recall the finite volume scheme used for the numerical approximation of equations (1.1)—
(1.4). This scheme is constructed on the basis of the discrete differential operators defined
in section 1.2.

(Vi - (=Viu+ph))=f, Yiell]] (1.26)
(Vi - (=VRu+ph)) =, vk e[l K], (1.27)
(Vi -w); +e(Ap); =0, Viell,J], (1.28)
ul +2ul +ul
k1(4) 42(3) k2(j) _ g, Vjer, (1‘29)

J
> IDjlp; =0, (1.30)
j=1
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with an appropriate choice of € > 0. We suppose that g is regular enough, so that we can
set g; = g(Giy(;)) in (1.29), while in (1.26) and (1.27), f¥ and £ are the mean values of f
over T; and Py, respectively:

1

7 — 1 —
|Pk| P,

" T

/ f(x)dx and £ — £(x)dx. (1.31)

In [7], it is proved that if € > 0, then the scheme (1.26)—(1.30) has a unique solution.

Proposition 1.11. Let u = (u},uf) and p = (p;)jepn,s be the solution of the scheme

(1.26)-(1.50). Letv = (vI,vl) such that v; =0 for all j € T. Let uy, and vy, be the solution
associated to u and v by Definition 1.8. Let us set in addition

1
vy (x) == 5 Z vioT(x) + Z vior (x) |, (1.32)
i€[1,1] ke[l,K]

where 07 and 0F are respectively the characteristic function of the cells T; and Py,. Then,

there holds
Z/ Viuy : Vv (x)dx — Z/ Vi - v pr(x)dx = / f- v (x)dx. (1.33)
= J; = Jp; 0

Proof. We can apply Eq. (1.26) and (1.27), we have
~(Vi - (V)i - v + (Vi - (pla)) - vi =1£]-v] Vie[L1], (1.34)

2

—(V] - (VPw); -vE + (VP - (pI) - vi =fF -vi Vk € [1,K]. (1.35)
Multiplying (1.34) by |7;| and (1.35) by |P,| and summing over all ¢ and all k, we obtain
—(Vi" (V) Ve + (V7 (ph), V)re = (£, V)re.
We can apply (1.17), (1.19) and v; = 0 for all j € I', we obtain
(Vi (), V() = (V7 -v.p)p = (£,v)1p,

or, using the property in (1.23), we have

Z/ Viuy, : Vv (x)dx — Z/ Vi - v, pr(x)dx = / f-v}(x)dx.

1.4 A representation of the error

1.4.1 A representation of the velocity error

The variational formula of (1.1) reads:

/ Vu : Vvdx — / pV - vdx = / f-v(x)dx, (1.36)
0 Q Q



CHAPTER 1. STOKES EQUATIONS 22

for all v € (H;(€))?>. We shall estimate the H' semi norm of the error between the exact
solution u and the function u; associated to the solution of the DDFV scheme. For this,
We shall denote by e = U — u;, and e, = p — p, the error in the velocity and pressure,
respectively. We have

1/2
theHLz(Q) = (Z/ ‘Vﬁ — thh|2(X)dX> . (137)
i b

Since Q is a simply connected domain and since Ve = VUi — Vj,uy, belongs to (L?*(£2))**2,

we may decompose it in the following way (see Lemma 3.2 in [4]):
Vie=Vd—qlh+VxU, (1.38)

where ¢ € L2(Q), ® € (HX(Q))? with V-® = 0 and ¥ € (H'(Q))? with integral zero
satisfying

V| z2) < IVrellzz @),

2
||€IHL2(Q) < BHVh@HL?(Q% (1.39)

212

IV X Wl 20y < (1+ 5

)”vaHL?(Q)a

where (3 is defined by (1.5).
Now, we estimate the velocity error using the decomposition (1.38). First observe that

/Q Vie : Lg(x)dx = /Q Vs - e g(x)dx — /Q (V-6 — V) - ) g(x)dx.

From (1.2) and (1.28), we have

/the : Ig(x)dx = E/Q(Ath)hq(X)dX. (1.40)
Multiplying the term Vje(x) with (1.38) side by side and integrating over €2, there holds
IVhell2a) = /the (VO +V x ¥ — gI)dx

i 4ip—e /Q (APp)ng(x)dx. (1.41)

where
=y /D (Vi — Vuy,) : VO (x)dx

5 /D

and

iy = Z/ (Vi — Vuy,) : V x ¥(x)dx.
i TP

In order to find a suitable representation of 7; and i, we shall need the following definitions
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Definition 1.12. The boundary 0D, of any diamond-cell D; is composed of the four seg-
ments [Gi, (j)Sks(j)] with (B,a) € {1,2} (see Fig. 1.2). Let us define by S the set of these

edges when 7 runs over the whole set of diamond-cells and § those edges that do not lie in
the boundary I'. FEach s € S is thus a segment that we shall denote by [Gi(s)Sk(s)]. We shall
also write s € T; (resp. s € Py) if s CT; (s C Py) and s ¢ I'. Finally, we shall denote by ng
one of the two unit normal vectors to s, arbitrarily chosen among the two possible choices

but then fized for the sequel, and [(Vuy, — ppla)ngs is the jump of the normal component of
Vu, — ppls through segment s.

Proposition 1.13. Let ® be defined in equation (1.38). Let ® = (®F,®P) e (R2)IH" x
(R*)X be such that

CiDj =0 foralljeTl. (1.42)
Then, it holds that
o1 s _&T 1 d— P
= —‘Z JRRCEAETRS: > JRRCEAE
T
S Z Z/ thh_phIZ ns]s ((I) (I) )( )d (1.43)
16[1 I]
- Z Z / [(Vauy — prla)ngs - (CD ;) (0)do.
ke LK)

Proof. First, Since d e (H&(Q))2 and V- d = 0, we can apply (1.36), we have
ih = Z/ Vil : VO(x)dx — Z/ Vi, : VO(x)dx
i 7P i b
= / Vi : VO(x)dx — Z/ Vi, : VO(x)dx
= / f-O(x)dx — Z/ Vo, : VO(x)dx.
Q — J,
For any ® = (&7, ®F) satisfying (1.42), formula (1.33) leads to
ilz/f(CID )( Z/phvhq)h )dx
Q
- / Vo, : (VO — V@) (x)dx.
i 7P
We know that ppVy, - ®4 = pulo : V@, and ppl : VO = 0 (since V - ® = 0), then

J

i :/Qf- (@ — @) (x)dx — > Hi(j), (1.44)

j=1
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where

Hy(j) = /D (Vattn — pal) : (VB — V) (x)dx. (1.45)

J

Let us consider a diamond-cell D;. Since Vju, — ppls is constant over D;, we may write,
using Green’s formula over D,

Hy(j) = /é)D_(thh — pula)ngp; - (& — @) (0)do,

where npp; is the unit normal vector exterior to D; on its boundary. Moreover, let each
s be one of the four boundary edges of Dj, the function @), belongs to P! over s and the
quantity Vu, — ppls is a constant; the integral of (Vu, — phIQ)naDj - &, along this edge
may thus exactly be computed by the midpoint rule; using the definition of ®;, this function

equals ‘((I);[(; + @k(s ) at the midpoint of s. There holds:
1
Hy(j) =) /thh—phfg)nsj o (B, + i) | (0)do, (1.46)
s€0D;

where n, ; is the unit normal vector exterior to D; on s.
In the sum of the Hy(j) in (1.44) over j € [1 J] there are two types of edges s: those

in S and those included in I'. First, each s € S is the common edge of two diamond-cells;
then, in the sum, there are two corresponding integrals over s, in which we can factorize by

[EIS -3 <CI>;T( + <I>k(5 )] (). Indeed, the jump of this function through s vanishes because
® € (HL())% Secondly, each diamond-cell D; whose boundary intersects I has two edges
of equal length s = [Gi,(j)Sk,(;y] with 8 € {1,2} which are included in T, and their union
is exactly A;. Since (Viu, — prla)n; is a constant, and 3 5 ( 5 f[G (<I> — %(Cbg(j) +

@fﬂ(])))(a )do = fAj CI) - ‘I)h)(U)dU, we have

12(])Skﬁ(ﬂ]

~ 1
Z / (Viuy, — prlz)ng; - {q) D) (‘bis) + (I)P( ))] (0)do

s€oD;NI
~ 1
=2 / (Viuy = pplo)n; - [‘D —3 (‘DT( )+ ‘%(]))} (0)do
ge{1,2} Y [Giz()Sks(h)]
/ (Viw, = pulo)n; - (2 = ®y)(0)do =0, (1.47)
A;

J

thanks to (1.42) and to the fact that ® € (H1(€2))2. With these remarks, we can write

Z H,(j) = Z[(thh — pula)ng]s F) — %(Cbis) + <I>f(5))} . (1.48)

€l J] s€g
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Then, we may write ® — 2 <<I>iT(S) + CIDkP(S)> [(CIJ @Z(S)) <<I> @k(s))]. Summing in

the right-hand side of (1.48) the various contrlbutlons of ®] for a fixed i and the various
contributions of ®F for a fixed k, we obtain the following formula

> () = ZZ / (Viw, — mulo)n, - (@ — @) (0)do

zElI

(1.49)
D> z [ (T =it (B = ¥ (o) do
ke[l K] scP
Finally, according to (1.44) and definition (1.32) of ®;, we obtain (1.43). O

Before we turn to a representation formula for ¢5 in (1.41), we need some technical lemmas
related to the L?(Q) scalar product of discrete gradients and curls.

Lemma 1.14. Let u = (u?,ul) be the velocity component of the solution of the scheme
(1.26)~(1.80) and ¥ = (U7, WF) e (R2)*" x (R2)X. There holds

(VEP  (VPw), W)p = - Y /8 (Velo) = Viu(a)) i wlido (1.50)

kel

where Ty, s the tangent vector to 0P, NI which is positively oriented with respect to the unit
normal vector exterior to 0P, NT.

Proof. According to Eq. (1.20) and (1.21), there holds

(Vi x (VPu); =0 Vie[l,I]and (V] x (VPu))y =0 VkgT. (1.51)
On the other hand, since the solution of the discrete problem verifies (1.29), there holds, for
k € T', with the notations of Fig. 1.3:

1 1
5(“5 +ug, ) and uz, ) = 2g(Grw) — 5(115 +tug,p)  (1.52)

Following (1.22) and (1.52), we obtain that

uj, gy = 28(Gre) —

1
(Vi < (Vyu)) = m [2<g(G12(k)) - g(Grwy)) + (u;’}'l(k) 11;2 k))} Vkel. (1.53)
From (1.51), and using definition of scalar product in (1.8), we obtain

1
(Vi (VP W)rp = 5 D IBI(VE < (V7w), - 0]

kel
Using (1.53) leads to

1
(V" x (Vi) ¥)gp = Z(g(GIQ(k)) —g(Grw)) - Yy, + 5 Z(uil(k) — ) - VE -

kel kel
(1.54)
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In addition, we have

g(Grm) — 8(Grw) = (8(Grw) — 8(Sk) + (8(Sk) — &(Gre)),

so that

g(Grm) —8(Grw) = —/ Vg(o)Tdo, (1.55)

OP,NI
In the same way, we have

uﬁl(k) - ui(k) = (uil(k) —up) + (v — u%(k))

Applying the property (1.12) of the discrete gradient:

|SkSK1(k)|thh(U)Tk = uﬁl(k) — ukp, Yo € [SkSKl(k))] (1.56)
and
Sk Sk Vit (0) T = uf — uf, 4, Vo € [Sky0S0)], (1.57)
there holds
Wi, ()~ Wity () = 2/ Vi up(0)Trdo. (1.58)
OP,NT

Combining (1.54) with (1.55) and (1.58) come to

(VI (VPu), W) p = — 3 / (Ve(o) — VPup(0)) 7 - WPdo.
OP,NT

kel
This implies our lemma. O

Lemma 1.15. Let u = (u?,ul) be the velocity component of the solution of the scheme
(1.26)~(1.80) and U = (VT WP) e (R2)*+" x (R2)X. Let u, and U, be their associated

functions through Def. 1.8. There holds
> / Vi, 0 Vi x U (x)dx = — > / (Vg(o) — VPuy,(0))7y - UHdo
;i “Dj ker 7 OPpNT

- (Vfu‘ra \i])f‘,h- (1.59)
Proof. Applying the discrete Green formula (1.18), there holds
Z/D Viw, : Vi, X Uy (x)dx = (VPu, VP x ¥)p
| = (Vi < (Viw), W)rp — (Vur, O)r.

Following the lemma 1.14, we have completed our lemma. O
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Proposition 1.16. Let u = (ul, ul’) be the velocity component of the solution of the scheme

(1.26)-(1.30) and uy, the function associated to u by the definition 1.8. Let U be defined in
equation (1.38). Let ¥ = (U7, WP) e (R2)+" x (R2)X and U, be its associated function.
Then, the following representation holds

Z Z/thm'ss (U — W7 (0)do

+— Z Z/thh‘l'ss (U — ) (0)do (1.60)
ke[lK seP
-3 (Valo) ~ VPu(ee- (¥o) — ¥

Proof. From (1.41), there holds

iy = Z/ (VU — V) : V x U(x)dx
i 7D

= / Vu:V x \Tf(x)dx — Z/ Vi, 1 Vi X U (x)dx — ZHQ(]'), (1.61)

where
Hy(j) = /D Vi, : (V x U — V), x U,)(x)dx. (1.62)
By application of the continuous Green formula, there holds
/ﬂVﬁ:VX\TJ(X)dX:— mVur V(o /VgT V(o (1.63)

We can evaluate the sum of Hy(j) over j just like we evaluated the sum of H;(j) in Propo-

sition 1.13. There are only two differences. The first is that the gradients of ® and @ are
replaced by the curls of ¥ and W, which implies that normal vectors n, are replaced by
tangent vectors —75. The second difference is that the boundary integrals do not vanish any
more, but can be evaluated like in the discussion that leads to (1.47). Then noting that

kel PN’

/ VhllhTJ )d = Z thth . \/I\’(O')dO',
jeJr

we obtain the following formula

ZHQ(]) = — = Z Z/thhTss \D ‘IJT)( )d

16[1 I]

_ Z Z/th;ﬂ'ss \If ‘I’P)( )do (1.64)

kelK]

- Z/ Vouaty - U(o)do + (VPur, O)r .
Pyl

kel
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Combining (1.61), (1.59), (1.63) and (1.64), we have

Z Z/thhrss (U — 97 (0)do

16[1 I]
+ =Y Z / Vw7l - (U — U (0)do (1.65)
ke LK)
> [ (Vo) - VEue) e (F0) ~ W)
ker Y el
We have finished this proposition. O

1.4.2 A representation of the pressure error

Proposition 1.17. Let v € (H}(Q)? and v = (vI,vE) € (R)™ x (R)X be such that
v; =0 for all j € I'. We have that

/e,,v v(x dx—/Vhe Vv(x dx——Z/ (Vv —v])(x)dx

1 = P
_§k§l{]/1)kf-(v—vk)(x)dx »
1.66
+ = Z Z/ Viuy, — prls n5]s (V_VT>( )d
16[11]
—l-— > Z/ Viw, = prlo)ngls - (V = vi)(0)do.
kelK]

Proof. We can use the formula (1.36) to obtain

e,V - 9(x)dx — /Q PV - () dx — /Q PV - 9(x)dx
_ /Q Ve : V9 (x)dx — /Q £ 9(x)dx + /Q Vi, VO()dx (1.67)
—/QphV-V(x)dx.

Q

Using Eq. (1.33), we have

e,V - 9(x)dx(x)dx — / Ve : V9(x)dx — / £ (¥ — vi)(x)dx
(2 @ (1.68)
T /Q (T — pula) : (V9 = Vievp) (x)dx.

Q
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Just like in Proposition 1.13 (see (1.45) and (1.49)), we have

Z Z/ Vi, — pula)ng)s - (V = vi)(0)do

/(thh - phlg) : (VV - thh
Q

16[1 I]
—l-— Z Z/ Viu, — prlo)ngls - (V_Vk)( )do.
kelK]
(1.69)

From (1.68) and (1.69), we obtain the following formula

e,V - 9(x)dx = /the V9 (x)dx — % 3 / £ (% — vT)(x)dx

Q e’
1
Iy / £ (¥ — vP)(x)dx
kel1,k) ” Pr
FEZZ/VWFMQMSWHWUM
1€[1,1]
+— Z Z/ Vaw, — pulo)ngs - (V = vi)(0)do.
ke[l K]
This implies our proposition. O

1.5 A computable error bound

1.5.1 Preliminaries

In this subsection, we will present some Poincare-type inequalities which are useful to
obtain a computable error bound.

Lemma 1.18. Let w be an open bounded set which is star-shaped with respect to one of its
point. Let u € (H'(w))? and let U, be the mean-value of u over w. Then,

IC(w), s.t. [[u—Tulr2w < Clw)diam(w)||Vul|r2,)- (1.70)

Note that when w is convez, a universal constant C(w) is given by L (see in [9]). When w is
not conver, we may use explicitly computable formulas given, for example, by [2, 13]. The
constant C(w) only denpends on the shape of w, not on its diameter.

Finally, we will also need a trace inequality (see [8]).

Lemma 1.19. Let T be a triangle and let E be one of its edges; let p be the distance from
E to the vertex of T" opposite to E, and let o be the longest among the two other sides if T
Let € > 0 be an arbitrary real valued number; then for all u € (H(T))?, there holds

1 _
Jalfface) < 3 (24 )l + 0% [Vullfu ) (1.71)
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1.5.2 A computable bound for the velocity error

In the expression (1.43) of i1, the values of (®7, ®F) are arbitrary, except for the boundary
midpoint values chosen so that (1.42) holds. In the expression of iy in (1.60), the values of
(UT WP are arbitrary.

Definition 1.20. Since ®, U are not necessarily more reqular than (H'())%, we choose as
an interpolation their L* projection on the primal and dual cells:

1 ~ 1 ~

o7 = / (x)dx Vi € [1,1], ®f = — [ O(x)dx Vk € [1, K], (1.72)
1 ~ 1 ~

- / Bxaxvie 1,1, 97 = [ Gxdcvke[1, K. (1.73)
|1—'1| Ti |Pk'| Pk:

In order to complete the definition of (®1,®F), for any i € T, the boundary value of ®1 are
given by (1.42). In this problem, it is not necessary to define the value of WT for all i € T.

Proposition 1.21. Let hl := diam(T;), ht := diam(P,,). There exist computable constant
C(T;), and C(Py) such that

> / f-(®—o7)(x)dx| < osc(f, T, Q)| V| 120, (1.74)
e’
/ £ (® - F)(x)dx| < osc(f, P,Q)||VD 1200, (1.75)
kel1,K] P
where
1/2
osc(f,T,Q) = | > (C(THA |t — £ |12, (1.76)
i€[1,1]
and
1/2
osc(f, P,Q) = | > (CPIM)NE = 2y | (1.77)
ke(1,K]

Proof. Since ®7 was chosen as the mean-value of ® over T} (see (1.72)), we have

/T' £ (0 —07)(x)dx = / (F—£7) - (& — 7)(x)dx.

T;

Applying the Cauchy-Schwarz inequality, Lemma 1.18 to d over T; and the discrete Cauchy-
Schwarz inequality, we are lead to (1.74).
Similarly, we also obtain (1.75). O
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Propositions 1.22 and 1.24 below are proved just like Propositions 5.9 and 5.10 in [8|.

Proposition 1.22. For any primal cell T; and any dual Py, such that T; N P, # 0, Let
s = [G;Sy] and ti1 and ti, o be the triangles defined in Fig. 1.4 such that ti1Utiye = T;N Py
Let pig.o be the distance from s to the vertex of tiy o opposite to s and oo be the length of
the longest among the two other edges of tixo. C(T}) is the constant that appears in (1.70).
For any strictly positive i, let us define

o2
(1+\/1+ ““) <1+ 1+%)

Cs(p) = = = : (1.78)
(1 +4/1+ ,’jl) Pik,2 + (1 +/1+ ;Z2> Pik,1

Xi(n) = (C(T)h])* + p. (1.79)
1.80)

We define the local and global error estimators related to the primal mesh:
(nf)? = }g% Z Cs()I[(Vrup — prla)ngs HL?(S and (n")? = Z(U?)a (1.81)

L SETi ¢

T : T T
00 = Inf |x0) D Gl IVnnm Jllfag | and (7% = 3 _(05)* (1.82)
L sGT !

With these definitions, there holds:

> Z / [(Viw, = pulo)ny) - (@ = @)(0)do| < 07|V 120 (1.83)

1€[1,1] SET

> / Ve, (- U)0)do| <o Voo (189

2611

Remark 1.23. The minimization in (1.81) is performed numerically when we effectively
compute the estimators. However, we may already get an idea of the behaviour of this quantity
by choosing p = h% to evaluate n!. By definition of ok, this length is lower than the
diameter of T;, which implies

r (1+v2)?
(D) = Gty (1)

Under the hypothesis that the ratios p;’“fa are all bounded by below by the same constant which

does not depend on the mesh, we obtain the following bound

nl < KhY Z 1[(Vyuy —th2)ns]s||i2(s) ,

o
seT;
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Figure 1.4: For each cell T; and each vertex Sy of T}, T; N Py is split in two triangles ¢;;; and

Lik2-

My

P\2 _ :
= f
()" = inf ¥
1P\2 :
= f
(k)" = mf" x

We define the local and global error estimators related to the dual mesh

PR =3 "f) (187)
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where the constant K does not depend on the mesh. The same remark holds for n'’;

Proposition 1.24. Let us set the same notations as in Prop. 1.22. Let Cy be defined by
(1.78). Let C(Py) be the constant involved in (1.70). Let us define for any strictly positive

Xe(p) = (C(Pu)hy)* + .

H vhuh _phIZ)ns] ”L2 and (77
k

Zc

sEPk
Z ComIVhunr sl | and () = (0/y)*
k

SGPk

With these definitions, there holds:

ke(l,K] sGP

S5 [ = ntn 6 8] o)in| < [T,

Z Z/thhTss \Ij \I/P)( )da <77 ||V\II”L2(Q)

ke[1,K]

(1.86)

(1.88)

(1.89)

(1.90)
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| 2(k)
b <<_q, {K)
14K)

K B Il(k) K(K)

Figure 1.5: For any k € I, Sy, is the common vertex of gj, () and gj, ).

Proposition 1.25. For any k € I', let us denote by Dj ) and Dj,) the two diamond
cells whose boundary intersect I' and which have Sy as a vertez. Let qj,xy = Pi N Dij, k),
Qo) = PN Dj,ky and the segment bj, ) be the intersection between 0q;, ) and I'. Let pj, 1)
be the distance from bi.(k) to the vertex of q;, ) opposite to b, k) and o, u) be the length of
the longest among the two other edges of q;, k) (see Fig. 1. 5) C(Py) is the constant that
appears in (1.70). For any strictly positive p, let us define

2+ ?oz(k)
+4/ +U &
Calpt) = —— 000, (1.91)
Pjalh)
Me(p) = (C(P)RE)? + pe (1.92)

We define the local and global error estimator related to the boundary:

() = int [M(@an(mn(w—Vuh>rja<k>||%2<bm(k>>] and (¢7) = S(¢EP. (1.93)

kel

With these definitions, there holds:

Z /6Pkm1“

kel

(Vg — thh)Tk . (\/I} — \Ifkp)(O')‘ do S CPHVCI}HL?.(Q) (194)

Proof. By application of the Cauchy-Schwarz inequality on each edge b;, ) and the weighted
discrete Cauchy-Schwarz inequality, we obtain for any set of strlctly positive real-valued
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numbers C

/6Pk nr

1/2
ZCPH Vg thh)Tja(k ||L2(b] (k))]

a=1

2
(Vg = Viuy) 7y - (¥ — ‘I’kp)(g)’ do = Z/ (Vg — Vaw) ), - (¥ = ¥)(0)| do
1Y %jalk)

o=

2 1/2
a=1 ¢

Now, for each segment bj_ (), we can apply the trace inequality (1.71) on each triangle
2+5
ath)

Qjo(ky, Tor all o € {1,2} and for all strictly positive €; ). With Cy ) = —p o and
Jo
Cojutl) = %(:;(k), we obtain
¥ — \I/kPH%z bja (k) < Cja( k)”‘I’ \IJPHLz (@50 () + C’Q,ja(k)||V\I’||%2(qja(k)),

Let 1 > 0 be arbitrary. For bj, ) for o € {1,2}, let us choose ¢, k) so that

2 2
R YA N

Eralh) = 2 = Cojar) = MO (h) (1.96)
()

and CI' = C (). There holds:

2

2
P2 J; P2 P
Sl = W, < 0 (18 = 0 gy, ) + IV s,
a=1 ¢«

a=1
< ||v - qu”%Q(Pk) + M||V‘I’||%2(Pk)
< [(C(P)R)? + u] IV 225, (1.97)

Taking (1.97) into (1.95) and applying the discrete Cauchy-Schwarz inequality leads to (1.94).
[

Before estimating the velocity error, we now define the indicator related to the penaliza-
tion:

¢ = el (AT P)nll r20)- (1.98)

In the term in the right-hand side of (1.41), it is easy to see that

: / (APp)ng(x)dx| < Clalliz- (1.99)
Q

Theorem 1.26. Let | Vel 12 be defined by (1.37), let the definitions (1.76)-(1.77), (1.78)-
(1.82), (1.86)-(1.88), (1.91)-(1.93) and (1.98) hold. We have

IVrellzz@) <0 =nn+ ne. (1.100)
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where
Ny = %(030(]‘?, T,Q) + osc(f, P, +n" + 77P> + (% + g) <77/T +n" + QCP> (1.101)
Ne = %C@ (1.102)

1, Nn, and e are called the total estimator, the discretization estimator, and the penalization
estimator for the velocity, respectively.

Proof. Using (1.41), (1.39), (1.43), (1.60), (1.74)-(1.75), (1.83)-(1.84), (1.89)-(1.90), (1.94)
and (1.99), we finish the proof of this theorem. O

1.5.3 A computable bound for the pressure error

Proposition 1.27. The following estimate holds:
1
lepll i) < % (QHVheHLz(Q) + osc(f, T, Q) + osc(f, P,Q) +n + TIP) . (1.103)

Proof. Since e, € L3(Q), there exists v € (H;(€))?, such that
1 [o e,V - V(x)dx

erllzi) < = — 1.104
Ienlle < 5 oo .
Using (1.66), we obtain that
~ ~ 1 ~
e,V - V(x)dx = / Vie : VV(x)dx — = Z / f-(v—vl)(x)dx
0 0 2. T
ie[L,I] v "t
1
Iy / £ (¥ — vP)(x)dx
k;e[l K] P
Y Z/ (Vo = prlo)n, - (¥ =v7)(0)do
16 (1,1]
+ 5 Z Z / (Viu, = pulo)ng]s - (V = vi)(0)do.
ke[l K]
We choose v = ( T vEy e (R x (RQ)K such that
1 ~
v] = x)dx Vi€ [1,1], vi = — | V(x)dx Vk € [1, K] (1.105)
’T\ 1P| Jp,

and the boundary Values of v;, i € I' are chosen so that v; = 0 for all 7 € I'. Similarly to
the calculations involved in propositions 1.21, 1.22 and 1.24, we obtain

1 ~
< = (2||Vhe\|Lz + osc(f, T, Q) + osc(f, P, + 0" +1") [[VV] 120
(1.106)
Taking (1.106) into (1.104), we have finished our proposition. O

e,V - V(x)dx
0
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1.6 Efficiency of the estimators

Since the estimator niT involves jumps of V,uy, —pp o through the common edge s = [G;Sy] of
two neighboring diamond-cells, we shall use functions with a support included in the triangle
tik.a With @ = 1 or 2, defined in the Fig. 1.4. Since we consider a fixed s in what follows,
we simplify the notations to t; and ¢y. For any triangle ¢ in {t1,¢2}, we denote by Az the
barycentric coordinates associated with the tree vertices of ¢, with 8 € {1,2,3}. We suppose
that the vertices of ¢; and ¢, are locally numbered so that the two nodes of the edge s are
the vertices 1 and 2 of each of the triangles ¢; and t,.

Definition 1.28. We define the following bubble functions

bt == 27)\1571)\15’2)\13’3 fO?” t= tl or t= tg, (1107)
4N A te, a=1{1,2
by = tetfMez 00 o={L2 (1.108)
0 elsewhere.

There holds wy = supp(b;) C t and ws := supp(bs) = T; N P, = t; Uty. The following
propositions are given for example, in [12].

Proposition 1.29. There holds
0<b <1, 0<b, <1, (1.109)

/bs(a)da _ g\s]. (1.110)

Proposition 1.30. There exists a constant C > 0 only depending on the minimal angle in
the couple (t1,t2) such that, for t =11 ort =ty and hy = diam(t)

1 9
—h? < [ b(x)dx = —|t| < Ch? 1.111
Sht < [ n(x)ax = gl < (1111)

1 1
532 < /bs(x)dx = §|7f| < 05, (1.112)

t

Vbl 2 < Chi bl 2o (1.113)
Vs r2¢t) < Cs™H|bs | 20 (1.114)

In order to prove the local efficiency of the error estimator we shall make the following
hypothesis:

Hypothesis 1.31. We suppose that the triangulation of €2 composed of all the triangles
Lik.a 15 Teqular in the sense that the minimum angles in those triangles are bounded by below
independently of the mesh.

From this hypothesis, we derive the following propositions.

Proposition 1.32. For any primal cell T; and any dual cell P, such that T; N Py, # 0, let
s = [G;Sk] and ti1 and ti 2 be the triangles in Fig. 1.4 such that tix1 Utik2 =T; N Py. Let
hI = diam(T;), hi = diam(Py) and Sy = |T; N Py|. Let Hypothesis 1.81 hold. Then, there
exists a constant C' independent of the mesh such that

(h{)?S;t <C and  (h)*S;} < C.
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M Kex Sk 12

Figure 1.6: Notations of Prop. 1.32.

Proof. We will only prove the first inequality, since the second one can be treated in the
same way.

Let ap > 0 be the lower bound of all the angles of all the triangles ¢;; 4.

For any i € [i, I], let V; be the number of vertices of the primal cell T;. First, we note
that

2
V,<Vi= -2 forallie L] (1.115)
20(0

Let Sk, with £ € [1,V;] be the vertices of the primal cell T; and My, ., be the midpoint of
segment [Sk, Sk, ,], then

Sik, = |Ti N Py,| = |GiSk, My, | + |GiSk, My, _, |- (1.116)

Now, let us estimate the area of triangle G;Si, My, ,,,. Following Hypothesis 1.31, all the
angles of triangle G;Sk, My, ., are greater than ag. Let hg, be the the maximum distance
from point G; to the boundary of T}, i.e.,

hg, = max{|G;Sk,|, ¢ € [1,Vi]}. (1.117)
We have
1 . —
|GiSkszz,z+1‘ = 5Sln(SsziMkz,é+1>|GiSkeHGiMkz,z+1" (1'118)

By a calculation on triangles G; Sy, My, ,., and G;S,,, My, ., there holds

’GiM]%éJrl’ 2 ‘GiSkZ’SinOéo, ]GiS;WH\ 2 ‘GiM]ge’Z+1‘SinOéo. (1119)
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From (1.119), we have the recurrence formula
’GszA 2 (SiHOéo)Q‘GiSke+l’. (]_]_20)

Starting from the vertex Sy which reaches the max in definition (1.117), the shortest way to
go to a given vertex S, contains at most V;/2 neighboring vertices for which we may apply
(1.120), and we obtain:

|GiSk,| > (sinag) he,. (1.121)

Then, from (1.119), we get that
|GiSk, [|GiMy,,,,| > (sinag)® " R, . (1.122)
Combining (1.115), (1.118) and (1.122), and noting that from the definition of hg,, then

BT :
ha, > —, we obtain

2V 42 (hzT)2

|GZ‘S]€EM;%£+1| Z (SiIl Oé()) 3 (1123)
In the same way, we have
hT)?
GiSp, My, .| > (sinag)?V ™ u 1.124
? 0—1,0 8
Using (1.116), (1.123)—(1.124), we obtain:
hT)?
Sik, > (sin o)+ %. (1.125)
Thus, the inequality is proved with C' = 4 (sin 040)7%72. ]

Proposition 1.33. Under Hypothesis 1.31, the positive constants C(T;) and C(P) are
bounded independently of the mesh, and the constant C in Prop. 1.30 is bounded by above
and by below independently of the mesh.

Proof. The constants C(T;), C(P;) coming from (1.70) were bounded explicitly in [13]. From
these expressions, it is easily seen that they are bounded if Hyp. 1.31 holds. Moreover, it is
proved in [12] that C' in Prop. 1.30 depends only on the regularity of the triangles t;z . O

Now, we will consider the efficiency of the estimators.

Theorem 1.34. For any primal cell T;, let hl := diam(T;) and £ be the mean-value of £
over T;. Let nl (resp. n/T') be defined in (1.81) (resp. in (1.82)). For any dual cell Py, let
hE := diam(Py) and £f be the mean-value of £ over Py. Let nf (resp. niF) be defined in
(1.87) (resp. in (1.88)). And for any boundary dual cell Py, let (&' be defined in (1.93). Let
Hypothesis 1.31 hold. Then, there exists a constant C' independent of the mesh such that

(11)? < € (IVawn = ViliZar + lon = Blaqry ) + CODIE = £y, (1126
(") < ClIVun = Vil
10)? < C (IVnun = Vlagpyy + lpn = Bl3acey ) + CODE = € 22
(1) < CIIVaw, = Vil .

)2

L >
(&) < C|Viuy, — VﬁH%Q(Pk)'
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Proof. Let us consider an element 7; of the primal mesh and a diamond edge s in 7;. Let us
recall that by definition, such an edge s does not belong to I'. Let us consider the function
w, = [(Vyuy, — Lpy)ng)sbs, where b is defined by (1.108). This function belongs to (H3(2))?
and we may thus apply (1.36), which, taking into account the support of w, reduces to

/ (Va — Lp) : Vwg(x)dx = / f-w,(x)dx. (1.131)

Ws

Moreover, uy, belongs to (P*(D;))?, py is a constant in each D; and wy vanishes on I'. Thus
there holds:

/Q(VhUh — Lpp) : Vw,(x)dx = Z /D-(VUh — Lpp) : Vwy(x)dx
- Z /BD.[(Vuh - Izph)naDj] -wy(o)do
- Z Z /,[(thh — Lpp)nyly - wWe(0)do.

s'CT;

But since w, vanishes on all the other edges s’ # s, taking into account the definition of wy
and the property of by in (1.110), there holds

/Q(thh — Lpy) : Vw,(x)dx = /[(thh — Lypp)ng)s - wy(o)do

s

O N / bi(o)o

, (1.132)
= 5’5 ’ H(vhuh - [2ph>ns]s‘2
2 2
= 3 I(Vhun = Lopn)nsls|[7a ).
And taking into account (1.131), we have
M? 2= ||[(Vaw, = Lpn)ngs||72()
3 3
= 5/(thh — Lpp) : Vwg(x)dx = 5/ (Viuy — Lpp) : Vwg(x)dx
Q ws
3 ~ ~
=3 [/ (Viuy, — V) : Vw(x)dx — / (pn — D)V - wy(x)dx +/ f- ws(x)dx] :
’ S S (1.133)
Using the Cauchy-Schwarz inequality leads to
, 3 ~ ~ 3
22 < 2 (190 — Valzan + VEIpn ~ Pllizen ) 1VWallzzian] + S8l lIwall e

(1.134)
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Let us now bound [[Vw||12(,,) and ||[Ws][z2(.,). There holds, thank to (1.114),

IVWllz2wn) = (Vs = Lopn)nJsl [ Vsl 2w, < [[(Vs = Lopn)ngls Cls| ™ [[bs| 2 OE )
1.135

1Wsll 22wy = I(Vas = Topn)ng]s|[[[s]] 22w - (1.136)

So there remains to find a bound for ||b,||12(.,). In order to do this, we first infer from (1.109)
that b < b,. This implies, using (1.112)

1/2 1/2
Il = [l + 10es) < [ [ w0 <l s
t1Uto

Taking into account that |[(V,uy, — Iypp)ngs| = |s|7Y/2M and considering (1.134) to (1.137),
we obtain

M<C [ISI_I/Q(IIthh — V|| 12, + V25 = Pllr2) + ISII/QIIfIILQ(wa] - (1.138)

One usually expresses |f|;2(,., as a function of [V, — V|2, + [IPh — Pllz2w,) and of
higher order terms. Let ¢t = t; or 5, and let us denote by f; the mean value of f over ¢. Then,

£ 2y < IE = £ell 12y + el 2o - (1.139)

Then, consider w; = f;b;, where b; is defined by (1.107). The function w; belongs to (H})?.
Thus, taking into account the support of b;, Eq. (1.36) reduces to

/t(Vﬁ — Ip) : Vw, (x)dx = /tf - w(x)dx. (1.140)

Moreover, since V,uy, — Irpy, is a constant over each ¢, and since w; vanishes on the boundary
of ¢, there holds

/(thh — Lpp) : Vwy (x)dx = 0. (1.141)

Since f; is a constant over ¢, there holds, thanks to (1.111), (1.140) and (1.141),
HftHiQ( = |t| (£)* = C (£,)* /bt(x)dx = C’/ft - wy(x)dx
¢ ¢
=C [ f x)dx + /(ft —f)- Wt(X)de|
t

Vu — Vyuy) : Vw, (x)dx — /(ﬁ— pr)V - wi(x)dx + /(ft —f) - wy(x)dx

t t
<c (HVu = Vil gy + V215 = pull iz ) I9Well gy + C I = £l 2y IWell e
(1.142)

with C'=20/9 in the above expressions. Let us now bound [[wy|| 2y and [[Vwe| ). With
(1.113), there holds

9%l = 16110l 2y < 11O 00l s (1143)
||Wt||L2(t) = |ft|||bt||L2(t)- (1.144)
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The remaining term that has to be bounded is [[b¢||2(;). For this, we first infer from (1.109)
that b?(x) < by(x) and then

1/2
Il <161 [B0x) < CURINE =l (1189
t
in which C' = 1/9/20. Combining (1.142)—(1.143)—(1.144)—(1.145), we finally get
1601200 < € (I~ Elsgy + 5 IV~ Vutulgagy + 5 15— pullioen)
Since s is an edge of t, there holds |s| < hy; applying (1.139), we obtain
£l Loy < € (”ft — £l 2y + IsI7HIVA = Vil 2 + [s] 7P — ph||L2(t)> -
Thus, taking into account that ws =t U ty, there holds
11 22 wy) < Il 22y + NN 22y
< O (I8~ Fllay + 1, — Fll o) + Clsl 198~ T
+Cls| ™ (Hﬁ— prllzeqy + [IVU = Vi o, + [P — thLQ(m))
< Cls| " (IV8 = Vil oy + 15 = Prllzzeon) + C 1w = fllpa - (1:146)

In this sequence of inequalities, we have used the fact that f, minimizes |[c — f||;2(, when
c runs over R?; in particular, ||f; — £l 2 < 0, — £l 12y, Where £, is the mean value of f
over ws. Combining (1.138) and (1.146), we obtain

M = |[[Va(up = pr)ng)s|l 25 < Cls|"* |1 — £l 22wy

i R R (1.147)
+ CIs| ™2 (190, = Vil o, + 15 = prllracen ) -

By definition, the local estimator (n!)? is lower than the value taken by the function in
(1.81) in = (h!)%. In (1.81), we may bound C(T;) by 1/7 since the primal cells have been
supposed to be convex, and with (1.85) and (1.147), we obtain

T\2 T2 |s| ! ( ~112 12
N2 <o (1] S B L VAT v +{lpn — w)
(ni) (hi) Zopik,1+pik,2 [Vruy, 2200 T IPn = Dll72(0y)
seT;
s| 2
+C (hF)* sl f—f, .
( ) Z Pik1 + Pik2 | L2(ws)
seT;

Using Prop. 1.32, and since by definition S;, = %\3\ (pix1 + pix2) and |s| < Al the above

inequality leads to (1.126). As far as (1.127) is concerned, let us consider the function
vy = [Vpu,7g)sbs. There obviously holds

/VG:VXVS(X)dX:/ Vu:V xv(x)dx=0. (1.148)
Q Ws
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Eq. (1.148) and the calculations that previously led to (1.132) may be used to yield

2

= §/ (Viu, — V) 1 V x vg(x)dx

3
||[thh7-s]s||i2(s) = —/ thh : V XVS(X)dX

2

< 2V~ Vil 199 - (1.149)
Just like (1.134) led to (1.138) and then to (1.126), the inequality (1.149) leads to (1.127).
The dual inequalities (1.128), (1.129) and (1.130) may be obtained in the same way. We
note that in (1.130), we obtained the result so far only in the case g = 0. The proof is very
similar to that of (1.127) and (1.129), but some definitions have to be changed because the
segment b; () in the definition (1.93) is a boundary segment, and is thus the edge of only
one triangle ¢; the function b4 is thus defined only in that triangle ¢. O

1.7 Numerical results

In the part of numerical experiments, first, we study the influence of the parameter ¢ for a
fixed mesh and of the mesh size for a fixed value of the penalty parameter. Secondly, we
give an overall process to recursively adapt the value of the penalty parameter and the mesh
refinement.

1.7.1 Influence of the penalty parameter

In this subsection, we will work on the domain Q = [0;1]%. A triangular mesh with rather
uniform triangles is used. The exact solution (U, D) is regular with u = (9,¢, —0,¢) given
by
2 2 2 2 ~ 2, 2 2

o(x,y) = 100z°y“(1 — 2)*(1 — y)* and p(z,y) = 10(z" + y~ — 5) (1.150)
Fig. 1.7 presents the plots of the errors and the estimators when the penalty parameter
goes from 1072 to 1078, They include the actual errors in the H'(2) and L?*(2) norms for
the velocity, i.e. the error in the velocity gradient ||[Vu — Vjuy||r2(q) and in the velocity
[u—up|12(q), the total estimator, the discretization estimator and the penalization estimator
which are given by Theorem 1.26 when we estimate the velocity error. The left (resp. right)
figure corresponds to the mesh size h = 5.69 x 1072 (resp. h = 3.125 x 1072). We see that
for a given mesh, the ratio between the penalization estimator and the penalty parameter ¢
asymptoticaly tends to a constant, while the discretization estimator is nearly independent of
€. Moreover, the actual errors decrease with € until a certain level. Then, the discretization
error is the dominant error and decreasing ¢ further does not have any influence on the
overall error. As expected, when the mesh size is smaller (right part of the Figure), then the
value of the penalty parameter for which the errors saturate is also smaller.
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Figure 1.7: Actual errors in H'(Q) and L?(Q) norms, total estimator, discritization estimator
and penalization estimator for the velocity. Left: h = 5.69 x 1072, right: h = 3.125 x 1072,

1.7.2 Influence of the mesh size

On the same square domain €2 and with the same exact solution as previously, we work with
a fixed ¢ = 1073 (resp. € = 1077) in the left (resp. right) part of Fig. 1.8. Since the solution
is regular, only uniformly refined triangular meshes will be considered. Figure 1.8 presents
the same curves as in Fig. 1.7, but now as a funtion of &, varying from 0.25 to 1.6 x 1072,

100 100 T
10 F ] 10F )/(/ -
1r ___E‘___.l:r"'a E
o 1F gl EVSREEEE K- *—::--E""":Q i o 0.1¢f D.---"E"""D o a .
o - ome 9001 Mg
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Hoit = 4 4 Kemoo " "
.o -m- A 0.001F g S ]
001 - dIS. &t __;__ B 00001' | - dléZSte.l;’te_;(_ 3
P & TR pen. est:-x-
er. H; le-05F err. H--o--
er.Lc-a- err. .- .-
0.001 05 1e-06 . :
0.01 0.1 - 0.01 0.1 0.5
Meshsizeh Mesh size h

Figure 1.8: Actual errors in H'(Q) and L?(©2) norms, total estimator, discritization estimator
and penalization estimator for the velocity. Left: € = 1073, right: ¢ = 1077,

The actual errors decrease until the mesh size h is so small that the penalization error
will dominate the discretization error, and the total error thus stagnates to a certain level.
The penalization estimator is nearly independent of h in the left figure but behaves roughly
like h~! in the right figure. This behaviour remains unexplained and further investigations
have to be conducted about this. The total estimator and the discretization estimator
decrease regularly when h decreases, roughly like A, but, then, when A is small enough the
total estimator starts to stagnate because the penalization estimator stops being negligeable
(better seen in Fig. 1.9, where e = 1072).
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Figure 1.9: Actual errors in H'(Q2) and L?*() norms, total estimator, discritization estimator
and penalization estimator for the velocity for ¢ = 1072,

1.7.3 Adaptive penalty parameter and mesh

We propose the following computational process. We start with a given coarse mesh and an
initial value of €, and we fix some ratio 0 <~ < 1.

10 T T T
10 F E
1 1k
) 4
201k o1}
L L
001 0.0LF
0001 L& H: e . . 0.001 | . , :
10 100 1000 10000 100000 10 100 1000 10000 100000
Number of element Number of element

Figure 1.10: Actual errors in H'(Q2) and total estimator for the velocity. Left: v = 1/10,
right: v = 1/500.

Then, we compute the numerical solution, and we get 1, and 7.. Then,

o Ifn. > ynp, we adapt a new € by multiplying the old € with the ratio % and keep the
same mesh for a new computation. This has the effect of maintaining the error due to
the penalization below a certain ratio of the error due to the discretization.

e Otherwise, we adaptively refine the mesh based on the discretization estimator 7.
For this, on the given mesh, we compute the local discretization estimators 7, with
nE = > T]iQ,h and ask to refine a given primal cell 7; by a factor 4 in terms of area if

nip > (max; n;p)/2.
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The test we present to illustrate this strategy is also on the domain Q = [0; 1]?, The exact

solution (u,p) is regular with u = (p,, —¢,), and ¢ is given by

plry) = 7= 221~ y) and Ploy) =562 442 = 5) (1151)
For accuracy reasons, the ratio v may be chosen so that the penalization error is much lower
than the discretization error like in the right figure of Fig. 1.10 obtained with v = 1/500. We
observe that the actual error and the total estimator are not affected by the penalty term.
Moreover, we made a test with v = 1/10 and we present the result in the left ficture of Fig.
1.10 to show the interplay between the mesh refinement and the decrease of ¢.

In the following test, we will compare the exact error and total estimator in H'(Q) for
uniform and adaptive refinements. We will combine this work with the adaptive penalty and
mesh with v = 1/500. Our test is in the domain Q = [0, 1[* and the exact couple solution
(u,p) is singular with U = (¢,, —¢.), and ¢ is

z+y—1

7 ~
o(z,y) =21(1 —2)*y*(1 — y)* and p(z,y) = 10

We observe that the velocity @ is in [H1(€)]? and there is a boundary singularity on the
edge r = 0.
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Figure 1.11: Estimated and exact errors in uniform/adaptive refinement (left) and an adap-
tived mesh (right).

In Fig. 1.11, the penalty parameter ¢ decreases from 1073 to 7.98 x 10~!* for the adaptive
refinement (from 1073 to 1.80 x 1077 for the uniform refinement). The curve of convergence
rate corresponding to the uniform mesh refinement is parallel to N ~1/8 curve, while the curve
of convergence rate corresponding to the adaptive mesh refinement is parallel to N~'/3 curve.
Moreover, the effectivity of both refinements is almost 15.

Normally, the plot of exact error corresponding to a adaptive mesh refinement is paralell
to N~2 but in our singular case, it is not satisfied. We would like to determine that
this problem is caused by our dicretization estimator or not, we include in Fig. 1.12. We
compare two exact error corresponding two adaptive refinement process which are driven
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Figure 1.12: Exact errors in the adaptive process using the discretization estimator and exact
error.

by our dicretization estimator and the exact error. Clearly, the exact error is not mostly
affected by the applied adaptive process.
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Chapter 2

Nonlinear Darcy Equations in Two
dimensions

We present in this chapter several schemes for the discrete solution of nonlinear diffusion
equations along with related a posteriori error estimation. The estimator includes two terms:
discretization and linearization estimators. Hence, the iterative linearization can be stopped
whenever the linearization estimator drops below a fraction of the discretization estimator.
Thus, this stopping criterion ensures that the actual error and the estimators are only affected
by the space discretization. Moreover, this leads to computational savings, because it avoids
unnecessary linearization iterations. Numerical tests are performed with several types of
nonlinear diffusion equations.

2.1 Introduction

Let © be an open bounded polygonal subset of R?, I' = 0, f be a given function from ¢
to R and H a given function specified below. We consider an approximate solution of the
following nonlinear equation:

{—div(H(a)Ya)(x) = [f(z), ze, (2.1)
() =0, rel.

This nonlinear diffusion equation appears in several physical models such as Darcy flows in
porous medias.
Let us give some assumptions on this problem.

Al. Let H : R — R be continuous such that there exist constants C, Cy > 0 satisfying
C1 < H(a) < Cy, forall aeR. (2.2)
Moreover, we will assume that there exists a positive constant C' such that
|H () — H(9)| < Cla— 0|, forall (4,7) € R?. (2.3)
A2. Let f belong to L*(9).

49



CHAPTER 2. NONLINEAR DARCY EQUATIONS IN TWO DIMENSIONS 50

Under assumptions (A1) and (A2), there exist & € V = Hj () such that 4 is the unique
weak solution of problem (2.1), in the sense that

/ H(@)Vi - Vi(z)de = / fo(a)de for all i € V. (2.4)
Q Q

The existence of weak solution of this problem is proved in |9] and results about uniqueness
of the solution may be found in [4].

The discrete solution of the nonlinear diffusion equation is investigated by the mixed
finite element method in [12]|, and, more generally, in [15]. More recently, finite volume
discretizations have been developed for linear diffusion equations, such as finite volume
schemes on admissible meshes [7], DDFV schemes [14] and multipoint flux approximation
(MPFA) schemes |1] on arbitrary meshes, etc. Then we are interested in solving the nonlinear
diffusion equations by such finite volume discretizations. In this work, we will deal with
the above three methods. The discretization process of the problem leads to a system of
nonlinear equations, which is linearized by the fixed point method. These schemes have a
local conservation property, which is the important ingredient to obtain an a posteriori error
estimation.

The theory of a posteriori error estimation is not very developed for the nonlinear diffusion
equation. L. El Alaoui et al. [6] have obtained a posteriori error estimate for a finite element
method in the p-Laplace case. D. Kim et al. [11] gave an estimate for the mixed finite
element discretization. As far as finite volume methods are considered, although there are
not many important results for the nonlinear diffusion equations, essential development steps
on a posteriori error estimation have been achieved for linear diffusion equations. Nicaise
[13] gave a posteriori error estimation for Morley-type interpolations of the original piecewise
constant finite volume approximation. P. Omnes et al. [14]| used the equivalence of the DDFV
scheme with a finite element like method to derive fully computable a posteriori error estimate
for this method applied to the Laplace equation. For the local conservative methods, M.
Vohralik [19] built an approximate function which depends only on the flux through the
edges of the cells and the finite volume unknowns at some control points in the cells and
provides error estimation with respect to this reconstruction. In addition, the effectivity
index is very close to one, which demonstrates an accurate estimation. M. Vohralik’s idea
will be applied in this work to estimate the error of finite volume techniques applied to the
non-linear diffusion equations.

Given a discrete solution, a stage of iterative process and a mesh, our a posteriori error
estimation is split into 2 terms: the discretization and linearization estimators. This splitting
has two main advantages. The first one is that, in practice, when the number of iterations is
large enough, the linearization estimator is negligible compared with the discretization one.
Thus the balance of these two estimators is an important key to avoid performing an excessive
number of nonlinear solver iterations. The other one is that the mesh refinement is then only
based on the discretization estimator. This type of analysis is considered in [6] for the p-
Laplace case. In this work, we do not deal with the convergence of the linearization iterations
and of the discretization processes. We only mention them in our numerical experiments.

This chapter is organized as follows. Section 2.2 sets some notations and definitions re-
lated to the meshes, the non-linear problem together with its discretization and linearization.
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Section 2.3 is devoted to our a posteriori error estimation, and its efficiency is verified in
Section 2.4. In Section 2.5, we present results of some numerical tests.

2.2 Construction of the schemes

2.2.1 Notations and definitions

We will follow the definition of general meshes given in [14]. Let €2 be covered by a primal
mesh with cells denoted by T}, i € [1,I]. To each T;, we associate a point G; located in the
interior of T; and V (7) is set of the vertices of T;. With any vertex Sk, with k € [1, K], we
associate a dual cell P, by joining points G; associated with the primal cells surrounding Sj
to the midpoints of the edges of which S is a node. The notations are summarized in Fig.
2.1 and Fig. 2.2.

Let h; denote the diameter of 7; and p; denote the diameter of the largest ball inscribed
in 7;. We make the following shape regularity assumption on the mesh:

Assumption A (shape-regularity of the meshes). There exists a positive constant € inde-
pendent of the mesh such that max;epi 1 hi/p; < 0.

With any primal edge A; with j € [1,J], we associate a so-called diamond-cell D; ob-
tained by joining the vertices Sy, (j) and Si,(;) of A; to the points G;,(;) and G, ;) associated
with the primal cells T, ;) and T, ;) that share A; as a part of their boundaries. When A; is
a boundary edge (there are J' such edges), the associated diamond-cell is a flat quadrilateral
(i.e. a triangle) and we denote by Gj,(; the midpoint of A; (thus, there are J* such addi-
tional points G;). The unit normal vector to A; is n; and points from Gj, ;) to Gi,;). We
denote by A%, (resp. A’,) the segment joining G, (j) (resp. Gi,(;)) and the midpoint of Aj;.
[ts associated unit normal vector, pointing from Sk, () to Sk,(;), is denoted by n’, (resp. n’,).
In the case of a boundary diamond-cell, A%, reduces to {Gy,(;)} and does not play any role.
Finally, for any diamond-cell D;, we shall denote by M;,, the midpoint of [Gi,(;)Sks()],
with (a, ) € {1;2}2. For any primal T}, such that A; C 9T}, we denote nj; := n; if i = ;(j)
and nj; := —n; if i = i3(j) so that n;; is always exterior to 7;.

Moreover, for the MPFA O scheme, we will set some more definitions. For any j € [1, J],
and any k € [1, K] such that S € 0A;, we associate the segment A? which is obtained by
joining the vertex Sy and the midpoint M; of A;. For any i € [1,1], k € V (i), we denote
by A;’lk, A;-’f the two boundary segments of 7; having Sy as common vertex, and M ;;k, M ;Qk
as midpoints. Let V;’lk (resp. V;jf) be the interior unit normal vector located on the segment
opposite to vertex M;lk (resp. Mj’f) in the triangle GiM;;kM;;k (see Fig. 2.3).

Finally, we shall also consider the case in which the primal mesh (Ti)ie[L 1) is an admissible
mesh (see |7]). In that case, for ¢ € [1, I], such that A; C 9T, let d; ; be the distance between
the control point G; and the segment A;.

By a slight abuse of notations, we shall write k& € [' if the vertex Sy belongs to I
Identically, we shall write i € I" (resp. j € I') it G; € I (resp. A; C I).

We recall here the discrete differential operators which have been constructed on fairly
general two dimensional meshes and some of their properties. For more details, see [5, 1].

Definition 2.1. Let u = (u;) be in (R?)’. We define its discrete divergence on primal and



CHAPTER 2. NONLINEAR DARCY EQUATIONS IN TWO DIMENSIONS 52

Figure 2.1: A nonconforming primal mesh and its associated dual mesh (left) and diamond-
mesh (right).

Figure 2.2: Notations for the inner diamond-cell (left) and a boundary diamond mesh (right).

dual cells by

1
(Vi - ), = T > 1Ay -y,

1 | A,
(Vi -u)g == Bl ( > (A% [y 0y + A ny) + ) —2] u; - nj) :
kl\jeop, JEDPLAT

Definition 2.2. Let ¢ = (¢, ) be in RIH" x RE | jts discrete gradient VP is defined by
its values on the cells D; by

1
(th¢)J = 2|D|

{165, = oL1( A IS, + |4 lny) + 65 — 7114yl }.

Definition 2.3. Let ¢ = ( ZT,d)f) € RY x R* with k € 0A;, its discrete gradient V;kgb is
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Figure 2.3: Notations for the triangle GzMJZlkM;j

defined by its values on the triangle GiMﬁkM;;k by
1
2|GiMj1 Mj2 ’
We will define the broken Sobolev space which we use to compute a posteriori error
estimation.

ik {(65 — TG + (8, - Tt IG L .

Definition 2.4 (Broken Sobolev space).
HY(Q) = {¢ € L2(Q); bl € H\(T}) Vi € [1,1]}. (2.5)

2.2.2 The schemes and their linearizations by a fixed point method
Let us now define three schemes. We set
V2 = {un = ((uf), (ufy)) € R X RE/ s,
uf, =0, Vi€l anduf, =0, VkeT},
VO = {uh — ((uf ), (uf ;) €RF xR [ s.t. uf =0, Vj €T, € aAj},

Vh = {uh = ((uhﬂ-),uh,j) € R[ X RJ/ S.t. Up,j = 0 , V] € F}

At a given stage m of the iterative scheme, if we know an approximate solution u}', we
define some u,"* € V,” (resp. V,2, V3,) at which the nonlinear function H is linearized. How
u;"" is chosen depends on the method considered, for example one may choose u;"* = " or
up” = am™u 4 (1 — a™)ul with o™ € [0,1) (relaxation method), etc. Then the discrete
linearized scheme is: find u)"™" € V;P (resp. V¥, V4) such that

(= (Vi - H(w")(Viu)i = fi7 Vi€ [L1],

ppry ¢ (Vi - H@ ) (V5w ) = fii Yk ¢ T, (2.6)

e o) + @ )ik
Uh . = .
\ J 2
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|H )vlk (AR ji:fz‘T Vi e [17]]7
MPFA O | et o, (2.7)
VDA mEt Gy 4 VEODR =0 V¢ Tk € DA
( _ u;l”fl — UZL‘H
" jeor ]
FV (2.8)
um-l—l _ um-l—l um—l—l umji—l'
h,j h,i1 () h,j h,i2 () -0 vj ¢ F,
( i ). iz (5).j

where fI and fl” are the mean-values of f over T; and Py, respectively. For a given mesh,
following the idea of the authors |6, in practice, starting from an initial guess uh € W,
a sequence of discrete solutions (u}"),>1 € Vj, is generated through the following iterative
algorithm: for m > 0,

(1) Linearize the nonlinear problem at u;"*
(2) Solve the discrete linearized problem (2.6), (2.7) or (2.8) for u}"™".
(3) If desired precision is reached, then stop. Else set m <— (m + 1) and go to step (1).

We assume this process will be stopped; it means that there exists N, € N such that the
discrete solution u’» € V), satisfies the desired precision. It is convenient to set u, = u’¥»
and wy, = uN” L ; then in all three schemes above, u, and wy, satisfy that

> A Ejilwn, un) = =|T|f7 Vi€ [1,1],
JEIT; (2.9)

Fjiv () (wns un) + Fjig(y (wn,un) =0 Vj € [1,J — JF]»
where Fj;, ;) and Fj;,(;) are the fluxes through the edge A; shared by the two cells T, ;) and

Ti.(j), where for i € [1,I] and j € OT;, we denote by Fj; the flux from control volume T;
through the segment A;:

( H(wy;)(Viup);-nj  for the DDFV scheme,
— V Fup -ny;  for the MPFA O scheme,
Fyi(wp, up) = k;a; b (2.10)
H(whj)uh’jd i for the FV scheme.
\ ij
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2.3 An a posteriori error estimate

In this part, we restrict to the case where all (primal) cells T; are triangular. An extension to
non triangular cells may be performed exactly like in [19] by dividing each cell into triangles
by joining its center to its vertices, and by solving a local scheme discretizing the original
equation with Neumann boundary conditions coming from the numerical scheme on the
global mesh.

2.3.1 The construction of an approximate function

In order to define an approximate function whose gradient is a good approximation of
H(4)V4 and which depends on the discrete solutions u;, and wy, we will rely on the ideas
of R. Eymard et al. [8]. For any i € [1,I] and j € 9T}, let ¢;; € H*(T;)/R be the variational
solution of the following Neumann problem

Ag; ;(x) = 141 for a.e x € Tj,
| T3]

Vo, i(y) - n; =1 foraeyeA;,

V¢Z,j(Y> ’ njli =0 fora.e y € Aj17.j1 € 8E7 jl # j
Since (1;)icp,p is a family of triangular cells, following [17] and [8], the functions ¢; ; are the
usual polynomial basis functions for the flux in the classical mixed finite element approxi-
mation, and their gradient may be written explicitly. Let a be the vertex which is opposite
to segment A;. Then,

X —

Vi j(x) = d(a—jj)

where d(x, A;) denotes the distance between A; and a.
Next we define the functions Mi, W; € H'(T;) by: for all x € T,

Z i(Un, up) @i 5(x) + Cj,

jEIT;

= Y Fjilwn, up)diy(x).

JEIT;

for any x € T;,

For any i € [1, ], we choose the constant C; such that

Up,i
0

where wuy,; is the value of u;, on the primal cell 7; and we also define M € Hj(2) by

M(x) = M;(x), for all x € T; and i € [1, I]. (2.11)
It is clear from the definition of W, that for any i € [1, I]

VW, -nji(x) = Fj;(wp,up) forallx e A;, 5 € 0T;. (2.12)

and

AW;(x)|r, = 0 Z | A Fyi(wp, up) = —fF. (2.13)

jeOT;
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2.3.2 Poincaré inequality

Lemma 2.5. Let w be a polygonal domain. Let ¢ € H'(w) and let @, be the mean-value of
@ over w. Then, there exists a constant C,, depending only on the shape of w such that

lp = pullzw) < Codiam(W)[|Vel| 2. (2.14)

Note that when w is convex, a constant c, is given by %; for more details, see [16].

2.3.3 Averaging interpolation operator

Let P?(Q)) denote the space of polynomials of degree at most 2 on each element. The
averaging interpolation operator Zo, : P?(2) — P2(Q) N H(Q) has been considered in [10)].
Given a function ¢, € P2(Q), the value of Ips(¢n) at a Lagrangian node is the average of
the values of ¢} at this node.

Let [pn]; be the jump of the function ¢j through the edge A;: [¢4]; is the difference of
the value of ¢y, in T;,(j) and T,y and if A; C I, then [ps]; = @4 We mention the following
result which has been proved in [10] and that will be used to prove the efficiency of the
estimators.

Lemma 2.6. Let p € PA(Q), and let Zos(pn) € PHQ) N HY(Q) be constructed as above.
Then

IV (pn = Zos(en))llzery < C D 1A llenlsllZea,)- (2.15)
AjﬁTi;ﬁ@

where C depends only on the shape regularity parameter 6 defined in subsection 2.2.1.

2.3.4 A posteriori error estimate

We set

B(g,0)= > (Vé, Vo), Vo,0 € Hy(Q) (2.16)

i€[1,1]

and the corresponding energy norm

ll¢ll[e, = B(, ¢). (2.17)
Let @ be the weak solution of (2.1), we set
a(x)
Flx) = / H(t)dt. (2.18)
0

It is easy to see that F' € Hj(2) and

VF(x) = H(u(x))Vu(x). (2.19)
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For i € [1, I], let the estimators be defined as

i = Crhill £ = fillizay, mho= D s (2.20)
1€[1,1]
o 2 _ 2
INC,i = ”VM - VIOS(M)HL2(T~L)7 Inc = Z 1INC,is (2-21)
i€[1,1]
ML = |V M; — VVVZ‘HLQ(Ti)a 771% = Z 77%1 (2.22)
1€[1,1]

Moreover, the (local) discretization estimators is defined following:

Mp,i = NN, + Nryi and Np = Nne + MR- (2.23)

Now we can state the main result of this section, which is a bound for the L? norm of the
error between the exact flux VF = H(a)V4 and the flux that can be deduced from the
solution wuy, through the gradient of M defined by (2.11).

Theorem 2.7. There holds

|IVF =V M| 120 < nne + 1r + 1L (2.24)

2.3.5 Balancing discretization and linearization estimators

To balance the discretization and linearization estimators, we follow the idea in [6]: we
choose a positive parameter vp and stop the iterative loop in Subsection 2.2.2 whenever

N < Y- (2.25)

With this condition, unnecessary linearization iterations can be avoided, which can lead to
important computational savings.

2.3.6 Proof of the a posteriori error estimate

From the definition of the operator B, there holds (see Lemma 7.1 in [18]):

Theorem 2.8 (Abstract framework). Let F,S € H}(Q2) and let M € H} () be arbitrary.
Then

F-S

1 = Mllle < |[[M = Slllo + |B(F = M, )| -
[E = Sllle

(2.26)

Lemma 2.9. Let & € H}(Q) be arbitrary such that |[V®|| 12y = 1. Then

|B(F =M, ®)| <ng+ne. (2.27)
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Proof. Using the bilinearity of B(.,.), combining the property of F' in (2.19) with the varia-
tional formulation involving the exact solution @ in (2.3) and the definition of M in (2.11),
we obtain

B(F—M,(I)):Z/ (VF — VM) - V®(x)dx

1€[1,1]
:/fCD dx—Z/VW - VO (x)dx
i€[1,1]
- Y /(VMi—vm)ch(x)dx. (2.28)
ie[1,n YT

Let Y be defined by

Yo=Y / VWi(z) - VO(x)dx.

e’ T

Applying the Green formula on each T;, i € [1, I], there holds

Y=Y Z/ VWi n;;®(0)do — Y /_Awi@(x)dx.

i€[1,1] jeOT; i, T

Using the property of W; in (2.12)-(2.13), for each ¢ € [1,I] and j € 0T;, Fji(wp,up) is
constant for all A;; thus we come to

Y = Z Z whauh/ o)do + Z/fZ

1€[1,1] jEOT; 1€[1,1]

= Z Sir () (W, un) + Fjiy) (wn, up)| / o)do + Z i (wp, up / O(0)do
Jér Jjer A

+ Z / fi®(x)dx
i€[1,1] T

For any edge A; ¢ I', from the second equation in (2.9), the summation of the flux from
T}, () to T,y and from Ty, ;) to Tj, ;) vanishes. In addition, since ® € Hj(f2), then for any
boundary edge A;, there holds

/A. o(o)do = 0.

J

Thus,

Z VO (x)dx = Z (2.29)

1€[1,1] 1€[1,1]
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Combining (2.28) and (2.29), there holds
B(F — M, ®) Z/ (f = f)(@ = @) (x)dx — Y /(VMZ'—VI/VZ')'V@(X)dX,
i€[1,1] e, VT

where ®; is the mean value of ® over T; for all i € [1,I]. Applying the Cauchy-Schwarz
inequality, there holds

B(F =M, ®) < Y |If = fill2cr, Y

i€[1,]] ie[1,1]

Using Lemma 2.5, we obtain that
[@ = @ill 2y < Crhal VO r2r). (2.30)

Finally, applying the discrete Cauchy-Schwarz inequality and taking into account the fact
that ||V®|| 12 < 1, there holds

1/2 1/2

i€[1,1] ie[1,1]

which completes the lemma. Note that in practice, this bound can be improved to
1/2

IB(F =M, ®)| < | > (ri+nwi)”

i€[1,1]
[
Now, we come back to the proof of Theorem 2.7. We choose S = Zp,(M) € P?(Q)NHL(Q)

and apply Theorem 2.8 and Lemma 2.9.
2.4 Efficiency of the estimators

Lemma 2.10. There exists a positive constant C independent of the mesh such that

AT M)i N 2a,) < C Y0 IVM = V|2,

ac{1,2}

0+ TAT2IM = Fly 1) a1 A 2 gay)-

a(i

Proof. Applying the triangle inequality and the fact that ([F], 1)4; = 0, there holds

M5l 2y < MM = IMTllz2cay + IKIM = Fjs 1) g 1A lzeay), (2.32)

where M |A‘fA



CHAPTER 2. NONLINEAR DARCY EQUATIONS IN TWO DIMENSIONS 60

We will next use the inequality

I19aljllz2ca,) < CIAIY D V8, = VO a4 (2.33)

ae{l,2}

where C only depends on the parameter 6 and j € [1, J], ¥}, € H}(Q2) such that ([¥;],1)4, =
0 and ® € Hj(Q) are arbitrary, for more detail, see Theorem 10 in [2]. Applying this

inequality to the first term in the right-hand of (2.32) with V|7, =~ = M|r, . — M 4, T
and F' = ¥, where MAJ’Tla(J) |A | fA Mz, (o)do, we obtain

1Ml 2,y < CLAGY? D IVM = Vo, gy + 1M = Flj 1 | A7 2y
ac{l,2}
(2.34)

which concludes the proof. O
Using the Lemma 2.6 and Lemma 2.10, we obtain the following theorem.

Theorem 2.11. There ezists a positive constant C' depending only on the parameter 6 such
that

Mici C Y VM = VF|amy +C Y (M = Flj 1, |4l (2:35)
T.NT;#0 A;NT;#0

Remark 2.12. In this section, we consider the efficiency of nyc only, because ng will be of
higher order as soon as f is more reqular that L*(Q) and because ny, is controlled by nyc and

ng through (2.25).

2.5 Numerical results

We show here some numerical results obtained on a domain € =]—1; 1[x]—1; 1[\[0; 1] x[—1; 0].
The exact solution is @(r,6) = r*3sin(20/3), expressed in cylindrical coordinates (r,6)
centered on (0,0). We use the Triangle mesh generator and the DDFV scheme for all
tests. Our tests have two parts. In the first, we compare the estimated and actual errors,
the effectivity indices for a uniform and an adaptive refinement. On the mesh given, we
compute the discretization estimator np; = 7nc; + nr,; and ask to refine a given 7; by a
factor 4 in terms of area if np,; > (max;np;)/2. To stop the iteration in the fixed point
method in Subsection 2.2.2, we choose the parameter value yp = 0.01. In the second test,
we will discuss our stopping criterion with the parameter value yp = 0.01 for the fixed point
iteration by comparing it to a classical stopping criterion, namely that the balance equation
are satisfied by u"Jrl up to a certain relative tolerance in the discrete L? norm:

1/2
Aj n n
(Zze [1,1] | T3 [Ejean |Ti‘Fu(“hH H) fT] )

7 <107%. (2.36)
(Zicqun ITIT12)




CHAPTER 2. NONLINEAR DARCY EQUATIONS IN TWO DIMENSIONS 61
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Figure 2.4: Estimated and actual errors for uniform and adaptive refinements (left) and effectivity
indices for uniform and adaptive refinements (right) for H(z) = 1+ 1/(1 + 22).

In figure 2.4(left), we have plotted the curves of the actual errors and the estimators for
a uniform and for an adaptive mesh refinement. The curve corresponding to the uniform
mesh refinement is parallel to the N /3 curve, while the curve corresponding to the adaptive
mesh refinement is parallel to the N=*/2 curve. In Figure 2.4(right), we plot the effectivity
indices for the uniform and adaptive refinement. The efficiency for the adaptive refinement
is around 1.15 while the efficiency for uniform refinement is around 1.4.

Next, Figure 2.5 presents the true error, the total estimator 7, the discretization esti-
mator 7p, and the linearization estimator 7, on a given mesh as a function of the number
of fixed-point iterations. Firstly, we clearly see that the discretization estimator decreases
along with the linearization one only during the first few iterations, then while the lineariza-
tion estimator continues to decrease, the total error and the discretization estimator remain
almost constant, and we note that they are almost equal.

1 10 T T T T T T
0.01p ‘E'.’ 4 0.1}
«D A .
»0.0001f 1 »0.001f Q. i
o g o =
= . = g8
I 1e-06f 0 1 “ie-ost a. 1
. .
le-og dis- st " 1 1e-o7} dis.est—r o
lincest- 8- - lin 6ot -8 - !
i B : in_est. --@--
le—lO 1 1 ¥ 1 1 1e_09 | 1 1 1 1 1
0 1 0

2 X 8 .10 12 2 4 8 .10 12
NumAber of%xed point iterations Number of f?xed point iterations

Figure 2.5: Total error, total estimator, discretization and linearization estimators as a function

of the fixed point iteration. Left: H(z) =1+ 1/(1 + 2?) and right: H(z) = 2 + sin(10z).

Moreover, the number of iterations necessary to reach the stopping criterion increases as
the function H becomes more oscillatory. For instance, in the left part of Figure 2.5, the
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stopping criterion (2.25) is reached after 3 iterations and the classical one after 8 iterations;
in the right part of this figure, these numbers become respectively 7 and 14. This confirms
that the fixed point iteration can be stopped earlier than classical iteration.
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Chapter 3

Transport Equations

In this chapter, we will consider a posteriori error estimation for the transport equation Oyu—+
a(z,t) - Vu = 0 with the initial data vy € L™ N BVio. and the divergence of the velocity field
a is not equal to zero. An a posteriori estimate for the error between the exact solution and
the solution of an upwind finite volume scheme is derived in the L* norm.

3.1 Introduction

We consider here the following transport equation in N space dimensions (N > 1), with
initial condition:

{%+a(x,t)-Vu —0, Vx RN, ¢t € R, )

u(x,0) =wug(x), Vx € RY.
The following hypotheses are made on the data:

(1) ug € L= (RY) N BViee(RY); we call (Uy,, Ups) € R? such that U, < ug < Uy a.e.
(i1) a € CHRY x RT RY), there exist V, L, < oo such that
la(x,t)] <V, V(x,t) € RY x RT,
la(x, t) —a(y, s)| < La(lx — y| + [t — s]) ¥(x, 1), (v,5) € RY x RT
and V-ac L®RY xRT).
(3.2)

We shall now define the functional spaces BV (2) and BVj,.(£2).
Definition 3.1. Let Q) C RP, with p € N; the functional space BV (Q)) is defined as follows:

(@) = {o: s { [ a0 o, p € CXOR), ol <1} <o

On BV (), we define a seminorm:

1913y = sup { [ 699610, 0 € COR), il < 1} .

65
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We also consider BVjo.(€2):
BViee(Q) = {g; g € BV(K) for all compact K C Q}.

Following [5], we say that u € L®(R" x R") is the unique entropy solution to (3.1), if
for all K € R, p € CHRY x RT, RT), we have

/ [|u(x, t) — Kleu(x,t) + (u(x, ) Tk —u(x,t) Lr)a(x, t) - Vo(x,t)
RN xR+ (33)
+(u(x,t) Th —u(x,t) L)V - a(x, t) (x, t)] dxdt + / |up(x) — Kklp(x,0)dx > 0,
RN
where for a,b € R, we set aTb := max{a,b} and aLb := min{a, b}.

The upwind scheme is a standard method to solve in a approximate way this problem,
and, more generally, conservation laws (see [3]), but the a priori and a posteriori error
estimations have been investigated only recently on scalar equations.

In the case of a conservation law with a divergence free flux function and no source term,
C. Chainais-Hillairet [1] derived an a priori error estimate with a convergence order of 1/4
in the L' norm. Based on [1], an a posteriori error estimation is achieved by D. Kréner and
M. Ohlberger [4] for the upwind explicit scheme. This result is used to define an algorithm
with an adaptive grid for the finite volume scheme. Recently, in Mamaghani’s Ph.D. thesis
[6], an a posteriori error estimate is obtained for the implicit upwind finite volume scheme.

Otherwise, in |2|, the a priori error estimation was also treated for a conservation law
with a non divergence free flux function and with a source term (both "stiff" and "non stiff"
source terms are treated). However, the authors did not obtain explicit bounds that could
be used in a posteriori error estimates, and they used the property that with the initial data
belonging to BVi,.(RY), then the entropy solution also belongs to BVio.(RY x RT) but did
not actually prove it.

In our work, we will deal with the transport equation with a non divergence free velocity
field, written as a conservation law with the source term V - a(x,t)u(x,t), and we obtain
an a posteriori error estimation for the explicit upwind scheme. To obtain this result, we
shall prove the property that with the initial data belonging to BVi,.(RY), then the entropy
solution also belongs to BVi,.(RY x RT).

3.2 Definition and stability of the upwind scheme

3.2.1 Notations and definition of the scheme

Firstly, let {t, :n € Ns.t. 0 =1ty <t; <ty <---} be a partition of R™ and At,, = t,,41 — t,
be the steps of this partition. Further, for all n € N, let 7 be a mesh of RY such that the
common interface of any two elements (which are called control volumes in what follows) of T
is included in a hyperplane of RY and the elements are convex subdomains. Let N(p) denote
the set of neighbours of the control volume p; for ¢ € N (p), we denote by o, , the common
interface between p and ¢, and by n, , the unit normal vector to o, , oriented from p to q.
For any (p,q) € T2, let h, be the diameter of control volume p and h = max{h, : p € T}
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and let h,, be the diameter of common interface 0,,. We assume that there exist a > 0
such that, for all p € T

ah™ < |p|,

3.4
aldp| < AN (3.4)

Now, we define the upwind scheme. The discrete unknowns are denoted by u;, n € N,
p € T. The set {u),p € T} is given by the initial condition:

1
u) = — /uo(x)dx. (3.5)
Ipl J,
Assume the CFL condition
2
At, < (1—5)0‘7h, VneN, (3.6)

where & € (0,1). Let us consider the following explicit numerical scheme:

un—l—l n
p
- |p| Z Qp U g — Z U (3.7)
tn qeN(p qEN
where
1 tn+1
n
Upq = Af / / a(7,1) -y gdrydl (3.8)
n Jin Op,q
and
4
uy if a; , >0,
uy +ul
Uy, = 2 5 i ar, =0, (3.9)
\u’q’ if ag’q <0
We note that the sum — is an upwind discretization of V - (au) and the sum
| ‘ pq pq
p
qeN(p)
Z a u is a discretization of —uV - a.
!p|
qeN(p)

The approximate solution, denoted by uy, is defined from RY x R, to R with the help of
the discrete unknowns of the scheme by:

up(z,t) =uy if v €p, t € [ty topl, VP €T, n €N, and urp(x) = us(x,0) (3.10)
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3.2.2 L*>-stability of the scheme

68

Lemma 3.2. Under assumption (3.2), (3.4) and CFL condition (5.6), let u, be given

by (3.10), then
Un<u, <Uy, Yn€N, peT
and

[unll o @V ety < ||2o]| Lo ()

(3.11)

(3.12)

Proof. From the relation (3.7), we express u/ ™! as a function of u and u}, ¢ € N(p),

At At

+1 n n

wpt = = T D e D Gty
q€N(p) q€N (p)

there holds

At
=y = Y e (g =),

By the definition of u, ,

where [a} |~ = min(0,a, ). Or

n n Atn n 1— _Atn n 11—, n
upH :up(1+ Z [ap,q] ) + Z [anq] Ug -

\p! qeN(p) qeN(p)

Following the CFL condition, then
Atn _Atn _
T S TR VSR

Il 57 Pl

At n _ _Atn n _

p 2 I 2 Tl =t
qeN (p) qeN (p)

Hence, under the CFL condition, ug“ is a convex combination of {ug
obtain

inf uy < u;‘H <supu, , VpeT.
qET qu

This concludes the proof of (3.11), which, in turn, yields (3.12).

3.2.3 A "weak BV" estimate

(3.13)

:q € T} and we

We set some notations that will be used in all the sequel. Let 7" > 0 and R > 0 be given,

and let B(0, R) be the ball of radius R centered on the origin, we define
Ny = max{n € N, t, < T},
Tr={p € T,pC B(0, R)},
Er={(p.q) € (T)*, e N(p), u > ul},
Er={p,q) €
5Rh ={(p,q) €
€

={(p.q)

T)2,p C B(0,R) and q ¢ B(0,R),q € N(p)}
T)’, € N(p)}.

(7)

(T)%por g€ B(0,R), g€ N(p), 0, C B(0,R) and u > ul'},
(7)

(
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Lemma 3.3. Under assumption (3.2), (3.4) and CFL condition (3.6), then there erists a
constant Cy, such that

Chy
ZAt > lap llun —up| < =2 N Vh e R (3.14)
e h
Z D Iplluptt —up| < Ci her (3.15)
n=0 peTr \/ﬁ

Proof. In this proof, we shall denote by C; (i € N) various quantities only depending on a,
uo, &, R, T'. The mesh size is chosen small enough (A < R) so that Tg is not empty. We first
prove (3.14). Multiplying 3.7 by dt,|p|u;; and summing the result over p € T, n € 0,--- , Nr
yields

B1 + BQ == 0, (316)
with
-3 S el — )
n= OPETR
and
DI S S
PETR €N (p)
Gathering the last two summations by edges in By, since a,, = —ay,, and u, , = uy,, we
have
Np
By = B3 — Z At, Z ag ,(Upq — ug)uy, (3.17)
n=0 (P.9)EER,K
where
Z At, Z ap’q(up,q — Up )y — ay (Up g — uq)uﬂ.
(P9)EER
Then

Nr
By = By <Y Aty Y ag,(upg — ug)ug]
n=0 (P,9)E€ER,R
We consider that elements p in Egy, are included in B(0, R) \ B(0, R — h), since the measure
of B(0,R) \ B(0,R — h) is less than Cyh, then number of the elements in Egj, for fixed n,
is lower than Coh/(ah™) = Csh!™N. Thanks to (3.4), using the fact that |9p| < (1/a)h¥ 71,
that a(x,t) <V and (upq — ug)ul < 2max{U2,Us;}. Then

Z |ay , (pg — tg)ug| < 2V max{Uy, UM} Csht=NpN=1 = ¢y,

(P,9)EER,A
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Moreover, since Zfﬁo Aty =ty < 2T, we deduce that
By — By| < 2TC4 = Cs.

We now express the term Bs, we have

n n n n n n n n u, +u
Up.q (Upg — up)up - ap,q(up,q - UQ)uq =lpq [(up - uq)(up,q - 9 )]
an
— 229 ()2 — (up)?),
then
By = By + Bs, (3.18)
where
Nt a”
p,q n\2 n\2
n=0 (p,a)EER
and
n u, + U
ZAt” Z apq[(up_uq)(upq_ 9 )}
(p,9)EER
We have

NT NT
1 n n 1 n
B, = -5 E At, E %7(1(%)2 + 3 E At, E aq,p(uq)Q. (3.19)
n=0

qeN(p) n=0 (p,9)EER,K

The second term of the expression of By can be bounded in same way when we estimated
the term |By — B3|, then

Nt
1> AL, > ag(up)?] < Ce. (3.20)
n=0

(P.9)EER,R
Therefore,

N tn+1
S AL, > ar (un) = / / a(x, t)dxdt
n=0

geN (p) n= 0 peTR

By the property of V - a in (3.2), there holds

Nt
Y At Y ap (un)?] < 2T(B(0, R)| max{U3;, UMV - al| e ey szs) = Cr. (3:21)
9€N(p)

Combining (3.19)-(3.21), we obtain
Cs + Cr

By| < = Cs. (3.22)
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Using the definition of w, ,, we have
azxq[(up _uq)(upvq o 9 q)] = ;27(1 (up uq)2
Then, there holds
N ‘an
p.q n n)2
By > ) Aty Y, —bE(up—up)
n=0 (p.a)€€R
Using (3.2.3), (3.18), (3.22) and (3.2.3), there holds
Nt |an
By> Y Aty Y, —2E(up —ug)* = Co, (3.23)
n=0 (P.9)EER

where Og = 05 + Cg.
Let us now turn to B;. We have

Nt
ZZW ) = 2 S ol g )

n=0 pETr n=0 peTr
1 &
+3 ZE]W w5y D Pl g - )
n=0 pETR n=0 pETR

Combining the first term and the second term, the third term and fourth term in the previous
expression, we obtain

Nr
B, = —% SN Ipl(up ™ = ) Z [l (uy*1)? Z [pl (u (3.24)

n=0 peTr pGTR pETR

Using (3.7) and the Cauchy-Schwarz inequality yields the following inquality:

(wt — < LB S™ n S n un — uny (3.25)

2
i 9€N(p) 9€N(p)
By the definition of a; ,, we have
> Jan,l < Viopl. (3.26)
qeN(p)

Using the CFL condition (3.6) and the inequality (3.26) gives

(uptt —u)? < to Y a7l (g — up)?. (3.27)

qeN(p)
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Summing inequality (3.27) over p € T and over n = 0,--- , Ny and reordering the summ-
ation leads to

1 1— € &
T3 2 2 T — s == D Al D eIy — )
n=0 peTr n=0 (p,9)EER (328)
e . :
g D At > e, - )
n=0 (P.9)EER R
Using (3.24) and (3.28), we have
1— €
By > === Aty Y ap,l(uy —ug)® = C, (3.29)
n=0 (p.a)€ER
where Co > 337 o [pl(ud)>.
Adding (3.23) and (3.29) side by side, and using the equality (3.16), there holds:
e
5 Z At, Z |ay | (up — u,)? < Chy, (3.30)
n=0 (P,q)€ER

where 011 = Cg + ClO-
Applying the Cauchy-Schwarz inequality to the left-hand side of (3.14), and using (3.30)
yields

Nt Nt 1/2
> Aty ) \GZ,qHUZ—UZ\SCu(ZAtn > \a;ﬁq) , (3.31)
n=0

(P9)EER n=0 (p9)EER
where 012 = Q/%’%.
Noting that

h}N*l BO,R C
S ezl < S vigpl < v B0, R)| _ Cis

o ahN h
(P,9)€ER pETR

and 30T At, = ty, 11 < 2T, one obtians (3.14) from (3.31) with Cy, = C12v/Cis.
The estimate on the derivative time (3.15) is a straightforword consequence of (3.7) and
(3.15). O
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3.3 Entropy inequalities for the approximate solution

3.3.1 Discrete entropy inequality

Lemma 3.4. Under assumption (3.2), (3.4) and CFL condition (3.6), for allk e R, p € T,
n € N, the following inequality holds:

! — k] — |uz — K]

1
p n n n
AT - m Z ay Uy Th —uy LK)
' 9N ) (3.32)
Tl ay (uy T —uy Lr) <0.
q€N(p)
Proof. We recall the expression of u7*! in (3.13),
n n At" n 1— _Atn n 1—,n
utt =t (1 + o PR CAREE » a2 ]l (3.33)
q€N (p) q€N (p)
The coefficients of (ug, u;’) are positive and their sum is equal to one. Hence
n n Atn n 1— _Atn n 11—, n
up+1‘|’m <uy Tr(1+ o Z lag ) 7) + Z arE lag ) ug Tk (3.34)
qeN (p) q€N (p)
and
n n Atn n 1— _Atn n 1—. n
wtt Lk > ul Lr(1+ " Z lag ) 7) + Z W[%’q] Uy LK. (3.35)
q€N (p) q€N (p)
Subtracting (3.35) from (3.34) side by side, one has
n n n n Atn n 11—
W Tk —wt L < (up Tk —up Lr)(1+ 7 Z [ap 17)
N
N N (3.36)
Z 7 " lap )~ (ug Tk —uy LK),
q€N(p)
or
n+1 n+1 n n Atn n 1—(,n n
(uy ™ Tk —uy™ L) — (up Th — uy LK) + Z W[am] (ug Th —uy LK)
q€N (p)
At,
- Z lag )~ (up Tk —uy Lr) <0.

Noting that u) ™ Tk —wi™ Lk = Jup™ — k| and w) Tk — u Lk = |ul} — k|, we obtain

unJrl — k|l = lu® = g 1
| 4 A|t | 2 |+ﬂ Z a;‘,q(uqu—l—m—uquj_/ﬁ)
" Pl oen)
1 n n n
] Z ay (up T —uy Lk) <0.
qeN(p)

We have the statement of the lemma. O
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3.3.2 Continuous entropy estimates for the approximate solution

For = RY or RY x RT, we denote by M () the set of positive measures on €, that is of
o-additive mappings from the Borel o-algebra of @ in R'. If i € M(Q) and g € C.(Q2), one
sets (1, 9) = [ gdp.

Theorem 3.5. Under assumption (3.2), (3.4) and CFL condition (3.6), let uy, be given
by (3.10), there exist yu, € M(RY x RT) and pur € M(RY) such that:

/RN - [‘Uh — Klpu(x,t) + (un(x,8) Tk — up(x, t) Lr)a(x, t) - Vo(x, )
Hun (1) Th = un(x, 8) Lr)V - alx, e (x, )} dxdt +/ luo(x) — Klp(x, 0)dx  (3.37)
= / ol O+ 100, ) . = / 0, 0)dur(x),

for all k € R and ¢ € CHRN x RY,RY). The measures y;, and pg satisfy the following
properties:

1. For all R > 0 and T > 0, there exists C,, depending only on a, ug, o, &, R, T such
that, for h < R:

1 (B(0, R) x [0,T)) < Cyn(h + Vh). (3.38)

2. The measure pr is the measure of density |uo(-) — uro(-)| w.r.t the Lebesgue measure.
Moreover, for all R > 0, there exists D,, depending only on ug, o and R such that:

pr(B(0, R)) < Dyhluo| v (B0, Rtan))- (3.39)

Proof. Let ¢ € CHRY x RY,R*) and x € R. Let T and R be such that ¢ # 0 implies
lz| < R—hand t <T. Let us multiply (3.32) by ft " [ e(x, t)dxdt, and sum the result for
all p € T and n € N. One obtains:

T+ T, <0, (3.40)

with

|un+1 _ /{| |U, _ li| tnt1
Z Z At / / X, t)dxdt, (3.41)

n=0 peTR

n+1
|p| / / X, t)dxdt agq(uz,qT/i —uy Tk —uy, Lr+u,lk) (3.42)

n= OpGT q€N(p)

We set

T = —/ lup(x,t) — K|pi(x, t)dxdt — / lup(x) — K|p(x, 0)dx (3.43)
RN xR+ RN
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T2* = - / (Uh(X, t)T/i — uh(x, If)J_/i)a(X7 t) . Vgo(x, t)dth
s (3.44)
_ /RN N (up(x, 1) Th — up(x, 1) LE)V - a(x, t)o(x, t)dxdt.

Comparison between 7 and 77
We note that wuy, is constant in p X [t,,t,41[ for all p € T and n € N, then T} may be
rewritten

Z Z//tm uy — K[ (x, t)dtdx — /RN lug(x) — Klp(x,0)dx

pETR n=0

_ ZZ ) — | (il tn)—go(x,tnﬂ))dtdx—/RN o (x) — K| (x, 0)dx

pETr n=0 P

In the first term in the right-hand side of this expression, for all n € 0, Ny, in each p € T,
we factorize by ¢(-,,). Recalling that uyo(x) = u) Vx € p, and noting that @(x, tn,41) =0
for all x € RV, we get:

lup ™ — K[ = |uy — K| [0
Z > AL / / X, tosr )dxdt

n=0 peTr (345)

+ [ (o) = ] = fuo() = wl) (. D),

Subtracting (3.41) and (3.45) side by side and applying the triangle inequality, there holds

|un+1 _ unl tn+1
nom <3y ol / / (5, Fngn) — ()]l

n=0 peTgr

+ /RN |uT0(x) — uo(x)|(x, 0)dx.

We know that, for all ¢ € [t,,t,+1], there holds:

tn+1 tn1
ot tuen) =0l = | [ exslas < [ folelds
t tn

Hence,

Ty — T7| < Z Z juntt — u"\/ /|g0t X, t)|dxdt

n=0 peTr (346)
+ /RN |ug 0(x) — uo(x)|p(x, 0)dx.

We define two measures pr € M(RY) and A, € M(RY x RT) by their action on C.(R")
and C,(RY x RT):
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(17, g) = / o (x) — uro(x)|g(x)dx, Vg € Co(RV), (3.47)
RN
tnt1
M g) =D fuptt — “|/ / (x,t)dxdt, Vg € C.(RY x RY). (3.48)
neN peT

Inequality (3.46) gives
1=t [ ettt + [ o 0)dur) (3.49)
RN xR+ RN

Since ug € BVje.(RY), we follow Lemma 6.8 in [3|, then, there exists a constant D,, such
that
pr(B(0, R)) < Dphluo| gy (B0, R+4h))-

Furthermore, we apply inequality (3.15), we have

2ChuVh
A(B(0,R) x [0,T]) < (1 — g)o‘+f, Vh < R, YR > 0.
Comparison between 7> and 7%
In T, we gather the terms by edges. Since Up g = Ug and Ay, = —0g p, We have Ty = To1 —T5o,
with:
NT an tn+1
T21:§0(Zn |p|[ Tm—u”Tm—uqu_/i—i-upJ_/f/ / (x,t)dxdt,
n=0 (p,q)€ER
N a™ tn+1
Too = Z Z Zf[u Tk —ugTh —uy, LK+ quH]/ /(p(x, t)dxdt.
n=0 (p,q)e€} tn q

Applying Green’s formula on each p in T, there holds

Z Z uy Tk — uy LK) Z / /tlthrl a(y,t) - n, (v, t)dtdy.

n=0 peTr qeN(p

We can also gather the terms of 75 by edges and afterwards decompose 1% as T4, — 1%, with:

tn+1
Ty = Z Z (u;q—l—’% - UZT'% - u;qj-'% + UZJ-H) / / -1y 00(7, t)dtdry,
n=0 Op,q Jtn

(p.a)€€
tn+1
I = Z Z (u;jq—l—/{ —ug TR~y Le+ UZILJ-K) / / a(y,t) - mpqp(y,t)dtdy.
n=0 (p,q)eE} Op,q Jln
We introduce the differences of the averages of ¢ on p and on oy,

’IL tn+1
Tpg = At |p] /

tnt1

a(y,t) - mpgp(y, t)dvydi. (3.50)
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Hence
Nt
Ty, — Ty = Z At,, Z (u;"q—l—/-i —uy Tk —uy,Lr+ uZJ_/{) Tha (3.51)
n=0 (P,9)E€R

From the definition of uy , in (3.9), for all x € R, we have the following inequalities:

[uy , Tk —uy Tr| < max{—sgn(a,,), 0}|u, — ug|, (3.52)
|y oLk — uy Lr| < max{—sgn(ay, ), 0}uy — uyl, (3.53)

where for all a € R, we set the unusual definition of sgn(a):

1 ifa>0,
sgn(a) = ¢ -1 ifa <0,
—1 ifa=0.

2

In (3.50), we add the term —; qupq‘ fnt1 f 90 7, s)dyds in the first term and the second

term and change the integration varlable #into s in the second term. There holds:

&n tnt1 /‘tn+1//‘ )]
re o= o(x, 1) dydxdtds
pa ( ) |‘7p qul

tn+1 tn+1
- a(y,s)-n,, / / o(v,8) — @(C,7)|dCdT dvyds.
(Atn)Qlapn]’ /tn /cr,,,q [ e ‘Up q‘ ]

(3.54)

From the definition of a”
[tna tn-‘,—l [7

7 ,» and the conditon in (3.2), there holds: for all (v,s) € 0,4 X

tnt1
, d¢dr
= &t Iapq|/ / aly.s Tl (3.55)
< La(Aty, + hy ).

‘a(P% S) Ny g — ‘O’ ‘
p,q

Moreover, for all (7,5,(,7) € (0p.4)™ X [tn, tns1[?, We have:

|90(%8)—<P(C,T)|§/O (At + hpg) (Vo] + [0 ) (¢ +0(y = O), 7+ 0(s —7))df  (3.56)

and for all (x,7,t,5) € p X 04 X [tn, tni1[*:

|90(X,t)—90(%8)|§/0 (hp + Atn) (Vo] + @) (x + 0(y —x),t +0(s —1))df  (3.57)
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For all p € T, ¢ € N(p), n € N, we define some measures 2, € M(RY x R*) and

vy, € M(RY x RY) by their action on Ce(RY x R"):

1 tn+1 tn+1
W) = e ), ] )
P (Aty)?|opqllpl Ji,, tn pJo

p,q

/0 (hy + Ata)g(x + 07 — x),

t+0(s —t))dfdydxdtds,

L lnt1 tny1 1 )
V",gz—a/ / / / /0,+Atngé+9v—<,
o 9) (At,)opgl e, Opg tn Opq 0 (% Vol ( )

T+ 0(s — 7))d0d¢drdyds.

We have
tiyo(B(0, R) x [0,T]) < hy + At,, Vh < R
and
vy (B0, R) x [0,T]) < (hypq + At,)?, Vh < R.

Combing (3.54), (3.55), (3.56), (3.57) and definition of i, , and v}, we have:

P’
gl < g ol (0 Vol +0i]) + (g Vol + i)
Then, (3.51)-(3.53) and (3.62) lead to

Nt
Ton = T3, <2 Aty > max{—sgn(al.,),0}|ap,|luy — wr |5, [Vl + @)
n=0

(p9)€EER

Nr
+2 Z At,, Z max{—sgn(ay ), 0} uy — ug[(vy,, |Vl 4 @)
n=0

(P9)EEE

We obtain as well

Nt
|T22 - T2*2| < 22 Atn Z max{—sgn(ag,p), 0}|az,q||ug - u2|<ﬂz,q7 |V§D| + |¢t|>
n=0

(p.a)EER

Nr
+2 Z At,, Z max{—sgn(a; ), 0} u, —uy|{vy,, V| + |od).
n=0

(p9)EEE

Finally, we can define p;, € M(RY x RT) by its action on C,(RY x RT):

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)

(3.63)

(3.64)

(s 9) = Mo @) +2) Aty Y g ||uy — |

neN (p,q)€€R

x [max{—sgn(ay,), 01z, g) + max{—sgn(az,), 0}z, g)]

+2 Z At, Z |uz — u;‘| [max{—sgn(ag’q), 0}(V£q, g) + max{—sgn(agp), 0}<V2;p, g)} )

neN (p,q)esl

(3.65)
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From inequality (3.14), (3.3.2), (3.60)—(3.61), and property of operator sgn, there exists
constant C,, such that

1n(B(0,R)) < Coo(h 4+ V), YVh < R, R > 0. (3.66)
Let us call A the left-hand side of (3.37), then
A=—TF =T = =Ty — Ty + (Ty — T}) + (Ty — TY). (3.67)

From (3.40), (3.49), (3.63) and (3.64), we obtain

Az [ (aldl+ 9ol 0Dt — [ o 0dur()

N

3.4 An a posteriori error estimation

3.4.1 An entropy estimate between approximation and entropy so-
lution

We start with the following lemma which is useful for this subsection.

Lemma 3.6. For all € > 0, there exist py € C°(R,R) and py € CZ(RN,R) such that

supp(pr) C [~1,0], p20 [ mldx=1,
R (3.68)
supplow) € (x € BY W1 pn 200 [ plxix= 1
RN
with
K, = / |01 (t)|dt < 4 +¢, Ky = / IVon(x)|dxs < N +1+e. (3.69)
Rt RN

Theorem 3.7. Assume (5.2) and uy € BV(RY). Let u € L®(RY x R) be such that U,, <
@ < Uy a.e. Assume there exist p € M(RY x RY) and pg € M(RYN) such that

/ [, 8) = slou(x, ) + [ ) T — i, ) LiJa(, 1) - Vip(x, )
+ [ﬂJ(X’ t)T'K& B ﬂ,(X, t>J"i] V- a<X7 t) @(X7 t)] dxdt + /]RN |UO(X) - /<0|90(X7 O>dX (370)
> - /RN - [|90t(x, )+ [Ve(x, t)|}dp(x, t) — /RN | (x, 0)|dpo(x)

for all k € R and ¢ € CHRN x R, RT). Let u be the unique entropy weak solution of (3.1),
that 1s:

[ [lutr5) = gty s) + [utr. ) To = a9 LiJaly.s) - Fls.o)+
S (3.71)

)T = u(y,5)-L4] V- aly.s)(r. ) dyds + | fualy) = wle(y.0)dy =0
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for all k € R, ¢ € CH{RY x R*R¥). Let w, R, T € R*, xo € RY be given, and
p € CHRT,[0,1]) be such that p' <0 and

p=1on0,R],
p=0on[R+1,00], (3.72)
10|00 < 2.
Let
Py L2t t) on RN x [0,T
V) = e Mp(fx = ol + wt) on BY x 0,71, )
Y(x,t) =0 on RN x [T, 00),
with H = max{[V - a(x,t)]* : x e RN, t e RT}. Then we have
[ it = utx e ) + [alx. ) Tux,t) = alx t) Lulx, o)
RN xR+
xa(x,1) - Vo, ) + fi(x, 1) — u(x, )|V - alx, 1) (x, 1) | ddt (3.74)
> —appo({1h(+,0) # 0}) — (b + ) (u({v # 0}))% — ap({e # 0}),
where
a::2w—|—%+H+2,
ap 221,
b:=N+5 (3.75)
=20+ 7+ H o+ Al + 31V - alle + La(N + D) lulsvis,
+ [N+ Dlfalle + IV - allo + 1] [uol v,
with

K ={(x,t) e RN xR" : 9(x,t) 0}, Ko={xecR": ¢(x,0) # 0},
Kos = {x € BY 3y € Ko, dlsx.y) < 1),

K, ={(x,t) e RY x R" : 3(y,s) € K, d(x,y) <

1
—, d(t,s) <
., d(ts) <

We remark that |u|py(k,) can be estimated by an explicit constant in Theorem 3.13.

Proof. For all ¢ > 0, let p; € CP(R,R) and p, € C(RP,R) satisfy Lemma 3.6. For
r € R, r > 0, one defines pi ., pp, as

PLrt) = rpn(rt),  ppe() = rPp, (). (3.76)
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One sets
p(x,t,y,8) = (X, 1) pnp(x = y)pra(t — s). (3.77)
First of all, we state the following lemma.

Lemma 3.8. From definitions (3.68), (3.72), (3.73) and (3.76), we have the following prop-
erties:

[Pl < 1, [9(, 0)]lee < 1,
1 (3.78)
Wtlloo < 2w+ + H, IVlloe <2,
/ ppr(x = ¥)prp(t — s)dyds =1, ¥ (x,1) € RN x RT, ¥r >0, (3.79)
RN xR+

/ IVon,(x —y)|prr(t — s)dyds < rKy, V (x,t) € RY x RT Vr >0, (3.80)
RN xR+

/ prn (% — V) Bein(t — 8)|dyds < 1Ry, ¥ (5,8) €RY x RY, ¥r>0.  (3.81)
RN xR+

Now, let us take ¢(-,-,y,s) for the test function ¢ and k = u(y,s) in (3.70), then we
integrate (3.70) for (y,s) € RY x RT; there holds:

/(RN . [|ﬂ(x, t) — uly, 8)|the(x, ) pno(x — y)pro(t — s)+

ja(x, 1) = uly, $)[V(x, ) pw.r(x = y)ph (= 5)+
[a(x, 1) Tuly, s) — a(x, t) Lu(y, s)] a(x, 1) - Vi (x, ) pyr (x = ¥)prp(t — 8)+
[a(x, 1) Tuly, s) — a(x, ) Luly, )] Y (x, )a(x, 1) - Vipn,r(x = y)p1p(t = s)+

[a(x, 1) Tu(y, s) — a(x, ) Luly, )] V - a(x, )(x, ) pnr (x = ¥)prp(t — 5 ]dxdtdyds
)

(3.82)
+/ |uo(x) — u(y, s)[1(x,0) pnr(x — ¥) prp(—5)dxdyds >
RN xR+ xRN

L Tl =) [ 0= 9) + w0700 = )]+
|p1,r (t — ) [VU(x, ) pnr(x —¥) + (%, 1) Vipn,(x — ] (x, £)dyds

—/ (5%, 0)pava (x — y)p1r(—8) | dpto(x)dyds,
RN xR+ JRN

Let us take ¢(x, t, -, -) for the test function ¢ and x = a(x, t) in (3.71), then we integrate (3.71)
for (x,t) € RY x R*; there holds:

/(RN Ry2 |:_|2~L(X7 t) - U(Y, S)WJ(X, t)pNﬂ"(x — y)ﬁll,'r(t . S)—|—

[a(x, 1) Tuly, s) —a(x, t) Luly, )] Y (x, t)aly, s) - Vypnr(x = y)pre(t = s)+

i ) ) (3.83)
[a(x, 1) Tuly, s) — a(x, t) Lu(y, $)] P (x, )V - a(y, s)pnr (x — y) prr(t — S)] dydsdxdt+

luo(y) — u(x, t) [ (x,t) pnp(x — y) prr(t)dydxdt > 0.
RN xR+ xRN
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The sum of the second term in the left-hand side of (3.82) and the first term in the left-hand
side of (3.83) vanishes. Moreover p;,(t) = 0 for all ¢ € R™, so that the final term in the
left-hand side of (3.83) is zero. In addition, Vypn,(x —y) = —Vypn,(x —y). Adding the

inequalities (3.82) and (3.83) thus yields:
En+ FEio+ Eig+ B+ Eis > —FEs,

Bu= [ [l )~ uly. st Dowax = gt - )| dsdtdyds,
(RN xR+)2

By = /(RNW) [[ﬂ(x, HTuly, ) — a(x, ) Lu(y, s)]

a(x,) - VX, Op (x = ¥)pult = 5) | dxtdyds,

B3 = — w(x,t) Tu(y,s) —u(x,t) Lu(y, s X,
/() [, ) Tuly, s) — i, 1) Luly, )] (x, 1
aly, ) = a(x, )] - Vapir(x = ¥ (¢ — 5)| ddtdyds+
/(RN - [[ﬁ(x, OTu(y,s) —a(x, t) Lu(y, )] ¥(x,t)

V- aly, s)ow(x = ¥ (¢ - )| dxdtdyds,

Bu=[ [l 0 uly.s) = atx ) Lu(y,s)) it
(RN xR+)2

V-a(x,t)pn,(x —y)p1(t — 8)} dxdtdyds,
By = / luo(x) — uly, )|1(x, 0)pn,(x = y)pr(—s)dydsdx,
RN xR+ xRN

B /RN R+ /]RN R+ “'ON’T(X —¥) [ )1 (t = 5) + o (x, 1), (t = 9)] [+
|1 (= 5) [V (x, 1) v (= 5) 4+ D(x, ) Vip p(x — } (x,t)dyds
+/ W) X, 0)pn (X — y)p1r(— )‘d,uo )dyds.

RN xR+ JRN

One has to study, now, the five terms of (3.84).
Using Lemma 3.8, equality (3.90) leads to:

B g/RN R+“wt(x,t)| + \w(x,t)ﬂdu(x,t)+r(KN+f{l)/R (s, ) dpi(x, 1)

N xR+

o (x, 0)duo(x) < {[2w + % L H 2} + T[KN + f(l} }u(K) + o(Ko).

RN

(3.84)

(3.85)

(3.86)

(3.87)

(3.88)

(3.89)

(3.90)

(3.91)
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Let us now handle the term FEj;; from (3.79), we obtain
‘EH _ / (. ) — ulx, £) 1 (x, £)dxat
RN xR+
< / [|U<X, t) - u(Y? S)|’¢t(xa t)‘pN,r(X - Y)ﬁl,r(t - S)dthdde]
(RN xR+)
[ o [ ) =ty o - w)mete - sy | s
RN xR+ RN xR+

We change the integration variables (y, s) into (n,7) such that y =x+n and s =¢+ 7, we
rewrite the previous inequality as

E“_/RNW’( £ — ulx, B) [ (x, t)dxdt‘

< / [th X, )] { lu(x,t) —u(x+n,t+7)|pn,(— U)ﬁl,r(—T)dﬁdTH dxdt
RN xR+ RN xR+

_ /R - {pm( D)ia(—7) [ /R . |@Z)t(x,t)||u(x,t)—u(x+n,t+7)|dxdt” dndr.

From the definition of py, and p; ,, there holds:

1 1
pnr(—n) =0if |n| > . and py,(—7)=0if 7 > o
Then
Eyy —/ |a(x,t) — u(x, t)|1y(x, t)dxdt| < ||ty soe(r, K), (3.92)
RN xR+
with
1 1
e(r,K) = sup {/ lu(x,t) —u(x+n,t+ 7)|dxdt : |n] < -, 0<7< } (3.93)
Combining (3.92) and (3.78) yields:
1
Ey — / [la(x,t) — u(x, )|t (x,t)] dxdt| < (2w + = + H)e(r, K). (3.94)
RN xR+ T

To treat E1a, we may proceed in the same way. We note that a(x,t) Tu(y, s) —a(x, t) Lu(y, s)
= |u(x,t) —u(y, s)| and we can treat the term a(x,t)- Vi)(x,t) in Ejy as we treated the term
(X, t) in Eqp; using that ||a - V|| < 2||al|w, one obtains:

‘Elg — /]RN N [a(x,t) Tu(x, t) — a(x, t) Lu(x, t)]a(x, t) - Vi(x, t)dxdt| < 2||a|e(r, K).
(3.95)
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Let us now turn to E13. We compare this term with
Bu=- [ [[a0Tult) - alx ) Lux )] (.0
(RN xRt)
X (a(y7 8) - a(X7 t)) ' VXION,T (X - Y)ﬁl,'r(t - S)i| dthdde
+ / [, O Tu(x, £) = (. 8) Lu(x, )] (. 1)
(RN xR+)2

XV -a(y,s) pyy(x —y)pr.(t — 8)] dxdtdyds.

(3.96)

, then we apply

In the first integral of (3.96), we use Vipn,(x —y) + Vypn.(x —y) =
= V -a(y, s), one has

Green’s formula with respect to y. Noting that Vy - (a(y, s) —a(x, t))
Eq3, = 0. Subtracting Eig, from Eis, there holds

Ey3 < /( lu(x,t) —uly, s)[(x, t)|(aly, s) —a(x,t)) - Vipn,(x —y)|p1,(t — s)dxdtdyds

RN xR+)2

+ / lu(x, t) — u(y, )[¢(x, 1)|Vy - a(y, s)|pn s (x = ¥)p1.(t — s)dxdtdyds. (3.97)
(RN xRT)

The first term in the right-hand side of (3.97) is then smaller than 2Ky L,||| e (7, K) since
|(a(y,s) —a(x,t)| is bounded by 2L,/r and (3.80) holds. The second term can be treated in
the same way as E;. One has:

Bz < 2LaKn[[¢]loo + IV - allc[[¢]lo0)e(r; K) < (2LaKny 4[|V - alc)e(r, ). (3.98)

We can estimate Ey4 in the same way as we estimated Ejp, replacing the expression ¢;(x,t)
by ¢(x,t)V - a(x,t). There holds:

‘Em— / la(x, 1) — u(x, ) (x, OV - alx, )dxdt] < ||V - af|we(r, K). (3.99)
RN xR+

In order to study FEjs, for any given x € RV, let us define p(x,y,s) = ¥(x,0)pn,(x —

y) [ pry(—7)dr and & = up(x). Let us take in (3.71) the function ¢(x,-,-) which is in
C‘X’(RN R+ ,RT) with a compact support in RY x R*. We then integrate the resulting
inequality with respect to x € RY. We get:

—Fhs + Evg + B + Eig > 0, (3.100)
with:
Bo==[ ] 6T e gm0
xa(y, s) - Vapn(x = y)p1,(—7)drdydxds,
Br=[ ] TR s L)

V- a(Ya S)pN,r(X - Y)pl,r(_T)dededSa
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Bi= [ o) = o)1, 0 (5 = ) (—r)rdss (3.103)

In order to obtain a bound on F,4, one introduces F1 4, defined as:

Bo= [ [ ) Tul) - a5 Luo(s) i 0

(3.104)
Xa(Ya S) ’ vxpN,r(X - Y>ﬁ1,r(_T>dededS'
Integrating by parts with respect to the x variable yields:
Ea:—/ / u(y,s) Tu —uly,s)lu
166 S (u(y, s) Tuo(y) — uly, s)Luo(y)) (3.105)
(a(y, s) - Vxo(x,0))pnr(x — y) 1 (—7)drdydxds.
Then, noting that the time support of this integration is reduced to [0, %], one has:
Eigy < [[alloo|[Villoce(r, K) < 2[|al|oce(r, K). (3.106)
Furthermore, one has:
Eis + Ei] < / / up(x) —u x, 0
| Ev6 + Ee] A |uo(x) — uo(y)|¢(x, 0) (3.107)

a(y. s) - Vxpnr(x = y)|p1(—7)drdydxds,
which is bounded by Ky ||a||«c0(r, Ko) (since the time support of the integration is reduced

to [0, 2]), where o(r, Ky) is defined by:

co(r, Ko) = sup {/K o (x) — o (x4 n)|dx : |n] < %} | (3.108)

n

Combining (3.106) and (3.107), we obtain
By < |lallo [26(r, K) + Kneo(r, Ko)]. (3.109)

In the same way, one introduces F17, defined as:

B= [ [ o) Tunl) a9 Lua(s) ol 0

(3.110)
V -aly,s)pn,(x — y)prr(—T)drdydxds.
There holds
Finy < 19 - alle[9 0) e, K) < |V - alloe(r, K) (3111)
and
|E17 — Erp| < / / o (x) — uo(y)|¥(x,0)
RN xR+ xRN Js

|V -a(y,s)|pn,(x — y)pr,(—7)drdydxds,
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which is bounded by [|¥(-,0)||eo ||V - &l|scc0 (T, Ko). With (3.111), one has
Ei; < ||V - a|w[e(r, K) + o(r, Ko)]. (3.112)
It is easily seen that
E1g < ego(r, Kyp). (3.113)
From (3.100), (3.109), (3.112) and (3.113), there holds
Ers < [2l[all + IV - alloc]e(r, K) + [Knlallec + [V - allo + L] eo(r, Ko). (3.114)

Using (3.84), (3.91), (3.94), (3.95), (3.98), (3.99), (3.114), there holds

/RN . [|ﬂ(x, t) — u(x, )| (x, 1) + [a(x, 1) Tu(x, t) — a(x, t) Lu(x, t)]
xa(x,t) - Vi(x,t) + |u(x, t) — u(x, t)|V - a(x, t)(x, t)} dxdt (3.115)

1 _
> — (2w + =+ H+2 +r(Kny + K1)p(K) — po(Ko) — E,

with
E= [2w+%+H+4||a||oo+3||v.a||oo+2LaKN}5(r,K)+ [KN||a||oo—|—||V-a||oo+1}50(7", Ko).
Since 1y € BVioe(RY), From Theorem 3.13 and Lemma 3.12, there holds:

U . U
ol ) < [uolvo.r) c(r K) < lulpv )
T T

(3.116)
And From (3.69), we have:
Ki+ Ky <N+5+2e. (3.117)

Choosing r =, /ﬁ, and realizing that the left-hand side in (3.115) does not depend on ¢,

then letting ¢ tend to zero, we obtain (3.74).
This concludes the proof of Theorem 3.7. O

3.4.2 An a posteriori error estimation

Now we can present the a posteriori error estimate, the main result of this document. Let
R, w, T and xq be defined in Theorem 3.7, it is convenient to set

1
Iy = {n: Ogtngmin{R+ ,T}},
w

Driy i ={(x,t): |x —xo| +wt < R+ 1},
M(t):={p €T : there exists x € p such that (x,t) € Dry1}.

(3.118)



CHAPTER 3. TRANSPORT EQUATIONS 87

Theorem 3.9. Assume (3.2) and uy € BV (RY). Assume there exist p € M(RY x RY)
and po € M(RYN) satisfying (3.70) and let u € BV (RN x RY) be the unique entropy weak
solution of (3.1) and let uy, be given by (3.10). Let K CC RN xR, w =V and choose T, R
and xo such that T €]0, £[ and

K C |J Brow(xo) x {t}. (3.119)
0<t<T
Then we have

/ (s, £) — un(x, £)|dxdt < Te™™ [ao /
K |

x—xo|<R+1

[uo(x) = uro(x)ldx + (b+)\/Q + a@}
(3.120)
where ag, a, b, ¢ are defined in (3.75),

Q=Y Y |upt —ul|At,|p|

n€lo pe M (ty,)

23 % [mqunug — U Aty (At + max{hy, hq})\ap,qwqu] (3.121)

n€lo (p,q)€€

F2L 37 S [l A 4 )l 185

nelo (p,q)€€
and
5;41 =0 Zf p U q X [tnatn—H] N DR+1 = @,

, (3.122)
5;}7{, =1 otherwise.

Proof. Let v be defined by (3.73). Theorem 3.7 holds for (x,t) := ux(x,t), po = p7 and
i = pn, where pr, uy are defined by (3.47) and (3.65). This means that

T—1 1 t—1T
) —ulx,t [ —tH 4, 1 _m —tH
/RNXR+ l|uh(x ) — u(x,t)] e Y= meT H—T e

Tt -
pa(x.t) ——e

+ [un(x, ) Tu(x, t) — un(x, t) Lu(x, 1))

|x — o
- T
+ |uh(X7 t) - U’(X7 t)|v ) a(Xa t)

> —apur({t) # 0}) — (b+ o) (un({v # O})2 — apn({v # 0}), (3.123)

with p = p(|x — x| + wt) and p’ = p/(|x — x| + wt). Let us estimate the second term in the
left-hand side of the previous inequality. One has:

_ te_Htp] dxdt

T—t¢ —
[uh(x, OTu(x,t) — up(x, t) Lu(x, t)] pa(x, 1) - lz zo‘ —tH
— Xp
T—t
< V0|up(x,t) — u(x, t)|T]p’\e*tH (3.124)

T—1
< _W|uh(x7 t) - U(X, t)|Tple_tH'
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So that

fun(x, ) — ulx, t)|$e“fp’w T [, ) Tux, €) — un(x, £) Lu(x, )]

T—1 X — Xq

x— pa(x,t) - e <0, V(x,t) e RN x [0,7]. (3.125)

|x — xo|
In addition, from the definition of H, we have

T—t
up(x,t) —u(x, t)|[(—H + V- a(x,t))——e Hp <0, VO<t<T, xecR". 3.126
T

Combining (3.123), (3.125) and (3.126), there holds

/]RN . lup (x, 1) — u(x, t)|e ™ pdxdt
< Tlaopr ({1 # 0}) + (b + ) (un({ # O1)'? + apn({v # 0})].

If (x,t) € K, there holds (x,t) € Br_.:(x0) X {t}, p(|x — xo| + wt) = 1, and e *# > =T
then

(3.127)

/ lun(x,t) — u(x, t)|dxdt < eTH/ lup (x, 1) — u(x, t)|e " pdxdt. (3.128)
K

RN xR+

Hence

/K lup(x,t) — u(x,t)|dxdt

(3.129)
< Te™ aopr ({$(,0) # 0}) + (b + ) (un({ # 03)"* + apn({w) # 0})].
Now the theorem follows from the following two lemmas.
Lemma 3.10. Let ¢ be defined as in (3.73). Then
pr({9(-,0) # 0}) < / |uT0(x) — uo(x)|dx. (3.130)
|x—x0|<R+1

Proof. Using the definition of p in (3.72), we obtain
pr ({0, 0) # 0}) < pr({x — xo| + wt < R+ 1fe—0})

and from the definition of 7, we have

jr({x — x| < R+ 1}) :/ i0(x) — o (x)|dx.

|x—x0|<R+1
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Lemma 3.11. Let ¢ be defined as in (3.73). Then

({0 # 01 <Y Y Atyup™ — | [p|

n€lo peM (ty)

+237 3 [l llag — At (At + max{hy, b Dloaldy]  (513)

nelo (p,q)€€

2L, > Y [ug — Ul Aty (At +hp,q)2|ap,q|5;q]

nelo (p,g)€€

Proof. The definition of uy, is given by (3.65). Let us consider A, which is part of py, (see
definition in (3.48)). Since Dgy1 = {(x,t) : |x — xo| + wt < R+ 1}, we obtain

A({y # 0}) < An(Dps1) = Z Z urtt — "|/n+1 /XDR+1dth

nEIO pEM(tn

<> Y At ur — | pl. (3.132)

n€lo pe M (tn)

This proves the estimate concerning A,. Now we have to estimate p; , which is also part
of pp. This measure is defined in (3.58) and we have

W) = 5 ‘%Hp, / / / / / (At (1 Oy — 1),

t +6(s —t))dOdydxdtds.

First we consider the case when p X [t,,,t,.1] NV Dry1 = 0 and g X [t,, tpe1] N Dgryq = 0. Since
(x,t) € p X [tn, tns1], (7,8) € Opg X [tn, tns1[, p is convex and 0 < 0 < 1, we get

(x+0(y—x),t+0(s—1t)) €p X [tn, tnt1]

and therefore
Y(x+60(y—x),t+6(s—1t)) =0.

Otherwise, there holds
Y(x+0(y—x),t+60(s—1))| <L

Hence, using the definition of 6, , in (3.122), we obtain

(U ) < (At + hy)dr. (3.133)
In the same way, one has
(g V) < (At + hg)oy, (3.134)
<V£q,'¢)> S L (At + hp q) |0pq| p,q° (3135)
<VZP’ ¥) < La(At, + hp,q) 0p.qlp, . (3.136)
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Using the estimates (3.132), (3.133), (3.134) and the definition of p,, one has

({0 # 0 <D0 D Aty fur ™t — | p)

n€lo pe M (ty)

_|_QZ Z [max{ sgn(ay.,), 0tay vy — ug| Aty (Aty + hy)|op |0, ]

nelo (p,q)€EEL

+2 Z Z [max{—sgn(ag’p), 0} ap ,l|uy — ug|At, (At, + hq)|0p7q|5;7q]

n€lo (p,q)€ER

+2L, Z Z [(max{—sgn(azq), 0} + max{—sgn(ay,),0})At, (At, + hp’q)2|ap,q|5g”q} )

ne€lo (p,q)€ER

From the definitions of £ and noting that max{—sgn(a; ), 0} + max{—sgn(a} ),0} =1,
there holds

a0 #01) <D > Atafuy™ —upllp)

n€lo pe M (ty,)

w23 3 [lap |l — il Aty (At + max{hy, b}, |

n€lp (p,q)€E

1200 3" S0 [ — A + oy Pl

nelo (p,g)€€
This completes this lemma.

Now the proof of Theorem 3.9 follows if we use (3.129), (3.130) and (3.131). O

3.5 Properties of the entropy solution

Our problem is a special case of what the authors of [2] call the non stiff case, which they
discretized by the explicit upwind scheme. But in that paper, the authors didn’t give the
reason why the term e(r, K) defined by (3.93) can bounded by an explicit constant that
depends on a, r, K and wug. In this section, we will determine this constant. We note
that we will use one property obtained in [2] for the non stiff case: the convergence of the
approximation solution to the entropy solution in weak L.

We follow the proof presented by Chainais—Hillairet in [1|, but we do not suppose that
the velocity is divergence free and we were able to improve the bounds given in [1].

We start with the following lemma:

Lemma 3.12. Let v € BV|,o(RP), p € N*. Then, for every bounded subset Q@ of R and for
all n > 0,

[ 1ot n) = o < folava, (3.137)
Q

where ), = {x € R?; d(x,Q) <n} and d(x,Q) = inf{|x —y|, y € Q} is the distance from x
to Q. This Lemma was proved in [3, Lemma 6.9].
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Let us now consider the main theorem of this section.

Theorem 3.13. Under assumption (3.2), then the entropy solution u to (3.1) belongs to
BViee (RN x [0,T]) for all T > 0. Further, for all compact set K C RY x R, there exists an
explicit constant Cr yya Such that

lulv(x) < Crupa- (3.138)

Proof. Theorem 3.13 is proved through the following steps: first, we build a discrete solution
of the transport equation by a particular scheme and on a particular family of meshes. This
solution satisfies a strong BV estimate and verifies a property like (3.37). Secondly, using
the uniqueness of the entropy solution and the properties of the dicrete solution, then, when
the size of the particular family of meshes tends to 0, the discrete solution will converge to
the unique entropy solution, and moreover, the discrete solution will transfer its properties
to the entropy solution.

For the sake of simplicity, we will prove the theorem with N = 2. Let us set z = (z,y)
a point in R?. We consider Cartesian meshes made up of squares of size h. We denote p;
to be the cell of center (z; = ih, y; = jh) with (i,j) € Z*. The vertices of this cell are the
points with coordinates (x; 1,y 1), (x;,_1,y., 1), (x; 1,9y, 1), (x;,,1,y.,1). We set k to be
the time step and ¢, = k(nlfozr aljl 7%)6 <NZ ’ HQ) ( T 2) ( o J+2)

Let the transport velocity be a(z,t) = (a1(z,t),a2(z,t)); then the problem (3.1) rewrites:

a_ + (al(z t) (th))x + (CL?(Z?t)u(Zat))y = [(al('zvt))x + (a2(27t))y]u(z7t)’v(zat) € R2 X R+v

ot
u(z,0) = up(z), Vz € R%
We split each component of velocity a into two parts: the first part must be non negative
and the second part non positive:
al(zv t) = b(Z, t) + C<Z7 t)u
a2(27t) = d(zvt) + f(Z,t)

For instance, we can take:

b(z,t) = %(al(z,t) + V), c(z,t) = %(al(z,t) -V,
2 1 (3.139)
d(z,t) = §(a2(z,t) + V), f(z,t) = §(a2(z,t) -V),

where V' is defined by (3.2).
The discrete unknowns are the u};, where (i,j) € Z* and n € N. From the positive and
negative property of the functions b, ¢, d and f, we construct the explicit upwind scheme:

k/, -
n+l _ ,n n n u® . .n n
Ui = Uiy =y | b Ui T O Ui G W Cz;%,j“i,j}

no n n n
d,j+1 .3 dZ] ul] 1 +fz]+1u13+1 fi,jf%ui,j]
: (3.140)

T n
szr i =0 +cz+27] clﬁ’j} u;';

+

h
k
h
.
Tl
k
h

[ mn mn n ’Vl
_dm+$ - d,jfl + fu+f f,rf}
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with the initial condition:

1
up, = s up(2)dz, (3.141)

Pi,j

and the following definitions of the edge velocities:

1 [Y%+3
bz+21 E/ b(xH%,y,t )dy, (3.142)
Yi_4
n 1 [Yi+d n
1= E/ c(mi+%,y,t )dy, (3.143)
yj,%
di7j+% =3 d(x,yﬁ%,t )dx, (3.144)
xi_%
n 1 i+1 n
flin = E/ ? f(a,y;p1,t")da. (3.145)
xi—%

The approximation solution w7y, is defined by:
UTJf(CL‘,t) = UZ]- , Vo e Dij, L € [tn,tn+1[. (3146)

The BV-norm on R? x [0, 7[ can be writen as follows:

|UT,k |BV(R2 x[0,T)) = Z Z h? |UnJrl

tnytn+16[07T[ 1,J€Z

+ Z k Z (h|U?+1,j — w4+ hlui oy — Um)

tn€[0,T] 4,JEZ

(3.147)

Let © be a compact set in R and 7' > 0. The BV-norm of ur, on  x [0, T is given by:

luT k| BV (Qx[0,T]) = Z Z h2|unJrl u;;

tn tnt1e(0,T ps, jNQAD

+ >k > Wy —ul+ Yk > hluijen — iyl

tn€[0,7 pi,ij¢@7Pi+l,ij7é® tn€[0,T[  pi,;NQFD,p;, j+1NQAD
(3.148)
Shortening the expression of ufjl in (3.140), there holds:
u?jl = Ui~ Z [bn GUig = Uy i el i — ?+1 yuw}
! B ’ (3.149)
=y = A = f ]

Thanks to their definitions in (3.139), all functions b, ¢, d and f are bounded by V', and we
obtain that the CFL condition

k< — (3.150)

ensures the L stability of the scheme.
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Lemma 3.14. Assume (3.2), ug € BV (R™). Then, there exists Cy depending only on a
such that

> (bl — ]+ hluls e —ul]) < (14 Cak)|uol gy ), (3.151)
1,JEZ
D PPt — | < 2kV (1 + Cak)"uo| gy z2)- (3.152)
1,JEL

Moreover, the function ury, defined by (3.146) satisfies:

|uTk|BV R2x [0 TD (]_ + QV) mln{ } CaT|U0|Bv(]R2). (3153)

Proof. From the BV semi norm of ury (3.147), the inequality (3.153) is a straightforward
consequence of (3.151) and (3.152).

Next, we shall prove (3.151) and (3.152). We set BV (u,n) = BV (u,n), + BV (u,n),
with:

=Y hlu}yy; —uly| and BV (u,n), = > hluf;, —ufl.

1,JEL 1,jEZL

Then, we have

E hwur+1] uzg

1,JEZ
1
=> - / uO(I,y)dl’dy—/ uo(x, y)dady| .
i,jEZ Pi+1,j Di,j

With a change of variable respect to x, there holds

BV (u,0), <Z / |uox+hy)—u0xy‘dxdy

1,JEZL Pij

1
< 5 |uo(z + h,y) — uo(z, y)|dedy. (3.154)
RQ

By using the same technique with respect to y, we also obtain

BV (u,0), / |u0 z,y+h) —u(z,y ‘dq:dy (3.155)
Thanks to (3.154) and (3.155), we estimate BV (u,0):

1
BV(0) < | [ uala+ 1) = ol )y
R2

+/ |uo(z,y + h) — uo(z, y)|dedy| . (3.156)
R2
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From (3.156) and Lemma 6.9 in [3]| (see Lemma 3.12 in this work), there holds:
BV(U, 0) S |u0|BV(]R2)~ (3157)

In order to prove inequality (3.151), we use the induction method. First, the case when
n = 0 is given by (3.157). Let us now assume that (3.151) holds for a fixed n, it means that

BV(U, n) S (1 + Cakf)n|U0|Bv(R2). (3158)

We shall now estimate BV (u,n + 1). Thanks to the defintions of b, ¢ and the CFL condi-
tion (3.150), for all (4, j) € Z we have

k 1
1
n . n
i+15 T G+t © [_Z’O]
Then we can rewrite (3.149) as:
+1 _
Uiy = Uig — a?—%,j(u?:j —Ui15) — Bﬁ;j(“ﬁl,j —ujy)
ko, . >_E s — ) (3.159)
J i\ ij—1 Bl ity il 0.
and we also have
+1
Uitry = Uit1 — O‘Zr%,j (uilyr; — uiy) — /6?+%,j(u?+2,j — Uiy )
k Lk (3.160)

g

h Z+1,j_%(uzn+1,j - U?H,j—l) 7 Z_L|_1’j+%(u?+1,j+l - U?+17j)-
Let us subtract (3.160) and (3.159) side by side; there holds:

n+l _  nt+l __ (1—0{”’

u u

i+1, iy T irty T ZF%,J’)(U?H,J‘ —u;;) + O‘?_%,j(u?,j —u ) 161
B inJr%j (uiho; — it ;) + Na+ Ny,
where
Er .. n n " " .
Na = h [divj—%(uivj —uilj1) = di+1,j—%(ui+1,j - ui+1,j71)]7 (3.162)
kT .., n n n . .
Nf - % |:fl,]+% (ui,j+1 - uz,]) - i+1,j+%<u’i+1,j+1 - ui+1’j)i| . (3163)
We set,
* k m n n n n n
* k n n n n n n
Ny = h [fi:j%(u”ld - u”) - fi,j+g(ui+1,j+1 - ui,j+1):|' (3.165)
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Let us denote vfj_ = Rqn, €10,1] and 6"

: 100 :
ndy 1 i il T hf7]+7 € [—3,0]; then we can write

_5” ( H—l] ’L])

Thanks to (3.161) and (3.166), we have

Nd_% (Uil =i ) = 7 Cs(ufy —ud ),
o J 5 . j (3.166)

ij+2 5 (g, Uit1j41 — u?,j—i-l)'

u?j_ll,j o UTZH <1 - az-i— J + 51—&- J 7171]—1 + 5@]—}— )( Uivr,j — UZJ)
+ a~_%,j(uznj — Uiy j) - BH-%J( i+2,5 ?—&-1,]‘) + VZj_g(U?H,j—l - U?,j—1)

_5n ( WUit1,5+1 — Zj+1)+Nd_N;+Nf_N;'

(3.167)
Now, we will focus on bounding |[Ng — Nj| and [Ny — N7|. We have
* k mn mn n mn mn n mn mn n
No—Ng = h [(dm—% - dz’—s—l,j—%)ui-i-l,j + (di,j—g - dz}j—%)ui»j—l + (dz'+1,j—$ - dz‘,j—g)“m,j—l]'

We may express the last term in the right hand-side of the previous equality as:

n n n _ (N _n n mn _n n
(dH_l,j_% - di7j—%)ui+1yj*1 - (di+17j_% diyj_%)uzﬂrl,jfl + (dm‘_% diyj_%>ui+1,jfl'

Then,

* k mn mn n n mn mn n n
Ng — Nd = E (di,jfé - d¢+1,j7%)(ui+l,j - ui+1,j—1) + (d@j*% - d@jf%)(ui,j—l - ui—i—l,j—l)]'
(3.168)

Moreover, from the definitions of d and d L with a change of variable in z, there holds
2

1

Ay =l <5

L)~ 3 7/+17]

i+
/ ? |a2(1:, yjfé,t”) —ag(x + hyyj;%a t”)‘d:c.
_1

w\

Let us now denote Lj and L, (resp. LY and LY ) the Lipschitz constants of a; and ay with
respect to x (resp. y) we get

|d:‘]" — dfﬂj 1| < Lgh. (3.169)
In the same way, we have
’d?j_g — dzj_l’ <Lih. (3.170)

Combining (3.168), (3.169) and (3.170), there holds:

[Ny — Nj| < k[Li2 |U?+1,j - U?+1,j71| + L, ‘U” 1 ?+1,j71”' (3.171)
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To bound Ny — N§, we use the same trick as for Ng — Nj and obtain
[Ny = NI < R[LG, [t o0 = win gl + L8, [ty iy = uial ] (3.172)

Then, taking the absolute value of (3.167), setting £ = maxycfq, a3 { L5, LY} and using the

n n n n n
— — a ., =% nd —o07. re all
fact that (1 — a7, —I—BH J 7”_7 +5”+ ), C1g BH%J, Vijos A d 5m+% are a
positive, we get:
n+l n+1 o n n
‘ui+1,j < az+ J + z+ J ,ylj—l + 52]-1— )|u1+13 Ui
n
+a} —1j |uz] ui—l,jl - 6¢+%7J’|ui+2,j - i+1,j|

n n n n
+ /713—§|uz+1,j—1 - ui,j—1| - 5i,j+g |ui+1,j+1 - ui,j—l—l’

(3.173)
+ kL |U?+1,j - “?ﬂ,jq’ + |“Zj71 - U?+1,j71|
| — Wil 1w e — il |-

Summing (3.173) over ¢ and j and noting that some sums cancel because }_a, , j|u?+1j —
27 ’

:Za?_%JW?J u 4|, etc, we obtain

BV (u,n+1), < BV(u,n), +2kL[BV (u,n), + BV (u,n),]. (3.174)
We obtain a similar bound for BV (u,n + 1), and combining with (3.158) this leads to
BV (u,n+1) < (14+4kL)(1 4+ kCa)"uo| v (r2),

which completes (3.151) if we choose Cp = 4L.
In the next step, we prove (3.152); thanks to (3.149), applying the bound of b, ¢, d and
f, we have

kV
ui it = u| < e [ij —ui |+ —
gy = wigoa| + |ufy e — |-

By multiplying this inequality side by side with h? and after summing over 7 and j, we have

> gt =yl < 2kV[BV (u,n)). (3.175)
1,j€Z
Using (3.151), we have finished this lemma. O

Lemma 3.15. Assume (3.2). Then, for all compact set Q C R?, for all T > 0, there exists
Ca depending only on a and a compact set QF C RN depending only on Q, T, % and h such
that

oop < (14 2V) rnm{ T}e C"‘T]uO|BV(Qg). (3.176)

a
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Proof. We set

h
QO = U Bmax(Xa ET)a
xeQ

ng U Dij

PijNQo#D

where Biax(X, 2T) = {|y — X|max < 2T} and |y — X|max = max{|y; — 21|, [y2 — 22|}, with
X = (z1,22) and y = (y1,y2). Following the proof of Lemma 3.14 without using inequality
(3.157), we get

. 1
[ur k| Bv@xjorp < (14 2V) mln{?;T}GCBT|UT,O|BV(QO)-

a

Noting that

lurolBv@n) < ’UO‘BV(Qgp

then, we obtain

. 1
luT k| BV x o,y < (14 2V) mln{?a T}e“" |ug| gy (ap)-

a

We have finished the proof of the lemma. n

Now, we return to Theorem 3.13. Lemma 3.15 generalized to RY shows that w7y, belongs
to BV (Q x [0,T]) for all compact set @ C RY and for all T > 0. Therefore for all ¢ €
C>*(Q x [0, T[,R) such that ||¢|l < 1, from the norm BV of ury on Q x [0, 7] in (3.148),
there holds, thanks to (3.176):

N
Z/ uT (X, t)g—(p(x, t)dxdt—l—/ uT (X, t)%ﬁ(x, t)dxdt
—1 7 x[0,T] Lj Qx[0,T] 13

Jj=1

(3.177)
o1
< (1+2V) mln{g, T}€CBT|U0|BV(Q{;)‘

a

Since ur . converges toward u in weak L>(R”Y x [0,T]) (Theorem 3 in [2]) and we can choose
the ratio % to be a constant, we can pass to the limit in (3.177); then we get the same
inequalities with w (resp. infyso|uolpy(ar)) instead of ury (resp. |uo|py(qp)). This proves
that u belongs to BV,.(RY x [0,T]), for all T' > 0.

Moreover, since K C RY x R* is a compact set, then, there exist a compact set  C RV

and 7" > 0 such that K C Q x [0,7] and
.1 CuT -
[ul By (ry < |ulsv@xpory < (1+2V) mlﬂ{aaT}e inf w0l gy (ap)-

Then we complete this theorem with Ck 2 = (14+2V) min{cia, T}e%T inf),-q ol py(any- O
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Chapter 4

Discrete Poincaré Inequalities

We establish discrete Poincaré type inequalities on a twodimensional polygonal domain cov-
ered by arbitrary, possibly nonconforming meshes. On such meshes, discrete scalar fields
are defined by their values both at the cell centers and vertices, while discrete gradients are
associated with the edges of the mesh, like in the discrete duality finite volume scheme. We
prove that the constants that appear in these inequalities depend only on the domain and on
the angles in the diagonals of the diamond cells constructed by joining the two vertices of
each mesh edge and the centers of the cells that share that edge.

4.1 Introduction

Let €2 be a two dimensional polygonal domain. Let us introduce the following two Poincaré
inequalities which will be mentioned throughout this chapter: The Friedrichs (also called
Poincaré) inequality

/u2(x)dx < CF/ \Vu(z)|’de , Yu € Hy(S) (4.1)
Q Q

and the Poincaré (also called mean Poincaré) inequality

/uQ(x)dx < CP/ \Vu(z)|’dr , Yu € H'(Q) such that /u(x)dx =0, (4.2)
Q Q Q

where cr and cp are constants depending only on 2. These two inequalities play an important
role in the theory of partial differential equations. Here, H'(f2) is the Sobolev space of L?(2)
functions with generalized derivatives in (L?*(€2))?, and H}(f2) is the subspace of H'(2) with
zero boundary values in the sense of traces on 9. More details on the Sobolev spaces H'(£2),
Hi(©2) may be found, e.g., in [1].

This chapter considers discrete versions of Poincaré inequalities for the so-called discrete
duality finite volume (DDFV) method of discretization on arbitrary meshes, as presented,
e.g., in [9]. Originally developed for the discretization of (possibly heterogeneous, anisotropic,
nonlinear) diffusion equations on arbitrary meshes |2, 5, 9, 13, 14, 18|, this technique has
found applications in other fields, like electromagnetics [15], div-curl problems |7] and Stokes
flows [6, 16, 17|, drift diffusion and energy transport models [3].

99
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The originality of these schemes is that they work well on all kind of meshes, including
very distorted, degenerating, or highly nonconforming meshes (see the numerical tests in
[9]). The name DDFV comes from the fact that these schemes are based on the definition
of discrete gradient and divergence operators which verify a discrete Green formula.

Details about this method are recalled in section 4.2. In this introduction, let us only
mention that in the DDFV discretization, scalar functions are discretized by their values
both at the centers and at the vertices of a given mesh, and their gradients are evaluated on
the so-called “diamond-cells” associated to the edges of the mesh. Each internal diamond-cell
is a quadrilateral; its vertices are the two nodes of a given internal edge and the centers of the
two cells which share this edge. Each boundary diamond cell is a degenerated quadrangle
(i.e. a triangle); its vertices are the two nodes of a given boundary edge and the center of
the corresponding cell and that of the boundary edge.

Then, the discrete version of the L? norm on the left-hand side of (4.1) and (4.2) is
the half-sum of the L? norms of two piecewise constant functions, one defined with the
discrete values given at the centers of the original ("primal" in what follows) cells, and the
other defined with the discrete values given at the vertices of the primal mesh, to which we
associate cells of a dual mesh. Moreover, the discrete version of the gradient L? norm on the
right-hand side of (4.1) and (4.2) is the L? norm of the piecewise constant gradient vector
field defined with it discrete values on the diamond-cells.

In the finite volume context, discrete Poincaré-Friedrich inequalities have previously been
proved in |10, Lemma 9.1, Lemma 10.2] and [12|, respectively for so-called "admissible"
meshes (roughly speaking, meshes such that each edge is orthogonal to the segment joining
the centers of the two cells sharing that edge, see the precise definition in [10, Definition
9.1]) and for Voronoi meshes. Similar results on duals of general simplicial triangulations
are proved in [19]. In the DDFV context, a discrete version of (4.1) is given for arbitrary
meshes in [2|. However, the discrete constant cp which appears in that paper depends on
the mesh regularity in a rather intricate way, see |2, Formula (2.6) and Lemma 3.3].

The main result of our contribution is the proof of discrete versions of both (4.1) and (4.2)
in the DDFV context, with constants ¢y and cp depending only on the domain and on the
minimum angle in the diagonals of the diamond cells of the mesh.

Our proof of the discrete version of (4.1) is very similar to those given in [10] or |[19]. We
also prove a discrete version of (4.1) in a slightly more general situation when the domain
is not simply connected and the discrete values of the function vanish only on the exterior
boundary of the domain and are constant on each of the internal boundaries (this will have
a subsequent application in the last section of the present work).

However, the task is more difficult for the mean-Poincaré inequality. Like in [10], it is
divided into three steps. The first is the proof of this inequality on a convex subdomain; in
the second, our proof differs from that in [10] because we actually do not need to prove a
bound on the L? norm of the difference of discrete functions and their discrete mean value
on the boundary of a convex subset, but rather an easier bound on the L' norm of this
difference. The final step consists in dividing a general polygonal domain into several convex
polygonal subdomains and in combining the first two steps to obtain the result.

As a consequence of these results, we derive a discrete equivalent of the following result
(which is a particular case of a result given in [11]): Let us consider open, bounded, simply
connected, convex polygonal domains (Qq)qe[O,Q] of R? such that Q, C Q for all ¢ € [1,Q)]
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and Q,,NQ,, = 0 for all (¢1, ¢2) € [1, Q] with ¢1 # go. Let Q be defined by Q = Qo\(Uququ).
Let us denote by I' = 000 = ngofq, with ', = 0Q, for all ¢ € [0,Q]. Then, there exists a
constant C, depending only on €2, such that for all vector field u in H(div,Q) N H(rot, 2)
withu-n=0onI and (u-7,1)p, =0 for all ¢ € [1,Q)], there holds

Jul|z2) < C(||V - ul|r2) + ||V x ul|r2(q))- (4.3)

The discrete equivalent has applications in the derivation of a priori error estimates for the
DDFYV method applied to the Stokes equations ([8]).

This chapter is organized as follows. Section 4.2 sets some notations and definitions re-
lated to the meshes, to discrete differential operators and to discrete functions. In section 4.3,
discrete Poincaré inequalities are presented. First, we prove a discrete Poincaré inequality
for discrete functions vanishing on the boundary of the polygonal domain and then extend
this result to the slightly more general case mentioned above. Then, we prove the discrete
mean Poincaré inequality with the 3 steps described above. Finally, we present in section 4.4
an application of the previous results to the derivation of another discrete inequality, relating
the norm of discrete vector fields defined on the diamond cells and verifying special boundary
conditions, to that of their divergence and curls defined on the primal and dual meshes. In
section 4.5, we present the details of the proof of a Lemma involved in our main results.

4.2 Notations and definitions

The following notations are summarized in Fig. 4.1 and Fig. 4.2. Let §2 be defined as above
and be covered by a primal mesh with polygonal cells denoted by T}, i € [1,1]. With each
T;, we associate a point G; located in the interior of T;. let us denote by Sy, with k € [1, K]
the nodes of the cells. With any Sy, we associate a dual cell Py by joining the points G;
associated with the primal cells surrounding S to the midpoints of the edges of which S is
a node.

Figure 4.1: A nonconforming primal mesh and its associated dual mesh (left) and diamond-
mesh (right).

With any primal edge A; with j € [1,J], we associate a so-called diamond-cell D; ob-
tained by joining the vertices Sy, ;) and Si,(;) of A; to the points G;, ;) and G, ;) associated
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Figure 4.2: Notations for the inner diamond-cell (left) and a boundary diamond mesh (right).

with the primal cells that share A; as a part of their boundaries. When A, is a boundary
edge (there are J' such edges), the associated diamond-cell is a flat quadrilateral (i.e. a
triangle) and we denote by Gj,(;) the midpoint of A; (thus, there are J' such additional
points ;). The unit normal vector to A; is n; and points from G (j) to Gi,;). We denote
by A% (resp. A,) the segment joining Gy, ;) (resp. Gi,jy) and the midpoint of A;. Its as-
sociated unit normal vector, pointing from Sy, () to Sk,(;), is denoted by n’; (resp. nj,). We
also define vectors 7;, 7, and 7/, such that (n;,7;), (n};, 7};) and (n),, 7/,) are orthonor-
mal, positively oriented basis of R?. In the case of a boundary diamond-cell, A%y reduces
to {Gi,(;)} and does not play any role. Finally, for any diamond-cell D;, we shall denote
by Miak5 the midpoint of [G’Z-a(j)SkB(j)], with (a, 8) € {1; 2}2, M; the midpoint of Skl(j)Skg(j)
and 60;, (resp 0},) is defined by the angle, lower than 7/2, between segment Sy, (;)Sk,(;) and
segment Gy, ;) M; (resp Gi,;)M;).
We shall use the following definition

Definition 4.1. We denote by 60* > 0 the greatest angle in the mesh such that
6, >0 and 0;, > 0" for all j € [1,J].

Now we shall associate discrete scalar values to the points GG; and Sj, and discrete twodi-
mensional vector fields to the diamond-cells. This leads us to the following definitions.

Definition 4.2. Let ¢ = (¢7,¢7), and ¥ = (YI,¥f) be in RT x RE. Let u = (u;) and
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w = (w;) be in (]RJ)Q. We define the following scalar products and associated norms

1
(6. 0)rp = Z Tiler ol + > 1Pdervr | (4.4)
i€[1,1] ke[1,K]
H¢“%ﬂ):::(¢7¢)TJ%
(w,u)p = Y [Djlw;-uy; , [} = (w,u)p. (4.5)
JE(L,J]

Definition 4.3. Let ¢ = (¢7, ) be in R x RX. We define the trace ¢ of ¢ on the
boundary edges A; C T' with ¢; := }l <gz5kPl(j) + 2@253;(]-) + ¢52(j)>

We also define a discrete scalar product for the traces of u-n and gzNS on the boundaries

Fq
(u-mn, &)Fq,h = Z |Aj|a; - n; x ng
Jj€elq
and on I’ . .
(u-n,@)ry = Z (w-n,é)r,n- (4.6)
q€[0,Q]

In the proof of discrete Poincaré inequalities, we often use the piecewise constant functions
based on the discrete functions defined at the centers of each mesh; we set the following
definitions

Definition 4.4. Let ¢ € RIT" x RE. The piecewise constant functions T (x) and ¢F ()
are defined following, respectively,

o"(x) = ¢! , Ve €T and i€ [1,1];

7

¢ (x) = ¢y , Vo € Py and k € [1,K]. (4.7)

We recall here the discrete gradient [4, 9] and (vector) curl operators |7] which have been
constructed on the diamond cells.

Definition 4.5. Let ¢ = (o7, ¢L) be in R+ jts discrete gradient VP and discrete curl
VP x ¢ are defined by their values in the cells D; through

1
2| Dyl

(V3o); = {{¢r, — S (| A0 1 + | A0 j2) + (07, — &1 ]| Ajlns ),

1
(V) x ¢); = 3D {[dr, — Or ) (AT 1 + [Al |7 s2) + [0, — 6L 1| Asl75}

In the proof of our results, we shall use the following theorem which is exactly |7, Theorem
4.7|
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Theorem 4.6. Let (u;)jcn g be a discrete vector field defined by its values on the diamond-

cells Dj. There exist unique ¢ = (qbiT,ngf)ie[LHJrLke[LK], ) = (wiT,@D,f)ie[l,HJr],ke[l,K} and
(cL,cYgen ) such that:

q’q
w; = (V7o) + (V7 x);, Vi€l J], (4.8)
YITel = Y |Bdor =0, (4.9)
iE[LH k)E[l,K}
I =0,Viely , i =0,Vkely, (4.10)
and
vqe[va]? w?2057Vi€Fq ’ w52657Vk€FlI' (411)

Moreover, the decomposition (4.8) is orthogonal.

We shall also need the following construction of discrete divergence and (scalar) curl
operators on both primal and dual cells:

Definition 4.7. Let u = (u;) be defined in (R?)’ by its values on the diamond-cells. We

define
(Vi-u), = ulﬂi‘j;m | Ajla; - ny;, (4.12)
(Vf-u)k = ﬁ(‘z&; (|A;1|uj-n;1k+|A;2|uj-n;%)
JEIL
S ’i;‘uj.nj) (4.13)
jEOPLAT
(VE ), = 3 b s (4.14)
Jjeal;
(Vi xu), = ﬁ (28]; (JAG [y - 7+ Al - 7y
JEOLy
+ > %uj-q). (4.15)
jEIPLAT

The following result [7, Proposition 4.1|, which consists in discrete Green formulas, has
motivated the name "discrete duality":

Theorem 4.8. For u € (R?)’ and ¢ = (¢7,¢") € R x RX, it holds that

(0, VPo)p = —(Vi" w,¢)rp+ (u-n,d)ry, (4.16)
(0, VP2 x¢)p = (Vi¥' xu,¢)rp— (u-7,0)ru (4.17)
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4.3 Discrete Poincaré inequalities

We first start with a discrete version of (4.1). Our result is a special case of that proved in
|2, Lemma 3.3|, but our expression of the discrete constant cp is more precise and simple,
in that its dependence on the geometry of the cells occurs only through the angles in the
diagonals of the diamond-cells. This is an important result in the DDFV context, since a
priori error estimations of the discrete solution of the Laplace equation obtained with this
method also only depend on the cell geometries through angles in the diamond-cells (see [9]).

Theorem 4.9 (Discrete Poincaré-Friedrichs Inequality). Let 2 be an open bounded
polygonal domain; let us consider u = (ul,ul’) € R™*" x RX such that

up =0, Yk €T and u! =0, VicT. (4.18)

Let 0* be defined by Definition 4.1. Then, there exists a constant C only depending on 2 and
0* such that

ullrp < C| V3 ullp. (4.19)

Proof. Let u”(-) and u”(-) be the piecewise constant functions defined in Definition 4.4.
Then obviously |[ulF p = (||uTH%2(Q) + ||uP||%2(Q))/2, so that, in order to prove (4.19), it
suffices to prove

" (| z2(0) < CII VR ullp, (4.20)
[u”| 20y < C|IVRullp- (4.21)

We shall first prove (4.20). Let d; = (0,1)" and dy = (1,0)%; for z € Q, let DL and D? be the
straight lines going through x and parallel to the vectors d; and dy. For any edge j € [1, J]
and any x € €, let us define X;F’l(w) and X;‘-F’z(a:) by

1 if A;nD.
ey =L FANDAD (4.22)
J 0 lfAiji:@

Remark 4.10. For any x = (x1,%2) € §, we note that X]T’l(x) only depends on x1 and
XJT’Z(:L’) only depends on xs.

From the first formula of definition 4.5 and simple geometry, it is easy to see that

% .
Then, for any i € [1,I] and a.e. @ € T, let us follow the straight line D¢ until it intersects the
boundary I, and let us denote by v1(7) := 4, v2(7),- - ,v,-1(¢) the indices of the primal cells
that it intersects (in the order they are intersected) and by v, (i) the index in [I 4+ 1,1 + J']
corresponding to the first boundary segment intersected by D! (see Fig. 4.3). Then, since
T

Uy, () = 0 because of the boundary conditions, we may write

T T T T T T T T
U = Uy iy = (Uayy (1) = Un (i) T (Uay i) = Ung (i) + T (W) = Uoaiy) = D (e (i) = U1 (i))



CHAPTER 4. DISCRETE POINCARE INEQUALITIES 106

Figure 4.3: Straight line D? intersecting primal cells from point x to the boundary.
so that, since any couple (ufm(i), ufmﬂ (Z.)) is a pair of neighboring values through an edge A;
intersected by DY, there holds, thanks to (4.23)

J
—
o (@) = [uf | < 3 |(VPu); - Giry Guatr)
j=1

Tt
X; (z)

—
for ¢ =1,2. Then, setting v; := ‘(VjDu)j -Gy () Gis()

, one has

(u (z))? < (Z v; X]Tl(m)> (Z v; X;‘m(x)> : (4.24)

j=1 7=1

Integrating the above inequality over T; and summing over i € [1, [] yields

I 1220y < /Q [(Z vj Xf’l(w)> (Z vj Xf%f))] dz. (4.25)

7j=1 7j=1

Let a = inf{zy; (x1,22) € Q} and = sup{zy; (z1,22) € Q}. For each z; € («, ), we
denote by H(x;) the set of x5 such that x = (x1,22) € Q. From Remark 4.10 and the fact
that fH(Il) X?’Q(mg)dxg < |A;| and ff X?’l(xl)dml <|A;l, we infer that (4.25) may be written
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in the following way:

B J
||uTH%2(Q) < / dl’l /H( )d$2 [ v; X?l(xl) E Vj X?2<I2)]
et 1

7j=1 7=1

8 J
< / Zvj X;‘r’l(xl) / Zv] X] xg)de) dx
=) H(z1)

/ vj X] :L‘l) Zv]/ X’ xg dx2> dxy

8
S/ ZUJ' X; () Z%‘Vb’\) dx,
e} le ]:1
J J 5 J J
< (ZvﬂAﬂ) Zvj/ X; (@) day < (Z%’Vlﬂ) (Z’%”Aﬂ)-
j=1 j=1 @ j=1 J=1

We thus obtain

2
o
Hu ||L2(Q <Z| V G ) iz(j)HAjl) : (4.26)

Finally, Using the Cauchy-Schwarz inequality, we have

J
[ |72y < <Z|(VhD I1P1Ga () Ga 14, |> (Z|Gz1 4 I) (4.27)
j=1

Since |D;| = L (JA;]|Gi M;|sin8;, + |A;]|Gi, M| sin,), we have that |A;]|Gy,Gy,| < 22!

sin 9

by Definition 4.1 and the triangle inequality. Moreover, since ijl |D;| = |©|, there holds

4

sin? 6+

[ 172 ) <

J
< Q1Y (V7w l*D;l.
j=1

We have completed inequality (4.20) with C' = —2-|Q[*/2. We now turn to inequality (4.21).
We shall use a very similar process to that employed in the proof of (4.20). A slight difference
comes from the fact that dual cells may be non-convex, and that the straight lines D! may
thus intersect twice the boundary A%, U A%, between two adjacent dual cells (see Fig. 4.4),
in which case it is not useful to introduce the difference qu(j) = ukpl(j) in the calculation. We

thus define Xf’l(x) and Xf’Q(az) by

! Y4 / 14
re ):{1 if only Aj, NDL# 0 or Ay DL #0 for £ = 1.2,

J 0 if (A UA),)NDL =10

In the above definition, it is meant that if D intersects both A% and A%y, then Xf’e(x) =0.
From the first formula of definition 4.5, it is easy to see that

D —— .
(V3); * Sy Shkati) = ko) — Uiy, V9 € [1,7].
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Figure 4.4: The straight line D} intersects twice the boundary A% U A/, of a non convex
dual.

Thus, for any k € [1, K] and a.e. © € Py, one has

J
o 7| Pl
Juy, | < Z (VP u); - Sk, () Sk X (), £=1,2.
j=1

Using a similar process as in the proof of (4.20) and taking into account that
’ Pl / / P2 / /
| e < 1451+ 14 and [ e < 4|+ 14

H(z1)

we obtain
7 2
[u” 1 Z20) < (Z (V3 w1451 (145, ] + |A32|)>
j=1
which allows to obtain, similarly as above

4

sin? 6%

J
Q1) [(VRu);P1D;l,

J=1

HUPH%%Q) <

which concludes the proof of inequality (4.21) with C' = =2 |Q[Y/2.

sin 0*

]

We now turn to a generalization of Theorem 4.9 which will be useful in the last section
of this work.

Theorem 4.11 (Discrete Poincaré-Friedrichs Inequality). Let us consider open, bounded,
simply connected, conver polygonal domains (Qq)qe[o Ql of R? such that Q, C Qo for all
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q € [1,Q] and Qu N Qy, = 0 for all (q1,q2) € [1,Q)? with ¢ # g2 Let Q be defined by
0= Qo\(U?ﬂQq). Let us denote by I' = 0Q2 = U?:()Fq, with 'y = 09, for all ¢ € [0,Q)].
Let u = (uT,uf) € RI" x RX be such that

up, =0, Yk €Ty and u! =0, Vi €Iy,

4.28
up, =ci, Vk €Ty, and ul =cl, Vie Ty, Vq e [1,Q]. (4:29)

With 0* given by Definition 4.1, there exists a constant C depending only on €2 and 6% such
that (4.19) holds.

Proof. Like in Theorem 4.9, it suffices to prove both (4.20) and (4.21). We shall only prove
(4.20), since the proof of (4.21) follows exactly the same lines.

The only difference in the proof of (4.20) in Theorem 4.11 with respect to Theorem 4.9
is that the straight line D! may now intersect one or several internal boundary (ies) T, with
q € [1,Q], before intersecting the external boundary I'y (see Fig. 4.5). For the sake of
simplicity, we shall consider only one intersection with an internal boundary I'; (since the
alternative may be treated exactly in the same way), and we denote by v, (i) and v, 11(7)
the indices in [I + 1,1 + J'] corresponding to those intersected boundary edges of I',. We
may still write

T T

vm(i) uvmﬂ(i)),

but, now, the couple (u’ (i),uf +1(i)) s not a pair of neighboring values through an edge
nq ngq

A; intersected by D.. However, these two values are equal because of (4.28), so that

T T T
u; = Z (uvm(i) - uvm+1(i))'
m € [1,n—1]

m # ng

Now, any couple (uin(i), ufmﬂ(i)) in the above sum is a pair of neighboring values through
an edge A; of the mesh, intersected by D!, so that there holds, thanks to (4.23)

J
_ 0
| <> ‘(V?U)a"Gn(j)GizU) X, ()
j=1

for £ = 1,2 and we finish the proof just like in the proof of (4.20). ]

Let us now turn to a discrete version of (4.2). As announced in the Introduction, the
proof will be divided in three steps. The first step is to prove it in the case of a convex
polygonal domain (Theorem 4.12), then we shall prove an inequality related to the mean
value on the boundary of a convex polygonal domain (Theorem 4.15) and we shall conclude
by the general case of a possibly non-convex polygonal domain (Theorem 4.17).

Theorem 4.12 (Discrete mean Poincaré Inequality for a convex polygonal do-
main). Let Q be an open bounded polygonal connected domain, and w be an open conver
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Figure 4.5: Straight line D? intersecting primal cells from point x to the boundary through
internal boundary I',.

polygonal subset of Q, with w # (0. Let u = (ul,ul) € R+ x RE; the associated piece-
wise constant functions u”, u” are defined through Definition 4.4. Let 0% be defined through
Definition 4.1. Let us define the following mean-values:

ml(u) == ﬁ/qu(x) dr , mP(u):= |71|/wup

Then, there exists a constant C only depending on  and 0* such that
[u” —mS(u M2 < CHV ul|p, (4.29)

and

[u” —m ()| 2y < CIVEullp, - (4.30)
(Choosing w = ) proves the discrete equivalent of (4.2) if Q is convex.)

Proof. We only prove inequality (4.29). The proof of (4.30) may be adapted just like in the
proof of Theorem 4.9. We first note that

@) = mipds = [ @) - ,1, o7 (y)dy

L ra

We define points A, B, C, D belonging to @ in the following way

2

dx

(4.31)

ra = inf{zy; (v1,72) € w}, 10 = sup{wy; (v1,12) € W},
yp = inf{ys; (y1,92) Ew},  yp = sup{y; (y1,42) € w}.
Remark 4.13. Up to a rotation of w, we may always suppose that those four points are

different one from the other, except if w is triangular; in that case, up to a rotation of w, we
may set A = B and the proof is exactly the same as that below.
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Figure 4.6: Notation for points A, B, C, D and points xac, £gp, Yac, YBD-

For any x = (r1,%2) € w, we define z4c € [AC] such that (x4¢)1 = 21 and zgp € [BD)]
such that (zpp)s = x2. The notations are summarized in Fig 4.6.
Applying the triangle inequality leads to

ju” (z) —u" (y)| < Ju" (2) —u" (zpp)| + [u" (x5p) — u" (yac)|

+ 1 (ya0) — w7 (y)], (4:32)

and also to

u” (z) —u ()| < Ju" () — u” (2ac)| + [u” (xac) — u" (ysD)]
+ [u"(ysp) — u" (y)].

From (4.32) and (4.33), we have

/ / T () = " () Pody < S (4.34)

where I;—Iy are defined and estimated in what follows:

(4.33)

1.
L = / / lu” (z) — u” (zpp)| |u” (z) — u” (zAc)| drdy. (4.35)

Using again (4.22) and (4.23), we may write

J
—
" () = u" (zac)| <D X (@) ((V;? w)j - Gi()Gis(y)| - (4.36)
=1
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and

J
R
" () — " (25p)] Z (@) [(VRw); - Giry G| - (4.37)

. Recalling that X?’l(:c)

Henceforth, we set for convenience v; = ‘(VhDu)j -G () Gia()

only depends on x; and XJT’2(37) only depends on x5, and noting that the integrand in
(4.35) does not depend on y, there holds

I < |w| (/mc 3 X0 v]dm) (/yB )3 v]d:@)
< |l (Zv]/ X! dx1> (Zu]/ dx2>.

We use that

/ X z)dry < |4 (4.38)
and

/ X x)dxy < |Aj| (4.39)
and obtain

J 2
I < | (Z |Aj|vj> . (4.40)
j=1

1= / / T (z) — uT ()] [T (2ac) — T (y)| dardy.

Using inequality (4.37), we have

I < //(ZX] )\u (2ac) — " (ysp)| dedy.

By definition, X?(x) only depends on x5 (which is in [yg, yp|), while x ¢ only depends
on x1 (which is in [z 4, z¢]); of course, ypp does not depend on x, so that

J YD el
b < (Zvj / x?‘"(x)dxz) | [ " ac) = " (g sy
j=1 YB wJTy

Thanks to (4.39), we thus have

J zo
I < (ZlAjlvj) / / T (240) — " (yp)| dady.
j=1 wdxy
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Since ygpp only depends on y, and z4¢c does not depend on y, the integration with
respect to y; (which is in [z, z¢]) is straightforward and yields

J yp pro
I < (20 — 24) (Z|Aj|vj) / / T (2ac) — T (ypp) dordys. (441)
j=1 YB TA

L= [ [ @) = " @an)| o (yan) ~ u” ()| dody
This integral clearly decouples into two independent integrals
= [ 10(@) = ao)l do [ 1 (yan) — o ()] dy

which may be treated like in the estimation of I; thanks to (4.37), (4.39) and the fact
that Y72 depends only on z,. We obtain

Iy = (zc — 24)? (Z |Aj|vj> : (4.42)

L= [ [ 1 wso) = )] " () =" (o) dady

We may proceed very similarly to the estimation of I and we obtain that

J rc YD
1 < (yp — ) (Zwm) / / T (25p) — a7 (yac) doadys.  (4.43)
j=1 TA YB

I = / / T (@5p) — T (yac)| [T (2ac) — u” (ysp) | ddy.

On the one hand, xgp and yac do not depend on x1; on the other hand, x4c and ygp
do not depend on x5, so that the integration with respect to x decouples into

e[ / " ) = ) i) (| i ac) = o am) 1) d

We also note that ygp and ¢ do not depend on y; and that y4c and xgp do not
depend on ys, so that the integration with respect to y decouples into

Trc YD T T YD rc T T
I < / / W (@) — 07 (yac)| deady: / / T (@ ac) — " ()| dardys.
T A YB B TA
(4.44)
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I = / / T (25p) — 0 (yac)| [uF (ysp) — u ()| dady.

We may proceed very similarly to the estimations of I> and I, and we obtain that

J

Is < (zc — xa) (Z |Aj|vj> /wc /yD " (zp) — u' (yac)| dzady:. (4.45)

J=1

f= [ [ ae) = o @] " () = " (2ac)] dady

We may proceed very similarly to the estimation of I3 and we obtain that

I; < (yp — yp)? (Z \Ajm-) . (4.46)

I = / / T (ya0) — 7 (9)] | (2a0) — ¥ (ypp) | ddy.

We may proceed very similarly to the estimations of I, Iy and I and we obtain that

J yp o
I < (9o — us) (}jmjm) / / T (2a0) — T (ypo)dordys.  (4.47)
j=1 YB TA

. / / [ (yac) — u® )] [u (ymp) — T (y)]| didy.

We may proceed very similarly to the estimations of I; and we obtain that
J 2
Iy < |wl (Z |Aj|vj) . (4.48)
j=1

In order to conclude the proof of Theorem 4.12, we need the following lemma, a proof of
which is postponed to 4.5.

Lemma 4.14. There exists a constant Cy depending only on €2 such that

Yp [Tc J
/ / lu” (za¢) — v’ (ypp)| do1dy, < Crdiam(w) (Z ]Aj\vj) )
YB TA j=1

zc YD J
/ / lu" (zpp) — u” (yac)| dredy, < Crdiam(w) (Z |Aj|vj> .
za Jygp j=1
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Applying Lemma 4.14 and combining estimations (4.40) to (4.48) with the bound (4.34)

results in
2
[ [t @) =T ) Pasdy < 3 (Zm rvj) ,

where C3 = (444C) + C?)diam?(w). Now this inequality may be treated exactly like (4.26),
and there holds

463 | <
[ @) =) Paedy < S5l 319D
j=1

From (4.31), we have

402 <
[t @) = mi)rds < 5203 (VRuFID,
w ]:1

2Co
sin 6* *

which implies the desired result with C' =
O

The second step in the proof of a discrete version of (4.2) is to establish an inequality
related to the mean value on the boundary of a convex polygonal domain

Theorem 4.15 (Mean boundary Inequality). Let Q2 be an open bounded polygonal con-
nected subset of R? and let w be an open polygonal convex subset of ) and T C Ow, with
|Z| > 0 (|Z]| is the one-dimensional Lebesque measure of T). Assume that T is included in
a hyperplane of R?. Let u = (uT uf’) € R+ x RY be given and the associated piecewise
constant functions u? and uf be defined through Definition 4.4. Let 4T (u)(c) = ul for all
o €TiNOw. (If o € T; NTy, then the choice of ul' or ul in the definition of v does not
matter). Let v*(u)(o) = ul for all o € Py Now. (If o € Py N Py, then the choice of ul
or ul, in the definition of v does not matter). Let mX(u) (resp m¥(u)) be the mean value
of YL (u) (resp vF(u)) on I. Let 6* be defined through Definition 4.1. Then, there exists a

constant C', only depending on 2, w, T and 6* such that
lu” = mz(W)|pw < CIVZulb, (4.49)
[u” —mZ (W)l < CIVEullp. (4.50)
Proof. Since 7 is included in a hyperplane, it may be assumed, without loss of generality,
that Z = {0} x [a,b] and w C R4 x R (the convexity of w is used here). We choose points
A, B, C' and D, belonging to w, such that
za = inf{zy; (¥1,29) €Ew}, x0 =sup{zy; (v1,72) € W},
yp = inf{zo; (x1,22) €W}, yp = sup{ay; (v1,72) € w}.
Remark 4.16. It may happen in particular cases that those four points are not different
one from the other, but this does not change the general idea of the proof. If A = B and

T = [BD], then it even simplifies the proof since in that case, we do not have to introduce
the point ogp defined below.
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D

B

Figure 4.7: Notation for points A, B, C, D and points z4¢, 0pp.

For any x = (z1,25) € wand 0 = (01,09) € Z, we define x4c € AC such that (zac)1 = 24
and opp € BD such that (0gp)2 = 02. The notations are summarized in Fig 4.7. The
following triangle inequality holds:

u” (z) = yu” (0)] < u” (z) — u” (zac)|
[u"(zac) — u” (0BD)| + |7u" (0) — u" (o8D)|.

Moreover, there holds

e — L) 21w =/ 7
1 T T
|7 / W (z) — yu” (0)]do

< % /w /I lu7(z) — T (0)| dode,

so that, taking into account the above triangle inequality, we obtain:

[u” = mZ (W) 11 () |Z‘//|u —u”(z4¢)| dodx

Ivu® (o) — v (opp)| dod.

u®(r) — dx

u® (0)do

dzx

+ = u(z40) — ul (o dodr + —
7 ), ;1 wac) = o)l /)

We first observe that the function |u”(z) —u” (z4c)| doesn’t depend on the variable o; then,
using similar techniques to those which led to (4.36), and the fact that fxc Tl (x)da, < Ay,
there holds

% / /z u” (2) — u” (zac)| dodx < diam(w) (Z |Aj|vj> : (4.51)
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s
where we recall the notation v; = |(V;)u); - Giy(5)Gin (|-

Then, we know that the function |[yu” (o) —u” (cpp)| only depends on the variable o; then,
using similar techniques to those which led to (4.37), and the fact that [; X]T’2(0)da < |4,
we have

Wl
| //hu —ul(opp)|dodr < = [l <Z\A |v]> : (4.52)

Now, x 4c doesn’t depend on the variable x5, so that
diam(w ro
|I| // |u :CAC —u (UBD)’ dodxr < |_Z|( ) / /IluT(xAC) B UT(UBD)‘ dodzy.
zA

Applying an inequality like in Lemma 4.14 leads to

%//IW(I'AC) —u(opp)|dodr < —————= C’ldmm (Z |A; |UJ> : (4.53)

Using (4.51), (4.52) and (4.53), we conclude that

, w C’*dzam
|u" = mI (u)]| 1wy < {dzam( )+ % + } (Z |A; |vj> :

Then, the Cauchy-Schwarz inequality yields (4.49). Similarly, we also obtain (4.50). O
Now, we come to the final step of our result.

Theorem 4.17 (Mean Poincaré Inequality). Let Q be an open bounded polygonal con-
nected subset of R?; let u = (uT,u?) be in RIT7 x RE, and v (z), uf(x) be defined through
Definition 4.4. Let 0* be deﬁned through definition 4.1. Then, there exists a constant C only

depending on ) and 0% such that
T = mE(w) 2@y < CIVPullp (4.54)

and
[u” — m ()| 2@ < CIVRullb, (4.55)

where md(u) (resp. mb(u)) is the mean-value of u™ (resp. u’) on Q.

Proof. Since () is polygonal, there exists a finite number of disjoint convex polygonal sets,
denoted by {Qi,...,Q,}, such that Q = UL ,Q;. Let Z,; = QN ﬁj and B be the set of
couples (i,7) € {1,...,n}? such that ¢ # j and the one-dimensional Lebesgue measure of Z; ;,
denoted by |Z, ;| is strictly positive.

Let m; denote the mean value of u” on €, i € {1,...,n}, and m; ; denote the mean value of
u” on Z,;, (i,7) € B. Note that m; ; = m;, for all (¢,5) € B.

Theorem 4.12 gives the existence of C;, ¢ € {1,...,n} only depending on §2 (since the €; only
depend on 2) and 6%, such that

u” —myll 2 < Ci IVRullp, Vi€ {l,..,n}. (4.56)
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Applying the Cauchy-Schwarz inequality, we have

Moreover, Theorem 4.15 gives the existence of C; ;, (4, j) € B, only depending on {2 and 6*,
such that

lu” = mijllcre) < Ciy VRullp, V(i j) € B. (4.58)
Then, one has, by a triangle inequality
(] s — mij| = [lms = mijll ey < (16V2C + Ciy) IV ullb, (4.59)

for all (4,j) € B. Applying a triangular inequality and using the fact that m;; = m;,;, we
get from (4.59) that there exists a constant C; ; only depending on €2 and 6 such that

m; —my| < C; V3 ullb, (4.60)

for all (4,j) € B.

Since € in connected, we can always connect any (i,7) € {1,...,n}* by a finite set
of couples belonging to B. Applying triangular inequalities and the related inequalities
(4.60), we obtain the existence of K, ;, only depending on Q and 6*, such that |m; — m;| <
K, ;|| V7 ul|p for all (i,7) € {1,...,n}?, and therefore, the existence of a constant M;, only
depending on €2 and 6*, such that

T B 1
|m9(u)—mi‘ = @ Z

Jelln

(] (my —mi)| < M|V ullp. (4.61)
)

Then, (4.56), (4.61) and a triangle inequality yield

[u” = mg(u) |l 200 < lu" = mill 2y + 19" [mg () —mi| < (Ci+ Mi|u[2) |V ullp.
(4.62)

Summing up the squares of inequalities (4.62) over ¢ € {1,...,n} yields (4.54). We obtain
(4.55) in a similar way. This completes the proof of Theorem 4.17. [

Corollary 4.18. Let Q) be an open bounded polygonal connected subset of R?; let u = (u”, u”)
be in RIT" x RX | and such that

I K
ST = 3R] = .
=1 k=1

Let 6* be defined through definition 4.1. Then, there exists a constant C only depending on
Q and 0" such that
lullz.p < ClIVRullp. (4.63)
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4.4 Application

Theorem 4.19. Let Q) be a two-dimensional polygonal domain with exterior boundary de-
noted by L'y and internal connected components denoted by I',, with q € [1,Q]. There exists a
constant C depending only on ) and 0* defined by Definition 4.1, such that for any discrete
vector field (u;);epn,y) withu-n=0 on I and (u-7,1)p, 5, =0 for all ¢ € [1,Q)], there holds

[ullp < C (V"7 ullrp + [IV5 x ullrp) - (4.64)

Proof. Let (u;);ep,) be given withu-n=0onI"and (u-7,1)p,, =0 forall ¢ € [1,Q]. Ac-
Cording to Theorem 4.6, there exists ¢ = (4], O} iep.r+sm kel © = (O U )ieqt,140r) ket K]

and (¢l cF)qepn.q) such that (4.8) holds, the decomposition being orthogonal. Then there
holds
lullb = (0, Vy9)p + (0, V) x ¥)p (4.65)
and
V7 éllp <llullp and ||V x¥l[p = ||Vl < [[ulp. (4.66)

Using the discrete integration by part properties (4.16) and (4.17) in (4.65), we obtain
[ulfh = (Vi - w, 6" )rp + (w-n, @)rp + (Vi x w0 )pp — (w7, 4) 0 (4.67)

In (4.67), both boundary terms vanish. The first because u-n = 0 on I'. As far as the
second is concerned, from (4.11) and the definition of the boundary scalar product (4.6) we

have
~ ~ el +cf
(11 © T, ¢)F,h = (11 © T, ¢)Fo,h + Z (%) (u T, 1)Fq,ha
9€[1,Q)]
so that (4.10) and the fact that (u-7,1)p,, = 0 for all ¢ € [1, Q] allow us to conclude that
(u-7,¢)rp = 0. Thus, we have

allf, = =(Vy" w, 0" )rp + (V7 xw, 0™)pp (4.68)

Using the Cauchy-Schwarz inequality in (4.68), and then applying Theorem 4.11 for ¢ and
Corollary 4.18 for ¢, we get (4.64) from (4.66). O

4.5 Proof of Lemma 4.14

We shall only give the proof of the first inequality in Lemma, 4.14, since the proof of the other
inequality follows exactly the same lines. If the four points (A, B, C, D) are all different, then
we may denote by I the intersection of AC' and BD, and the angle o between the diagonals
AC and BD is different from 0. This is also the case of the angles §; and ~; displayed on
Fig. 4.8. If w is a triangle, up to a rotation, we have that A = B and we set [ = A = B.
Then, the angles «, 1 and 7, are all different from 0 and evaluating the term G in (4.69)
reduces to the evaluation of Hy, which simplifies the proof. Let us go back to the general
case. We set

YD
G / / JIAC — U (yBD)|d.T1dy2 H1 +H2+H3+H4, (469)
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Figure 4.8: x 02y, intersects DC' before it intersects yppypyp, -

where

/ / u" (zac) — u’ (ypp)| drdys,
/ / ju” (xac) — u" (ysp)| da1dys,,

Yyr xr
:/ / |u xAc)—u (yBp)| dz1dys,
YB TA
v pee -
]—]4:/ / |u (xAc)—u (yBD)|dx1dy2‘
YB xrr

We only estimate the first term in the right-hand side of inequality (4.69), since the other
may be treated similarly. For any zac € IC and ygp € ID, let xp (resp. yp) be the
intersection of DC' with the straight line going though x4¢ (resp. ypp) and parallel to the
segment [/ D] (resp. [IC] ), and let zp, (resp. yp,) be the intersection of I D (resp. IC) with
the straight line going through x,; (resp. zp) and parallel to the segment /C (resp. ID).
Then, we shall examine two cases, according to where the broken line xscxp )y, intersects
with the broken line yppypyp, at point V.

Case 1: The broken line z4cx )y, intersects DC' at xy, before it intersects the broken
line ygpypyp,, (see Fig. 4.8). Then, using the triangle inequality leads to

" (zac) — u" (ypD)| < |u (wac) — u' (war)| + [u” (war) — u" (V)]
+[u (N) =" (yp)| + |u" (yp) — u(ysp)|.
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Let the function y; from R? x R? to {0,1} be defined by

1 it [yl N A # 0
Xil@y) = {0 if [x,y)NA; =10 (4.70)

—
Recalling once again the notation v; = [(V u"); - Gi,(;Gir(j)|, we have that
J J
lu” (zar) — u” Z (2, N)v; SZXj(xM,le)Uj, (4.71)

due to the fact that since N € [xprxay| then x;(zar, N) < xj(@ar, Tar, ).
Similarly, we obtain that

J
W (N) =" (yp)l <D x5 (we,yp) ;. (4.72)
j=1
We also have
J
0" (zac) — u" (@a)| <D xj(@ac, 2ar) vy, (4.73)
j=1
and
J
u” (yp) — u" (ysp)| < ZXj(yBDa yp) j- (4.74)
j=1

From (4.71)-(4.74), we have

[u"(wac) = u" (ysp)| <Y xs(wacs zar) v; + Y x5(@ar 2an) v;

j=1 J=1
J J
+ Z X;(yBD,Yp) v + Z X;(Yp, yp) V)
j=1 j=1

Case 2: The broken line zacxp )y, intersects the broken line ygpypyp, at N before it
intersects DC' (seeFig 4.9). We use the triangle inequality to obtain

' (zac) — u" (yp)| < |u (wac) — u' (N)| + [u” (N) —u" (ysD)|. (4.75)

Similarly to Case 1, since N € [zacxp] and N € [yppyp|, there holds

" (z40) —u” i(Tac, Ta) v (4.76)

ju" (N) = u" (ysp)| i(YysD,yP) v (4.77)

”M“ ”M“
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Figure 4.9: x 02y, intersects yppypyp, before it intersects DC'.

Adding (4.76) to (4.77), and combining with (4.75) we have

J

J
[u” (zac) — u” (ysp)| < Z Xj(Tac, xar) vj + Z Xj(YBD, yP) V).
=1 j=1

So that in both cases, we always obtain

J J

[u"(wac) =" (ysp)| <Y xs(wacszar) vy + Y x5(@ar 2an) v;
j=1 j=1

J J
+ ) xi(usp.yp) v+ Y X We yp) v).

J=1 J=1

We thus always have

YD o
H1 = / / |UT(JIA0) — UT<yBD)| d{L‘ldyg S Ll + LQ + L3 + L4, (478)
yr xr
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Y

N G -
I J-(j:l_ X

Figure 4.10: How to estimate the term fflc Xj(Tac, xa)day.

where Ly, Lo, L3, and L4 are defined as follows:

YD xc J
L, = / / ZXj(xAc,l'M) Ujdxldy27
yr I =1

T

yp rro
Ly = / / ZXj($M,$M1)Ujd$1dy27
yr I =1

xT

yp pzc 7
Ly = / / > Xilysp, yp) vidzidys,
yr T =1

yp prc
L4=/ / E X; (yp, yp,) vidzidys.
yr I j=1

x

Observing that x;(z ¢, za) only depends on variable z, we find

vo I
Ly <(yp — yz)/ ZXJ(I'ACJUM) vjdry
I j=1

T

J e
= (yp — yr) Z/ Xi (@ ac, Tar)dx1v;.
j=1 7

Let us take a look at Fig. 4.10 and its associated notations. Simple geometrical arguments
show that

cosan _ cosa | Al

zc
/ Xj(Tac, xm)dry =: dy = dycosay = d

- sin v sin v
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Y

5

1 >yd,

By
B> ¢

| ~d, X

Figure 4.11: How to estimate the term f;;c X (T, o, )dxy.

This results in

J
COS (¢
Ly < (yp — yr) Smal (Z |Aj|vj> : (4.79)

Jj=1

Moreover, there holds

zc J
Ly < (yp — yl)/ ZXj($M>$M1)Ujd1’1
I j=1

x
J zo
= (yD - y1> Z/ Xj(xM,le)dxlvj.
Jj=17%1

Let us take a look at Fig. 4.11 and its associated notations. Simple geometrical arguments
show that

zc
CoSs (o
Xj(@am,xan)dey = dy = dycosay = d3—
T S v
I
J cos vy Sin 7y, J cos o sin 7y, L Cosa sin y1| A
= dy———— =d5— - < - - :
sin « sin « sin (34 sin « sin (4

So that there holds

. J
COS (¥1 S1n
j=1

sin « sin (34
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Similarly,

J
COS (x9
Ls < — Ailv: | .
3 = SinO{ (I‘C SEI) <Z| J’U])

J=1

) J
COS (g sin 31
L, <— — E Ailv; | .
4= sin «v sin 7y, (xc xl) (j:l | ]|U]>
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(4.81)

(4.82)

From (4.78)-(4.82), we conclude that there exists a constant C' depending only on the geom-

etry of w (since the angles depend only on the geometry of w) such that

H, < Cdiam(w) (Z |Ajlvj) :

j=1

Using similar techniques, we also obtain that

J
H, < Cdiam(Q) (Z |Ajlv; ],
j=1

J

Hs < Cdiam(Q) (Z |Ajlv; |
j=1

J

Hy < Cdiam(2) < |Aj|v;

=

—

Combining (4.83)-(4.86) with (4.69), we have

YD ro J
/ / lu” (z40) — v (ypp)| dridyy < Crdiam(Q) (Z |Aj|vj> :
YB TA j=1

where C; = 4C, which concludes the proof of Lemma 4.14.

(4.83)

(4.84)

(4.85)

(4.86)
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