Étude de l'impact de la modulation de la T149 NEUROG2 sur les caractéristiques fondamentales de la neurogenèse corticale humaine - TEL - Thèses en ligne
Thèse Année : 2024

Étude de l'impact de la modulation de la T149 NEUROG2 sur les caractéristiques fondamentales de la neurogenèse corticale humaine

The role of NEUROG2 T149 phosphorylation site in the developing human neocortex

Julien Pigeon

Résumé

Neocortical expansion throughout evolution has been responsible for higher-order cognitive abilities and relies on the increased proliferative capacities of cortical progenitors to increase neuronal production. Therefore, in gyrencephalic species such as humans and primates, where the neurogenic period is protracted, the regulation of the balance between progenitor maintenance and differentiation is of key importance for the right neuronal production. The control of this balance in the dorsal telencephalon, which gives rise to the neocortex, is mediated by feedback regulation between Notch signaling and the proneural transcription factor Neurogenin2 (NEUROG2). As the expression of NEUROG2 alone is sufficient to induce neurogenesis in the neocortex, its regulation at the gene level has been extensively studied in mice. However, recent findings highlight that regulation at the protein level through post-translational modifications can profoundly influence protein activity and stability. Indeed, the modulation of the conserved NEUROG2 T149 phosphorylation site in the developing mouse neocortex results in an altered pool of progenitors and number of neurons in the deep and upper layers. Nevertheless, it is not known how such post-translation modification regulates NEUROG2 activity in the development of the human neocortex under endogenous levels and its contribution to the development of the neocortex.We hypothesize that modulation of the activity of the transcription factor NEUROG2 through this T149 phosphorylation site may regulate the pace of the temporal advance of human cortical progenitors down the differentiation landscape.To test this hypothesis in humans, we used 3D cortical organoids derived from CRISPR/Cas9 engineered iPSCs lines to study cortical neurogenesis. Before diving into the role of post translational modifications regulating NEUROG2 activity we started by confirming, for the first time in humans that Neurogenin2 is indeed the gateway gene of neuronal differentiation. In differentiated iPSCs NEUROG2 KO clones, we observed reduced proportions of neurons after 70 and 140 days in vitro at both the mid and late stages of cortical organoid development. This phenotype is accompanied by a ventralization of these dorsal forebrain organoids with a downregulation of the genes encoding for the dorsal forebrain identity and an upregulation of the genes encoding for the ventral forebrain identity. Knowing that Neurogenin2 is required for cortical neurogenesis, we next studied how the loss of NEUROG2 phosphorylation site T149 by its replacement with an Alanine (T149A) at endogenous levels alters neuronal production. To this end we combined live imaging of radial glial clones, immunohistochemistry for key cell fate markers, machine-learning based cell type quantification, transcriptional activation and stem cell reprogramming assays, RNA sequencing and chromatin immunoprecipitation to analyze cortical neurogenesis. We found, on the one hand, the TA/TA mutant does not change the pattern of NEUROG2 expression in both radial glial cells and intermediate progenitors, nor its ability to bind and activate target genes or reprogram human stem cells to neurons. However, the TA/TA mutant radial glia switch their division mode from proliferative to neurogenic and generate more neurons at both the mid and late stages of cortical development in organoids. Mechanistically, we found that this phenotype is accompanied by an upregulation of the genes encoding the organization and the movements of the primary cilium of radial glial cells, which are downregulated in the NEUROG2 KO clones. These results suggest a strong link between the primary cilium, Neurogenin2, and its phosphorylation profile with the regulation of neurogenesis in human cortical organoids.
Le développement des fonctions cognitives supérieures observée au cours de l'évolution des mammifères, repose sur la capacité des progéniteurs corticaux à augmenter leur production neuronale et ainsi étendre la surface du neocortex. Chez les mammifères dit gyrencéphaliques, où la période de production neuronale est allongée, la régulation du type de division, proliférative ou neurogénique, des progéniteurs corticaux est d'autant plus importante pour garantir l'accumulation de neurones. Dans le télencéphale dorsal, à l'origine du néocortex, c'est l'articulation de la voie de signalisation Notch et du gène proneural Neurogenin2 (NEUROG2) qui contrôle le choix de division. L'expression de NEUROG2 à elle seule étant suffisante pour induire la production de neurones dans le néocortex, sa régulation au niveau génique a déjà fait l'objet d'études approfondies chez la souris. Cependant, de nouveaux travaux démontrent qu'au niveau protéique, les modifications post-traductionnelles peuvent aussi influencer profondément l'activité et la stabilité des protéines. Ainsi, la modulation du site de phosphorylation T149 de NEUROG2 dans le néocortex murin perturbe les proportions de progéniteurs corticaux et les différents sous types de neurones des couches profondes et superficielles qu'ils produisent. Toutefois, il n'est pas connu comment ces régulations pourraient moduler l'activité de NEUROG2 sous des niveaux endogènes et comment cela pourrait affecter le développement du néocortex humain.Nous avons donc supposé que la régulation de l'activité de NEUROG2 via la modulation du site de phosphorylation T149 pourrait réguler la différenciation des progéniteurs corticaux en neurones dans le développement cortical humain.Afin de tester cette hypothèse, nous avons utilisé des organoïdes corticaux issus de la différenciation de cellules iPS génétiquement remodifiées. Nous avons commencé par étudier le rôle de NEUROG2 dans la différenciation neuronale des progéniteurs en induisant la perte d'expression de NEUROG2 grâce aux ciseaux moléculaires CRISPR/Cas9. Nous avons observé une diminution des proportions de neurones à des stades intermédiaire et avancé du développement des organoïdes corticaux. A cela s'ajoute une ventralisation des progéniteurs corticaux via la diminution de l'expression de gènes leur conférant une idendité dorsale et une augmentation de ceux leur conférant une identité ventrale. Ainsi, grâce à la validation du rôle crucial de NEUROG2 dans la neurogénèse corticale chez l'humain, nous avons étudié comment la perte du site de phosphorylation T149 de NEUROG2 via son remplacement par une Alanine, T149A affecte la production neuronale dans le néocortex humain.Pour cela, nous avons combiné de l'imagerie sur cellules vivantes et fixées dont nous avons quantifiés les proportions avec des algorithmes d'apprentissage profond combinées à des techniques de reprogrammtion cellulaire ainsi que du séquencage ARN et de la ChIP pour étudier les propriétés de notre NEUROG2 T149A mutant sur la neurogeneses corticale. Nous avons observé que la mutation T149A homozygote ne change ni l'expression de NEUROG2 dans les cellules de la glie radiaire ni dans les progéniteurs intermédiaires, ni sa capacité à se lier à l'ADN et à activer l'expression de ses gènes cibles. Cependant, nous avons observé que les cellules de la glie radiaire effectuent plus de divisions neurogéniques, produisant donc plus de neurones, aux stades intermédiaire et avancé du développement des organoïdes corticaux. On note d'autre part que ce phénotype s'accompagne d'une augmentation de l'expression des gènes responsables de l'organisation structurale et fonctionnelle du cil des cellules de la glie radiaire. Or, ces gènes sont moins exprimés dans les mutants NEUROG2 KO suggérant un lien fort entre ce cil, NEUROG2, son profil de phosphorylation, et la régulation de la neurogénèse corticale chez l'humain ce qui pourrait donc constituer un potentiel mécanisme moléculaire.
Fichier principal
Vignette du fichier
138201_PIGEON_2024_archivage.pdf (34.6 Mo) Télécharger le fichier
Origine Version validée par le jury (STAR)

Dates et versions

tel-04645416 , version 1 (11-07-2024)

Identifiants

  • HAL Id : tel-04645416 , version 1

Citer

Julien Pigeon. Étude de l'impact de la modulation de la T149 NEUROG2 sur les caractéristiques fondamentales de la neurogenèse corticale humaine. Life Sciences [q-bio]. Sorbonne Université, 2024. English. ⟨NNT : 2024SORUS092⟩. ⟨tel-04645416⟩
112 Consultations
23 Téléchargements

Partager

More