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Abstract v

Model reduction for forward simulation and inverse problems: towards non-linear ap-
proaches

Abstract
Model reduction is a technique used to compute fast and accurate approximations of physical sys-
tems’ states when they are described through parametric Partial Differential Equations (PDEs).
In the classical setting a linear subspace is carefully built, in an offline stage, using a set of high
resolution descriptions of possible states of the system of interest. Afterwards the subspace is used
to quickly and accurately solve forward or inverse problems. It is known that these strategies can
approximate well the solution of elliptic PDEs but they fail on hyperbolic PDEs or when states
present jump discontinuities. In this context, this thesis focuses on developing efficient non-linear
strategies to tackle the limitations of linear approximation spaces.
Chapter 2 extends the approximation guarantees offered by linear spaces for the stationary diffusion
equation when extreme levels of contrast in the diffusivity constants are possible.
Chapter 3 presents a theoretical framework to analyse the effectiveness of non-linear strategies for
inverse problems while Chapter 4 focuses on the practical implementation of high-order techniques
to locally reconstruct interfaces from cell average data. In Chapter 5, we show a method to accelerate
the reconstruction of 1d characteristic functions by a machine learning strategy trained to learn a
mapping from lower order Fourier coefficient values to higher order ones. In Chapter 6, we turn the
attention to another learning technique, known as Physics Informed Neural Networks (PINNs), to
tackle a linear advection-diffusion equation when the diffusivity vanishes and shocks appear.
Finally, in Chapter 7, we apply a combination of linear and non-linear methods to a real case scenario
in which the objective is to predict the pollution on every point in a city using heterogeneous sources
of data like temporal pollution series on specified locations, the geometry of the streets, and Google
Maps traffic information.
Chapters 2, 3, 5 and 6 are based on the published articles [51, 50, 55, 20] respectively while Chapters 4
and 7 are based on the submitted articles [56, 67].

Keywords: Non-linear approximation, Reduced order modelling, Numerical approximation

Laboratoire Jacques-Louis Lions
Sorbonne Université – Campus Pierre et Marie Curie – 4 place Jussieu – 75005 Paris –
France



vi Abstract

Réduction de modèle pour des problèmes directs et inverses: vers des approches non
linéaires

Résumé
La réduction de modèle est une technique utilisée pour calculer des approximations rapides et pré-
cises des états de systèmes physiques, décrits par des Équations aux Dérivées Partielles (EDP)
paramétriques. Dans le cadre classique, un sous-espace linéaire est construit dans une étape offline
en utilisant un ensemble de descriptions à haute résolution des états possibles du système d’intérêt.
Ensuite, le sous-espace est utilisé pour résoudre rapidement et avec précision des problèmes directes
ou inverses. Il est connu que ces stratégies peuvent bien approximer la solution des EDP elliptiques
avec peu d’éléments de base mais échouent sur les EDP hyperboliques ou lorsque les états présentent
des discontinuités. Dans ce contexte, cette thèse se concentre sur le développement de stratégies non
linéaires efficaces pour aborder les limitations des espaces linéaires.
Le Chapitre 2 étend les garanties d’approximation offertes par les espaces linéaires pour l’équation
de diffusion stationnaire pour des niveaux extrêmes de contraste dans les champs de diffusion.
Le Chapitre 3 présente un cadre théorique pour analyser l’efficacité des stratégies non linéaires pour
les problèmes inverses tandis que le Chapitre 4 se concentre sur la mise en œuvre pratique des
techniques d’ordre élevé pour reconstruire localement des interfaces à partir des moyennes. Dans le
Chapitre 5, nous montrons une méthode pour accélérer la reconstruction de fonctions caractéristiques
en 1d par une stratégie d’apprentissage automatique entraînée à fournir une correspondance entre
les valeurs des coefficients de Fourier d’ordre inférieur et celles d’ordre supérieur. Dans le Chapitre 6,
nous portons notre attention sur une autre technique d’apprentissage connue sous le nom de réseaux
neuronaux informés par la physique (PINN) pour traiter une équation de transport-diffusion linéaire
lorsque la diffusivité tend vers zéro et que des chocs apparaissent.
Enfin, dans le Chapitre 7, nous appliquons une combinaison de méthodes linéaires et non linéaires
à un scénario réel dans lequel l’objectif est de prédire la pollution en tout point d’une ville en
utilisant des sources de données hétérogènes telles que des séries temporelles de pollution sur des
emplacements spécifiques, la géométrie des rues et les informations de traffic de Google Maps.
Les Chapitres 2, 3, 5 et 6 sont basés sur les articles publiés [51, 50, 55, 20] tandis que les Chapitres 4
et 7 sont basés sur les articles soumis [56, 67].

Mots clés : Approximation non-lineaire, Modeles reduites, Approximation numérique
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Wishing to say too many things I tried and failed; consistently. So I took the pieces
and made this weird collage hoping you will infer the rest out of this broken mirror.

Desde la Pampa

Aquí me pongo a cantar
al final de esta tarea

que de un mar-rio al Sena,
¡aventura estraordinaria!,
me trajera una mañana,

al encuentro de esta tierra.

Pido a las leyes del tiempo
que rigen cada momento
me permitan expresar

la gratitud que hoy siento
por tanta gente y sus gestos
que ahora son en mi andar.

The visible hand

It is not an invisible hand
the one that constantly guides our lives.

Neither is that heavy impostor
we are used to name by “I”.

It is a very visible one,
though its length may extend

far centuries back afar,
one just have to look behind
to see the faces and the smiles

of those who stand to help us rise.

Where should I start?
Where should I finish?

The task has, indeed, no limits
as the self is nothing more
than one delayed melody
in the world’s vast Fuga.

By looking at that mirror
I see, of course, my good advisors,

Albert, Olga;
Not many have the chance

to weekly meet
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Discuss and speak
Receive advice and consider, all the while,

one’s owns views on the things we had to do.

Albert, merci pour ta patience et passion pour les mathématiques; toujours chaque
discussion commencé avec un pointilleux rappel des notations, des motivations que petit à
petit j’espère avoir fini pour comprendre. Pour la bienveillance, toujours attentif a que je
me trouve bien. Pour me laisser la liberté d’ explorer tant de sujets intéressants et à mon
propre rythme. Pour me montrer le chemin qu’amène vers l’écriture scientifique, c’était
comme voir Borges travailler, j’espère avoir appris au moins une partie de ça.

Olga, gracias por crear un espacio de discusión cálido al que acudir cuando el en-
tendimiento se me ofuscaba. Por tomarte siempre el tiempo de explicarme los mecanismos
de métodos y teoremas que me resultaban ajenos. Por alentarme y motivarme, por resaltar
lo bueno para poder trabajar en mejorar lo malo.

Merci Rachida, Damiano, Bruno et Anthony pour accepter de faire partie de mon jury
de thèse. Aussi, à Anthony pour chaleureusement m’offrir une possibilité pour la suite
avec un univers de projets intéressants et motivants que j’espère bientôt explorer. Merci
Damiano pour des amicales discussions dans différentes conférences. Merci d’avoir organisé
avec Olga et Virginie le CEMRACS 2021, une expérience très fatigante pour vous mais
unique et inoubliable pour nous que je garde avec beaucoup d’affection avec l’apprentissage
et les amis qui se sont forgés depuis le CIRM. A Bruno pour le bon humeur, le CEMRACS
2023, les conviviales discussions pendant mon temps au Labo et pour nous amener vers
l’existence de LVIRA.

Merci Sébastien pour rapporter la thèse, et nous apporter les références derrière la longue
histoire de LVIRA. Gracias Paco por el entusiasmo, la motivación y la amabilidad con las
que me invitaste a descubrir Valencia y algunos de sus maravillosos rincones. Por invitarme
a participar de la ICIAM. Y por las discusiones matemáticas felizmente interminables que
me dieron la confianza que a veces se me escabullía. Bueno, y gracias a ti ahora entiendo
WENO.

Merci Simon et Julien pour faire partie de mon comité de thèse. A Luis pour ta préoccu-
pation pour l’environnement et ta bonne humeur. Yvon pour des projets super intéressants
et variés. Emmanuel pour diriger le labo. A Catherine, Malika, Salima, Erika, Corentin
pour résoudre, m’aider ou m’orienter avec toutes les procédures administratives. Kash et
Hugues pour résoudre mes problèmes informatiques. Nora pour l’amabilité et la gestion de
la bourse de l’ISCD. Corentin et Jean-François pour résoudre mes problèmes avec l’école
doctorale.

University, universality, bridges and family

I wouldn’t be here if it wasn’t for the free, public and quality education received back
in Argentina which is only possible by the combined effort of a nation in the hope that
its children would have better chances and live in a future free from the chains of unjust
life-long debt and slavery. For similar reasons, I thank Alexandra Elbakyan (my secret
hero) for fighting for a world with knowledge and science equally accessible for everyone.
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I wouldn’t be here neither if it weren’t for Dominique, aujourd’hui je peux le dire en
français, merci pour voir, il y a 5 ans maintenant, quelque chose en moi pour penser à m’offrir
un lien et construir le pont qui m’a amené jusqu’à ici. Je ne serai pas le moi que je suis
aujourd’hui, je serai un autre mais pas celui ci. Et aussi, merci Matt, pour la bienveillance,
y junto a Leo por permitirme hacer mis primeros pasos de trabajo e investigación en Aristas
con tantos proyectos interesantes y variados. Y así mismo, aquellos consejos que me dieran
una tarde sobre cómo pensar y afrontar un doctorado o, en fin, cualquier tipo de proyecto.

Claro está que sin mi mamá ni mi papá o mi ¡Emanitooo! nada de esto sería posible.
Desde la fascinación por la ciencia y la naturaleza alimentada mirando estrellas, caminando
Andes, y fogoneando el espíritu reflexivo con preguntas, problemas y experimentos que
seguro tenían que incluir ondas en algún momento. El cariño, la lectura de cuentos, la
libertad de explorar nuestra existencia aunque eso nos llevara lejos de casa. La posibilidad
de poder hablar y contar lo que nos pasa y confiar que buscaremos soluciones en vez de
culpables. En fin, un conjunto innumerable de gestos y sensaciones que puedo llamar hogar,
por ser cálido como el fuego y sagrado como el de los antiguos Lares.

La buela que vuela vuela por mates, pastas, y tardes de bella Pampa. A Celia y los asa-
dos sancochados. A Silvio por maravillarme de chico con tus viajes a la Antártida (¿Sabías
que antes quise ser paleontólogo también?). A Juli y Chachi por charlas, trucos, siempre
traernos y llevarnos. A mis primas, Cami, Pau y Coti por interminables juegos y maravil-
losas vacaciones a la sombra de los Caldenes.

Paris

Georges merci de m’enseigner le français.
Muchachada, gracias por hacer de los tumultuosos años del CoVid y de la llegada a

París una experiencia fantástica. Ana Guevara, la incansable capitana, siempre lista a todo.
Gracias por las caminatas por el Sena y por estar presente a la escucha en los momentos
álgidos. Emilio, gran inventor del café de las 5 junto con su contracara, la meditación
sigilosa. Ramon, fiel al crous tardío, que ya extrañamos con brío, siempre listo para la
Barge, un football, un tenis o una amigable caminata. Suney, guerrera cual Asuna en SAO,
admiro tu valentía (y tu inigualable cocina). Claudia, las discusiones políticas y filosóficas
nos han llevado siempre a los límites de lo explorable, espero que podamos continuarlas en
el futuro y mejor si es en torno a alguno de tu arsenal de juegos! Paula, por caminatas en
París o Lyon. Jesus, por el cariño que siempre irradias, la música que siempre llevas. A
Nicolás por las frases que aun en constante renovación siempre suman 42. Y esa pasión por
las lenguas que, sin embargo, se muestra bajo la forma de una.

Vamos piratas! Giorgia e Noemi, grazie por tanta bella pazzia nella teuf e nel Portogallo.
Emma e Chiara per il bello spirito.

Violeta por hacerme descubrir museos, secretos recovecos de París y convertirte en mi
Invaders nemesis. Gaston y Mona por la familiaridad, la sencillez y la fuerza que derraman
y con la que afrontan la indomable existencia. Nicolas K, por pasarnos un contacto clave.

Elena grazie per la tua presenza piena di luce. Maria, madame de las madames, queen
de las queenes, gracias por estar. Estar cuando todo parecía irreal, por comprender y
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ayudarme a comprender. Y también por darme bella literatura para leer. Nilo, siempre en
mil proyectos y aun así presente ante cualquier dificultad. Gracias por tu bella amistad y
por abrir las puertas de tu casa. Cristobal, siempre listo para un matecito y conversaciones
que me hacen sentir en casa, en la querida Latinoamérica. Apolline, merci pour le rire,
pour les secrets de Paris et ses alentours, pour venir et partager avec nous.

Roberta, Maria et Adrian, pour le projet CEMRACS mais encore plus pour des sorties,
luttes de végétaux, une longue balade à vélo qui m’a presque tué avec les diaboliques pedales
automatiques. Siwar on a réussi! Et maintenant on doit fêter! Gaspard, pour m’enseigner
ce jeux de cartes. Laurent pour tant d’histoires, de blagues et de belles musiques. Giulia
per tante risate e noi convidare la bella musica nel CEMRACS. Pierre M. pour m’inviter
à parler à Reims, on a encore un voyage à vélo à faire! Mi-Song, Matthias pour une belle
balade à Cassis et le temps partagé au CEMRACS. Avec Etienne, Ludovica and Beatrice,
et also Haibo, Mateo and Elham. Y Sara siempre atenta a todo. Louis-Pierre et une longue
longue balade.

Antoine, merci pour les merveilleuses rencontres dans Le Salon remplies d’ amitié,
musique, fromage, pendus. . . Pour prendre toutes les responsabilités au labo y siii es a
la izquierda. Alexiane et Pauline pour de belles et longues discussions au bureau. Sylvain,
tes apparitions surprises et amicales. Jana, les lundis Mamba et les longues discussions.
Andrea, corta pero bella presenza. JG pour la bonne humeur et le sarcasme. Marcel, Lucia,
Nicola, Alessandro, Archit, now the office will be all yours! Et maintenant le dernier mag-
nifique ajoute au Team Bureau: Nicolai! Le merveilleux conseiller de la Norvège, l’apprentie
de magie noir des GPU bientôt le pouvoir sera a toi. Zheng Ping for the long philosophical
discussions that so easily reach every corner of the world.

Matthieu merci de m’expliquer tant de choses que je ne comprenais pas, sans jugement
et toujours avec un sourire passionné et contagieux pour les mathématiques, les aventures
soit dans la nature, les montagnes ou le vélo. Merci Yvonne de me faire découvrir la
comédie française et tant de discussions amiables au labo. Et merci de partager avec moi
la découverte de la Corée et du Japon!

Jules G. pour organiser les journées 1A et maintenir le livret d’accueil. Anais pour
l’ambiance chaleureuse et Anatole pour la magie, le trantranzai, et codiriger le thé du labo,
cierto?. Rui to take on the lab tea as well as for the multiple advice and sharing the CS
conference, and sorry for the interminable walk, upsi. Now is Ruikang and Eleanor’s time.
By the way, thanks Eleanor for the positive vibe.

Thomas, pour le sourire, certain sticky song that starts like this: “What do we do...
mathemaaatics”. Et merci de me montrer une certaine porte en bois. Robin, toujours malin,
pour nous bien représenter. Jules P. pour insister infatigablement, certaines fois avec raison,
sur tout sujet, toujours dans le bon esprit de maintenir allumé la flamme du labo. And now
the task is continued by the new marvelous team: Aleksandra, Aloïs, Federica & Siguang.

Charles pour certaines chansons recueillis dans un papier. Pierre, tes blagues et sar-
casmes avec références à l’intérieur de la culture française de 5 niveaux de profondeur. Lucas
P. pour m’amener a la découverte de Manim (et sa malédiction). Ludovic et Zhe Chen, et
Guillaume avant eux pour faire du GTT une réalité. Et Ioanna, pour les infomaths.

Roxane pour la conscience de lutte et nous rappeler des réunions pour les doctorants



xiii

d’autoformation pour réfléchir à comment faire une science plus proche de la société. An-
namaria per una giornata de scienze e educazione.

Allen, discusiones sobre locos dibujos que se vuelven notaciones. Liang Ying your incom-
parable knowledge on paintings and french culture. Ming Yue always with a smile. Lucas
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poco más a nosotros mismos. Sin este pilar yo sería definitivamente otro, probablemente
mucho más perdido. Y también a Walter, Ceci, Juan, Yara, Luz, Gisela, Jorge, Diana,
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reencuentran felizmente; la más viajera. ¡Hasta Nueva Zelanda tenemos que ir a visitarte
ahora! Pili y los adorables mellis, gracias por tanto cariño. Tomas, buenos y calmos conse-
jos, referencias memeticas de orden 5 o más, siempre bello el reencuentro. Vicky ya un día
volveremos a levantar un foque, evitar la botavara y poner rumbo en ceñida compartiendo
la pasión por los veleros. Nacho tu sarcasmo y sentido del humor siempre hacen reír. Nico
P, por tus imitaciones e historias sin igual. Sofi siempre sonriente me devuelves la esperanza
en la gente. Belu, acroyogista y luchadora, por una química en armonía con el ambiente.



xiv

Gonzalo, un crack, en mil cosas y siempre encontrando la risa; que decir más que tuki.
Ara, por transmitirme esa pasión por las estrellas, por una didáctica sin par. Por hacer
posible que pudiéramos ver un eclipse de sol; por estar siempre lista a ayudar. Yami,
corazón libre, siempre con un nuevo viaje en la manga, ya en bici o en canoa, agradezco
que aunque pasa el tiempo y estamos lejos la amistad perdura aguardando siempre el cálido
reencuentro.

El “Jamón es una lechuga” tampoco podía faltar con sus variadas discusiones y amis-
tades que ya se acercan a las dos décadas. Mati, por los libros que no te devolví. Eri, aunque
lejos, siempre dispuesta a ayudar. Juan, por no olvidar “Zamba para olvidar” y por ¡Viva
el Rey León ... de Francia!. Wan por dar origen a tan desconcertante nombre. Fabi, por
tantas discusiones a la distancia sobre humanidades digitales, historia, NLPs, epistemología
y más; siempre me mantienen entusiasmado y pensando. Mañu, viejo, antiguo, rupestre
amigo a la antigua, siempre con toda esa energía contagiosa.

Facu, viajero infatigable, apasionado por la ciencia y el mundo, me alegra que nuestros
caminos se hayan podido cruzar más a menudo de lo que 9 horas de diferencia horaria
preveían. Caminatas que nos llevaron de Machu Picchu a París y Noruega y ya veremos
que le seguirá. En fin, gracias por la amistad.

Nico T., maestro Jedi, ya encontraremos el camino hacia la nueva ciencia.

Finalmente hemos llegado
al corazón de mi ciencia,
la última reverencia.
Búscala en la ausencia
ilógica en apariencia

mas lógica por prudencia.
Lunai, Rosai,

para vos, la existencia.



Contents

Abstract v

Contents xv

1 Introduction 1
1.1 Linear reduced modelling for forward simulation and inverse problems . . . 1
1.2 Towards non linear model reduction, motivation, objective and outline of this

thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Linear reduced order modelling for high contrast diffusivity . . . . . . . . . 10

1.3.1 Compactness and convergence . . . . . . . . . . . . . . . . . . . . . 11
1.3.2 Forward modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.3 Inverse problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Non-linear approximation spaces . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5 High order non-linear interface reconstruction strategies . . . . . . . . . . 19
1.6 Non-linear reduced basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.7 Physics Informed Neural Networks for singularly perturbed convection-diffusion

equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.8 Modelling pollution at a city scale . . . . . . . . . . . . . . . . . . . . . . . 25
1.9 Python package for reproducible research . . . . . . . . . . . . . . . . . . . 27

2 Reduced order modelling for elliptic problems with high contrast diffu-
sion coefficients 29
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.1 Reduced models for parametrized PDEs . . . . . . . . . . . . . . . . 29
2.1.2 Parametrized elliptic PDEs . . . . . . . . . . . . . . . . . . . . . . . 31
2.1.3 High constrast problems . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Uniform approximation in relative error . . . . . . . . . . . . . . . . . . . . 34
2.2.1 Limit solutions and the extended solution manifold . . . . . . . . . . 34
2.2.2 A compactness result . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3 Approximation rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3.1 Polynomial approximation on inner rectangles . . . . . . . . . . . . 41
2.3.2 Polynomial approximation on infinite rectangles . . . . . . . . . . . 44

xv



xvi Contents

2.3.3 Approximation rates and n-widths . . . . . . . . . . . . . . . . . . . 48
2.4 Forward modelling and inverse problems . . . . . . . . . . . . . . . . . . . 51

2.4.1 Galerkin projection . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.4.2 State and parameter estimation . . . . . . . . . . . . . . . . . . . . . 53

2.5 Numerical illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.5.1 Parameter selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.5.2 Influence of dimensionality and geometry . . . . . . . . . . . . . . . 60

3 Non-linear approximation spaces for inverse problems 63
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.1.1 The recovery problem . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.1.2 State estimation with reduced models for parametrized PDE’s . . . 64
3.1.3 The PBDW method . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.1.4 Towards nonlinear approximation spaces . . . . . . . . . . . . . . . . 66
3.1.5 Objective and outline . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2 Nonlinear reduction of inverse problems . . . . . . . . . . . . . . . . . . . . 69
3.2.1 A general framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2.2 The best fit estimator . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.3 Linear observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.3.1 Optimal norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.3.2 The generalized interpolation estimator . . . . . . . . . . . . . . . . 73

3.4 Shape recovery from cell averages . . . . . . . . . . . . . . . . . . . . . . . 75
3.4.1 The shape recovery problem . . . . . . . . . . . . . . . . . . . . . . 75
3.4.2 The failure of linear reconstruction methods . . . . . . . . . . . . . . 76

3.5 Shape recovery by nonlinear least-squares . . . . . . . . . . . . . . . . . . . 79
3.5.1 Nonlinear reconstruction on a stencil . . . . . . . . . . . . . . . . . . 79
3.5.2 Global nonlinear reconstruction . . . . . . . . . . . . . . . . . . . . . 82
3.5.3 Numerical illustration . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.6 Relation to compressed sensing . . . . . . . . . . . . . . . . . . . . . . . . 84
3.6.1 Compressed sensing and best n-term approximation . . . . . . . . . 84
3.6.2 Stability and the null space property . . . . . . . . . . . . . . . . . . 87
3.6.3 The case of ℓp norms . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.A Proof of Proposition 3.5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4 High order recovery of geometric interfaces from cell-average data 97
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.1.1 Reconstruction from cell-averages . . . . . . . . . . . . . . . . . . . . 97
4.1.2 Reconstruction of discontinuous interfaces . . . . . . . . . . . . . . . 100
4.1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.2 Numerical analysis of local recovery methods . . . . . . . . . . . . . . . . . 103
4.2.1 Local approximation by nonlinear families . . . . . . . . . . . . . . . 103
4.2.2 Near optimal recovery from cell averages . . . . . . . . . . . . . . . 108

4.3 Reconstruction by optimization (OBERA) . . . . . . . . . . . . . . . . . . 110
4.3.1 Presentation of the method . . . . . . . . . . . . . . . . . . . . . . . 110



Contents xvii

4.3.2 Analysis of the recovery error . . . . . . . . . . . . . . . . . . . . . . 112
4.4 Reconstruction on oriented stencils (AEROS) . . . . . . . . . . . . . . . . 115

4.4.1 Presentation of the method . . . . . . . . . . . . . . . . . . . . . . . 115
4.4.2 Analysis of the recovery error . . . . . . . . . . . . . . . . . . . . . . 119

4.5 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.5.1 Recovery of smooth domains . . . . . . . . . . . . . . . . . . . . . . 120
4.5.2 The treatment of corner domains . . . . . . . . . . . . . . . . . . . . 126
4.5.3 Finite volume evolution in time . . . . . . . . . . . . . . . . . . . . . 129

4.6 Conclusion and perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.A The orientation test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.A.1 The case of a linear interface . . . . . . . . . . . . . . . . . . . . . . 131
4.A.2 A perturbation analysis . . . . . . . . . . . . . . . . . . . . . . . . . 133

5 Nonlinear compressive reduced basis approximation for PDE’s 135
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.2 Linear and nonlinear notions of m-widths . . . . . . . . . . . . . . . . . . . 137
5.3 Nonlinear compressive Reduced Basis approximation . . . . . . . . . . . . 139
5.4 Analysis of a model framework : periodic step functions . . . . . . . . . . 141
5.5 Numerical illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6 Deep learning-based schemes for singularly perturbed convection-diffusion
problems 155
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.1.1 Scientific context and goals . . . . . . . . . . . . . . . . . . . . . . . 155
6.1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.2 A singularly perturbed convection-diffusion equation . . . . . . . . . . . . 157
6.2.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.2.2 General formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.2.3 Vanilla (V) formulation . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.2.4 Weak variational (W) formulation . . . . . . . . . . . . . . . . . . . 160
6.2.5 Rescaled formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.2.6 Summary of the methods . . . . . . . . . . . . . . . . . . . . . . . . 163

6.3 Neural networks based numerical schemes . . . . . . . . . . . . . . . . . . 164
6.3.1 General principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.3.2 Neural Network classes of functions . . . . . . . . . . . . . . . . . . 165
6.3.3 Sampling schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.3.4 Comparison with finite element schemes . . . . . . . . . . . . . . . . 168

6.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.4.1 Test case and comparison criteria . . . . . . . . . . . . . . . . . . . . 169
6.4.2 Our code and practical implementation details . . . . . . . . . . . . 170
6.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.4.3.1 Impact of the number K of training points . . . . . . . . . . 171
6.4.3.2 Impact of Machine Precision . . . . . . . . . . . . . . . . . . 174
6.4.3.3 Impact of Sampling Strategy . . . . . . . . . . . . . . . . . . 175



xviii Contents

6.4.4 Conclusions from the numerical experiments . . . . . . . . . . . . . 176
6.5 Future research directions and extensions . . . . . . . . . . . . . . . . . . . 176
6.A l2 error plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7 State estimation of urban air pollution with statistical, physical, and
super-learning graph models 179
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.1.1 Background and motivation . . . . . . . . . . . . . . . . . . . . . . . 179
7.1.2 Urban air pollution modelling . . . . . . . . . . . . . . . . . . . . . . 180
7.1.3 Contributions and layout of the paper . . . . . . . . . . . . . . . . . 181

7.2 Available data and pre-processing . . . . . . . . . . . . . . . . . . . . . . . 182
7.2.1 Pollution sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
7.2.2 Meteorological conditions . . . . . . . . . . . . . . . . . . . . . . . . 182
7.2.3 Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
7.2.4 Graph of Paris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
7.2.5 Pre-processing of traffic data . . . . . . . . . . . . . . . . . . . . . . 186
7.2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

7.3 Reconstruction methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
7.3.1 Spatial average . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
7.3.2 Best unbiased linear estimator . . . . . . . . . . . . . . . . . . . . . 188
7.3.3 Kriging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
7.3.4 Source model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
7.3.5 Physical modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
7.3.6 Super-Learning as a collaborative approach . . . . . . . . . . . . . . 195

7.4 Reconstruction benchmarks and Leave-One-Out . . . . . . . . . . . . . . . 195
7.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
7.6 Conclusion and future works . . . . . . . . . . . . . . . . . . . . . . . . . . 199
7.A Metric graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

Bibliography 203



Chapter 1

Introduction

When working with complex physical systems, we frequently need to have in hand a reli-
able description of their state to take fast but still sufficiently informed decisions. Situations
of this type arise typically in engineering problems, for example, when assessing, via sen-
sors, the state of a machine to decide if a replacement is needed or not, or while planing
new infrastructures with optimized geometries and materials. Costly simulations are usu-
ally needed to attain the sometimes strict accuracy requirements. Therefore, the aim of
this thesis is to develop new strategies for the approximation of system states faster than
conventional solvers and with certified accuracy bounds when possible.

1.1 Linear reduced modelling for forward simulation and in-
verse problems

One way of framing these diverse situations in mathematical terms is by postulating that
the actual state of the system can be described appropriately by an element u ∈ V of
some Banach space. Moreover, we usually have a priori information about the modelled
system reflected formally as a set of conditions or restrictions that u has to satisfy. These
conditions can be made explicit by specifying the membership of u to a subset K of V ,
u ∈ K ⊂ V , for example, by adding a regularity assumption on u. Alternatively, when
modelling physical systems, we usually ask u to be the solution of a certain parametric
PDE (Partial Differential Equation)

P(u, y) = 0,

where P is a differential operator, y ∈ Y ⊂ Rd is the set of parameters defining u = u(·, y)
through P. The parameters y account for physical quantities relevant to the modelling, for
example: the thermal diffusivity, electric conductivity, boundary or initial conditions, the
geometry of the domain, etc. Notice also that u(·, y), as it is the solution of a PDE, it is
actually a function taking values in a space or space-time domain u(·, y) : Ω ⊆ Rn → R.

As guiding examples of what P can be, consider first the linear elliptic equation (central
1
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for Chapter 2)
−div(a∇u)− f = 0 on Ω,

u = 0 on ∂Ω,
(1.1)

with the source term f ∈ H−1(Ω) and

a = a(x, y) = a(x) +
d∑
j=1

yjψj(x) (1.2)

with a and ψj both in L∞(Ω). In this setting, u(·, y) ∈ H1
0 (Ω), and consequently by speci-

fying the vector y we are defining u through P and y.
As a second example, let us take the transport equation (relevant for Chapters 4 to 6)

∂u

∂t
− a · ∇u = 0 on Ω, (1.3)

with periodic boundary conditions and a = y = (y1, . . . yd) the velocity of the transport
which, in this simplified case, will not vary neither in time nor space.

In general, the mapping, y 7→ u(·, y), defines the parameterized manifold

M = {u(·, y) : y ∈ Y }

which, in the context of PDEs, is usually called the solution manifold.
In applications, however, the actual u is out of reach by the finite numerical precision of

computers, which means that in practice we are forced to work with computable approxima-
tions uN (·, y) ∈ VN with dim(VN ) = N through a proper choice of space-time discretization
and numerical solvers: Finite Element Method (FEM), Finite Volumes (FV), etc. Yet,
computing uN can become infeasible if, under tight time constraints, the requirements on
accuracy are high or we need to find the solution for multiple queries of the parameters y.

The objective will then be to build spaces Vn ⊂ V (not necessarily linear), parameterized
by a small number n ≪ N of parameters, that approximate well the manifold M. This
should allow us to efficiently deal with the two following main problems:

• Forward modelling: we are asked to compute fast and accurately, the parameter-
to-solution map y 7→ u(·, y) for one or many parameter values y1, . . . , yK . Examples
of this are found in shape optimization (i.e., the optimal shape of a motor, a pipe
or an air-plane wing) where one needs to solve a PDE multiple times, one for each
possible parametrization of the geometry.

• Inverse problem: we are given m ⩾ n possibly noisy measurements z = (z1, . . . , zm)
of the system, for example, pollution values at certain space locations. In this case, z
is given by:

zi = ℓi(u) + ηi,

where ηi is the measurement noise associated to sensor i and ℓi is a function modelling
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the measurement operation of the unknown underlying state u. In particular, if the
sensor providing the measurement has a linear response with respect to the quantity
represented by u, which is usually the case, and V is a Hilbert space then ℓ ∈ V ′ can
be represented as a linear functional in V ′ the dual of V. Examples of such type of
measurements are

– Point-wise evaluation ℓi(u(·, y)) = u(xi, y) taken in the point xi inside the domain
Ω where u is defined. Such ℓi is admissible when V ⊆ C(Ω).

– Cell average ℓi(u(·, y)) = 1
T

´
T u(x, y)dx on an interval T ⊂ Ω.

In this context, if one wants to know the state u of the system given the measurements
z, we say it is a state estimation problem. If, instead, one is interested in inferring
the parameters y whose associated u(·, y) best explains the observed measurements,
we say it is a parameter estimation problem.

Two main questions arise in the context of building the spaces Vn to approximate the
elements of the manifold M: how to build “good” approximation spaces Vn allowing us to
quickly find accurate approximations of u given y or z and how to assess the approximation
capabilities of these spaces.

To answer the second question we can look at the distance between M and Vn defined
by

dist(M, Vn)V := sup
u∈M

inf
v∈Vn

∥u− v∥V

which quantifies the worst case scenario of approximating an element u ∈ M by the nearest
element v ∈ Vn (see Figure 1.1). In a setting where the parameters y are random variables
sampled from a distribution ρ with support on Y and V is a Hilbert space, one may be
interested instead on measuring the average error

e22(M, Vn) = Ey∼ρ
(

inf
v∈Vn

∥u(·, y)− v∥2V
)
.

These notions do not tell us in practice how to actually find v from the knowledge of y
or z. These do not inform on how to build good Vn spaces either. However, they provide
us with a way of analyzing theoretically the approximation capabilities of a given space Vn.
Furthermore, if we restrict our search of Vn within some family Gn of n-parametric spaces
of V with some specified property, we can actually minimize dist(M, Vn) on the choice of
Vn ⊂ Gn

δn(M,Gn)V = inf
Vn⊂Gn

dist(M, Vn)V

to get bounds on the approximation error. Note here that Gn can be, for example, the
family of linear sub-spaces of V of dimension n. In this case we get the known Kolmogorov
n-width (see Figure 1.1)

dn(M)V = inf
Vn linear

dist(M, Vn)V .
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If we look instead at the problem in the randomized setting, then we have that every
element of u ∈ M can be written as an infinite sum u = E(M) +

∑∞
i=1 ciei with ei the

Karhunen–Loève orthonormal basis obtained from the spectral analysis of the covariance
operator of the stochastic process. It is known that

κ2n(M) = inf
Vn linear

e22(M, Vn) =
∞∑

i=n+1
λ2i (1.4)

where the optimal linear space V ∗
n is achieved by choosing the first n components of the

Karhunen–Loève basis. The eigenvalues λ1 ⩾ λ2 ⩾ . . . ⩾ 0 are associated with each
eigenvector ei. The explained variance of each component ei is quantified by λ2i . This
decomposition is closely related to the century old concept of Principal Component Analysis
(PCA). Finally, note that κn ⩽ dn as dn is measuring the worst case scenario while κn
measures the average one.

Returning to the definition of δn(M,Gn)V , let us note that we need to impose some
relevant restrictions on what Vn can be via Gn. Otherwise one may get degenerate situations
where a single parameter space Vn=1 can be built such that it fills the entire manifold M.
Although it may achieve almost perfect approximation results, the notion of proximity
∥u− u′∥V < ε in V is lost once we look at the distances of the approximations inside Vn as
∥PVnu− PVnu

′∥Vn ≫ ε. Here we take

PVnu ∈ argmin
v∈Vn

∥u− v∥

to be the projection of u onto the manifold Vn and ∥ · ∥Vn the distance inside the n-
dimensional manifold determined by Vn. For more details and related definitions see [66]
where non-linear n-widths where first defined, a very similar notion to δn(M,Gn)V .

The analysis of δn(M,Gn)V gives us a way to ponder in advance if a particular family of
spaces Gn is suitable for approximating M or if it is doomed to fail no matter how well we
decide to optimize our choice of Vn inside the class. This allows us to rule out beforehand
some families Gn and divert our efforts to more promising ones. In this context we can
separate the overarching process of research into four main instances:

(1) Theoretical approximation analysis of optimal spaces:

• for a given problem, defined through properties on P, for example, by deciding to
work on a specific PDE as (1.1) and (1.3),

• and a family Gn of n-parameterized spaces, for example, n-dimensional linear sub-
spaces,

the objective is to find bounds on δn(M,Gn)V to quantify the rate at which it will decrease
when increasing the number n of parameters. For example, in [52] it is shown that, if P
defines a parametric elliptic PDE, as the one of our first example (1.1), and Gn is the family
of n-dimensional linear sub-spaces, then the Kolmogorov n-width has an exponential decay
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Figure 1.1: Distance between space Vn and manifold M. The optimal linear space Vn gives the Kolmogorov
n-width dn(M)V .

rate
dn(M)V ≲ e−βn,

meaning that linear spaces are suitable for the approximation of elliptic PDEs as one can
exponentially reduce the approximation error. In other words, for a prescribed accuracy
requirement a small number of basis elements will suffice to attain it.

(2) Offline stage (or sub-optimal spaces construction): theoretical guarantees
for optimal spaces tell us how good or bad the best choice of space Vn ⊂ Gn approximating
M can be. Even though it can serve to discard couples of (M,Gn), in practice the optimal
space still remains unreachable. Consequently, we are forced to rely on sub-optimal spaces
built under some heuristic.

In this stage there is no time constraints yet so one can use an expensive solver to
generate many solutions ui = u(·, yi) and build the sample set MK = {u1, . . . , uK} with
K ⩾ n. This is done by sampling the parameter space yi ∈ Y in regions relevant to the
problem. Then, one can build the space Vn, for example, by replacing dist(M, Vn), the
quantity one would like to optimize in theory, by a discrete approximation of it

dist(MK , Vn)V = max
1⩽i⩽K

∥ui − PVnui∥.

If we restrict ourselves to the case of linear sub-spaces we can construct Vn as a subspace of
VK = span{u1, . . . , uK} in various ways (see also Figure 1.2 for a schematic representation
of the methods):
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• Random: picking randomly n elements from MK .

• Greedy: adding iteratively the element un+1 ∈ MK at farthest distance from the
subspace built so far:

Vn = span{u1, . . . , un}
un+1 = argmax

1⩽i⩽K
∥P⊥

Vnui∥,

taking P⊥
Vn
u = u− PVnu.

• Principal components analysis (PCA): it can be seen also as a greedy algorithm
where instead of searching for the element un+1 ∈ MK that maximizes the distance
to Vn, one looks for the element v ∈ V such that

un+1 = argmax
v∈V
∥v∥=1

∑
1⩽i⩽K

∥PvP⊥
Vnui∥

2
V .

Contrary to the previous greedy method, this procedure can be done directly by sin-
gular value decomposition of the covariance matrix of the data which is the discrete
version of the covariance operator used to obtain the Karhunen–Loève basis mentioned
before.

(3) Approximation guarantees of sub-optimal spaces: the construction of sub-
optimal spaces raises the question about their approximation properties. More specifically,
given an algorithm A to build a sub-optimal Vn space, like the ones presented above, one
would be satisfied if distA(M, Vn)V also has similar rates to the optimal one. In the case of
Gn consisting of linear spaces and M the class of elliptic PDEs, it was shown in [52] that
the subspaces generated by the greedy algorithm still share the same convergence rates as
dn(M)V .

(4) The Online stage corresponds to the practical application step whether it is a
forward modelling or an inverse problem. As we are now tied to short-time restrictions,
we need to have a fast way of finding an element ũ ∈ Vn that is a good approximation of
u. This is done through some reconstruction strategy R yielding approximations ũ which
ideally should be close to the projection PVnu. Let us recall that PVnu is out of reach as we
would need to know u in the first place.

In general, the reconstruction strategy R will depend on the problem of interest:

• For forward modelling we want to build a mapping R : Y → V such that ũ := R(y),

• For inverse problems R : Rm → V such that ũ := R(z) recalling that z = ℓ(u) are the
observations.



1.1. Linear reduced modelling for forward simulation and inverse problems 7

Figure 1.2: Scheme of the different criteria to build a reduced basis. The scattered blue dots represent the
sample set MK . The red points u1, u2 ∈ MK are the first two elements that one would obtain by following
a greedy selection strategy. The green vectors e1, e2 ∈ V represent the principal components with MK the
center of mass of the discrete data MK . The orange points u1 and u2 represent a possible realization of a
random selection strategy.

Asking the reconstructions ũ, obtained through R, to be close to the best possible approx-
imant PVnu in Vn is equivalent to requiring that R satisfies the near optimality property

∥u− ũ∥ ⩽ C∥u− PVnu∥,

which is further analysed in Chapter 3 in the context of non-linear approximation.
In the case of linear spaces, as Vn has already been chosen, one can directly compute

the projection onto the reduced sub-space by solving the corresponding linear systems.
Writing ũ =

∑n
i ciui with {u1, . . . , un} a basis of Vn built using, for example, some of the

aforementioned strategies we can perform a

• Galerkin projection in the case of forward modelling: P yVn . In the case of (1.1),
relying on the usual variational formulation, we can write

n∑
i

ci

ˆ
Ω
a(x, y)∇vi(x)∇uk(x)dx =

ˆ
Ω
fuk(x)dx, 1 ⩽ k ⩽ n (1.5)

and obtain a reduced linear system of size n × n. This is in contrast to solving the
equation with a classical discretization method which would involve a space V N with
N ≫ n degrees of freedom.
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• Least squares minimization in the case of inverse state estimation:

min
v∈Vn

∥z − ℓ(v)∥2 = min
c∈Rn

∥z −
n∑
i

ℓ(ciui)∥2ℓ2 (1.6)

leading to an m× n linear system.
Alternatively, in the context of noiseless measurements z and if V is a Hilbert space,
one can write the minimisation problem directly in the ambient space V

min
c∈Rn

∥w −
n∑
i

ciui∥V

where w = PWu is the projection of u into the measurement spaceW = span{w1, . . . , wm}
which is spanned by the Riesz representers wj of the linear functionals, ℓj(u) = ⟨wj , u⟩.
In this last scenario, one would expect ũ to exactly recover the observations. However,
it will not be usually the case as the underlying physical model P is a simplification
of the real world. In this case we can apply a correction so that u∗ = ũ+ (w− Pwũ).
This process of correction is known by the name of parameterized background data
weak (PBDW) [108] and we will delve more into it and its non-linear extensions in
Chapter 3.

There is today a good understanding of both the potential and the limitations of using
linear reduced spaces as an approximation class Gn. In particular, it is known [14, 52, 54]
that the Kolmogorov n-width has an algebraic convergence rate n−s with s = 1

p−1 regardless
of the dimension d if the solution map y 7→ u(·, y) has the following properties:

• Presents anisotropy, meaning that there is a hierarchy of decreasing importance on
the variables yj . That is, there exists an affine representation of y such that

y := y +
d∑
j=1

ajψj (1.7)

with d possibly ∞, aj ∈ [−1, 1], y and ψj in L∞(Y ) and (∥ψj∥) is a sequence in ℓp(N)
when d is infinite.

• It can be holomorphically extended around Y .

Note also that these conditions are not restricted only to PDE solution maps.
The value of p expresses the strength of the anisotropy of the solution map and showcases

the decaying importance of elements ψj used to parameterize the map. The finite dimen-
sional case is anisotropic by nature as the sequence (∥ψj∥) is finite. (1.2) is an example as
it is of the same form as (1.7). Another situation where the anisotropy is observed, occurs
in the randomized setting where we can associate ψj = λjej with the Karhunen-Loève basis
multiplied by its eigenvalues. Consequently, the sequence (∥ψj∥) will be ℓp-summable if the
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eigenvalues decrease fast enough evidencing the anisotropy in their decay rate.

1.2 Towards non linear model reduction, motivation, objec-
tive and outline of this thesis

In Chapter 2 we extend the approximation guarantees offered by linear spaces in the context
of the linear elliptic Equation (1.1) when the parameter space Y is allowed to be unbounded,
or equivalently, when extreme levels of contrast in the diffusivity constants are possible.

Chapters 3 to 6 present different approaches to tackle problems where linear spaces are
doomed to fail. One of such situations occurs when the elements of the manifold M we wish
to approximate are functions presenting jump discontinuities, for example, if u = χΩ(y)(x)
is the characteristic function defined on a parameterized domain Ω(y). To have an idea of
the limitations faced by linear spaces when used to approximate such functions, take the
Fourier basis u =

∑∞
j=1 cjej and study the mean-square error when approximating u by

its truncated series (which is the best linear model in L2 sense according to (1.4)). In 1d,
the coefficients cn of the Fourier series of an indicator function are proportional to 1/n and
consequently, |cn|2 ∝ n−2 and κ2n ∝ n−1 as it is obtained after summation of the first n
terms. This yields the following lower bound for the Kolmogorov n-width dn ⩾ κn ≳ n−1/2

which showcases the limitation of linear spaces on this circumstances pushing research
towards seeking non-linear methodologies which is the central thrive of this thesis.

In this context, Chapter 3 presents a theoretical framework to analyse the effectiveness of
non-linear strategies, while Chapter 4 delves more into the practical implementation of high-
order algorithms able to reconstruct discontinuities out of cell average data as one could find
in images or finite volume discretization of PDEs. In Chapter 5 we show how it is possible
to accelerate or render more accurate the reconstruction of 1d characteristic functions by
learning long Fourier expansions (N ≫ 1) from the knowledge of only the first n ≪ N
Fourier coefficients. We do this with a machine learning technique. In Chapter 6 we turn
the attention to another learning technique known as Physics Informed Neural Networks
(PINNs) to tackle a linear transport-diffusion equation when the diffusivity vanishes and
shocks appear.

Finally, in Chapter 7 we apply a combination of linear and non-linear methods to a real
case scenario where the objective is to predict the pollution level on every point in a city
using heterogeneous sources of data like temporal pollution series on specified locations, the
geometry of the streets and Google Maps traffic information.

We next summarize the content of each chapter.
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1.3 Linear reduced order modelling for high contrast diffu-
sivity

In Chapter 2, based on [51], we center our analysis on the particular case of the diffusion
equation presented in (1.1). To ensure existence and uniqueness of solutions through Lax-
Milgram theory, the Uniform Ellipticity Assumption (UEA) is usually considered which
imposes bounds on the possible values that the diffusivity can take

r ⩽ a(x, y) ⩽ R,

with 0 < r ⩽ R <∞. In this context, [15, 150] showed that

dn(M)V ≲ exp
(
−cn1/d

)
,

that is, the Kolmogorov n-width has a sub-exponential decaying rate.
More specifically, we work in the situation in which the modelled system consists of a

material composed of multiple disjoint sub-domains Ωj , with constant diffusivity a(x, y) =
yj , x ∈ Ωj inside the region. We represent this scenario by specifying ψj = χΩj which
is the characteristic function on the sub-domain Ωj with ∪dj=1Ωj = Ω (see Figure 1.3).
Consequently, (1.2) becomes the piece-wise constant function

a(x, y) =
d∑
j=1

yjχΩj (x)

with the solution u(y) now satisfying the variational formulation

d∑
j=1

yj

ˆ
Ωj

∇u(y) · ∇vdx = ⟨f, v⟩H−1,H1
0
. (1.8)

The integral over the whole domain in the left hand side of Equation (1.8) can be decoupled
into the sum over regions due to the disjoint partitioning of the domain and yj can exit the
integral as it is a constant for each subdomain.

Let us note that it is not possible to approximate uniformly well all elements of M due
to the homogeneity property

u(ty) = t−1u(y)

as it implies that limy→0 ∥u(y)∥H1
0
= ∞ and the same for dist(u(y), Vn) = ∥u(y)−PVnu(y)∥H1

0
.

This leads us to work with
Y ′ = [1,∞]d

and analyse the approximation error estimates in the relative sense, when working on

Y =]0,∞]d,
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Figure 1.3: Example of a solution to Equation (1.8) for a domain composed of d = 4 subdomains. For this

example the diffusion coefficients associated to each one of the four subdomains are: (y)ij =
(

7 87
17 16

)
.

One can observe that in the solution u(·, y) the mass accumulates in the upper left corner due to its low
value of diffusivity.

dist(u(y), Vn)H1
0
⩽ εn∥u(y)∥H1

0
, (1.9)

with εn → 0 a zero-converging sequence indexed by n.

The main conclusion of this work is that linear spaces are still a “good” approximation
class for the solution manifold of the diffusion equation with piece-wise constant diffusivity
as they still retain sub-exponential convergence rates when UEA does not hold as arbitrary
high contrast is allowed.

1.3.1 Compactness and convergence

To arrive there, several ingredients have to be concatenated. First we prove that M′ :=
{u(y) : y ∈ Y ′} is a compact set of H1

0 (Ω) which allows us later to establish the following
convergence theorem:

Theorem 1.3.1. There exists a sequence of linear spaces (Vn)n>1 such that dim(Vn) = n,
and a sequence (εn)n>1 that converges to zero such that

∥u(y)− PVnu(y)∥H1
0
⩽ εn∥u(y)∥H1

0

for all u ∈ Y ′, where PVn is the H1
0 (Ω)-orthogonal projector onto Vn.

The key element to prove compactness is the introduction of limiting solutions uS ∈ VS
with

VS := {v ∈ H1
0 ;∇v|Ωj

= 0; j ∈ S ⊂ {1, 2, . . . , d}}.
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Figure 1.4: Partition of [0, 1]d by the inverse rectangles R−1
b in the case d = 2. The axis variables z = y−1

are the inverse of the parameter variables so that yi = ∞ is represented by zi = 0.

In other words, elements of VS are H1
0 (Ω) functions that are constant on some subdomains

Ωj given by the set S. Splitting y = (ySc , yS) then uS is the solution to the problem∑
j∈Sc

yj

ˆ
Ωj

∇uS(ySc) · ∇v dx = ⟨f, v⟩H−1,H1
0

v ∈ VS . (1.10)

The fact that functions uS are the limit of u(y) when yS → ∞ is proved in:

Lemma 1.3.2. There exists a unique solution uS(ySc) ∈ VS to Equation (1.10), which is
the limit in H1

0 (Ω) of the solution u(ycS , yS) as yj → ∞ for all j ∈ S.

The convergence result of Theorem 1.3.1 does not give a quantification on the rate,
for this we need to build reduced model spaces so that the relative error (1.9) retains a
sub-exponential decay. For this, we adapt the strategy used in [13], under UEA, on each
region of a dyadic partition of the parameter space. That is, we divide Y ′ = [1,∞]d
in rectangular domains such that for any b = (b1, . . . , bd) ∈ Nd0 we define the rectangle
Rb = [2b1 , 2b1+1] × · · · × [2bd , 2bd+1], see the scheme on Figure 1.4. Of course, we cannot
infinitely divide the parameter space, consequently we join together all rectangles given a
threshold L. That is, [2bj , 2bj+1] is replaced by [2bj ,∞] if bj = L.

The sub-exponential convergence obtained in [15, 150] relies on the three sufficient
conditions, described in the introduction, which guarantee an algebraic or exponential rate
of convergence for linear spaces. Here, the anisotropy is found in the fact that d < ∞ and
the holomorphic extension is still retained for all “interior” rectangles RI , that is, those
whose bounds are finite in all directions. For those, we can use a polynomial approximation
of the form

u(y) =
∑
ν∈Nd

uνy
ν ,

with y ∈ RIb . By holomorphy, the series converges to the target function u(y) while the
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approximation is done through best k-term truncation

ub,k(y) =
∑
|ν|⩽k

ub,νy
ν ,

thus obtaining similar sub-exponential rates as in [15, 150] for each individual interior
rectangle.

To find similar results on the infinite rectangles we need to introduce the additional
geometrical assumption that all subdomains are disjoint inclusions. This is needed to define
the trace operator on an epsilon extended domain.

The constants L (how much the parameter domain is partitioned) and k (the dimension
of the reduced basis inside each rectangle) reach the optimal balance when the approxima-
tion error on interior rectangles matches the infinite ones.

This partitioning results in a family of local reduced model spaces Vb,k = span{ub,ν :
|ν| ⩽ k} that can be used individually if we know the rectangle Rb where y belongs to,
typically in forward modelling problems. Note that in this case the strategy is non-linear
with the benchmark given by the notion of library width [148] instead of the Kolmogorov
n-width. We can, otherwise, combine all the Vb,k spaces to build a global reduced model
space Vn. In this last scenario, we found that the sub-exponential rate is retained in the
following form

dn(M′)H1
0
⩽ C exp(−cn

1
2d−2 )

1.3.2 Forward modelling

In the case of forward modelling the relevant norm is not H1
0 but instead the one given by

the Galerkin method as the mapping y 7→ v ∈ Vn is achieved solving

d∑
j=1

yj

ˆ
Ωj

∇v · ∇w dx = ⟨f, w⟩H−1,H1
0

with w ∈ Vn the test function on the variational formulation. The relevant norm is then

∥v∥2y =
d∑
j=1

yj

ˆ
Ωj

|∇v|2

which defines the Galerkin projection P yVn onto the space Vn.
One would like then to have error estimates to uniformly bound ∥u− P yVnu∥H1

0
instead

of ∥u − PVnu∥H1
0
since PVn is out of reach in applications as one would require to know

the function u which is the one we ignore in the first place and the reason we seek for
approximations. On the contrary, P yVn is computable because in the ∥ · ∥y norm the target
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function u ∈ H1
0 and v ∈ Vn have the same projection when tested against elements w ∈ Vn:

⟨u,w⟩y = ⟨v, w⟩y.

A key observation is that we need to incorporate into the reduced spaces Vn some
limiting solutions from VS , otherwise if Vn ∩ VS = ∅ then there exists y ∈ Y ′ such that

∥u(y)− P yVnu(y)∥H1
0
⩾ C∥u(y)∥H1

0

for any C ∈]0, 1[. One can intuitively see that this problem appears for the Galerkin
projection as the norm ∥ · ∥y has y = (ySc , yS) which may contain some ∞ values forcing
the contributions of elements v ∈ Vn; v /∈ VS to be zero otherwise

´
Ωj
yj∇v ·∇w dx = ∞ for

j ∈ S. As y does not appear in PVn , this problem did not show up before.
Taking this into consideration we obtain the same desired rates:

∥u(y)− P yVnu(y)∥H1
0
⩽ C exp(−cn

1
2d−2 )

with y ∈ Y ′.

1.3.3 Inverse problem

Finally we use the previous results to show that the same reduced spaces Vn constructed
so far can be used for the inverse state estimation problem retaining the same rates. This
is expressed in the following proposition:

Proposition 1.3.3. Let y ∈ Y and u = u(y). Then both estimators ũ ∈ Vn and u∗ ∈ Vw :=
{u ∈ V : ℓi(u) = zi, i = 1, . . . ,m} satisfy

max{∥u− ũ∥H1
0
, ∥u− u∗∥H1

0
} ⩽ Cµn exp

(
−cn

1
2d−2

)
∥u∥H1

0
.

The positive constants c and C only depend on d, ∥f∥H−1 and on the geometry of the
partition.

Here, ∥u − ũ∥H1
0
represents the approximation error of using the reduced basis method

while ∥u− u∗∥H1
0
corresponds to the modified version given by PBDW.

For the inverse parameter estimation problem the situation is usually more compli-
cated due to the non linear nature of the inverse map ℓ(u(y)) 7→ y. However, if we take
Vn = span{u1, . . . , un} with ui = u(yi) being a solution of the diffusion equation for some
parameter vector yi and use the fact that parameters yj are associated with its piecewise
constant diffusivity values over the corresponding Ωj , then we have that on each subdomain
Ωj

f = −div(yũ)|Ωj
= −div(yj ũ).
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Using that ũ =
∑n

i=1 ciui is the approximation obtained after solving the state estimation
problem

f

yj
= −div

(
n∑
i=1

ciui

)
|Ωj

=
n∑
i=1

ci
f

yij

finally yeilds the following estimator

y∗j =
(

n∑
i=1

ci
yij

)−1

. (1.11)

We also prove that this estimator achieves a recovery bound in relative error that also
has a sub-exponential rate:
Proposition 1.3.4. With the notation 1/y = (1/y1, . . . , 1/yd), the estimator y∗ defined by
Equation (1.11) satisfies the bound∥∥∥ 1

y∗
− 1
y

∥∥∥
∞

⩽ Cµn exp
(
−cn

1
2d−2

)∥∥∥1
y

∥∥∥
∞
.

1.4 Non-linear approximation spaces

In Chapter 3, based on [50], we extend to non-linear spaces the existing results on near
optimality for state estimation inverse problems. We seek to approximate a function u
from m measurements ℓ(u) = z ∈ Rm, with functionals ℓ and a reconstruction procedure
ũ = R(z) where neither of them is necessarily linear.

Let us first recall the linear setting introduced in [108] and known as Parameterized
Background Data Weak (PBDW). Here, the reconstruction strategy is based on linear spaces
Vn and assumes that

• V is a Hilbert space,

• ℓj ∈ V ′ are linear functionals.
In this context ℓj(u) = ⟨wj , u⟩V with wj ∈ V being the Riesz representer of ℓj . Then
w =

∑m
j=1 ℓ(u)jwj = PWu with W = span{w1, . . . , wm}. A first reconstruction strategy

consists of finding ũ ∈ Vn minimizing the discrepancy with the observed data:

ũ = argmin
v∈Vn

∥PW v − w∥V .

However, in a noise-free scenario, one would prefer reconstructions u∗ agreeing with the
measurements, that is, z = ℓ(u∗). This won’t be typically achieved by the estimator ũ. But
we can correct it through

u∗ = ũ+ (w − PW ũ)
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to obtain the PBDW measurement consistent estimator.
Note that if V ⊂ C(Ω) and the ℓ represent point evaluations then ℓj ∈ V ′(Ω) are

Dirac masses and the correction becomes useless. To make sense of this correction the
ambient space V ′ has to have enough regularity. This is typically achieved in the context of
Reproducing Kernel Hilbert Spaces RKHS where one asks for the point evaluation to be a
continuous, bounded linear functional. In applications one may introduce kernel functions
like Gaussians to get Riesz representers of the point evaluation that are smoother.

It is proved in [29, 108] that both estimators ũ and u∗ satisfy the recovery bound

max{∥u− ũ∥V , ∥u− u∗∥V } ⩽ µ(en(u) + βϵ) (1.12)

where en(u) = minv∈Vn ∥u − v∥V is the lowest possible error that can be achieved when
approximating u by an element of Vn. This means that the reconstruction achieves near
optimal approximations. The error due to the presence of additive noise z = ℓ(u)+η where
η = (η1, . . . , ηm) is denoted by βϵ = ∥w−w∥V where w is the perturbed version of w. The
ℓp norm is bounded by ϵ

∥η∥p ⩽ ϵ

which quantifies the level of noise, and

β := max
v∈W

∥v∥V
∥ℓ(v)∥p

.

The constant
µ = µ(Vn,W ) := max

v∈Vn

∥v∥V
∥PW v∥V

is a measure of the stability of the reconstruction. It can be seen as the inverse cosine of
the angle between both spaces. For example, if W is orthogonal to Vn, any element of v
will have the same projection onto W , PW v = PW v

′ ∀ v, v′ ∈ Vn, consequently µ = ∞ (see
Figure 1.5). The same occurs if m < n as we have less measurements than the dimension
of the reduced space.

The question then is what properties are needed for retaining near optimal bounds as
in (1.12) when considering non-linear n-parameter approximation families Vn.

The main conclusion of this work is that it is possible to get near optimal bounds for
non-linear n-parameter approximation families if the two following properties are satisfied:

• The measurement functionals ℓi, not necessarily linear, are Lipschitz continuous,
that is

∥ℓ(v)− ℓ(u)∥Z ⩽ αZ∥v − u∥V , v, u ∈ V (1.13)

with ∥ · ∥Z any norm in Rm

• For the space Vn the following inverse stability holds:

αZ∥v − u∥V ⩽ µZ∥ℓ(v)− ℓ(u)∥Z , v, u ∈ Vn. (1.14)
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Figure 1.5: Reduced space Vn in green. In red and blue two different measurement spaces Wθ and W⊥. The
projections of elements v1, v2 ∈ Vn into W⊥ collapse into the same element PW⊥v1 = PW⊥v2.

Here, µZ has a similar role as µ for PBDW and we also show that it is finite only if
m ⩾ n.

The constants αZ and µZ are optimally defined as follows:

αZ = sup
v,u∈V

∥ℓ(v)− ℓ(u)∥Z
∥v − u∥V

,

and
µZ = sup

v,u∈Vn

∥v − u∥V
∥ℓ(v)− ℓ(u)∥Z

.

The framework presented here allows us to study the best-fit estimator issued from
the minimisation of the discrepancy between observed data z and the one given by the
reconstruction ℓ(ũ) with z 7→ R(z) = ũ ∈ Vn such that

ũ := argmin
v∈Vn

∥z − ℓ(v)∥Z . (1.15)

With these definitions and conditions we arrive at similar error estimates as in (1.12)
stated in the following theorem

Theorem 1.4.1. The best fit estimator ũ from (1.15) satisfies the estimate

∥u− ũ∥V ⩽ C1en(u) + C2∥η∥p, (1.16)
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where C1 := 1 + 2αZµZ and C2 := 2βZµZ .

In the situation in which ℓi are linear functionals, while Vn still being a non-linear space,
we can identify the norms that minimize C1 or C2. For the first one let us define the Riesz
norm

∥z∥W = min{∥v∥V : ℓ(v) = z}, (1.17)

which is a norm in Rn given by the minimal normed element of V compatible with the
observations. If V is a Hilbert space then ∥ℓ(v)∥W = ∥PW v∥V .

On the one hand we have that ∥ · ∥W norm is the one minimizing the constant C1 as it
favors minimal energy approximations v ∈ Vn consistent with the observations. This can
be seen as an implicit regularisation. The constant C2, on the other hand, is minimized by
taking the ℓp norm.

Shape recovery from cell averages: As an application of the above general recon-
struction framework, we consider the problem of recovering the shape of an interface from
cell average data. This situation appears in image processing when we want to reconstruct
high resolution images from lower resolution ones. Another application is in hyperbolic con-
servation laws when finite volume schemes are used to discretize the domain and solve the
equation which is an application that we study more in depth in Chapter 4 (see Section 1.5).

In this context, V consists on characteristic functions u = χΩ defined on a rectangular
domain D = [0, 1]d with Ω ⊂ D. The objective is then to reconstruct the shape of Ω from
local cell average information on a cartesian partition of the domain:

aT (u) =
1
T

ˆ
T

χΩ, T = Tij = [(i− 1)h, ih]× [(j − 1)h, jh]. (1.18)

Here 1 ⩽ i, j ⩽ 1/h with h > 0 being the cell size and N = h−2 the number of cells. Now
the measurement functionals ℓ(u) are (aT ′(u))T ′∈S ∈ Rm, with #S = m, as they represent
the local cell averages on the stencil S around cell T used for the reconstruction.

First we show that the L1 error of approximating an interface by a linear method cannot
be better than the rate N− 1

2 , or equivalently h1, regardless of the regularity of the interface.
However, we can approximate the true interface, on a given cell T , by an element of the

non-linear family V2 := {χn⃗·(x−x)⩾c : n⃗ ∈ S1, c ∈ R} composed of the indicator functions
whose interface is a line (see Figure 1.6). The reconstruction operator R(z) 7→ v ∈ V2 is
defined using (1.15) with ℓ(u) = z ∈ R9 the local measurement vector obtained after using
a 3 × 3 T -centred stencil. Note that this is a two parameter non-linear family despite the
fact that the interface is defined through a line.

We show first that the space V2 with the 9 linear measurements yields values of α = h−2,
β = 91−

1
p and µ = 3

2h
2 ensuring that the two sufficient conditions of (1.13) and (1.14) hold

and consequently also (1.16). This leads us to deduce a global approximation rate of N−1

or equivalently h2 which is an order better than the linear case.
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Ω
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ΓT

∂Ω

T

Figure 1.6: Scheme of the problem of shape recovery from cell averages. On each cell T we locally approxi-
mate the interface ∂Ω by a linear interface ΓT .

1.5 High order non-linear interface reconstruction strategies

In Chapter 4, which is based on paper [56], we focus on the shape recovery problem. Here
we seek to develop local fast non-linear interface reconstruction strategies of high order of
accuracy using information from cell averages. We also work with the space V composed
of piecewise constant functions u = χΩ with ∂Ω = Γ of certain Hölder smoothness, that is,
the boundary can locally be described by graphs of Cs functions (see [116] and also Chapter
4 of [2]).

We denote by singular cells Sh those containing part of the boundary of Ω where we
will apply our reconstruction strategies. In the remaining, the regular cells, we have the
constant value 0 or 1 given by the observed average aT (u) with T regular. Then, on each
singular cell T ∈ Sh we will locally approximate the true interface by an element ũT of a
given non-linear family Vn. We explore non-linear families composed of indicator functions
with the transition given by the following parametric curves:

• Polynomials: the curve is a polynomial of degree n− 1.

• Circles: the curve is described by three parameters: the radius r and the coordinates
of the center of the circle (x0, y0).

• Corners: the curve is described by the angles (θ1, θ2) of two lines that intersect at the
point (x0, y0).

We propose two main families of approaches to define the reconstruction operator
RT : Rm → Vn.
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Optimization Based Edge Reconstruction Algorithms (OBERA)
The element ũT ∈ Vn is chosen by optimization in the same way as in (1.15), through the

best fit of the available cell-average data on the associated stencil S = ST . The minimization
takes the form

ũT = RT (aS(u)) ∈ argmin
v∈Vn

∥aS(v)− aS(u)∥ (1.19)

where ∥ · ∥ is a given norm on Rm, usually ℓ2, and m := #(S) is the size of the stencil, for
example, m = 9 for a 3× 3 square stencil. aS : V → Rm represents the local measurement
operation (that we denoted by ℓ in the general context), here consisting of the cell averages
of the stencil S. This method, when restricted to linear interfaces, it is known as LVIRA
[132, 129].

Note that one can modify the norm under which is performed the optimization (1.19)
to force the reconstruction ũT to have area consistency on the relevant cell, that is aT (u) =
aT (ũT ). We do this by adding to (1.19) the term K|aT (u)− aT (ũT )| with K = 100.

Performing an optimization on each cell becomes computationally very demanding, to
avoid this we propose yet another strategy.

Algorithms for Edge Reconstruction using Oriented Stencils (AEROS)
In the previous method the spatial structure of the stencil is not exploited, here we

retain the matrix form of aS ∈ Rk×l. We consider the sum of columns (or rows), depending
on a chosen orientation, and we look at the resulting values (a)i ∈ Rk as one-dimensional
averages. Afterwards, we can find an approximation to the interface Γ by an n ⩽ k param-
eterizable curve defined as the graph of a function p such that

y = p(x) or x = p(y). (1.20)

As before, we look for the best fit of the available 1d-cell-average data which, for some
families of curves, i.e., polynomials, amounts at solving an n×n linear system. In addition,
the use of polynomials give a relatively straightforward way to analyse the order of accuracy
attainable through this strategy.

One central assumption is that Γ has to cross the sides of the stencil to guarantee that
the 1d-averages can be associated to an integral on an interval. We ensure this through the
following two steps:

1. First, we choose an orientation, that can be vertical or horizontal, using a Sobel filter
yielding an approximation to the numerical gradient GT = (HT , VT ). Consequently,

• if |VT | ⩾ |HT | then we will search for functions p(x) with x as independent
variable.

• if |VT | < |HT | then we will search for functions p(y) with y as independent
variable.

The sign of VT or HT determines, in addition, if the domain Ω lies below or above
the curve defined through p.
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2. Second, we adaptively choose a rectangular stencil S of size k × l with l big enough
so that the singular cells that are contained in the stencil are neither in the first nor
in the last rows. In addition, the stencil may also be allowed to shift horizontally
to avoid l becoming too big if the cell T is in a region where Γ is rapidly changing
orientation.

The main conclusion of this work is that both proposed strategies, OBERA and AEROS,
yield interface reconstructions of O(hd+1) order of accuracy when the interface is parametrized
by a polynomial of degree d. In addition, AEROS strategy is two orders of magnitude faster
than OBERA.

We prove that this orientation test based on the Sobel filter correctly finds the preferable
orientation when the boundary is determined by a line. Furthermore, following a pertur-
bation analysis, we also show that if the interface is not a line and the mesh size h is below
a critical value of h∗, then one can find a stencil tall or wide enough ensuring the true
interface will cross the sides of the stencil.

Based on these results we also provide a quantification of the order of convergence of
AEROS, when using polynomials of degree n− 1 to approximate the interface, as shown in
the following theorem:

Theorem 1.5.1. Let Ω be a Cs domain for some s ⩾ 1. The AEROS recovery of the
interface based on polynomial of degree n− 1 satisfies for each singular cell T a local error
bound of the form

∥u−RT (aS(u))∥L1(T ) ⩽ Chr+1, r := min{s, n}, (1.21)

and the global error bound of order O(hr) for the same value of r.

In many applications, the interface might contain corners for which other strategies
need to be developed. We give two methods which, combined together, yield visually
“good” approximations of vertices.

• AEROS Vertex: AEROS strategy is not necessarily restricted to the case of poly-
nomial interfaces. We propose to use the four parameter family of corner interfaces
V4, for which it is possible to find explicit algebraic equations for the inverse map
aST (u) 7→ y = (θ1, θ2, x0, y0) yielding the parameters y of ũT ∈ V4. This strategy, as
it is based on the orientability of the interface, cannot deal with right angles when
they are parallel to the mesh orientation. This limitation motivates the following
method.

• Tangent Extension Method (TEM): For this method to work we first need to
have an approximation ũT on each singular cell T ∈ Sh. In order to propose a new
corner approximation on a given cell T ∈ Sh, we properly pick two other singular cells
from the neighbourhood and extend two lines issued from a Taylor expansion of order
1 at some chosen point. This procedure yields two angles (θ1, θ2) and the intersection
(x0, y0) which are the four parameters needed to describe an element of V4.
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One key ingredient behind both methods is the possibility of deciding on each cell
T ∈ Sh which approximation should remain between the possibly many tested alternatives,
for example, polynomial versus corner interfaces. To this end we compare the stencil cell
averages issued from each reconstruction, aS(ũ1) and aS(ũ2), with the observed ones aS(u)
and keep the method yielding the least discrepancy error ∥aS(v)− aS(u)∥, with v = ũ1 or
v = ũ2.

1.6 Non-linear reduced basis

Chapter 5, based on [55], also focuses on developing non-linear strategies to deal with classes
of functions that are known to be poorly approximated by linear models. The starting
point here is the observation that in some situations even though both dn(M)V and κn(M)
decrease slowly when n grows, other complexity measures, like the stable non-linear widths
(see [66]) or the sensing numbers sn(M)V may decrease much faster. The latter is defined
as

sn(M)V := inf
R,ℓ1,...,ℓn

max
u∈M

∥u−R(ℓ1(u), . . . , ℓn(u))∥V , (1.22)

where the infimum is taken over all choices of linear functionals ℓ1, . . . , ℓn ∈ V ′ and recon-
struction map R. While the Kolmogorov n-width imposes Gn to be a linear space, in the
sensing numbers sn(M)V the approximation spaces are allowed to be non-linear provided
that the information used for the reconstruction are linear measurements ℓ. In absence
of an explicit form for the optimal R we can write an approximation using some learning
technique such as a neural network or random forests which usually are defined using many
parameters θ with #θ ≫ n. Note also that in the definition of sn(M)V the relevant dimen-
sion n is the number of functionals and not the number of parameters needed to encode the
reconstruction map1.

Also notice that the optimal ℓi are usually unattainable or computationally too costly to
obtain. However, one can take a reduced basis Vn = span{u1, . . . , un} and define ℓi(u) = ci
with ci the coefficients obtained after solving the forward modelling (see (1.5)) or the inverse
problem (see (1.6)). Using this choice we cannot achieve the optimal error given by sn(M)V ,
but we can build sub-optimal strategies, hoping to beat linear methods.2 This is given by

1In the linear case the reconstruction consists of R(u) =
∑n

i=1 ciui with ci found by solving an n × n
(forward modelling) or m × n (inverse problem) system. In the non-linear case considered here, there is in
principle no restriction on the number of parameters #θ one may use to write R.

2If we also impose the reconstruction to be linear R(u) =
∑n

i=1 ℓi(u)ui = PVnu we would fall again into
the linear setting.
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the following:

R(u) = PVnu+ PVN−nu

=
n∑
i=1

ℓi(u)ui +
N∑

i=n+1
ℓ̃i(u)ui. (1.23)

Here (ui)1⩽i⩽N are the basis elements of a bigger linear space VN and by the second term we
seek to perform a correction of the linear model as if we were working on an N dimensional
space even though we only have access to the first n coefficients of such decomposition.

The remaining N − n coefficients ℓ̃(u) have to be learned from the known ones ℓ(u).
That is, for i > n, ℓi(u) ≈ ℓ̃i(u) = ψi(ℓ1(u), . . . , ℓn(u)), we need to construct N − n func-
tions ψi : Rn → R mapping the known coefficients to the unknown ones. Usually, in the
offline stage of a reduced basis method many snapshots of the problem of interest are
available {v1, . . . , vK}. From those snapshots we can build both spaces Vn and VN−n with
n ≪ N ⩽ K and VN = Vn ⊕ VN−n. As a consequence, for each element vj ∈ VN−n we
can calculate ℓi(vj) = ⟨ui, vj⟩ with ui ∈ Vn and build a training dataset so that a learning
technique like random forests can be used to learn a “good” mapping.

The main conclusion of this work is that in the context of reconstructing characteristic
functions it is possible to estimate ℓi(u) for N ⩾ i > n from the first ℓi(u), i ⩽ n by using
learning techniques.

Remark 1.6.1. Note that the computational burden of calculating the second term of Equa-
tion (1.23) would have been of O(N3) if we had used the space VN instead of the space Vn.
However, when using the learnt non-linear mapping this reduces to O(N2) if the cost of
performing the non-linear map is small3.

The rest of the work concentrates on showing by numerical experimentation that this
approach yields reliable improvements for random forests as a learning technique. We use
the eigenvectors of the Karhunen–Loève basis associated to the family of step functions to
build the spaces Vn and VN .

1.7 Physics Informed Neural Networks for singularly per-
turbed convection-diffusion equations

In Chapter 6, which is based on paper [20], we study the ability of different formulations
of Physics Informed Neural Networks (PINNs) to solve singularly perturbed convection-

3For this estimation we supposed that the discretized dimension of the ambient space is equal to N ,
dim(V ) = N but it could be bigger.
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diffusion equations. For simplicity we focused on a 1d-simplified version which reads:

−εu′′(x) + Fu′(x) = f, ∀x ∈ Ω = (0, 1), (1.24)

with Robin boundary conditions

−αu′(0) + κu(0) = g0,
αu′(1) + κu(1) = g1.

(1.25)

The vanishing ε is known to affect the performance of numerical methods, such as
Finite Element Method (FEM), since the bound on the approximation error of the Galerkin
method degrades proportional to ε−1. We recall that the Galerkin method, based on a
variational formulation, searches for approximations v to the problem in the space H1(Ω)
which is less regular than H2(Ω) as it is a requirement for PINNs.

PINNs approach does not rely on the variational formulation. It works with a strong
residual formulation and it uses a neural network NNθ : R → R as an ansatz for the solution.
Here θ ∈ Rq are the parameters of the neural network that are learned by minimizing the
residual of the original differential equation:

R =
∑
xi∈Ω

i=1,...,m

|P (NNθ(xi), y)|2 +
∑
xi∈∂Ω

i=1,...,mb

|B(NNθ(xi), y)|2. (1.26)

Here P also represents the differential operator which is given by (1.24) while B accounts
for the boundary term of (1.25). The parameters of the equation are y = (ε, F, f, α, κ, g0, g1),
however for our numerical test we fix all except ε.

The key feature of PINNs is that they rely heavily on the possibility offered by today’s
software of easily computing, via automatic differentiation, the exact value of the gradient
of a NNθ at a given point. One can obtain the gradient with respect to both its inputs
x ∈ Rd and its parameters θ. The latter is needed for the learning task as it relies on
gradient descent optimization strategies. However, one can go further and calculate multiple
derivatives with respect to the inputs allowing us to evaluate the differential operator P at
any point x ∈ Ω.

As the NNθ is trained to satisfy the equation at random points there is the hope that
it will eventually converge to a reliable approximation ũ(x) = NN (x) of the solution u(x)
of the PDE.

This strategy is also expected to suffer from the vanishing ε as one would required to
sample in a too small region to capture the rapidly changing shape of the true solution
around the forming shock.

In this work we present alternative formulations to the classical PINN:

• Vanilla: as described above.

• Vanilla with change of variables: to define the learning task we first redefine the
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equation by performing the following change of variables:

u(x) = e−cFxz(x) (1.27)

and train the NN as in vanilla PINN but on this new system with z as the input
variable instead of x.

• Weak formulation and change of variables: Noting that the resulting new system
is elliptic, we can write it in variational formulation where z is the new unkown. The
NN is then trained using the weak formulation system.
Notice that the summation in Equation (1.26) is due to the need of sampling Ω
pointwise in order to have a coverage of the relevant regions. In the weak formulation,
however, the sampling has a precise interpretation: it is the discretization of the weak
integrals via a quadrature method of choice.

• Weak formulation, change of variables and domain rescaling: Starting from
the weak formulation we also perform a domain rescaling Ω̃ = Ω/ε in the hope of
taming the exponentials that appeared explicitly after the change of variables.

• Weak formulation: The learning task is also based on the weak formulation but
going back to the original variables in order to make the optimization on u again
instead of z.

The general conclusion is that all the methods degrade with vanishing ε although PINNs
are an easy to implement alternative to FEM not requiring many collocation points to get
reliable approximations on high ε regimes.

In particular all the methods optimized on the changed variable z blow up below ε ≲
ε∗ ≈ 0.063. From the remaining, vanilla PINN shows the best results having almost constant
accuracy for bigger values of e although it fails for smaller values of ε, it remains less
dramatic compared to the rest. If FEM is implemented with sparse matrices, then one can
use very dense meshes and still be competitive in terms of computing time with respect
to vanilla PINN. Interestingly, though, by using just m = 10 collocation points one can
achieve using Vanilla PINN, the same accuracy level as with m = 10000 for FEM.

1.8 Modelling pollution at a city scale

Chapter 7, based on paper [67], is dedicated to the state estimation inverse problem in
the context of modelling air pollution at the scale of a city. One main difficulty is the few
available sensors measuring NO2 pollution z ∈ Rm which in the studied scenario, the city
of Paris, consisted only of m = 13 spatial locations xobsi . To enhance this data with local
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features we developed an automatic way of capturing Google Map’s traffic screenshots for
the whole city. In addition, we also took into account wind w(t) and temperature series
θ(t) for the three studied months. To combine all this heterogeneous sources of information
we propose data-driven, physics-driven or hybrid approaches and showed that it is possible
to build relatively accurate pollution cartographies.

The main conclusion of this work is that one can improve pollution estimations by
incorporating traffic data processed from Google Maps screenshots.

The collected traffic data has to be preprocessed before it can be properly used for
pollution prediction. For this, we decided to work on the graph representation G = (V,E)
of the city streets, where the edges E represent the streets and the nodes V the intersections.
Then, for each image, we first extract the pixels containing one of the four possible traffic
colors and project them onto the closest edge. Finally, we aggregate this information on
each node such that we have for each time t and each node v a vector qvc(t) ∈ R4 representing
the neighbouring traffic information.

To compare results we use two models as baselines. The first one consists on estimating
for every point x ∈ R2 the same value given by the spatial average of the observed pollution
z(t) = 1

m

∑m
i zi(t). The second model is known as the Best Linear Unbiased Estimator

(BLUE) and gives the best possible accuracy for any linear method using z as the only
available information. This method, can not be used as a state estimation model because
it requires the knowledge of the full statistics (averages and covariances) of every point of
interest. However, it serves as a lower error bound for other strategies.

By looking at the covariance between stations and their respective pairwise distances
one can see that pollution concentrations are more correlated when their locations are near
and less when they are far. One can fit an exponential decay to this relation and use it to
get an approximate value of the covariances between locations with and without sensors.
By introducing this approximate covariances one can modify BLUE and make it a state
estimation model known as Kriging.

A straightforward way to take into account the traffic data is by building a parametric
model Tα : R4 → R that transforms the given four color densities associated to a node
qvc(t) into a local correction with respect to the spatial average pollution estimation. The
parameters α are found differently depending on form of T : LASSO regression with cross
validation for linear or polynomial models; gradient descent with early stopping for neural
networks. This learning is done using the observed stations by associating each location to
the nearest node in the graph.

The previous strategy, named source model, gives very localized corrections as for each
point x the pollution prediction depends only on the traffic values of the nearest node. To
generate smoothed versions of qvc(t) we project qvc(t) on a reduced basis that we build from
the first eigenvectors of the graph Laplacian associated with G. This can be seen as solving a
reaction-diffusion equation on the graph with source term given by the initial un-smoothed
field qvc(t). After this process one can again learn a mapping Tα by taking the smoothed
version of the traffic densities.
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Finally, as the model Kriging is only good at estimating the pollution density at points
that are close to a sensor, we take the outputs of Kriging and the ones given by the traffic
dependant strategies and average them with varying weights that depend on the distance to
the nearest sensor. This combined strategy manages to consistently improve with respect
to the spatial average baseline.

1.9 Python package for reproducible research
The development of a unified framework to systematically define, execute, store, and present
numerical experiments came from the observation that in almost all scientific projects in-
volving coding many tasks not related to the actual problem can be abstracted and auto-
mated. To mention a few:

• File management: In every project one needs to define a location to store data, logs,
and results generated during experimentation.

• Save, load, and check experiments: The inputs and results of experiments are stored
in a tree structure that can be retrieved to further analysis or to avoid recomputing
already done experiments.

• Parallelize experiments: It is possible to parallelize the exploration of independent
runs by just writing the number of desired cores to be used.

• Export results: The results of the experiments can be exported in user-friendly formats
such as .csv for further analysis outside Python.

• Fast visual exploration: One can produce basic and specifically designed visuals to
intermediately get insights and explore stored results.

• Connect to LATEX: One can insert in the text variables directly issued from the ex-
periments. This reduces the chances of writing in a report outdated parameters and
results as they will be automatically modified if any change on the code is produced.

• Measure CO2 emissions: Using [38] package one can also track the electricity consump-
tion and approximate CO2 emissions generated by the experiments and analysis.

This package can be found at https://github.com/agussomacal/PerplexityLab and
it was used for structuring the experiments of papers [50, 55, 56, 67]. Other related projects
are AiiDA [95] and https://pydoit.org/.

https://github.com/agussomacal/PerplexityLab
https://pydoit.org/
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Chapter 2

Reduced order modelling for
elliptic problems with high
contrast diffusion coefficients

2.1 Introduction

2.1.1 Reduced models for parametrized PDEs

Parametric PDE’s are commonly used to describe complex physical phenomena. With
y = (y1, . . . , yd) denoting a parameter vector ranging in some domain Y ⊂ Rd, and u(y) the
corresponding solution to the PDE of interest, assumed to be well defined in some Hilbert
space V , we denote by

M := {u(y) : y ∈ Y }, (2.1)

the collection of all solutions, called the solution manifold.
There are two main ranges of problems associated to parametric PDEs:
1. Forward modelling: in applications where many queries of the parameter to solution

map y 7→ u(y) are required, one needs numerical forward solvers that efficiently
compute approximations ũ(y) with a prescribed accuracy.

2. Inverse problems: when the exact value of the parameter y is unknown, one is in-
terested in either recovering an approximation to u(y) (state estimation) or to y
(parameter estimation), from a limited number of observations zi = ℓi(u(y)), possibly
corrupted by noise.

Reduced order modelling is widely used for tackling both problems. In its most common
form, its aim is to construct linear spaces Vn of moderate dimension n that approximate all
solutions u(y) with best possible certified accuracy. The natural benchmark for measuring
the performance of such linear reduced models is provided by the Kolmogorov n-width of
the solution manifold

dn(M)V := inf
dim(Vn)=n

dist(M, Vn)V (2.2)

29
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that describes the performance of an optimal space. Here

dist(M, Vn)V := sup
u∈M

inf
v∈Vn

∥u− v∥V = sup
u∈M

∥u− PVnu∥V ,

where PVn is the V -orthogonal projector onto Vn. We refer the reader to [130] for a general
treatment of n-widths.

While an optimal space achieving the above infimum is usually out of reach, there exist
two main approaches aiming to construct “sub-optimal yet good” spaces. The first one con-
sists in building expansions of the parameter to solution map, for example by polynomials

un(y) :=
∑
ν∈Λn

uνy
ν , yν := yν11 . . . yνdd , (2.3)

where Λn ⊂ Nd is a set of cardinality n. The coefficients uν are elements of V and therefore,
for all y ∈ Y the approximation un(y) is picked from the space

Vn := span{uν : ν ∈ Λn}.

Notice that un(y) is not the orthogonal projection PVnu(y) in this case, but un(y) is easy
to compute for a given query y once the uν have been constructed (usually through a high
fidelity finite element solver). We refer to [12, 19, 15],[14, 52, 54, 150] for instances of this
approach.

The second approach is the reduced basis method [85, 140, 144], that consists in taking

Vn := span{u1, . . . , un},

where the uj = u(yj) are particular solution instances corresponding to a selection of
parameter vectors yj ∈ Y . A close variant is the proper orthogonal decomposition method
[45, 153, 158], where the reduced spaces are obtained by principal component analysis
applied to large training set of such instances. In the reduced basis method, the parameter
vectors y1, . . . , yn can be selected by a greedy algorithm, introduced in [98] and originally
studied in [39]. For such a selection process, it is proved in [28, 65] that if dn(M)V has
a certain algebraic or exponential rate of decay with n, then a similar rate is achieved by
dist(M, Vn)V for the reduced basis spaces.

It follows that the reduced basis spaces constructed by the greedy algorithm are close
to optimal. This is in contrast to the spaces Vn spanned by the polynomial coefficients
uν for which the approximation rate is not guaranteed to be optimal. We refer to [13] for
instances where reduced basis methods can be proved to converge with a strictly higher rate
than polynomial approximations. On the other hand, the polynomial constructions (2.3)
have certain numerical advantages. Namely, for several relevant classes of parametrized
PDEs, it can be shown that the parameter to solution mapping y 7→ u(y) has certain
smoothness properties that can be used to obtain a-priori bounds on the ∥uν∥V without
actually computing these norms. This allows an a priori selection of an appropriate set Λn
and the proof of concrete approximation estimates for the error supy∈Y ∥u(y) − un(y)∥V .
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These estimates in turn provide an upper bound for dn(M)V , and therefore for reduced
basis approximations.

2.1.2 Parametrized elliptic PDEs

One prototypal instance where the convergence analysis described above has been deeply
studied is the parametrized second order elliptic equation

−div(a(y)∇u(y)) = f in Ω, u|∂Ω = 0 on ∂Ω, (2.4)

where Ω ⊂ Rm is the spatial domain, f ∈ H−1(Ω) is a source term, and a(y) has the affine
form

a(y) = a+
d∑
j=1

yjψj , (2.5)

with a and (ψ1, . . . , ψd) some fixed functions in L∞(Ω).
The corresponding solution u(y) ∈ H1

0 (Ω) is defined through the standard variational
formulation in H1

0 (Ω) equipped with its usual norm. Up to renormalization, it is usually
assumed that the yj range in [−1, 1], or equivalently Y = [−1, 1]d. To ensure existence
and uniqueness of solutions, one typically assumes that the so-called Uniform Ellipticity
Assumption (UEA) holds: for some fixed 0 < r ⩽ R <∞,

r ⩽ a(x, y) ⩽ R, x ∈ Ω, y ∈ Y, (2.6)

where a(x, y) := a(y)(x) = a(x) +
∑d

j=1 yjψj(x), or in short r ⩽ a(y) ⩽ R for all y ∈ Y .
Under this assumption, Lax-Milgram theory ensures that the solution map y 7→ u(y) is well
defined from Y into H1

0 (Ω), with the uniform bound

∥u(y)∥H1
0
:= ∥∇u(y)∥L2 ⩽

Cf
r
, y ∈ Y.

Here and throughout this paper
Cf := ∥f∥H−1 . (2.7)

It was proved in [15, 150] that, under UEA, polynomial approximations (2.3) of given total
degree converge sub-exponentially: for Λn = {|ν| ⩽ k} with n =

(k+d
d

)
, one has

sup
y∈Y

∥u(y)− un(y)∥H1
0
⩽ C ′ exp(−cn1/d), (2.8)

Such sub-exponential rates show that the spaces Vn based on polynomial expansions or
reduced bases perform significantly better than standard finite element spaces, at least for
a moderate number d of parameters. It is possible to maintain a rate of convergence as d
grows, and even when d = ∞, when assuming some anisotropy in the variable yj through
the decay of the size of ψj as j → ∞, see in particular [14, 52, 54] for results of this type.
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2.1.3 High constrast problems

The Uniform Ellipticity Assumption (2.6) implies that there is a uniform control on the
level of contrast in the diffusion function

κ(y) := maxx∈Ω a(x, y)
minx∈Ω a(x, y)

⩽
R

r
, y ∈ Y. (2.9)

This assumption also plays a key role in the derivation of the above approximation results,
since it guarantees that the parameter to solution map has a holomorphic extension to a
sufficiently large complex neighbourhood of Y . In this case, a good polynomial approxima-
tion un may be defined by simply truncating the power series

∑
ν∈Nd uνy

ν , leading to the
estimate (2.8).

On the other hand, there exist various situations where one would like to avoid such a
strong restriction on the level of contrast. Perhaps the most representative setting is when
the domain Ω is partitioned into disjoint subdomains {Ω1, . . . ,Ωd}, each of them admitting
a constant diffusivity level that could vary strongly between subdomains. This is typically
the case when modelling diffusion in materials having multiple layers or inclusions that
could have very different nature, for example air or liquid versus solid. This situation can
be encountered in groundwater flow applications, where certain subdomains correspond to
cavities, for which the diffusion function becomes nearly infinite, as opposed to subdomains
containing sediments or other porous rocks.

In such a case, we do not want to limit the contrast level. To represent this setting, we
let

a(y)|Ωj
= yj , yj ∈]0,∞[ (2.10)

or equivalently a(y) =
∑d

j=1 yjχΩj , which corresponds to the affine form (2.5) with a = 0
and ψj = χΩj , now with

Y :=]0,∞[d. (2.11)

We take (2.11) as the definition of the parameter domain Y for the remainder of this paper.
The solution u(y) satisfies the variational formulation

d∑
j=1

yj

ˆ
Ωj

∇u(y) · ∇v dx = ⟨f, v⟩H−1,H1
0
, v ∈ H1

0 (Ω), (2.12)

or equivalently −yj∆u(y) = f as elements of H−1(Ωj) on each Ωj , with the standard jump
conditions [a(y)∂n⃗u(y)] = 0 across the boundaries between subdomains.

Let us observe that in this setting, it is hopeless to find spaces Vn that approximate all
solutions u(y) uniformly well. Indeed, the following homogeneity property obviously holds:
for any y ∈ Y and t > 0, one has

u(ty) = t−1u(y). (2.13)

This property implies in particular that ∥u(y)∥H1
0
tends to infinity as y → 0, and so does
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∥u(y)−PVnu(y)∥H1
0
in general. In fact, this also shows that the solution manifold M is not

relatively compact and does not have finite n-widths.
In addition to this principal difficulty, let us remind that when using the spaces Vn

in forward modelling, we typically use the Galerkin method, that delivers the orthogonal
projection onto Vn however for the energy norm

∥v∥2y :=
d∑
j=1

yj

ˆ
Ωj

|∇v|2 dx. (2.14)

This approximation is thus optimal in H1
0 (Ω), however up to the constant κ(y)1/2, which

deteriorates with high contrast.

The main contribution of this paper is to treat these issues, and derive approximation
estimates that are robust to high contrast, in the sense that they are independent of y ∈ Y .

Due to the main objection coming from the homogeneity property (2.13), it is natural
to look for uniform approximation estimates in relative error, that is, estimates of the form

∥u(y)− PVnu(y)∥H1
0
⩽ εn∥u(y)∥H1

0
, y ∈ Y, (2.15)

with limn→∞ εn = 0, and similarly for P yVnu(y). Our main results, Theorems 2.3.7 and 2.4.2,
exhibit spaces Vn ensuring the validity of such uniform estimates with εn having sub-
exponential decay with n, similar to the known results under UEA.

Remark 2.1.1. High contrast problems have been the object of intense investigation, in
particular with the objective of developing techniques for multilevel or domain decomposition
preconditioning [6, 5, 78] and a-posteriori error estimation [4, 25], that are provably robust
with respect to the level of contrast. We also refer to [91, 126] for the treatment of high-
contrast problems by multiscale methods, in the context of hetereogeneous media, see also
[11]. To our knowledge, the present work is the first in which this robustness is established
for reduced modelling methods in the context of parametrized coefficients.

2.1.4 Outline

Throughout this paper, we consider the parametrized elliptic PDE (2.4) with a(y) having
piecewise constant form (2.10) over a fixed partition. In view of the homogeneity property
(2.13), we are led to consider the subset

Y ′ := [1,∞[d (2.16)

of parameters corresponding to the coercive regime. Any result on relative approximation
error that is established for Y ′ extends automatically to all of Y because of the homogeneity
property. Accordingly, we let

B := {u(y) : y ∈ Y ′}. (2.17)
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In Section 2.2, we start by proving that B is a precompact set of H1
0 (Ω). One crucial

ingredient for this analysis are the limit solutions of the so-called stiff problem, obtained as
yj → ∞ for certain j ∈ {1, . . . , d}.

In Section 2.3, we construct specific reduced model spaces for which the approximation
estimate (2.15) holds with εn decaying sub-exponentially. Our construction is based on
partitioning the parametric domain Y ′ into rectangular regions and using a different poly-
nomial approximations on each region. This results in global reduced model space Vn for
which the accuracy bound remains sub-exponential, however in exp(−cn

1
2d−2 ). A key ingre-

dient for establishing these sub-exponential rates is the derivation of quantitative estimates
on the convergence of u(y) towards limit solutions defined in Section 2.2 as some yj tend
to infinity. These estimates are established under an additional geometrical assumption on
the partition, similar results for a general partition of Ω being an open problem.

In Section 2.4, we discuss the use of these reduced model spaces in forward modelling
and inverse problems. Our main result relative to forward modelling is that the estimate
(2.15) also holds for the Galerkin projection with the same exponential decay en. We
show that such a result is only possible if Vn includes functions that have constant values
over some subdomains. For the state estimation problem, we follow the Parametrized
Background Data Weak (PBDW) method [26, 108], and obtain recovery bounds that are
uniform over y ∈ Y in relative error. For the parameter estimation problem, we introduce
an ad-hoc strategy that specifically exploits the piecewise constant structure of the diffusion
coefficient and obtain similar recovery bounds for the inverse diffusivity.

We conclude in Section 2.5 by presenting some numerical illustrations revealing the ef-
fectiveness of the reduced model spaces even in the high-contrast regime, as expressed by
the approximation results.

Acknowledgements: We thank the anonymous reviewers for their constructive comments.
We also thank François Murat for useful discussions in the understanding of the convergence
process towards limit solutions, Hamza Maimoune for leading us to this work through his
remarks during his master project, and Jules Pertinand for useful discussions.

2.2 Uniform approximation in relative error

In this section we work under no particular geometric assumption on the partition {Ω1, . . . ,Ωd}
of Ω, and consider the solution manifold M defined by (2.1), where u(y) ∈ H1

0 (Ω) is solution
to the elliptic boundary value problem with variational formulation (2.12). Our objective
is to show the existence of spaces Vn that uniformly approximate M in the relative error
sense expressed by (2.15).

2.2.1 Limit solutions and the extended solution manifold

Our first observation is that this collection can be continuously extended when yj = ∞ for
some values of j, through limit solutions of stiff inclusions problems. Such limit solutions
have for example been considered in the context homogeneization, see e.g. p.98 of [96].
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For this purpose, to any S ⊂ {1, . . . , d}, we associate the space

VS := {v ∈ H1
0 (Ω) : ∇v|Ωj

= 0, j ∈ S}. (2.18)

In other words, VS consists of the functions from H1
0 (Ω) that have constant values on the

subdomains Ωj for j ∈ S (or on each of their connected components if these subdomains
are not connected). It is a closed subspace of H1

0 (Ω). We decompose the parameter vector
y according to

y = (yS , ySc), yS := (yj)j∈S and ySc := (yj)j∈Sc . (2.19)

For any finite and positive vector ySc , similar to the ∥ · ∥y norm (2.14), we may define

∥v∥2ySc :=
∑
j∈Sc

yj

ˆ
Ωj

|∇v|2 dx, (2.20)

which is a semi-norm on H1
0 (Ω), and a full norm equivalent to the H1

0 -norm on VS . Also
note that when y = (yS , ySc) is finite, one then has ∥v∥ySc = ∥v∥y for any v ∈ VS .

For any finite and positive vector ySc , we define the function uS(ySc) ∈ VS solution to
the following stiff inclusions problem:∑

j∈Sc

yj

ˆ
Ωj

∇uS(ySc) · ∇v dx = ⟨f, v⟩H−1,H1
0
, v ∈ VS . (2.21)

The following result shows that this solution is well defined and is the limit of u(y), when
ySc is fixed and yj → ∞ for j ∈ S. Note that the weak convergence is established in [96]
(p. 98) and so we concentrate the proof on the strong convergence.
Lemma 2.2.1. There exists a unique uS(ySc) ∈ VS solution to (2.21), which is the limit in
H1

0 (Ω) of the solution u(yS , ySc) as yj → ∞ for all j ∈ S.

Proof. Using the bilinear form (u, v) 7→
∑

j∈Sc yj
´
Ωj

∇u · ∇v dx in the space VS , Lax-
Milgram theory implies the existence of a unique solution uS(ySc) ∈ VS to (2.21).

Consider now a sequence (yn)n⩾1 ∈ Y N, with ynSc = ySc and ynj → ∞ for all j ∈ S.
Denoting un = u(yn), it is readily seen that (un)n⩾1 is uniformly bounded in H1

0 norm by
C = Cf c

−1, where c := minn⩾1min1⩽j⩽d ynj > 0, and that any weak limit of a sequence
extraction is solution to the variational (2.21). Therefore the whole sequence (un)n⩾1 weakly
converges to ū = uS(ySc).

We finally prove strong convergence by writing

c∥un − ū∥2H1
0

⩽
ˆ
Ω
a(yn)|∇(un − ū)|2 dx

= ⟨f, un⟩H−1,H1
0
− 2⟨ū, un⟩ySc + ∥ū∥2ySc

−→
n→∞

⟨f, ū⟩H−1,H1
0
− ∥ū∥2ySc = 0.
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The above lemma allows us to readily extend the solution manifold by introducing

Ỹ :=]0,∞]d,

and
M := {u(y) : y ∈ Ỹ },

where we have formally set
u(y) := uS(ySc),

when yj = ∞ for j ∈ S and yj < ∞ for j ∈ Sc. Note that when S = {1, . . . , d} the space
VS is trivial and one has

u(∞, . . . ,∞) = 0.

Remark 2.2.2. Although we do not make explicit use of it, it can be checked that despite
the fact that yj = 0 is excluded in the definition of M, it indeed coincides with the closure
of M in H1

0 (Ω) due to the fact that ∥u(y)∥H1
0
→ ∞ as y → 0.

Remark 2.2.3. More precisely, when some yj tend to zero, u(y) converges to the solution
of the so-called soft inclusions problem (see [96], chapter 3), outside the corresponding
subdomains Ωj. Here, due to the fact that the approximation estimates that we prove further
are in relative error, these other limit solutions are of no use in our analysis.

2.2.2 A compactness result

As already observed in the introduction, the manifold M is not bounded in H1
0 (Ω) due to

the homogeneity property (2.13) and therefore not compact.
In order to treat this defect, we consider

Ỹ ′ := [1,∞]d,

and the submanifold
B := {u(y) : y ∈ Ỹ ′},

which is now bounded in H1
0 (Ω), from the standard a-priori estimate

∥u(y)∥H1
0
⩽

Cf
min yj

⩽ Cf ,

that is obtained by taking v = u(y) in the variational formulation (2.12), with Cf = ∥f∥H−1

as in (2.7). This estimate trivially extends to uS(ySc) when the yj have infinite value for
j ∈ S. In addition we have the following result.

Theorem 2.2.4. The set B is compact in H1
0 (Ω).
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Proof. Consider any sequence of vectors yn = (yn1 , . . . , ynd ) ∈ Ỹ ′ for n ⩾ 1. We need to prove
that the corresponding sequence of solutions (u(yn))n⩾1 admits a converging subsequence.
For this purpose, we observe that there exists a subset S ∈ {1, . . . , d} such that, up to
subsequence extraction,

lim
n→∞

ynj = ∞, j ∈ S,

and
lim
n→∞

ynj = yj <∞, j ∈ Sc.

Note that S could be empty, for instance in the case where the ynj are uniformly bounded
for all j.

Let e > 0. Using the strong convergence result in Lemma 2.2.1, for all n ⩾ 1 there exists
an auxiliary vector ȳn such that ȳnj = ynj when ynj < ∞, ȳnj < ∞ when ynj = ∞, such that
by having picked ȳnj large enough in the second case

∥u(yn)− u(ȳn)∥H1
0
⩽ e/3.

In addition we may assume that ȳnj → ∞ for j ∈ S. Next we introduce the vector ỹn such
that ỹnj = ȳnj when j ∈ S and ỹnj = yj when j ∈ Sc. Applying again Lemma 2.2.1, we find
that with ySc = (yj)j∈Sc , one has

∥u(ỹn)− uS(ySc)∥H1
0
⩽ e/3,

for n sufficiently large. Finally we argue that

∥u(ỹn)− u(ȳn)∥H1
0
⩽ e/3,

for n large enough. This is a consequence of the following variant of Strang first lemma
(which proof is similar and left as an exercise to the reader) that says that for two diffusion
functions ā and ã, the corresponding solution ū and ũ with the same data f satisfy

∥ū− ũ∥H1
0
⩽

Cf ∥ā− ã∥L∞

min{āmin, ãmin}2
.

We then apply this to a := an = a(yn) and ã := ãn = a(ỹn), observing that from their
definition, ∥ā−ã∥L∞ = maxj∈Sc |ȳnj −yj | → 0 as n→ ∞. Therefore ∥u(yn)−uS(ySc)∥H1

0
⩽ e

for n sufficiently large, which concludes the proof.

We next observe that any y ∈ Y can be rewritten as

y = tỹ,

with ỹ ∈ Y ′ and normalization min ỹj = 1, for some t > 0, and from (2.13) one has
u(y) = t−1u(ỹ). This motivates the study of the further reduced manifold

N := {u(y) : y ∈ Ỹ ′, min yj = 1}, (2.22)
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which is a subset of B.
One important observation is that the solutions contained in N are also uniformly

bounded from below, under mild assumptions on the data f .

Lemma 2.2.5. The set N is compact in H1
0 (Ω). Moreover, one has the framing

min
1⩽j⩽d

∥f∥H−1(Ωj) ⩽ ∥u(y)∥H1
0
⩽ Cf , (2.23)

for all u(y) ∈ N .

Proof. The compactness of N follows from that of B, since N is a closed subset of B. For
the framing, as a(y) ⩾ 1 on Ω,

∥u∥2H1
0
⩽
∑
j∈Sc

yj

ˆ
Ωj

|∇u(y)|2 dx = ⟨f, u(y)⟩H−1,H1
0
⩽ Cf∥u(y)∥H1

0
,

so ∥u(y)∥H1
0
⩽ Cf . Now take j ∈ {1, . . . , d} such that yj = 1, and consider φ ∈ H1

0 (Ωj).
Then

⟨f, φ⟩H−1,H1
0
=
ˆ
Ωj

∇u(y) · ∇φdx ⩽ ∥u(y)∥H1
0 (Ω)∥φ∥H1

0 (Ωj),

which gives the result.

In the sequel of this paper, we always work under the condition that the lower bound
in (2.23) is strictly positive

cf := min
1⩽j⩽d

∥f∥H−1(Ωj) > 0. (2.24)

Let us observe that when f is a function in L2(Ω), this is ensured as soon as f is not
identically zero on one of the Ωj . We thus have

0 < cf ⩽ ∥u(y)∥H1
0
⩽ Cf , (2.25)

for all u(y) ∈ N .

Remark 2.2.6. The condition cf > 0 is in general necessary for controlling ∥u(y)∥H1
0
from

below. Indeed assume ∥f∥H−1(Ωj) = 0 for some j such that Ω\Ωj is connected. Then taking
yk = ∞ for k ̸= j and yj = 1, we find that u(y) ∈ VS with S = {j}c, which is equivalent to
u(y) ∈ H1

0 (Ωj) since it vanishes on the other sub-domains. As ∥f∥H−1(Ωj) = 0, we obtain
u(y) = 0.

Remark 2.2.7. One also has the uniform framing in the ∥ · ∥y norm since

0 < cf ⩽ ∥u(y)∥H1
0
⩽ ∥u(y)∥y =

√
⟨f, u⟩H−1,H1

0
⩽ Cf , (2.26)

for all u(y) ∈ N when all yj are finite.
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The framing (2.25) has an implication on the existence of reduced model spaces that
approximate uniformly well all solutions u(y) ∈ M in relative error.

Theorem 2.2.8. There exists a sequence of linear spaces (Vn)n⩾1 such that dim(Vn) = n,
and a sequence (εn)n⩾1 that converges to zero such that

∥u(y)− PVnu(y)∥H1
0
⩽ εn∥u(y)∥H1

0
(2.27)

for all y ∈ Ỹ , where PVn is the H1
0 (Ω)-orthogonal projector onto Vn.

Proof. Since N is compact, there exists a sequence of spaces (Vn)n⩾1 with dim(Vn) = n and
a sequence (σn)n⩾1 that tends to 0, such that

∥v − PVnv∥H1
0
⩽ σn, v ∈ N .

Now let y ∈ Ỹ differing from (∞, . . . ,∞), for which there is nothing to prove since
u(∞, . . . ,∞) = 0, and let t−1 = min1⩽j⩽d yj < ∞. By homogeneity, t−1u(y) = u(ty) ∈ N ,
and therefore

∥u(y)− PVnu(y)∥H1
0
= t∥u(ty)− PVnu(ty)∥H1

0 (Ω) ⩽ tσn.

On the other hand, ∥u(y)∥H1
0 (Ω) = t∥u(ty)∥H1

0 (Ω) ⩾ tcf by framing (2.23), which proves
Theorem 2.2.8 with εn = σn/cf .

The above theorem tells us that we can achieve contrast-independent approximation in
relative error. It is however still unsatisfactory from two perspectives:

1. It does not describe the rate of decay of εn as the reduced dimension n grows. In
practice, one would like to construct reduced spaces Vn such that this decay is fast,
similar to the exponential decay obtained under UEA.

2. The approximation property is expressed in terms of the orthogonal projection PVn .
In applications to forward modelling, we approximate the solution u(y) in the space
Vn by the Galerkin projection P yVnu(y). We thus wish for uniform estimates also for
such approximations.

These two problems are treated in Section 2.3 and Section 2.4 respectively.

2.3 Approximation rates

Our construction of efficient reduced model spaces is based on a certain partitioning of
the parameter domain Ỹ ′ associated to the manifold B. To any ℓ = (ℓ1, . . . , ℓd) ∈ Nd0 we
associate the dyadic rectangle

Rℓ = [2ℓ1 , 2ℓ1+1]× · · · × [2ℓd , 2ℓd+1], (2.28)
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Figure 2.1: Partition of [0, 1]d by the inverse rectangles R−1
ℓ in the case d = 2.

For a positive integer L to be fixed further, we modify the definition of Rℓ by replacing the
interval [2ℓj , 2ℓj+1] by [2ℓj ,∞] when ℓj = L for some j. This leads to the partition

Ỹ ′ =
⋃

ℓ∈{0,...,L}d
Rℓ. (2.29)

This partition is best visualized in the inverse parameter domain by setting

z = (z1, . . . , zd) := (y−1
1 , . . . , y−1

d ) ∈ [0, 1]d. (2.30)

Then, the inverse rectangles R−1
ℓ split the unit cube, as shown on Figure 2.1. In particular,

the rectangles touching the axes correspond to rectangles Rℓ of infinite size.
We build reduced model spaces through a piecewise polynomial approximation over this

partition. In other words, for each ℓ ∈ {0, . . . , L}d, we use different polynomials

uℓ,k(y) =
∑
|ν|⩽k

uℓ,νy
ν ,

of total degree k for approximating u(y) when y ∈ Rℓ, leading to a family of local reduced
model spaces

Vℓ,k = span{uℓ,ν : |ν| ⩽ k}, (2.31)

that can be either used individually when approximating u(y) if the rectangle Rℓ containing
y is known, or summed up in order to obtain a global reduced model space.

In this section we show that this construction yields exponential convergence rates in
(2.15), similar to those obtained under a Uniform Ellipticity Assumption. This requires a
proper tuning between the total polynomial degree k and the integer L that determines the
size of the partition. In the study of local polynomial approximation, we treat separately
the inner rectangles for which ℓ ∈ {0, · · · , L− 1}d and the infinite rectangles for which one
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or several ℓj are equal to L. The estimates obtained in the latter case rely on the additional
assumption that the partition has a geometry of disjoint inclusions.

2.3.1 Polynomial approximation on inner rectangles

Inner rectangles Rℓ are particular cases of rectangles of the form

R = [a1, 2a1]× · · · × [ad, 2ad], (2.32)

for some aj ⩾ 1. The following lemma, adapted from [13], shows that one can approximate
the parameter to solution map in the ∥ · ∥y and ∥ · ∥H1

0
norms on such rectangles, with a

rate that decreases exponentially in the total polynomial degree.

Lemma 2.3.1. Let R be any rectangle of the form (2.32). Then, for each k ⩾ 0, there
exists functions uν ∈ H1

0 (Ω) such that∥∥∥u(y)− ∑
|ν|⩽k

uνy
ν
∥∥∥
y
⩽ C3−k, y ∈ R, (2.33)

where C := 1√
3Cf , and ∥∥∥u(y)− ∑

|ν|⩽k

uνy
ν
∥∥∥
H1

0
⩽ C3−k, y ∈ R, (2.34)

where C := 1√
6Cf .

Proof. The exponential rate is established in [13] for a single parameter domain with uniform
ellipticity assumption. Here the difficulty lies in the fact that we want the same estimate
for all parametric rectangles R and thus without control on the uniform ellipticity. Still the
technique of proof, based on power series, is similar.

The elliptic equation −div(a(y)u(y)) = f may be written in operator form

Ayu(y) = f,

where the invertible operator Ay : H1
0 (Ω) → H−1(Ω) is defined by

⟨Ayv, w⟩H−1,H1
0
:=
ˆ
a(y)∇v · ∇w dx = ⟨v, w⟩y.

We introduce
y := 3

2(a1, . . . , ad),

the center of the rectangle, and write any y ∈ R as

y = y + ỹ,
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where the components ỹj of ỹ vary in [−aj/2, aj/2]. We may write Ay = Ay +
∑d

j=1 ỹjAj ,
where the operators Aj : H1

0 (Ω) → H−1(Ω) are defined by

⟨Ajv, w⟩H−1,H1
0
:=
ˆ
Ωj

∇v · ∇w dx.

This allows us to rewrite the equation as

(I +B(ỹ))u(y) = g,

where g := A−1
y f ∈ H1

0 (Ω) and B(ỹ) =
∑d

j=1 ỹjA
−1
y Aj acts in H1

0 (Ω). We then observe
that

⟨B(ỹ)v, w⟩y = ⟨AyB(ỹ)v, w⟩H−1,H1
0
=

d∑
j=1

ỹj⟨Ajv, w⟩H−1,H1
0
=

d∑
j=1

ỹj

ˆ
Ωj

∇v · ∇w dx,

and therefore, since |ỹj | ⩽ 1
3yj ,

|⟨B(ỹ)v, w⟩y| ⩽
1
3

d∑
j=1

yj

∣∣∣ ˆ
Ωj

∇v · ∇w dx
∣∣∣ ⩽ 1

3∥v∥y∥w∥y,

which shows that ∥B(ỹ)∥y→y ⩽ 1
3 . We may thus approximate (I + B(ỹ))−1 by the partial

Neumann series
k∑
l=0

(−1)lB(ỹ)l,

which is a polynomial in ỹ of total degree k. The corresponding polynomial approximation
to u(y) is given by

Nku(y) =
k∑
l=0

(−1)lB(ỹ)lg =
k∑
l=0

(−1)l
 d∑
j=1

ỹjA
−1
y Aj

l

g =
∑
|ν|⩽k

vν ỹ
ν ,

and coincides with the truncated power series of ũ(ỹ) := u(y + ỹ) at ỹ = 0, that is,

vν := 1
ν!∂

νu(y), ν! :=
∏

νj !.

It can be rewritten in the form

Nku(y) =
∑
|ν|⩽k

uνy
ν .
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One has

∥u(y)−Nku(y)∥y ⩽
∑
l>k

∥B(ỹ)lg∥y ⩽
(∑
l>k

3−l
)
∥A−1

y f∥y =
3−k
2 ∥A−1

y f∥y,

and

∥A−1
y f∥2y = ⟨AyA−1

y f,A−1
y f⟩H−1,H1

0
= ⟨f, u(y)⟩H−1,H1

0
⩽ Cf∥u(y)∥H1

0
⩽ C2

f ,

where the last inequality follows from Lax-Milgram estimate since a(y) ⩾ 1. This proves
the estimate ∥∥∥u(y)− ∑

|ν|⩽k

uνy
ν
∥∥∥
y
⩽ C3−k, y ∈ R, (2.35)

with C := 1
2Cf . Using the inequalities

∥v∥2y ⩽
4
3∥v∥

2
y, v ∈ H1

0 (Ω), y ∈ R,

and
∥v∥2H1

0
⩽

2
3∥v∥

2
y, v ∈ H1

0 (Ω),

we obtain the estimate (2.33) and (2.34) with the modified multiplicative constants.

Remark 2.3.2. The above lemma shows that the set MR := {u(y) : y ∈ R} can be
approximated with accuracy C3−k by the space

VR := span{uν : |ν| ⩽ k}. (2.36)

The dimension of VR is at most
(k+d
d

)
, however, as noticed in [13], it can in fact be seen

that
dim(VR) ⩽

(
k + d− 1
d− 1

)
. (2.37)

This stems from the fact that the operators defined in the above proof satisfy the dependency
relation

Ay =
d∑
j=1

yjAj ,

and therefore, one can rewrite Ay as

Ay := (1 + ỹd/yd)Ay +
d−1∑
j=1

(ỹj − ỹdyj/yd)Aj .

Using this form, the partial Neumann sum Nku(y) has at most
(k+d−1
d−1

)
independent terms.

We shall also make use of the following adaptation of the above lemma to the approxi-



44 CHAPTER 2. ROM for elliptic problems with high contrast diffusion coefficients

mation of the limit solution map ySc 7→ uS(ySc), defined by (2.21). Its proof is an immediate
adaptation of the previous one and is therefore omitted.

Lemma 2.3.3. Let S ⊂ {1, . . . , d}, and for some aj ⩾ 1, let R be a rectangle of the form

R =
∏
j∈Sc

[aj , 2aj ]. (2.38)

Then, there exists functions uν ∈ VS such that∥∥∥uS(ySc)−
∑
|ν|⩽k

uνy
ν
Sc

∥∥∥
ySc

⩽ C3−k, ySc ∈ R, (2.39)

where C := 1√
3Cf , and∥∥∥uS(ySc)−

∑
|ν|⩽k

uνySc

∥∥∥
H1

0
⩽ C3−k, ySc ∈ R, (2.40)

where C := 1√
6Cf .

2.3.2 Polynomial approximation on infinite rectangles

We now consider the infinite rectangles Rℓ, corresponding to the ℓ such that some of the ℓj
equal L. We define

S := {j : ℓj = L}, (2.41)

the set of such indices. When y ∈ Rℓ, we thus have

yj ⩾ 2L, j ∈ S,

and so u(y) should be close to uS(ySc) as L is large. On the other hand ySc belongs to a
rectangle of the form

RℓSc =
∏
j∈Sc

[2ℓj , 2ℓj+1].

Therefore, by Lemma 2.3.3, we can approximate uS(ySc) by a polynomial of total degree k
in these restricted variables.

In order to conclude that this polynomial is a good approximation to u(y) on Rℓ, we
need a quantitative estimate on the convergence of u(y) towards uS(ySc). Let us observe
that since

d∑
j=1

yj

ˆ
Ωj

∇u(y) · ∇v dx = ⟨f, v⟩H−1,H1
0
=
∑
j∈Sc

yj

ˆ
Ωj

∇uS(ySc) · ∇v dx, v ∈ VS ,

the function uS(ySc) coincides with the orthogonal projection of u(y) onto VS for the y-norm,
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as well as for the ySc-norm:

uS(ySc) = P yVSu(y) = P ySc

VS
u(y). (2.42)

In addition, with
ΩS :=

⋃
j∈S

Ωj , (2.43)

we have

2L∥∇u(y)∥2L2(ΩS) ⩽
∑
j∈S

yj

ˆ
Ωj

|∇u(y)|2 dx ⩽ ⟨f, u(y)⟩H−1,H1
0
⩽ C2

f ,

since ∥u(y)∥H1
0
⩽ Cf , and therefore, since ∇uS(ySc) = 0 on ΩS , we find that

∥∇u(y)−∇uS(ySc)∥L2(ΩS) ⩽ Cf2−L/2. (2.44)

Our objective is to obtain a similar error bound on the remaining domains Ωj for j ∈ Sc.
This turns out to be feasible, with an even better rate 2−L, when making certain geometric
assumptions on the partition of the domain Ω.

Definition 2.3.4. We say that {Ω1, . . . ,Ωd} is a Lipschitz partition if and only if for any
subset T ⊂ {1, . . . , d}, the domain ΩT =

⋃
j∈T Ωj has Lipschitz boundaries.

Ω1

Ω4

Ω2

Ω3

Ω1 Ω2

Ω3 Ω4

Figure 2.2: A Lipschitz partition of Ω (left) and a counter-example (right) since Ω1 ∪ Ω4 is not Lipschitz.

Note that such a property is stronger than just saying that each domain is Lipschitz,
see Figure 2.2 (right) for a counter-example. In a Lipschitz partition, all subdomains Ωj
are Lipschitz, and the common boundary between two subdomains is either empty or a
(n − 1)-dimensional surface, as illustrated on Figure 2.2 (left). In particular, it is easily
checked that partitions consisting of a background domain and well separated subdomains
that have Lipschitz boundaries fall in this category. Similar to the ΩT , the individual Ωj
could have several connected components, that should then be well separated. Here by
“well separated”, we mean that δ-neighbourhoods of the subdomains remain disjoints for
some δ > 0.

For the inner domains ΩT such that ∂ΩT ∩ ∂Ω = ∅, the classical Stein’s extension
theorem [147] guarantees the existence of continuous extension operators

ET : H1(ΩT ) → H1(Ω),
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that satisfy (ET v)|ΩT
= v for all v ∈ H1(ΩT ). We refer to chapter 5 of [2] for a relatively

simple construction of the extension operator Ej by local reflection after using a partitioning
of unity along the boundary of ΩT and local transformations mapping the boundary to the
hyperplane Rn−1.

For the domains ΩT touching the boundary ∂Ω, these operators are modified in order
to take into account the homogeneous boundary condition, and we refer to [159] for such
adaptations. Here, the relevant space is

H̃1(ΩT ) := RT (H1
0 (Ω)), (2.45)

where RT is the restriction to ΩT , over which v 7→ ∥∇v∥L2(ΩT ) is equivalent to the H1 norm
by Poincaré inequality. Then, there exists a continuous extension operator

ET : H̃1(ΩT ) → H1
0 (Ω).

Note that the norm of all these operators depends on the geometry of the partition. These
operators are instrumental in proving the following convergence estimate.

Lemma 2.3.5. Assume that {Ω1, . . . ,Ωd} is a Lipschitz partition of Ω. Then there exists
a constant C0 that only depends on the geometry of the partition such that for any S ⊂
{1, . . . , d} and y = (yS , ySc) ∈ Y ′, one has

∥u(y)− uS(ySc)∥H1
0
⩽ C0Cf max

j∈S
y−1
j . (2.46)

In particular, for the infinite rectangle Rℓ,

∥u(y)− uS(ySc)∥H1
0
⩽ C0Cf2−L, y ∈ Rℓ, (2.47)

with S defined by (2.41).

Proof. We first note that it suffices to prove (2.46) in the particular case where the largest
yj are those for which j ∈ S. Indeed, if this is not the case, we use the decomposition

u(y)− uS(ySc) = (u(y)− uS′(yS′c))− (u(y′)− uS′(yS′c)) + (u(y′)− uS(ySc)),

with S′ = {i : yi ⩾ minj∈S yj} and y′ defined by y′j = maxi=1,...,d yi if j ∈ S, y′j = yj
otherwise, so that each term falls in this particular case and will be bounded in H1

0 norm
by C0Cf maxj∈S y−1

j . This leads to the same estimate (2.46) up to a factor 3 in constant
C0. In addition, up to reordering the subdomains Ωj , we may assume y1 ⩾ . . . ⩾ yd and
therefore S = {1, . . . , |S|}.

Fix j ⩾ |S|, and denote u = u(y) and uS = uS(ySc) for simplicity. We define the
Lipschitz domain Ωj = Ω1 ∪ · · · ∪ Ωj , remarking that

ΩS =
⋃
j∈S

Ωj = Ω|S|.
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Poincaré’s inequality ensures that there exists a function c on Ωj , constant on any connected
component of Ωj , and null on ∂Ω ∩ Ωj , such that

∥u− uS − c∥H1(Ωj) ⩽ CP ∥∇(u− uS)∥L2(Ωj),

with CP the maximal Poincaré constant of all unions of subdomains from the partition.
Moreover, there is an extension v ∈ H1

0 (Ω) of u− uS − c ∈ H̃1(Ωj) such that

∥v∥H1
0 (Ω) ⩽ CE∥u− uS − c∥H1(Ωj) ⩽ CECP ∥∇(u− uS)∥L2(Ωj),

with CE the maximal norm of all extension operators ET , T ⊂ {1, . . . , d}.

As u−uS−v = c on ΩS ⊂ Ωj , the function u−uS−v is in VS , and therefore orthogonal
to u− uS = u− P yVSu for the ∥ · ∥y norm:

0 = ⟨u− uS , u− uS − v⟩y

=
d∑
i=1

yi

ˆ
Ωi

|∇(u− uS)|2 −
d∑
i=1

yi

ˆ
Ωi

∇(u− uS) · ∇v

=
∑
i>j

yi

ˆ
Ωi

|∇(u− uS)|2 −
∑
i>j

yi

ˆ
Ωi

∇(u− uS) · ∇v

since ∇v = ∇(u− uS) on Ωj . In particular, we obtain

yj+1∥∇(u− uS)∥2L2(Ωj+1) ⩽
∑
i>j

yi

ˆ
Ωi

|∇(u− uS)|2

⩽ yj+1

ˆ
Ω\Ωj

|∇(u− uS) · ∇v|

⩽ yj+1∥u− uS∥H1
0 (Ω)∥v∥H1

0 (Ω)

⩽ yj+1∥u− uS∥H1
0 (Ω)CPCE∥∇(u− uS)∥L2(Ωj),

and therefore

∥∇(u− uS)∥2L2(Ωj+1) ⩽ (1 + CPCE)∥∇(u− uS)∥L2(Ω)∥∇(u− uS)∥L2(Ωj).

Applying this inequality inductively for j = d− 1, . . . , d− k, we get

∥∇(u− uS)∥L2(Ω) ⩽ (1 + CPCE)2
k−1∥∇(u− uS)∥L2(Ωd−k),

for any k = 1, . . . , d− |S|. For k = d− |S|, this results in the bound

∥∇(u− uS)∥2L2(Ω) ⩽ C0∥∇(u− uS)∥2L2(ΩS) = C0∥∇u∥2L2(ΩS), (2.48)

for any non-empty S, with C0 = (1 + CPCE)2
d−1 .
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We now write

(min
i∈S

yi)∥∇(u− uS)∥2L2(ΩS) ⩽ ∥u− uS∥2y = ⟨u, u− 2uS⟩y + ⟨uS , uS⟩ySc

= ⟨f, u− uS⟩H−1,H1
0
⩽ Cf∥∇(u− uS)∥L2(Ω),

which, combined to the previous estimate, gives

∥u− uS∥H1
0
= ∥∇(u− uS)∥L2(Ω) ⩽ C0Cf max

i∈S
y−1
i ,

therefore proving (2.46). For (2.47), we simply notice that maxj∈S y−1
j ⩽ 2−L for y ∈ Y ′∩Rℓ,

and use a continuity argument when y takes infinite values.

Combining the estimate (2.47) from the above lemma with (2.40) from Lemma 2.3.3,
we obtain the following estimate for polynomial approximation on an infinite rectangle Rℓ:∥∥∥u(y)− ∑

|ν|⩽k

uνy
ν
Sc

∥∥∥
H1

0
⩽
Cf√
6
3−k + C0Cf2−L, y ∈ Rℓ, (2.49)

where C0 is the constant in (2.47). This estimate hints how the level L in the partition
should be tuned to the total polynomial degree k, so that the two contributions in the above
estimate are of the same order.

Remark 2.3.6. Note that the constant C0 = (1 + CPCE)2
d−1 becomes prohibitive even for

moderate values of d. However, under more restrictive geometric assumptions, for instance
if the subdomains Ω2, . . . ,Ωd are disjoint inclusions in a background Ω1, better bounds can
be obtained, with a constant C0 that does not suffer a similar curse of dimensionality, by
replacing the induction in the proof by a two-step procedure, consisting of extensions first
from the high-diffusivity inclusions to the background, and then to the whole domain Ω.

2.3.3 Approximation rates and n-widths

We are now in position to establish an approximation result for the reduced model spaces.
For this purpose, we fix the smallest level L = Lk ⩾ 1 such that

C0Cf2−L ⩽
Cf√
3
3−k.

In particular L scales linearly with k, with the bound αk + β ⩽ Lk ⩽ αk + γ, where

α := ln 3
ln 2 , β := ln(

√
3C0)

ln 2 , γ := ln(2
√
3C0)

ln 2 . (2.50)
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Then, the polynomial approximation estimates (2.34) and (2.49) show that for each ℓ ∈
{0, · · · , Lk}d, there exist functions uℓ,ν ∈ H1

0 (Ω) such that∥∥∥u(y)− ∑
|ν|⩽k

uℓ,νy
ν
∥∥∥
H1

0
⩽

(
Cf√
6
+ Cf√

3

)
3−k ⩽ Cf3−k, y ∈ Rℓ.

Note that in the case of an infinite rectangle Rℓ, the uℓ,ν are non trivial only for monomials
of the form yνSc and they belong to VS , where S := {j : ℓj = Lk}.

Thus the solutions u(y) for y ∈ Rℓ are approximated with accuracy Cf3−k in the space

Vℓ,k := span{uℓ,ν : |ν| ⩽ k},

which in view of (2.3.2) has dimension at most
(k+d−1
d−1

)
.

Note also that approximating the reduced manifoldN defined in (2.22) requires a smaller
subset of rectangles, since

{y ∈ Ỹ ′ : min yj = 1} ⊂
⋃
ℓ∈Ek

Rℓ, Ek := {0, · · · , Lk}d \ {1, · · · , Lk}d.

We thus introduce the reduced model space

Vn :=
⊕
ℓ∈Ek

Vℓ,k, n = dim(Vn) ⩽ #(Ek)
(
k + d− 1
d− 1

)
, (2.51)

and find that
∥u(y)− PVnu(y)∥H1

0
⩽ Cf3−k, (2.52)

for all y ∈ Ỹ ′ such that min yj = 1. In view of (2.50), there exists a constant C that
depends on d and C0, such that

n ⩽ ((Lk + 1)d − Ldk)
(
k + d− 1
d− 1

)
⩽ C(k + 1)2d−2. (2.53)

This leads to the following approximation theorem.

Theorem 2.3.7. Assume that the partition has the geometry of disjoint inclusions. The
reduced basis space Vn defined in (2.51) then satisfies

∥u(y)− PVnu(y)∥H1
0
⩽ C exp

(
−cn

1
2d−2

)
, (2.54)

for all y ∈ Ỹ ′ = [1,∞]d such that min yj = 1. The Kolmogorov n-width (2.2) of the reduced
manifold N satisfies

dn(N )H1
0
⩽ C exp

(
−cn

1
2d−2

)
. (2.55)
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Over the full manifold M, one has the estimate in relative error

∥u(y)− PVnu(y)∥H1
0
⩽ C exp

(
−cn

1
2d−2

)
∥u(y)∥H1

0
, (2.56)

for all y ∈ Ỹ =]0,∞]d. The positive constants c and C only depend on d, Cf , and on the
geometry of the partition through the constant C0.

Proof. The estimate (2.54) follows directly by combining (2.52) and (2.53), and (2.55) is an
immediate consequence. We then derive (2.56) by using the homogeneity property (2.13)
and the lower inequality in (2.25), similar to the proof of (2.27) in Theorem 2.2.8.

Remark 2.3.8. In the above construction of Vn, the dimension n only takes the values
nk := #(Ek)

(k+d−1
d−1

)
for k ⩾ 0. However it is easily seen that if we set Vn = Vnk for

nk ⩽ n < nk+1, then all the estimates in the above theorem remain valid up to a change in
the constants (c, C).

Remark 2.3.9. Note that the union of the Vℓ,k for ℓ ∈ Ek would suffice to approximate N
with uniform accuracy Cf3−k, their sum Vn is an overkill. When y is known, for example in
forward modelling, it is therefore possible to first identify the proper space Vℓ,k associated to
the rectangle Rℓ that contains y, and build the approximation to u(y) from this space. This
nonlinear reduced modelling strategy has been studied in [33] with similar local polynomial
approximation under UEA, and in [71, 109, 161] with local reduced basis. The natural
benchmark is given by the notion of library width introduced in [148], that is defined for any
compact set K in a Banach space V as

dn,N (K)V := inf
#(Ln)⩽N

sup
u∈K

min
Vn∈Ln

min
v∈Vn

∥u− v∥V , (2.57)

where the first infimum is taken over all libraries Ln of n-dimensional spaces with cardinality
at most N . Our results thus show that

dn,N (N )H1
0
⩽ Cf3−k ∼ C exp(−cn 1

d ), n :=
(
k + d− 1
d− 1

)
, N = (Lk + 1)d − Ldk.

Note that the above sub-exponential rate can be misleading due to fact that the constant c
has a hidden dependence in d. As an example, up to the constant Cf , we find that taking
k = 4, 7, 9 leads to error bounds 3−k of order 10−2, 10−3, 10−4, with n = 15, 36, 55 for d = 3,
and n = 35, 120, 220 for d = 4, which is far better than the value of exp(−n 1

d ).

Remark 2.3.10. In view of the results from [28] and [65], we are ensured that a proper
selection of reduced basis elements in the manifold N should generate spaces Vn that perform
at least with the same exponential rates as those achieved by the spaces Vn in Theorem 2.3.7.
As explained in the introduction, reduced basis spaces may perform significantly better than
reduced model spaces based on polynomial or piecewise polynomial approximation. This
occurs in particular when the polynomial coefficients have certain linear dependency, as
established in [13] for the elliptic problem with piecewise constant coefficients in the low
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contrast regime, and recalled in Remark 3.2. There, it is shown that the rate O(exp(−cn 1
d ))

is at least improved to O(exp(−cn
1

d−1 )) and that further improvements in the rate may result
from certain symmetry properties of the domain partition, however not circumventing the
curse of dimensionality. While we do not pursue this analysis in the present high contrast
setting, we expect similar results to hold.

2.4 Forward modelling and inverse problems

2.4.1 Galerkin projection

In the context of forward modelling, the reduced model space Vn is used to approximate
the parameter to solution map, by a map

y 7→ un(y) ∈ Vn,

computed through the Galerkin method: un(y) ∈ Vn is such that

d∑
j=1

yj

ˆ
Ωj

∇un(y) · ∇v dx = ⟨f, v⟩H−1,H1
0
, v ∈ Vn.

Therefore ⟨un(y), v⟩y = ⟨u(y), v⟩y, that is

un(y) = P yVnu(y),

where P yVn is the projection onto Vn with respect to norm ∥ · ∥y.
Hence, one would like to derive estimates on ∥u(y) − P yVnu(y)∥H1

0
in place of the esti-

mates on ∥u(y)−PVnu(y)∥H1
0
that we have obtained so far, since PVnu(y) is not practically

accessible. As explained in the introduction, we cannot be satisfied with combining the
latter estimates with the bound

∥u(y)− P yVnu(y)∥H1
0
⩽ κ(y)1/2∥u(y)− PVnu(y)∥H1

0

derived from Cea’s lemma, since the multiplicative constant κ(y) from (2.9) is not uniformly
bounded over the manifolds M, B or N . Here, we shall employ another approach to derive
the same rates of convergence for ∥u(y)− P yVnu(y)∥H1

0
.

One first observation is that in order for Galerkin projection P yVn onto a reduced model
space Vn to satisfy a convergence bound in relative error, it is critical that this space contains
some functions from the limit spaces VS . This is expressed by the following result.

Proposition 2.4.1. Assume that there exists S ⊊ {1, . . . , d} such that Vn∩VS = {0}. Then
for any C ∈]0, 1[, there exists y ∈ Y ′ such that

∥u(y)− P yVnu(y)∥H1
0
⩾ C∥u(y)∥H1

0
. (2.58)
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Proof. Since Vn ∩ VS = {0}, the quantity ∥∇v∥L2(ΩS) is a norm on Vn and one can define

α = min
v∈Vn

∥∇v∥L2(ΩS)

∥v∥H1
0

> 0.

For any ε > 0, take yj = ε−2 for j ∈ S and yj = 1 for j ∈ Sc. Then, for v = P yVnu(y),

α

ε
∥v∥H1

0
⩽

1
ε
∥∇v∥L2(ΩS) ⩽ ∥v∥y ⩽ ∥u(y)∥y ⩽ Cf ⩽

Cf
cf

∥u(y)∥H1
0
,

where we have used the framings (2.25) and (2.26). Therefore, taking ε = cf
Cf
α(1 − C)

implies ∥v∥H1
0
⩽ (1− C)∥u(y)∥H1

0
, and (2.58) follows.

However, in the construction of Vn in Section 2.3, each space Vℓ,k is a subset of VS for
S = {j : ℓj = Lk}. This prevents the phenomenon described in the previous proposition
from occurring. Instead, we obtain similar convergence bounds as those obtained for PVn ,
as expressed in the following result.

Theorem 2.4.2. Assume that the partition of Ω has the geometry of disjoint inclusions.
On the rectangles Rℓ for ℓ ∈ {0, . . . , L}d, the following uniform convergence estimates hold:

∥u(y)− P yVℓ,ku(y)∥H1
0
⩽
Cf√
3
3−k, y ∈ Rℓ, (2.59)

if ∥ℓ∥∞ < L, and

∥u(y)− P yVℓ,ku(y)∥H1
0
⩽
Cf√
3
3−k + C0Cf2−L, y ∈ Rℓ, (2.60)

if ∥ℓ∥∞ = L. As a consequence, with L = Lk and Vn defined as in Section 2.3.3, one has
the estimates

∥u(y)− P yVnu(y)∥H1
0
⩽ C exp

(
−cn

1
2d−2

)
, (2.61)

for all y ∈ Ỹ ′ such that min yj = 1, and

∥u(y)− P yVℓ,ku(y)∥H1
0
⩽ C exp

(
−cn1/(2d−2)

)
∥u(y)∥H1

0
, (2.62)

for all y ∈ Ỹ , with constants c and C that only depend on d, Cf , and on the geometry of
the partition through the constant C0.

Proof. For bounded rectangles Rℓ with ∥ℓ∥∞ < L, we know from Lemma 2.3.1, and more
precisely from (2.33), that

∥u(y)− P yVℓ,ku(y)∥y = min
v∈Vℓ,k

∥u(y)− v∥y ⩽
∥∥∥u(y)− ∑

|ν|⩽k

uνy
ν
∥∥∥
y
⩽
Cf√
3
3−k
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for any y ∈ Rℓ. Since all the yj are greater or equal to 1, one has ∥v∥H1
0
⩽ ∥v∥y for all v

and therefore (2.59) follows.
For infinite rectangles Rℓ such that ∥ℓ∥∞ = L, we again introduce S = {j : ℓj = L}.

Then, using (2.47),

∥u(y)− P yVℓ,ku(y)∥H1
0
⩽ ∥u(y)− uS(ySc)∥H1

0
+ ∥uS(ySc)− P yVℓ,ku(y)∥H1

0

⩽ C0Cf2−L + ∥uS(ySc)− P yVℓ,ku(y)∥H1
0
.

Since Vℓ,k ⊂ VS , we have

P yVℓ,ku(y) = P yVℓ,kP
y
VS
u(y) = P yVℓ,kuS(ySc) = P ySc

Vℓ,k
uS(ySc),

Similarly to the previous case, we apply (2.39) from Lemma 2.3.3:

∥uS(ySc)− P yVℓ,kuS(ySc)∥H1
0
⩽ ∥uS(ySc)− P yVℓ,kuS(ySc)∥y ⩽

Cf√
3
3−k,

and we thus obtain (2.60).
After taking L = Lk and defining Vn as the sum of the Vℓ,k for ℓ ∈ Ek, the derivation of

(2.61) and (2.62) is exactly the same as for (2.54) and (2.56).

Remark 2.4.3. As in Remark 2.3.10, it is expected that the same rate of convergence is
attained if Vn is a reduced basis space generated by solutions u(yi), i = 1, . . . , n, as long as
there are O

((k+d−1
d−1

))
samples yi in each rectangle, however with samples forced to be of the

form uS(yiSc) ∈ VS in the case of infinite rectangles.

2.4.2 State and parameter estimation

The state estimation problem consists in retrieving the solution u = u(y) when the param-
eter y is unknown, and one observes m linear measurements

wi = ℓi(u), i = 1, . . . ,m,

where the ℓi are continuous linear functional on the Hilbert space V that contains the solu-
tion manifold. These linear functionals may thus be written in terms of Riesz representers

ℓi(v) = ⟨ωi, v⟩V .

The Parametrized Background DataWeak (PBDW) method, introduced in [108] and further
studied in [26], exploits the fact that all potential solutions are well approximated by reduced
model spaces Vn. It is based on a simple recovery algorithm that consists in solving the
problem

min
u∈Vw

min
v∈Vn

∥u− v∥V , (2.63)
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where, for w = (w1, . . . , wm) ∈ Rm,

Vw := {u ∈ V : ℓi(u) = wi, i = 1, . . . ,m},

is the affine space of functions that agree with the measurements.
The analysis of this problem is governed by the quantity

µn = µ(Vn,W ) := sup
v∈Vn

∥v∥V
∥PW v∥V

, (2.64)

where W := span{ω1, . . . , ωm}, which is finite if and only if Vn ∩W⊥ = {0}. Then, there
exists a unique minimizing pair

(u∗, v∗) = (u∗(w), v∗(w)) ∈ Vw × Vn

to (2.63), which satisfies the estimates

∥u− v∗∥V ⩽ µn min
v∈Vn

∥u− v∥V , (2.65)

and
∥u− u∗∥V ⩽ µn min

v∈Vn+(W∩V ⊥
n )

∥u− v∥V . (2.66)

The computation of (u∗, v∗) amounts to solving finite linear systems, and both solutions
depend linearly on w.

Turning to our specific elliptic problem, and assuming that the ℓi belong toH−1(Ω) = V ′

for V = H1
0 (Ω), we may apply the above PBDW method using the reduced basis spaces

Vn introduced in Section 2.3. As an immediate consequence of Theorem 2.3.7, we obtain a
recovery estimate in relative error.
Proposition 2.4.4. Let y ∈ Ỹ and u = u(y). Then both estimators v∗ ∈ Vn and u∗ ∈ Vw
satisfy

max{∥u− v∗∥H1
0
, ∥u− u∗∥H1

0
} ⩽ Cµn exp

(
−cn

1
2d−2

)
∥u∥H1

0
. (2.67)

The positive constants c and C only depend on d, Cf , and on the geometry of the partition
through the constant C0.

Proof. It follows readily by combining (2.56) applied to y = y with the recovery estimates
(2.65) and (2.66).

We next turn to the problem of parameter estimation, namely recovering an approxima-
tion y∗ to y from the measurements w. In contrast to state estimation, this is a nonlinear
inverse problem since the first mapping in

y 7→ u 7→ w

is typically nonlinear. One way of relaxing this problem into a linear one is by first using a
recovery u∗ of the state u, for example obtained by the PBDW method. One then defines
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y∗ as the minimizer over Ỹ of the residual

R(y) := ∥div(a(y)∇u∗) + f∥H−1 .

This is a quadratic problem when a(y) has an affine dependence in y, that can be solved by
standard quadratic optimization methods. The rationale for this approach is the fact that

R(y) = ∥Ayu∗ −Ayu(y)∥H−1 ∼ ∥u∗ − u(y)∥H1
0
,

and therefore we should be close to finding the parameter y that best explains the approx-
imation u∗. Unfortunately, this approach is not much viable in the high-contrast regime
since the equivalence ∥Ayv∥H−1 ∼ ∥v∥H1

0
has constants that are not uniform in y and

deteriorate with the level of contrast.
Instead, we propose a more specific approach that exploits the piecewise constant struc-

ture of a(y), assuming that Vn is a reduced space of the form

Vn = span(u1, . . . , un), ui = u(yi),

for some properly selected parameter vectors

yi = (yi1, . . . , yid), i = 1, . . . , n.

As mentioned, see Remark 2.3.10, these spaces satisfy the same exponential convergence
bounds as the spaces constructed in Section 2.3.

The PBDW estimator v∗ = v∗(w) ∈ Vn thus has the form

v∗ =
n∑
i=1

ciu
i ∈ Vn

and satisfies a similar bound (2.67) as in the above proposition. Then, on the particular
domain Ωj , one has

f

yj
= −∆u|Ωj

≈ −
n∑
i=1

ci∆ui =
n∑
i=1

ci
f

yij
,

and therefore, a natural candidate for the parameter estimate is y∗ = (y∗1, . . . , y∗d) with

y∗j :=
(

n∑
i=1

ci
yij

)−1

. (2.68)

The following result gives a recovery bound in relative error for the inverse diffusivity.

Proposition 2.4.5. With the notation 1/y = (1/y1, . . . , 1/yd), the estimator y∗ defined by
(2.68) satisfies the bound∥∥∥ 1

y∗
− 1
y

∥∥∥
∞

⩽
Cf
cf
Cµn exp

(
−cn

1
2d−2

)∥∥∥1
y

∥∥∥
∞
, (2.69)
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where Cf and cf are as in (2.25), and the other constants as in (2.67).

Proof. For 1 ⩽ j ⩽ d, take φ ∈ H1
0 (Ωj), then

∣∣∣∣∣ 1y∗j − 1
yj

∣∣∣∣∣ |⟨f, φ⟩H−1,H1
0
| =

∣∣∣∣∣
n∑
i=1

ci
yij

ˆ
Ωj

yij∇ui · ∇φdx− 1
yj

ˆ
Ωj

yj∇u · ∇φdx

∣∣∣∣∣
=
∣∣∣∣∣
ˆ
Ωj

∇(v∗ − u) · ∇φdx
∣∣∣∣∣

⩽ ∥v∗ − u∥H1
0 (Ω)∥φ∥H1

0 (Ωj).

Optimizing over φ gives ∥∥∥ 1
y∗

− 1
y

∥∥∥
∞

⩽ c−1
f ∥v∗ − u∥H1

0
,

which combined with (2.67) gives∥∥∥ 1
y∗

− 1
y

∥∥∥
∞

⩽ c−1
f Cµn exp

(
−cn

1
2d−2

)
∥u∥H1

0
.

Using the Lax-Milgram estimate

∥u∥H1
0
⩽ Cf

∥∥∥1
y

∥∥∥
∞
,

we reach (2.69).

Remark 2.4.6. The bound (2.69) is not entirely satisfactory since the approximation error
on yj remains high when y ∈ N with yj ≫ 1. We do not know if a bound of the form∣∣∣∣∣ 1y∗j − 1

yj

∣∣∣∣∣ ⩽ εn
yj
, 1 ⩽ j ⩽ d,

which would imply |y∗j − yj | ⩽ εn/(1− εn) yj, holds uniformly over N with εn −→
n→+∞

0.

2.5 Numerical illustration
The base model that will be used all along the numerical illustrations is the diffusion equa-
tion (2.4) with data f = 1 set on the two-dimensional square Ω = [−1, 1]2 with homogeneous
Dirichlet boundary conditions. We consider a piece-wise constant diffusion coefficient

a|Ωj
= yj , 1 ⩽ j ⩽ d,

on a partition of Ω into 16 squares of quarter side-length.
As such this partition does not satisfy the geometrical assumption of “Lipschitz par-

tition” that was critical in our analysis for the application of Lemma 2.3.5. Therefore we
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Figure 2.3: Lipschitz partition
of Ω.
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Figure 2.4: Non-lipschitz
partition of Ω.

consider sub-partitions that comply to the assumptions, such as illustrated on Figure 2.3,
which amounts to equate the parameters yj of squares belonging to the same sub-domain.
This way we can consider that y = (yA, yB, yC , yD) consists of four parameters, one per
each subdomain.

The numerical results that we next present aim to illustrate the robustness to high-
contrast of the reduced basis method, and discuss in addition the effect of parameter se-
lection, higher parametric dimensions, and inclusions that are not satisfying the geometric
assumption as exemplified on Figure 2.4.

We construct different reduced bases {u1, . . . , un} of moderate dimension 1 ⩽ n ⩽ 15,
where

uk = u(yk),

for certain parameter selections y1, . . . , yn. Each reduced basis element uk is numerically
computed by the Galerkin method in a background finite element space Vh of dimension
6241.

The reduced basis spaces are thus subspaces of Vh, thus strictly speaking spaces Vn,h
depending on n and on the meshsize h. In our numerical computation, we always assess
the error

P yVhu(y)− P yVn,h
u(y).

We noticed that for the considered values of n = 1, . . . , 15 the error curves do not vary much
when further reducing the mesh size h. In fact they are already essentially the same when
the dimension of Vh is four times smaller. Therefore, for simplicity of the presentation, we
still write

u(y)− P yVnu(y),

bearing in mind that the additional finite element error u(y)−P yVhu(y) depends on h (with
algebraic decay in the finite element dimension).

All the tests were done using Python 3.8. For more information and experiments not
presented here we invite the reader to look into the github repository https://github.
com/agussomacal/ROMHighContrast.

https://github.com/agussomacal/ROMHighContrast
https://github.com/agussomacal/ROMHighContrast
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2.5.1 Parameter selection

We first study the case of a one parameter family : the diffusion coefficient yA of ΩA in
Figure 2.3 varies from 1 to ∞, while the other subdomains are considered as background
with all coefficents equal to 1. Thus the yk are of the form yk = (ykA, 1, 1, 1).

Figure 2.5: Galerkin (left) and H1
0 (right) projection error, both measured in H1

0 relative error, maximized
over the parameter domain, for different reduced bases, case d = 1.

In reduced basis constructions, two approaches for parameter selection are usually con-
sidered : random or greedy. Random selection usually performs well enough in many
situations, however we shall see that it fails in the high contrast regime. This is in partic-
ular due to the fact that it does not capture the limit solutions, while we have observed
in Section 2.4 that robust convergence of the Galerkin method in the high-contrast regime
critically requires to include limit solutions in the space Vn. Here, there is only one limit
solution u∞ = u(y∞) where y∞ = (∞, 1, 1, 1), and this element is picked by the greedy
method if initialized at any other point.

More precisely, we compare four strategies for selecting the ykA ∈ [1,∞]:

• Random: the ykA are drawn independently according to the uniform law for 1
yA

∈ [0, 1].

• Random-∞: First the limit solution corresponding to yA = ∞ is put in the basis.
The rest of the elements are randomly picked as in the previous case.

• Greedy H1
0 : The yk are picked incrementally, yk+1 maximizing the relative H1

0 pro-
jection error ∥u(y)− PVku(y)∥H1

0
/∥u(y)∥H1

0
.

• Greedy Galerkin: The yk are picked incrementally, yk+1 maximizing the relative H1
0

error of the Galerkin projection ∥u(y)− P yVku(y)∥H1
0
/∥u(y)∥H1

0
.
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Figure 2.5 displays on the left the evolution of the maximal relative error of the Galerkin
projection

sup
yA∈[1,∞]

∥u(y)− P yVnu(y)∥H1
0

∥u(y)∥H1
0

,

as a function of n = dim(Vn) for these various selection strategies. It reveals the superiority
of the greedy selection that reaches machine precision after picking n = 11 reduced basis
elements, and the gain in including the limit solution in the case of a random selection. As
a comparison, we display on the right the decay of the relative H1

0 -orthogonal projection
error

sup
yA∈[1,∞]

∥u(y)− PVnu(y)∥H1
0

∥u(y)∥H1
0

for the same parameter selection strategies. Here, we notice that the inclusion of the limit
solution u∞ is not anymore critical for reaching good accuracy. Nevertheless, these errors
still decay faster for the greedy strategies.

Figure 2.6: Galerkin and H1
0 projection error (both measured in H1

0 relative error maximized over the
parameter domain) for different reduced bases, case d = 2.

Remark 2.5.1. As the diffusion coefficient is piecewise constant on the partition ΩA ∪
ΩcA, the parameter space dimension is d = 2 in this numerical example. The theoretical
results thus provide a bound on the error of order exp(−c

√
n). However, this bound is

obtained with local reduced spaces Vℓ,k on dyadic intervals, which does not perform as well
as Vn =

⊕
ℓ∈Ek

Vℓ,k, for which one might expect a rate closer to exp(−cn). In Figure 2.5
for n ⩽ 11, that is, until numerical precision issues arise, we even observe a faster than
exponential convergence, that could be due to the superiority of reduced bases over polynomial
approximations.
Remark 2.5.2. It is well known that the reduced basis can be very ill-conditioned, since un
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becomes extremely close to Vn−1 = span{u1, . . . , un−1} as n gets moderately large. In order
to avoid numerical instabilities, prior to the computation of the Galerkin or H1

0 projection
onto Vn, we need to perform a change of basis, typically by some orthonormalization process.
In our numerical test, we perform this orthonormalization with respect to the discrete ℓ2
inner product for the nodal values in the background finite element representation, using
the QR decomposition, and obtain a satisfactory stable numerical behavior. However, this
process is not invariant under permutations, and we observe that it behaves better in terms
of numerical stability when sorting the reduced basis elements from higher contrast to lower
contrast.

In this one parameter scenario, both greedy strategies behaved equally well. However,
as we increase the dimensionality of the problem d > 1, Greedy Galerkin appears to be
the best selection procedure, as could be expected since it optimizes the error based on the
approximation which is effectively computed in forward modelling. Figure 2.6 shows this
effect when d = 2, where yA and yB are allowed to vary independently while yC and yD are
taken as background always equal to 1.

Figure 2.7: The Galerkin projection of Greedy Galerkin method for increasing dimensionality in geometries
satisfying (left) or not (right) the assumptions.

2.5.2 Influence of dimensionality and geometry

In order to study the impact of dimensionality on the approximation rates, we compare
the behavior of the Greedy Galerkin selection method, as we increase the number of freely
varying parameters. As before, we will have for y = (yA, 1, 1, 1) when d = 1, then y =
(yA, yB, 1, 1) when d = 2, until having all four subdomains freely varying between 1 and
+∞.

In Figure 2.7 the degradation with respect to dimension is clearly observed as the
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approximation capabilities strongly decrease. Even thought the exponential decay rate is
still conserved, the decay parameter shrinks from almost 3 down to 0.22 when d = 4.

Secondly, we study the case where the geometrical assumptions are not satisfied. We
follow the same incremental subdomains unfreezing as in the previous case but using the
geometry stated in Figure 2.4. We observe that the reduced basis approach still achieves
exponential approximation rates, actually higher than in the previous example. This hints
that the geometric assumptions which are needed in our proofs could be artificial, and leaves
open the question of achieving such results without relying on these assumptions.
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Chapter 3

Non-linear approximation spaces
for inverse problems

3.1 Introduction

3.1.1 The recovery problem

In this paper, we treat the following state estimation problem in a general Banach space
V . We want to recover an approximation to an unknown function u ∈ V from data given
by m observations

zi := ℓi(u) + ηi, i = 1, . . . ,m, (3.1)

where ℓi : V 7→ R are known measurement functionals, and ηi is additive noise. The
functionals ℓi often correspond to the response of a physical measurement device but they
can have a different interpretation depending on the application. Their behavior can be
linear (in which case the ℓi are linear functionals from V ′, the dual of V ) or nonlinear. This
type of recovery problem is clearly ill-posed when the dimension of V exceeds m. It arises
ubiquitously in sampling and inverse problem applications where V is infinite dimensional
(to name a few, see [3, 9, 77, 94]).

One natural strategy to address this difficulty is to search for a recovery of u by an
element of a low-dimensional reconstruction space Vn ⊂ V . The space Vn could be ei-
ther an n-dimensional linear subspace, or more generally a nonlinear approximation space
parametrized by n degrees of freedom, with n ⩽ m.

In order to obtain quantitative results for such recovery procedures, it is necessary to
possess additional information about u, usually as an assumption that u belongs to a certain
model class K contained in V . The approximation space Vn is chosen in order to collectively
approximate the elements of K as well as possible, in the sense that

dist(K, Vn)V := max
u∈K

min
v∈Vn

||u− v||V

is as small as possible for moderate values of n.
Numerous theoretical results and numerical algorithms have been proposed in several

63
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fields to study and solve the above recovery problem (below we recall some relevant results).
However, to the best of our knowledge, they all involve at least one or several of the following
assumptions:

• The ℓi are linear functionals,

• Vn is a linear (or affine) subspace of V ,

• V is a Hilbert space,

• The model class K is a ball in a smoothness space, e.g., a unit ball in Lipschitz,
Sobolev, or Besov spaces. Results involving this type of model classes have been
intensively studied in the field of optimal recovery (see [32, 113, 119]).

The goal of this paper is to develop and analyze inversion procedures that do not require
any of the above assumptions. Our analysis and numerical algorithms can thus be applied
to virtually any recovery problem. The starting point of our development is based on algo-
rithms introduced for inverse state estimation using reduced order models of parametrized
Partial Differential Equations (PDEs). We next recall the specific framework. The pre-
sentation will also serve to explain more in depth the motivations leading to propose the
present generalization.

3.1.2 State estimation with reduced models for parametrized PDE’s

A relevant scenario in inverse state estimation is when the model class K is given by the
set of solutions to some parameter-dependent PDE of the general form

P(u, y) = 0, (3.2)

where P is a differential operator, y is a vector of parameters ranging in some domain Y in
Rd, and u is the solution. If well-posedness holds in some Banach space V for each y ∈ Y ,
we denote by u(y) ∈ V the corresponding solution for the given parameter value y and by

M := {u(y) : y ∈ Y },

the solution manifold.
In inverse state estimation, we take K = M for the model class so the unknown u to

recover belongs to M. However, the parameter y that satisfies u = u(y) is unknown, so we
cannot solve the forward problem (3.2) to approximate u. Instead, we must approximate u
from the partial observational data (3.1), and the knowledge of the model class K = M.

For the manifold M, efficient approximation spaces Vn are usually obtained by reduced
modelling techniques. In their most simple format, reduced models consist into linear spaces
(Vn)n⩾0 with dim(Vn) = n. The ideal benchmark in this linear approximation setting is
provided by the Kolmogorov n-width

dn(M)V := inf
dim(Vn)⩽n

dist(M, Vn)V ,
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which describes the optimal approximation performance achievable by an n-dimensional
space over the set M.

Apart from very simplified cases, the space Vn achieving the above infimum is usually
out of reach. Practical model reduction techniques such as polynomial approximation in
the parametrized domain [49, 54, 150] or reduced bases [71, 92, 109, 140, 161] construct
spaces Vn that are “suboptimal yet good”. In particular, the reduced basis method, which
generates Vn by a specific selection of particular solution instances u1, . . . , un ∈ M, has been
proved to have approximation error dist(M, Vn)V that decays with the same polynomial or
exponential rates as dn(M)V , and in that sense are close to optimal [65].

3.1.3 The PBDW method

We take the Parametrized Background Data Weak (PBDW) method as a starting point for
our analysis. The PBDW method, first introduced in [108], as well as several extensions,
has been the object of a series of works [26, 27, 47, 48] on its optimality properties as a
recovery algorithm. It has also been used for different practical applications, see [9, 77, 87].
We refer to [115] for an overview of the state of the art on this approach, and its connections
with different fields. For our current purposes, it will suffice to recall the first version of the
algorithm, which is the goal of this section.

The PBDW method uses a linear approximation space Vn of dimension n ⩽ m. Usually
this space is a reduced model in applications. It is assumed that the ℓi are continuous linear
functionals, that is ℓi ∈ V ′, and that V is a Hilbert space. Then, introducing the Riesz
representers ωi ∈ V such that ℓi(v) = ⟨ωi, v⟩V , the data of the noise-free observation

ℓ(u) := (ℓ1(u), . . . , ℓm(u)),

is equivalent to that of the orthogonal projection w = PWu on the Riesz measurement space

W := span{ω1, . . . , ωm}.

Assuming linear independence of the ℓi, this space has dimension m. A critical quantity is
the number

µ = µ(Vn,W ) := max
v∈Vn

∥v∥V
∥PW v∥V

, (3.3)

that describes the “stability” of the description of an element of Vn by its projection ontoW ,
and may be thought of as the inverse cosine of the angle between W and Vn. In particular,
this quantity is finite only when n ⩽ m. It can be explicitly computed as the inverse of the
smallest singular value of a cross-grammian matrix between orthonormal bases of Vn and
W (see [26, 115]).

The PBDW method consists in solving the minimization problem

min
v∈Vw

min
ṽ∈Vn

∥v − ṽ∥V ,

where Vw := w +W⊥ is the set of all states v such that PW v = w. We denote by (u∗, ũ) ∈
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Vw×Vn the minimizing pair, which is unique when µ <∞, and can be computed by solving
an n× n linear system. The function ũ may be seen as a particular best-fit estimator of u
on Vn, since it is also defined by

ũ := argmin{∥PW v − w∥V : v ∈ Vn}.

The function u∗ can be derived from ũ by the correction procedure

u∗ := ũ+ (w − PW ũ),

which shows that u∗ ∈ Vn + W . It may be thought of as a generalized interpolation
estimator, since it agrees with the observed data (PWu∗ = PWu). In the case of noise-free
data, it is proved in [26, 108] that these estimators satisfy the recovery bounds

∥u− ũ∥V ⩽ µ min
v∈Vn

∥u− v∥V and ∥u− u∗∥V ⩽ µ min
v∈Vn⊕(V ⊥

n ∩W )
∥u− v∥V .

These bounds reflect a typical trade-off in the choice of the reduced basis space, since
making n larger has both effect of decreasing the approximation error minv∈Vn ∥u − v∥V
and increasing the stability constant µ = µ(Vn,W ).

When the PBDW method is applied to noisy data, amounting in observing a perturbed
version w of w = PWu, the recovery bounds remain valid up to the additional term µ∥w −
w∥V . In summary, one has for both estimators

max{∥u− ũ∥V , ∥u− u∗∥V } ⩽ µ(en(u) + κ), (3.4)

where
en(u) := min

v∈Vn
∥u− v∥V

is the reduced model approximation error and κ := ∥w − w∥V is the noise error measured
in the space W . Note that since the additive perturbations ηi are applied to the data ℓi(u),
a natural model for the measurement noise is to assume a bound of the form

∥η∥p ⩽ ε, (3.5)

for the vector η = (η1, . . . , ηm), typically in the max norm p = ∞ or euclidean norm p = 2.
Therefore, one has κ ⩽ βε, where

β := max
v∈W

∥v∥V
∥ℓ(v)∥p

,

resulting in a bound of the form µen(u) + µβε for both estimators.

3.1.4 Towards nonlinear approximation spaces

The simplicity of the PBDW method and its variants comes together with a fundamental
limitation on its performance: it is by essence a linear reconstruction method with recovery
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bounds tied to the approximation error en(u). When the only prior information is that the
unknown function u belongs to a class K, with K = M the solution manifold in the case of
parametric PDEs, its best performance over K is thus limited by the n-width dn(K)V and
in turn by dm(K)V since n ⩽ m.

In several simple yet relevant settings, it is known that n-widths have poor decay with n.
One instance is when the class K contains piecewise smooth states, with a state-dependent
location of jump discontinuities. As an elementary example, one can easily check that if
V = L2([0, 1]) and K is the set all indicator functions u = χ[a,b] with a, b ∈ [0, 1], one has
dn(K)V ∼ n−1/2. This decay is of course even slower for more general classes of piecewise
smooth function in higher dimension, see in particular [21, Chapter 3, equation (3.76)].
Such functions are typical in parametrized hyperbolic PDEs, due to the presence of shocks
with positions that differ when parameters entering the velocity vary. We refer to [18, 27,
72, 81, 120, 156] for other examples of parametric PDEs whose solution manifold has slow
Kolmogorov n-width decay.

For such classes of functions, nonlinear approximation methods are well known to per-
form significantly better than their linear counterparts. Typical representatives of such
methods include approximation by rational fractions, free knot splines or adaptive finite
elements, best n-term approximation in a basis or dictionary, neural network or various
tensor formats. In these instances the space Vn still depends on n or O(n) parameters but
is not anymore a linear space. We refer to [63] for a general introduction on the topic of
nonlinear approximation.

3.1.5 Objective and outline

The objective of this paper is to study the natural extensions of the PBDW method to
such nonlinear approximation spaces and identify the basic structural properties that lead
to near optimal recovery estimates similar to (3.4).

We begin in Section 3.2 by considering the most general setting where V is a Banach
space, Vn a nonlinear approximation family, and the ℓi are functionals defined on V that
are not necessarily linear, but Lipschitz continuous, that is

∥ℓ(v)− ℓ(ṽ)∥Z ⩽ αZ∥v − ṽ∥V , v, ṽ ∈ V. (3.6)

Here ∥ · ∥Z can be any given norm defined over Rm with the constant αZ depending on
this choice of norm. In this framework, we discuss the best-fit estimation procedure that
consists in minimizing the distance to the observed data in a given norm ∥ · ∥Z .

Our main structural assumption on Vn is the following inverse stability property: the
reduced model is stable with respect to the measurement functionals if there exists a finite
constant µZ such that

∥v − ṽ∥V ⩽ µZ∥ℓ(v)− ℓ(ṽ)∥Z , v, ṽ ∈ Vn. (3.7)

The stability constant µZ depends on the Z norm and plays a role similar to that of µ
in the linear case. In particular, we show that this constant is finite only if n ⩽ m. The
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resulting estimator ũ is then proved to satisfy a general recovery bound of the form

∥u− ũ∥V ⩽ C1en(u) + C2∥η∥p,

where en(u) := minv∈Vn ∥u− v∥V is the nonlinear reduced model approximation error, ∥η∥p
the level of measurement noise in ℓp norm, and the constants C1 and C2 depend on αZ and
µZ .

In Section 3.3, we consider the more particular setting where the ℓi are linear functionals.
Then, we show that constants C1 and C2 are each minimized by a different choice of norm
∥ · ∥Z , resulting in two different best fit estimators ũ, as already observed in [22] in the case
of linear reduced models. This particular setting also allows us to introduce a generalized
interpolation estimator u∗ and establish similar recovery estimates for ∥u− u∗∥V .

We next apply our framework to the inverse problem that consists in recovering a general
shape Ω, identified to its characteristic function χΩ, based on cell average data

aT (Ω) :=
1
|T |

ˆ
T

χΩ, T ∈ T ,

where T is a fixed cartesian mesh. One motivation for this problem is the design of finite
volume schemes for the computation of solutions to transport PDEs on such meshes.

We first discuss in Section 3.4 the best estimation rate in terms of the mesh size h that
can be achieved by standard linear reconstructions, and which is essentially that of piecewise
constant approximations, that is O(h1/q) regardless of the smoothness of the boundary ∂Ω.
This intrinsic limitation is due to the presence of the jump discontinuity that is not well
resolved by the mesh.

We then discuss in Section 3.5 a local recovery strategy based on a nonlinear approx-
imation space Vn that consists of characteristic functions of half-planes which can fit the
boundary of Ω at a subcell resolution level, as already proposed in [8, 128, 129, 132]. One
main result, whose proof is given in an appendix, is that this approximation space is stable
in the sense of (3.7) with respect to cell average measurements on a stencil of 3×3 squares.
In turn, if Ω has a C2 boundary, the recovered shape Ω̃ is proved to satisfy an estimate of
the form

∥χΩ − χΩ̃∥Lq ⩽ Ch2/q,

where h is the mesh size, which cannot be achieved by any linear reconstruction. This
paves the way to higher order reconstruction methods for smoother boundaries by using
local nonlinear approximation spaces with curved boundaries and larger stencils.

Finally, we discuss in Section 3.6 the application of our results to the recovery of large
vectors of size N from m < N linear measurements, up to the error of best n-term approx-
imation. This problem is well-known in compressed sensing [42, 74], and was in particular
studied in [46] which discusses the importance of the recovery norm ∥ · ∥V to understand if
near-optimal recovery bounds can be achieved with m not much larger than n. We show
that the structural assumptions identified in our general setting are naturally related to the
so-called null space property introduced in [46].
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3.2 Nonlinear reduction of inverse problems

3.2.1 A general framework

In full generality we are interested in recovering functions u in a general Banach space V
with norm ∥ · ∥V , from the measurement vector z = (z1, . . . , zm) ∈ Rm given by (3.1). A
recovery (or inversion) map

z → R(z)

takes this vector to an approximation R(z) of u. We are interested in controlling the
recovery error ∥u−R(z)∥V .

To build the recovery map R, we use a nonlinear approximation space of dimension n is
a family of functions that can be described by n parameters. Loosely speaking, this means
that there exists a set S ⊂ Rn and a continuous map ϕ : S → V such that

Vn := {ϕ(x) : x ∈ S}.

Note that this definition covers the case of an n dimensional linear subspace since we can
choose S = Rn and ϕ a linear map.

Our main assumptions are the Lipschitz stability of the functionals ℓi over the whole
space V and their inverse Lipschitz stability over the nonlinear approximation space Vn,
expressed by (3.6) and (3.7), respectively. Note that since Rm is finite dimensional, the
norm ∥ · ∥Z that is chosen in Rm to express these properties could be arbitrary up to a
modification of the stability constants αZ , µZ . These constants can be optimally defined as

αZ = sup
v1,v2∈V

∥ℓ(v1)− ℓ(v2)∥Z
∥v1 − v2∥V

,

and
µZ = sup

v1,v2∈Vn

∥v1 − v2∥V
∥ℓ(v1)− ℓ(v2)∥Z

.

Note that one always has αZµZ ⩾ 1.

Remark 3.2.1. Note that when Vn is an n-dimensional space and the ℓi are linear func-
tionals, the quantity µZ may be rewritten as

µZ = max
v∈Vn

∥v∥V
∥ℓ(v)∥Z

.

As discussed further, the quantity µ defined in (3.3) for the analysis of the PBDW method
is an instance of µZ corresponding to a particular choice of norm ∥ · ∥Z . Assuming the ℓi
are independent functionals, one easily checks that finiteness of this quantity imposes that
n ⩽ m. Indeed, if n > m, there exists a non-trivial v ∈ Vn ∩N , where

N := {v : ℓ(v) = 0}
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is the null space of the measurement map that has codimension m, and therefore µZ is
infinite.

Remark 3.2.2. The restriction n ⩽ m is also needed for nonlinear spaces Vn and measure-
ment ℓ, under assumptions expressing that m and n are local dimensions. More precisely,
assume that the map ϕ defining Vn is differentiable at some x0 in the interior of S, that ℓ
is differentiable at v0 = ϕ(x0), and that both tangent maps have full rank at these points,
that is,

dim(dϕx0(Rn)) = n and dim(dℓv0(V )) = m.

Then, by taking v1 = v0 and v2 = ϕ(x0 + tx) in the quotient that defines µZ , and letting
t→ 0 for arbitrary x ∈ Rn, one finds that

µZ ⩾ max
v∈dϕx0 (Rn)

∥v∥V
∥dℓv0(v)∥Z

,

and therefore it is infinite if n ⩽ m, by the same argument as in the previous remark.

3.2.2 The best fit estimator

We define a first recovery map z 7→ ũ = R(z) as the best fit estimator in the Z norm

ũ := argmin{∥z − ℓ(v)∥Z : v ∈ Vn}. (3.8)

The existence of such a minimizer is trivial if the space Vn and the measurement map ℓ
are linear. It can also be ensured in the nonlinear case under additional assumptions, for
example compactness of the set S defining the nonlinear space Vn, which will be the case in
the application to shape recovery discussed in Section 3.5. If the minimizer does not exist,
we may consider a near minimizer, that is ũ ∈ Vn satisfying

∥z − ℓ(ũ)∥Z ⩽ C∥z − ℓ(v)∥Z , v ∈ Vn,

for some fixed C > 1. Inspection of the proofs of our main results below reveals that
similar recovery bounds can be obtained for such a near minimizer, up to the multiplicative
constant C.

Recall that our assumption (3.5) on the noise model is a control on ∥η∥p for some
1 ⩽ p ⩽ ∞. For this value of p, we introduce the quantity

βZ := max
z∈Rm

∥z∥Z
∥z∥p

We are now in position to state a recovery bound in this general framework.

Theorem 3.2.3. The best fit estimator ũ from (3.8) satisfies the estimate

∥u− ũ∥V ⩽ C1en(u) + C2∥η∥p, (3.9)

where C1 := 1 + 2αZµZ and C2 := 2βZµZ .
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Proof. Consider any v ∈ Vn and write

∥u− ũ∥V ⩽ ∥u− v∥V + ∥v − ũ∥V ⩽ ∥u− v∥V + µZ∥ℓ(v)− ℓ(ũ)∥Z ,

where we have used (3.7). On the other hand, the minimizing property of ũ ensures that

∥ℓ(v)− ℓ(ũ)∥Z ⩽ ∥z − ℓ(v)∥Z + ∥z − ℓ(ũ)∥Z ⩽ 2∥z − ℓ(v)∥Z .

Furthermore, using the stability (3.6) of ℓ and the definition of βZ , we have

∥z − ℓ(v)∥Z ⩽ ∥ℓ(v)− ℓ(u)∥Z + ∥η∥Z ⩽ αZ∥u− v∥+ βZ∥η∥p.

Combining the three estimates, we reach

∥u− ũ∥V ⩽ (1 + 2αZµZ)∥u− v∥V + 2βZµZ∥η∥p,

which gives (3.9) by optimizing over v ∈ Vn.

The constants C1 and C2 in the above recovery estimate depend on the choice of norm
∥ · ∥Z . Note that they are invariant when this norm is scaled by a factor t > 0, since this
has the effect of multiplying αZ and βZ by t and dividing µZ by t, which is consistant with
the fact that the resulting estimator ũ is left unchanged by such a scaling. In the next
section we show, in the particular setting of linear measurements, that specific choices of
∥ · ∥Z can be used to minimize C1 or C2. This setting also allows us to introduce and study
a generalized interpolation estimator, which is not relevant to the present section since the
nonlinear measurement map ℓ is not assumed to be surjective: in the presence of noise,
there might exist no v ∈ V that agrees with the data, in the sense that z = ℓ(u) + η does
not belong to the range of ℓ.

3.3 Linear observations

In this section, we assume that the ℓi ∈ V ′ are independent linear functionals, still allowing
Vn to be a general nonlinear space. In this framework, which contains the example of shape
recovery discussed in Section 3.5, one has

αZ = max
v∈V

∥ℓ(v)∥Z
∥v∥V

and
µZ = max

v∈V diff
n

∥v∥V
∥ℓ(v)∥Z

,

where
V diff
n = Vn − Vn := {v1 − v2 : v1, v2 ∈ Vn}.

In this particular setting, we can identify the norms ∥ · ∥Z that minimize the constants
C1 := 1 + 2αZµZ and C2 := 2βZµZ , respectively.
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3.3.1 Optimal norms

As ℓ : V → Rm is continuous and surjective, we can define a norm on Rm through

∥z∥W = min{∥v∥V : ℓ(v) = z}. (3.10)

Remark 3.3.1. If V is a Hilbert space, the minimizer is unique by strict convexity of ∥·∥V ,
and the m-dimensional space

W :=
{
argmin
ℓ(v)=z

∥v∥V , z ∈ Rm
}

is exactly the span of the Riesz representers of the observation functionals ℓi ∈ V ′. Moreover,
denoting PW the orthogonal projection on W , we have

∥ℓ(v)∥W = ∥PW v∥V , v ∈ V.

For this reason, we sometimes refer to ∥ · ∥W as the Riesz norm even in the case of a more
general Banach space.

The following result shows that the choice ∥ · ∥Z := ∥ · ∥W is the one that minimizes the
constant C1, while C2 is minimized by simply taking the ℓp norm ∥ · ∥Z = ∥ · ∥p.

Theorem 3.3.2. For any norm ∥ · ∥Z , one has

αWµW = µW ⩽ αZµZ ,

and
βpµp = µp ⩽ βZµZ ,

where (αW , βW , µW ) and (αp, βp, µp) are the triplets (αZ , βZ , µZ) when ∥ · ∥Z := ∥ · ∥W and
∥ · ∥Z = ∥ · ∥p, respectively.

Proof. One has
αW = max

v∈V

∥ℓ(v)∥W
∥v∥V

= max
z∈Rm

max
ℓ(v)=z

∥z∥W
∥v∥V

= 1,

and

µW = max
v∈V diff

n

∥v∥V
∥ℓ(v)∥W

⩽ max
v∈V diff

n

∥ℓ(v)∥Z
∥ℓ(v)∥W

max
v∈V diff

n

∥v∥V
∥ℓ(v)∥Z

= max
v∈V diff

n

∥ℓ(v)∥Z
∥ℓ(v)∥W

µZ .

We now observe that from the definition of W , one has

max
v∈V diff

n

∥ℓ(v)∥Z
∥ℓ(v)∥W

⩽ max
z∈Rm

∥z∥Z
∥z∥W

= max
z∈Rm

max
ℓ(v)=z

∥z∥Z
∥v∥V

= αZ .

We have thus obtained the first claim αWµW = µW ⩽ αZµZ . For the second claim, note
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that we trivially have βp = 1, and so

βpµp = µp = max
v∈V diff

n

∥v∥V
∥ℓ(v)∥p

⩽ max
v∈V diff

n

∥ℓ(v)∥Z
∥ℓ(v)∥p

max
v∈V diff

n

∥v∥V
∥ℓ(v)∥Z

⩽ βZµZ .

Remark 3.3.3. In the particular case where V is a Hilbert space, Vn a linear subspace and
p = 2, it was already observed in [22] that the reconstruction operators based on the choice
∥ · ∥Z = ∥ · ∥W or ∥ · ∥Z = ∥ · ∥2 are the most stable with respect to the approximation error
and the noise error, respectively. The above result may thus be seen as a generalization of
this state of affairs to the case of nonlinear subspaces of Banach spaces, and ℓp noise.

3.3.2 The generalized interpolation estimator

Thanks to the surjectivity of ℓ, we may introduce the space

Vz := {v ∈ V : ℓ(v) = z},

and consider the minimization problem

min
v∈Vz

min
ṽ∈Vn

∥v − ṽ∥V .

If (u∗, ũ) ∈ Vz × Vn is a minimizing pair, the function u∗ is given by

u∗ = u∗(z) ∈ argmin{dist(v, Vn)V : ℓ(v) = z},

and is called the generalized interpolation estimator, since it exactly matches the data.

Remark 3.3.4. The best fit and generalized interpolation estimation may be thought of as
the two extreme cases, t→ ∞ and t→ 0, of the penalized estimator

ut := argmin{∥z − ℓ(v)∥Z + tdist(v, Vn)V }.

As explained earlier, the generalized interpolation operator may not be well defined in the
general case where the ℓi are nonlinear. As opposed to the best fit, or the above penalized
estimator ut when t > 0, the generalized interpolation estimator does not involve the choice
of a particular norm Z.

On the other hand, we see that ũ is the solution to the problem

min
ṽ∈Vn

dist(ṽ, Vz)V .

Observing that

dist(ṽ, Vz)V = min
ℓ(v)=z

∥ṽ − v∥V = min
ℓ(v′)=ℓ(ṽ)−z

∥v′∥V = ∥ℓ(ṽ)− z∥W ,
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we thus find that ũ is precisely the best fit estimator for the Riesz norm ∥ · ∥Z := ∥ · ∥W .

In the Hilbert space setting, the generalized interpolation estimator u∗ is therefore the
orthogonal projection of this particular best fit estimator ũ onto the affine space Vz. It may
thus also be derived from ũ by the correction procedure

u∗ = ũ+ w − PW ũ,

where w = argmin
ℓ(v)=z

∥v∥V ∈ W is the preimage by ℓ of the measurements z. In the noiseless

case when w = PWu, this correction can only improve the approximation since it reduces the
component of u− ũ in the W direction while leaving unchanged the orthogonal component,
and so, in view of Theorems 3.2.3 and 3.3.2, we are ensured that

∥u− u∗∥V ⩽ C1en(u),

where C1 := 1 + 2µW .

More generally, in the noisy case, and without the assumption that V is a Hilbert space,
there is no guarantee that u∗ performs better than ũ, but we still obtain an error estimate
on u∗ that is similar in nature to that satisfied by ũ.

Theorem 3.3.5. The generalized interpolation estimator u∗ satisfies the estimate

∥u− u∗∥V ⩽ C1en(u) + C2∥η∥p, (3.11)

where C1 := 2 + 2µW and C2 := (1 + 2µW )βW .

Proof. Take δ ∈ argmin
ℓ(v)=η

∥v∥V , so that ℓ(δ) = η and ∥η∥W = ∥δ∥V . For v and v∗ in Vn,

decompose
∥u− u∗∥V ⩽ ∥u− v∥V + ∥v − v∗∥V + ∥v∗ − u∗∥V . (3.12)

For the middle term, using (3.7), we write

∥v − v∗∥V ⩽ µW ∥ℓ(v − v∗)∥W
⩽ µW (∥ℓ(v − u)∥W + ∥ℓ(u− u∗)∥W + ∥ℓ(u∗ − v∗)∥W )
⩽ µW (∥v − u∥V + ∥η∥W + ∥u∗ − v∗∥V )

since αW = 1, so the decomposition (3.12) becomes

∥u− u∗∥V ⩽ (1 + µW )∥u− v∥V + µW ∥η∥W + (1 + µW )∥v∗ − u∗∥V .

To bound the last term, we optimize over the choice of v∗ ∈ Vn and use the definition of u∗
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to obtain

inf
v∗∈Vn

∥v∗ − u∗∥V = dist(u∗, Vn) ⩽ dist(u+ δ, Vn) ⩽ dist(u, Vn) + ∥δ∥V = en(u) + ∥η∥W

since ℓ(u+ δ) = ℓ(u)+η = z. Combining the last two estimates and optimizing over v ∈ Vn
gives

∥u− u∗∥V ⩽ (2 + 2µW )en(u) + (1 + 2µW )∥η∥W ,

and the result follows from the definition of βW .

3.4 Shape recovery from cell averages

3.4.1 The shape recovery problem

The problem of reconstructing a function u from its cell averages

aT (u) :=
1
|T |

ˆ
T
u, T ∈ T ,

where T is a partition of the domain D ⊂ Rd in which u is defined, appears naturally in
two areas:

(i) In numerical simulation of hyperbolic conservation laws, it plays a central role when
developing finite volume schemes on the computation mesh T .

(ii) In 2d or 3d image processing, it corresponds to the so-called super-resolution problem,
that is, reconstructing a high resolution image from its low resolution version defined
on the coarse grid T of pixels or voxels.

Standard reconstruction methods are challenged when the function u exhibits jump dis-
continuities which are not well resolved by the partition T . Such discontinuities correspond
to edges in image processing or shocks in conservation laws. Here we may focus on the very
simple case of characteristic functions of sets

u = χΩ,

that already carry the main difficulty. Therefore we are facing a problem of reconstructing
a shape Ω from local averages of χΩ.

As a simple example we work in the domain D = [0, 1]2 with a uniform grid based on
square cells of sidelength h = 1

L for some L > 1, therefore of the form

T = Th := {Ti,j = [(i− 1)h, ih]× [(j − 1)h, jh] : i, j = 1, . . . , L}.

The cardinality of the grid is therefore

n := #(T ) = L2 = h−2.
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We consider classes of characteristic functions χΩ of sets Ω ⊂ D with boundary of a
prescribed Hölder smoothness. The definition of these classes requires some precision.
Definition 3.4.1. For s ⩾ 1, 0 < R < 1/2 and M > 0, we define the class Fs,R,M as
consisting of all characteristic functions χΩ of domains Ω ⊂ [R, 1 − R]2 ⊂ D with the
following property: for all x ∈ D there exists an orthonormal system (e1, e2) and a function
ψ ∈ Cs with ∥ψ∥Cs ⩽M , such that

y ∈ Ω ⇐⇒ z2 ⩽ ψ(z1),

for any y = x+ z1e1 + z2e2 with |z1|, |z2| ⩽ R.
Here, we have used the usual definition

∥ψ∥Cs = sup
0⩽k⩽⌊s⌋

∥ψ(k)∥L∞([−R,R]) + sup
s,t∈[−R,R]

|s− t|⌊s⌋−s
∣∣∣ψ(⌊s⌋)(s)− ψ(⌊s⌋)(t)

∣∣∣,
for the Hölder norm. In the case of integer smoothness, we use the convention that Cs
denotes functions with Lipschitz derivatives up to order s−1, so that in particular the case
s = 1 corresponds to domains with Lipschitz boundaries.
Remark 3.4.2. The condition Ω ⊂ [R, 1 − R]2 imposing that Ω remains away from the
boundary ∂D might be quite restrictive in some applications; instead, one can assume that
the domains Ω and D are periodic, or symmetrize Ω with respect to ∂D.

In what follows, we first show that all linear reconstruction methods suffer from an
inherently limited rate of convergence. Then we introduce nonlinear reconstruction methods
that can be analyzed based on the general principles exposed in Section 3.2 and Section 3.3,
and are proved to reach better convergence rates.

We stress that nonlinear approaches in the applicative context (ii) of super-resolution
have been intensively developed and studied; first by the introduction of non-quadratic
regularization such as total variation or ℓ1 norms in basis or frame expansions, nonlocal
methods [73, 112, 127], and more recently by deep learning approaches such as convolution
neural networks [37, 155, 160], which are empirically recognized as the current state of the
art

Here, our perspective is different, closer to the applicative context (i) of numerical
simulation. The goal is to locally recover on each cell an approximating function with
simple analytic description, which allows to further evaluate the numerical flux at low cost
by propagating this approximation. It typically elaborates on numerical techniques for
subcell resolution [8] and linear interface reconstruction [128, 129, 132]. In addition, our
approach comes with certified recovery bounds and convergence rates.

3.4.2 The failure of linear reconstruction methods

The most trivial linear reconstruction method consists in the piecewise constant approxi-
mation

ũ =
∑
T∈T

aT (u)χT . (3.13)
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The approximation rate of this reconstruction over the class Fs,R,M is as follows.

Proposition 3.4.3. Let u = χΩ ∈ Fs,R,M , its piecewise constant approximation ũ by
average values on each cell, defined in (3.13), satisfies

∥χΩ − ũ∥Lq ⩽ Ch
1
q = Cn−

1
2q ,

where the constant C depends on R and M .

Proof. Let N = ⌈(
√
2R)−1⌉, and partition the domain D = [0, 1]2 into N2 squares of side

1/N . Then each subsquare Q is contained in the set {x+ z1e1 + z2e2, |z1|, |z2| ⩽ R} from
Definition 3.4.1, where x is the center of Q. Thus ∂Ω is the restriction of the graph of an
M -Lipschitz function on Q, so its arc length is bounded by

|∂Ω ∩Q| ⩽ diam(Q)
√

1 +M2 ⩽ 2R
√
1 +M2.

As any curve of arclength h intersects at most four cells from T , ∂Ω ∩ Q intersects at
most 4⌈2R

√
1 +M2/h⌉ cells, and summing over all subsquares, ∂Ω intersects at most

4N2⌈2R
√
1 +M2/h⌉ cells. Denoting T∂Ω the set of these cells, and observing that u|T ≡

aT (u) ∈ {0, 1} for T /∈ T∂Ω, we get

∥χΩ − ũ∥qLq =
∑
T∈T

ˆ
T
|u− aT (u)|q ⩽

∑
T∈T∂Ω

|T | = h2|T∂Ω| ⩽ 24
√
1 +M2

R
h

for h ⩽ R, and this bound also holds for h > R since ∥χΩ − ũ∥qLq ⩽ 1.

The next result shows, for the particular case q = 2, that no better rate can actually
be achieved by any linear method, regardless of the smoothness s of the boundary. We
conjecture that a similar result holds for 1 ⩽ q ⩽ ∞. This motivates the use of nonlinear
recovery methods, which are the object of the next section.

We recall that the Kolmogorov n-width of a compact set S from some Banach space V
is defined by

dn(S)V := inf
dim(E)⩽n

dist(S,E)V ,

where dist(S,E)V := maxu∈S minv∈E ∥u − v∥V and the infimum is taken over all finite
dimensional spaces E of dimension at most n.

Proposition 3.4.4. Let s ⩾ 1 be arbitrary. Then for R sufficiently small, and M suf-
ficiently large, there exists c > 0 such that the Kolmogorov n-widths of the class Fs,R,M
satisfy

dn(Fs,R,M )L2 ⩾ cn−
1
4 , n ⩾ 1.

Proof. The proof of this result relies on similar lower bounds for dictionaries of d-dimensional
ridge functions

Pdk := {x 7→ σk(ω · x+ b) : ∥ω∥2 = 1, c1 ⩽ b ⩽ c2},
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where σk(t) := max{0, t}k is the so-called RELU-k function. Here, we work in the space
L2(B) where B is an arbitrary ball of Rd, and the constants (c1, c2) are taken as the inf
and sup of ω · x as x ∈ B and ∥ω∥2 = 1, respectively, that is we take all b such that the
line discontinuity of the k-th derivative of σk(ω · x+ b) crosses the ball B. Theorem 9 from
[145], which improves on earlier results from [110], shows that if

B1(Pdk) :=
{ n∑
j=1

ajgj : n ∈ N, gj ∈ Pdk,
n∑
j=1

|aj | ⩽ 1
}

denotes the symmetrized convex hull of this dictionary (the closure being taken in L2(B)),
then

dn(B1(Pdk))L2(B) ⩾ cn−
2k+1
2d , n ⩾ 1,

where c depends on k, d, and the diameter of B.
In our case of interest we work with the value d = 2 and k = 0, so that the ridge

functions are simply the characteristic functions of half-planes. By convexity, we have

dn(P2
0)L2(B) = dn(B1(P2

0))L2(B) ⩾ cn−
1
4 .

We take for B the ball of center (1/2, 1/2) and radius 1/4, which is inside our domain
D = [0, 1]2. It is then readily seen that for R small enough and M large enough, we
can extend any ridge function g ∈ P2

0 into a characteristic function χΩ from Fs,R,M , as
illustrated in Figure 3.1.

B

Ω
D

Figure 3.1: Example of extension of the indicator of a half-plane on B to the indicator of a smooth domain
Ω on D

Observing that if ED is a linear subspace of L2(D) of dimension at most n, its restriction
EB to B is a linear subspace of L2(B) of dimension at most n, and one has

dist(χΩ, EB)L2(B) ⩽ dist(χΩ, ED)L2(D).

By infimizing, it follows that

dn(Fs,R,M )L2(D) ⩾ dn(P2
0)L2(B) ⩾ cn−

1
4 ,
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which concludes the proof.

Remark 3.4.5. The fact that we impose conditions on R and M in the above statement
is natural since the class Fs,R,M becomes empty if R is not small enough and M not large
enough, due to the fact that the sets Ω are assumed to be contained in the interior of D.

Remark 3.4.6. The above results are easily extended to higher dimension d ⩾ 2, with a
similar definition for the class Fs,R,M . The rate of approximation in Lq norm by piecewise
constant functions on uniform partitions is then n−

1
dq , which in the case q = 2 is proved

by a similar argument to be the best achievable by any linear reconstruction method. We
conjecture that the same holds for more general 1 ⩽ q ⩽ ∞.

3.5 Shape recovery by nonlinear least-squares

3.5.1 Nonlinear reconstruction on a stencil

We now discuss a nonlinear reconstruction method for u ∈ Fs,R,M , whose output ũ is the
indicator of a domain Ω̃ with polygonal boundary : on each cell T , the domain Ω̃ coincides
with a certain half plane. In order to define the delimiting line we only use the average
values of u on a 3× 3 stencil of cells centered at T .

We assume that h < R, so that Ω does not intersect the boundary cells Ti,j with i or j
in {1, L}, and fix indices 1 < i, j < L. For the cell T = Ti,j , denote x = ((i− 1

2)h, (j −
1
2)h)

its center, and

S = [(i− 2)h, (i+ 1)h]× [(j − 2)h, (j + 1)h] =
⋃

i−1⩽i′⩽i+1, j−1⩽j′⩽j+1
Ti′j′

the stencil composed of T and its eight neighboring cells. We define the nonlinear approxi-
mation space

V2 :=
{
χn⃗·(x−x)⩾c : n⃗ ∈ S1, c ∈ R

}
, (3.14)

which is a two-parameter family as each function is determined by arg n⃗ ∈ [0, 2π) and c ∈ R,
where arg n⃗ is the angle of n⃗ with respect to the horizontal axis.

Here, our measurements are the average values of u on the cells contained in S

ℓ(u) = (aT ′(u))T ′⊂S ∈ R9.

In order to find a reconstruction of u in V2 based on these measurements, we need an inverse
stability property of the form (3.7). This is not possible here, since ℓ cancels on all functions
χΩ ∈ V2 with Ω ∩ S = ∅. We therefore restrict the nonlinear family V2, and consider only
indicators of half-planes whose boundary passes through the central cell T :

V2,T :=
{
χΩ ∈ V2, ∂Ω ∩ T ̸= ∅

}
=
{
χn⃗·(x−x)⩾c, n⃗ ∈ S1, |c| ⩽ h

2 |n⃗|1
}
. (3.15)
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In this setting, we prove the existence of the following stability constants for V = L1(S) and
Z = ℓ1, which is the best norm on Rm in view of Theorem 3.3.2. For notational simplicity,
we omit the reference to Z in these constants.

Proposition 3.5.1. One has

∥ℓ(u)∥1 ⩽ α∥u∥L1(S), u ∈ L1(D), (3.16)

and
∥u− v∥L1(S) ⩽ µ∥ℓ(u− v)∥1, u, v ∈ V2,T , (3.17)

where α = h−2 and µ = 3
2h

2 are the optimal constants.

The proof of the stability property (3.16) is trivial since on each cell

|aT ′(u)| ⩽ |T ′|−1∥u∥L1(T ′) = h−2∥u∥L1(T ′),

with equality in case u does not change sign. The proof of the inverse stability (3.17) is
quite technical and left to the appendix.

Given the noisy observation
z = ℓ(u) + η ∈ R9,

we define the estimator of u on the cell T by

ũT ∈ argmin
v∈V2

∥z − ℓ(v)∥1. (3.18)

Here we minimize over all V2, that is on all indicators of half planes, but we note that we
may restrict to half-planes whose boundary passes through the stencil S.

The following result, which uses Proposition 3.5.1, shows that its distance to u in L1(T )
is comparable to the error between u and its best approximation in the L1(S) norm

uS := argmin
v∈V2

∥u− v∥L1(S).

Lemma 3.5.2. For all u ∈ Fs,R,M , one has

∥u− ũT ∥L1(T ) ⩽ C1∥u− uS∥L1(S) + C2∥η∥p,

where C1 = 1 + 2αµ = 4 and C2 = 2βµ = 33−
2
ph2, with α, µ as in (3.5.1), and β = 91−

1
p

the maximal ratio between ℓp and ℓ1 norm in R9.

Proof. We distinguish two cases:

• If ũT ∈ V2,T and uS ∈ V2,T , that is, both boundaries pass through the central cell T ,
we apply (3.9) together with Proposition 3.5.1
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∥u− ũT ∥L1(T ) ⩽ ∥u− ũT ∥L1(S) ⩽ C1 min
v∈V2,T

∥u− v∥L1(S) + C2∥η∥p

= C1∥u− uS∥L1(S) + C2∥η∥p

with C1 = 1 + 2αµ and C2 = 2βµ.

• Otherwise, either ũT or uS has constant value 0 or 1 on T , so ũT − uS has constant
sign on T , and thus

∥uS − ũT ∥L1(T ) = h2|aT (ũT − uS)| ⩽ h2∥ℓ(ũT − uS)∥1
⩽ h2(∥ℓ(uS)− z∥1 + ∥ℓ(ũT )− z∥1)
⩽ 2h2∥ℓ(uS)− z∥1 ⩽ 2h2∥ℓ(uS − u)∥1 + 2h2∥η∥1
⩽ 2∥u− uS∥L1(S) + 2h2β∥η∥p.

By triangle inequality, it follows that

∥u− ũT ∥L1(T ) ⩽ 3∥u− uS∥L1(S) + 2h2β∥η∥p,

which has better constants than in the estimate obtained in the first case, since the constant
C0 is larger than 1.

The order of the best local approximation error ∥u− uS∥L1(S) that appears as a bound
for the reconstruction error ∥u− ũT ∥L1(T ) depends on the smoothness of the boundary, as
expressed in the following lemma.

Lemma 3.5.3. For all u ∈ Fs,R,M , with R ⩾ 3√
2h, one has

∥u− uS∥L1(S) ⩽M(3
√
2h)min(s,2)+1.

Proof. We apply the definition of Fs,R,M at point x: as R ⩾ 3√
2h, the stencil S is contained

in the domain
{x+ z1e1 + z2e2, |z1|, |z2| ⩽ R},

so u|S is the indicator of a domain delimited by a Cs function ψ, with ∥ψ∥Cs ⩽ M . From
the definition of Cs, there exists an affine function ξ such that

|ψ(z1)− ξ(z1)| ⩽M(3
√
2h)min(s,2), |z1| ⩽

3√
2
h.

Then the function v : x+ z1e1 + z2e2 7→ χz2⩽ξ(z1) belongs to V2, and we have

∥u− uS∥L1(S) ⩽ ∥u− v∥L1(S) ⩽M(3
√
2h)min(s,2)+1.
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3.5.2 Global nonlinear reconstruction

We now consider the process of recovering u ∈ Fs,R,M globally from its data

z = ℓ(u) + η,

where now ℓ(u) := (aT (u))T∈T ∈ Rn and η ∈ Rn is the noise vector. Applying to each inner
cell T ∈ T the previous reconstruction procedure based on the 3 × 3 stencil S centered at
T , we obtain a global recovery ũ = ũ(z) such that

ũ|T = ũT |T , T = Ti,j ∈ T , 1 < i, j < L,

where ũT is the local estimator from (3.18). On the boundary cells T = Ti,j with i or j in
{1, L}, u|T is zero by Definition 3.4.1 so we simply set ũ|T = 0. Note that ũ is of the form

ũ = χΩ̃,

where Ω̃ has piecewise linear boundary with respect to the mesh T . The following result
gives a global approximation bound, which confirms the improvement over linear methods
when s > 1.

Theorem 3.5.4. For all u ∈ Fs,R,M , one has

∥u− ũ∥Lq(D) ⩽ C1n
−min(1,s/2)

q + C2n
− 1

pq ∥η∥
1
q
p .

Proof. First notice that if the result is proved for p = q = 1, as u−v has values in {−1, 0, 1},

∥u− v∥qLq(D) = ∥u− v∥L1(D) ⩽ C1n
−1 + C2n

−1∥η∥1 ⩽
(
C

1
q

1 n
− 1

q + C
1
q

2 n
− 1

pq ∥η∥
1
q
p

)q
,

so it suffices treat the case p = q = 1.
By an argument similar to the proof of Proposition 3.4.3, ∂Ω intersects at most 16N2⌈2R

√
1 +M2/h⌉

stencils of nine cells. Using the fact that u = uS is a constant on any other stencil, we get

∥u− ũ∥L1(D) =
∑

T inner cell
∥u− ũ∥L1(T )

⩽
∑

T inner cell
(1 + 2αµ)∥u− u∥L1(S) + 2βµ∥η∥ℓ1(S)

⩽ 16N2

⌈
2R

√
1 +M2

h

⌉
M(3

√
2h)min(s,2)+1 + 18βµ∥η∥1

⩽ C1h
min(s,2) + C2h

2∥η∥1.
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We conclude by recalling that n = h−2.

Remark 3.5.5. Here the convergence rate for the noiseless term n−
min(1,s/2)

q is limited
due to the use of polygonal domains in the reconstruction. So the best approximation rate
h

2
q = n−

1
q is already attained for C2 boundaries. When the smoothness parameter s is larger

than 2, better rates n−
s
2q should be reachable if we use non-linear approximation spaces that

are richer than the space V2, for example indicator functions of domains with boundary that
have a higher order polynomial description rather than straight lines. Of course, the stable
identification of these approximants in the sense of (3.7) might require stencils that are of
larger size than 3× 3.

Remark 3.5.6. If ∥η∥∞ ⩽ 1
9 , then ũ is exactly equal to u on any cell whose corresponding

stencil does not intersect ∂Ω, so the error is concentrated on O(
√
n) cells, leading to an

improved rate n−
p+1
2pq instead of n−

1
pq for the noise term.

3.5.3 Numerical illustration

We study the behavior of the above discussed linear and non-linear recovery methods from
cell averages for the particular target function u = χΩ, with Ω a slightly decentered disk of
radius r = 0.325.

The linear method consists of the piecewise constant approximation (3.13), referred to
as PiecewiseConstant. As to the nonlinear method, for the local best fit problem, we use the
ℓ2 norm on R9 instead of the ℓ1 norm. By norm equivalence on R9, the same convergence
results can be proved to hold with different constants. This method, which we refer to
as LinearInterface, does not ensure consistency of the reconstruction in the sense that
aT (ũ) = aT (u). One way to approach this consistency property is to modify the ℓ2 norm by
putting a large weight on the central cell. We refer to this variant as LinearInterfaceCC,
here taking the weight 100.

In the implementation, a function v ∈ V2 is parametrized by the pair (r, θ) where r ⩾ 0
is the offset distance between the center x of the central cell T and the linear interface and
θ ∈ [0, 2π[ is the angle such that the unit normal to the interface is eθ = (cos(θ), sin(θ)). In
other words, v is of the form

v = vr,θ := χ|⟨x−x,eθ⟩|⩽r.

As we have seen that only intefaces passing through the stencil S should be considered, we
may restrict r to [0, r] where r :=

√
3/2h. Then the LinearInterface and LinearInterfaceCC

procedures read as follows.
Figure 3.2 shows the convergence rates of the three methods in the L1 norm. The

expected h−2 decay is observed in both non-linear methods while the linear method lays
behind with a decay rate of h−1. It is relevant to note that although both non-linear methods
benefit from the same rate, the associated constants differ by an order of magnitude, showing
the practical improvement gained by imposing consistency. This improvement is also visible
on Figure 3.3 which shows that in the LinearInterface method, the interfaces that minimize
the l2 error on the nine surrounding cells lay always inside the circle as the curvature of the
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Algorithme 1 : LinearInterface and LinearInterfaceCC
Input : ℓ(u) = (aT ′(u))T ′⊂S ∈ R9 // The nine cell averages
Output : (r∗, θ∗) // The estimated parameters of the line interface

= argmin
{∑

T ′⊂S |aT ′(vr,θ)− aT ′ |2 + c |aT (vr,θ)− aT |2 : (r, θ) ∈ [0, r]× [0, 2π[
}

// c = 0 in LinearInterface, c = 100 in LinearInterfaceCC
// T is the central cell of the stencil S

boundary pushes them towards the center. On the contrary, LinearInterfaceCC seems to
find the right compromise between sticking to the cell average while capturing at the same
time the curvature trend hinted by the surrounding cell averages.

For more details on the implementation: https://github.com/agussomacal/SubCellResolution

3.6 Relation to compressed sensing

3.6.1 Compressed sensing and best n-term approximation

In this section we discuss the application of our setting to the sparse recovery of large
vectors from a few linear observations. We thus take

V = RN ,

equipped with some given norm ∥ · ∥V of interest. The linear measurements of u =
(u1, . . . , uN )⊤ ∈ RN are given by

(ℓ1(u), . . . , ℓm(u))⊤ = Φu,

where Φ is an m×N measurement matrix, with typically m≪ N .
The topic of compressed sensing deals with sparse recovery of u from such measurements,

that is, searching to recover an accurate approximation to u by a vector with only a few
non-zero components. We refer to [42] for some first highly celebrated breakthrough results
and to [74] for a general treatment.

We define the nonlinear space of n-sparse vectors as

Vn :=
{
u ∈ RN : ∥u∥0 := #{i : ui ̸= 0} ⩽ n

}
,

and the best n-term approximation error in the V norm as

en(u)V := min
v∈Vn

∥u− v∥V .

One natural question is to understand for which type of measurement matrices Φ does the
noise-free measurement y = Φu contain enough information, in order to recover any u up
to an error en(u)V . In other words, one asks if there exists a recovery map R : Rm → RN

https://github.com/agussomacal/SubCellResolution
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Figure 3.2: Convergence curves for the linear and nonlinear recovery methods

such that one has the instance optimality property at order n

∥u−R(Φu)∥V ⩽ C0en(u)V , u ∈ RN , (3.19)

with C0 a fixed constant, which we denote by IOP (n,C0). This question has been answered
in [46] in terms of the null space N := {v ∈ RN : Φv = 0}. We say that Φ satisfies the
null space property at order k with constant C1, denoted by NSP (k,C1) if and only if

∥v∥V ⩽ C1ek(v)V , v ∈ N . (3.20)

This property quantifies how much vectors from the null space can be concentrated on a
few coordinates. One main result of [46] is the equivalence between IOP at order n and
NSP at order 2n in the following sense.

Theorem 3.6.1. One has IOP (n,C0) ⇒ NSP (2n,C0), and conversely NSP (2n,C1) ⇒
IOP (n, 2C1).

One natural question is whether matrices Φ with such properties can be constructed
with a number of rows/measurements m barely larger than n. As we recall further the
answer to this question is strongly tied to the norm V used on RN .
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(a) (b)

(c) (d)

Figure 3.3: (a) The target function, (b) its recovery by PiecewiseConstant showing the cell-average data,
and the recovered boundaries by (c) LinearInterface and (d) LinearInterfaceCC methods
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3.6.2 Stability and the null space property

The nonlinear estimation results that we have obtained in Section 3.2 and Section 3.3 can
be applied to the setting of sparse recovery, offering us a different vehicle than the null
space property to establish instance optimality.

In the present setting, for a given norm ∥·∥Z , the stability property (3.6) takes the form

∥Φu∥Z ⩽ αZ∥u∥V , u ∈ RN (3.21)

and the inverse stability property (3.7) takes the form

∥v∥V ⩽ µZ∥Φv∥Z , v ∈ V2n, (3.22)

since for sparse vectors we have V diff
n = Vn − Vn = V2n. We refer to these properties as

S(αZ) and IS(2n, µZ), respectively.
Application of Theorem 3.2.3 in the noiseless case immediately gives us that the nonlin-

ear best fit recovery R(Φu) = ũ satisfies the instance optimality bound (3.19) with constant
C0 = 1 + 2αZµZ . In other words

S(αZ) and IS(2n, µZ) ⇒ IOP (n,C0), C0 = 1 + 2αZµZ . (3.23)

The following result shows that (S, IS) is actually equivalent to NSP , and thus to IOS, in
the sense that a converse result holds when ∥ · ∥Z is chosen to be the Riesz norm (3.10).

Theorem 3.6.2. For any norm ∥ · ∥Z , one has

S(αZ) and IS(2n, µZ) ⇒ NSP (2n,C1), C1 = 1 + αZµZ . (3.24)

Conversely, let ∥ · ∥W be the Riesz norm so that ∥Φu∥W = minΦv=Φu ∥v∥V , then

NSP (2n,C1) ⇒ S(αW ) and IS(2n, µW ), αW = 1 and µW = 1 + C1. (3.25)

Proof. Assume that S(αZ) and IS(2n, µZ) hold. Let v ∈ N and ṽ its best approximation
in V2n, then

∥v∥V ⩽ ∥v − ṽ∥V + ∥ṽ∥V
⩽ e2n(v)V + µZ∥Φṽ∥W
= e2n(v)V + µZ∥Φ(v − ṽ)∥W ⩽ (1 + αZµZ)e2n(x)V .

This shows that NSP (2n,C1) holds with C1 = 1 + αZµZ .
Conversely, assume that NSP (2n,C1) holds. From the definition of the Riesz norm,

it is immediate that S(αW ) holds with αW = 1. For v ∈ V2n, let ṽ be the minimizer of
minΦṽ=Φv ∥ṽ∥V . Then, one has

∥v∥V ⩽ ∥ṽ∥V + ∥v − ṽ∥V ⩽ ∥ṽ∥V + C1σ2n(v − ṽ)V ⩽ (1 + C1)∥ṽ∥V ,
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by using v as a sparse approximation to v − ṽ. Since ∥ṽ∥V = ∥Φv∥W , this shows that
S(2n, µW ) holds with µW = 1 + C1.

3.6.3 The case of ℓp norms

The range of m allowing the properties to be fulfilled is best understood in the case of the
ℓp norms, that is ∥ · ∥V = ∥ · ∥p, as discussed in [46] which points out a striking difference
between the case p = 2 and p = 1:

1. In the case p = 2, it is proved that NSP (2, C1) cannot hold unless N ⩽ C2
1m. In

other words, instance optimality in ℓ2 even at order n = 1 requires a number of
measurements that is proportional to the full space dimension.

2. In the more favorable case p = 1, it is proved that for matrices which satisfy the
ℓ2-RIP property of order 3n

(1− δ)∥v∥22 ⩽ ∥Φv∥22 ⩽ (1 + δ)∥v∥22, v ∈ V3n,

with parameter 0 < δ < (
√
2−1)2
3 , the NSP (2n,C1) holds with C1 depending on δ.

Such matrices are known to exists with m ∼ n log(N/n) rows.
Our setting based on the stability properties S and IS applies more naturally to a

different class of matrices built from graphs, which is also known to be well adapted for
sparse recovery in the ℓ1 norm. A bipartite graph with (N,m) left and right vertices, and
of left degree d, is an (l, ε)-graph expander if

|X| ⩽ l ⇒ |N(X)| ⩾ d(1− ε)|X|, X ⊂ {1, . . . , N},

where N(X) ⊂ {1, . . . ,m} is the set of vertices connected to X. We necessarily have
|N(X)| ⩽ d|X|, and (1− ε)dl ⩾ m. From [43], it is known that there exists a (2n, 12)-graph
expander with d ∼ log N

n and m ∼ nd ∼ n log(N/n).
Now denote Φ ∈ {0, 1}m×N the adjacency matrix of this graph, so that each column of

Φ has d nonzero entries. Then

∥Φx∥1 ⩽ d∥x∥1, x ∈ RN ,

and
∥Φx∥1 ⩾ d(1− ε)∥x∥1, x ∈ V2n.

Therefore S(α1) and IS(2n, µ1), hold with α1 = d and µ1 = 1
d(1−ε) = 2

d , which by (3.24)
and (3.23) gives NSP (2n,C1) with C1 = 3 and IOP (n,C0) with C0 = 5.

3.A Proof of Proposition 3.5.1
The proof contains 15 cases, represented on a tree in Figure 3.4. These cases correspond to
different geometric situations, up to certain symmetries that leave the final relevant quan-
tities ∥ℓ(w)∥1 and ∥w∥L1(S) unchanged.
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a

1 b

c

2 3 4 5

d

e

6 7 8 9 10

f

11 12 13 14 15

Figure 3.4: Structure of the proof, each leaf corresponds to a different case, and each node contains a general
treatment valid for all its sons

Node a: Take w = u − v ∈ V diff
2,T , with u, v ∈ V2,T , and denote n⃗u, n⃗v and cu, cv the

corresponding unit vectors and offsets from (3.15) of V2,T . Recalling that x = (x1, x2) is
the center of S, we also denote

∆u = {x ∈ R2, (x− x) · n⃗u = cu}

the delimiting line between {u = 0} and {u = 1}, and define ∆v in a similar way.

Case 1: If n⃗u = n⃗v = n⃗, we have

w =
{
χcu⩽n⃗·(x−x)<cv if cu ⩽ cv

−χcv⩽n⃗·(x−x)<cu otherwise

so w has constant sign, which implies ∥w∥L1(S) = h2∥ℓ(w)∥1.

Node b: In all other cases, the cones

C+ = {x ∈ R2, w(x) = 1} and C− = {x ∈ R2, w(x) = −1}

are non-empty, and we can define the external bisector

∆ = {x ∈ R2, (n⃗u − n⃗v) · (x− x) = cu − cv},

which is the line of symmetry between C+ and C−. We also denote

C = C+ ∪ C− = {x ∈ R2, |w(x)| = 1}.

Observing that
∥w∥L1(S) = |S ∩ C| (3.26)
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cu

n⃗u

x

∆u

cu

|cv|

n⃗u = n⃗v

∆u

∆v

Figure 3.5: Left: 3×3 stencil S, with x its center, and an example of function u ∈ V2,T with directing vector
n⃗u and offset cu > 0. Here the dotted line corresponds to ∆u, and the shaded region to u = 1, while u = 0
elsewhere. Right: Representation of Case 1 (n⃗u = n⃗v), here cv < 0 < cu so w = −1 on the shaded region
and w = 0 elsewhere

and
∥ℓ(w)∥1 = h−2

∑
T⊂S

∣∣∣|T ∩ C+| − |T ∩ C−|
∣∣∣, (3.27)

the stability property (3.17) can be rewritten as

|S ∩ C| ⩽ 3
2
∑
T⊂S

∣∣∣|T ∩ C+| − |T ∩ C−|
∣∣∣ = 3

2

(
|S ∩ C| − 2

∑
T⊂S

min(|T ∩ C+|, |T ∩ C−|)
)
,

or equivalently
|S ∩ C| ⩾ 6

∑
T⊂S

min(|T ∩ C+|, |T ∩ C−|). (3.28)

Up to a rotation of S by a multiple of π2 , we may assume without loss of generality that

arg(n⃗u − n⃗v) ∈
[
π

4 ,
3π
4

]
,

that is, ∆ is at an angle of at most π
4 with the horizontal axis, and C+ lies above ∆. Take

(e⃗1, e⃗2) the canonical basis of R2.

Node c: Consider the situation where (n⃗u · e⃗2)(n⃗v · e⃗2) > 0. As n⃗u ̸= n⃗v and n⃗u ̸= −n⃗v,
the lines ∆u and ∆v intersect at one point X ∈ R2. Moreover, the above condition implies
X + e⃗2 /∈ C. Using the fact that | arg(∆)| ⩽ π

4 , we also get X + e⃗1 /∈ C.

Up to a symmetry with respect to the vertical axis, we can assume that C+ is included
in the quadrant X +R2

+. Now consider a cell T ⊂ S such that min(|T ∩ C+|, |T ∩ C−|) ̸= 0,
and take points x ∈ T ∩ C− and y ∈ T ∩ C+. As x1 ⩽ X1 ⩽ y1 and x2 ⩽ X2 ⩽ y2, we get
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X ∈ T , so there is at most one such cell T , and inequality (3.28) reduces to

|S ∩ C| ⩾ 6min(|T ∩ C+|, |T ∩ C−|).

X

C+∆u

∆v

X

C−

C+

X

C−

C+

z
l

T

T

∆

Figure 3.6: Cases 2, 3, 4, and 5

Case 2: If X /∈ S, then w has constant sign on S, so ∥w∥L1(S) = h2∥ℓ(w)∥1.

Case 3: If X is in the central cell T , the dilation of T with respect to X by a factor
2 is a subset of S, and the image of C ∩ T is in C ∩ S, so

|S ∩ C| ⩾ 4|T ∩ C| ⩾ 8min(|T ∩ C+|, |T ∩ C−|).

Case 4: If X is in the lower left cell T , the dilation of T ∩C+ with respect to X by a factor
3 is in S ∩ C+, so

|S ∩ C| ⩾ |S ∩ C+| ⩾ 9|T ∩ C+| ⩾ 9min(|T ∩ C+|, |T ∩ C−|).

The same argument holds with C− instead of C+ whenX is in the upper right cell. Moreover,
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as ∆u and ∆v go through the central cell, X may not be in the upper left or lower right cells.

Case 5: If X is in the lower central cell T , denote l = |∂T ∩ C+| ∈ (0, h) the distance
between ∆u and ∆v when they pass from T to the central cell T , and z = dist(X,T ) ∈ (0, h)
the depth of the point of intersection. Then

|T ∩ C+| =
zl

2 and |T ∩ C−| ⩽
zl

2

(
h− z

z

)2
,

so min(|T ∩ C+|, |T ∩ C−|) ⩽ hl
4 . On the other hand, the parallelogram of base ∂T ∩ C+, of

height h, and with sides orthogonal to ∆ belongs to (S \ T )∩ C+ (it does not escape to the
right of S because ∆ is close to the horizontal axis, so the sides of the parallelogram are at
an angle at most π

4 with the vertical axis), and has an area hl, which proves that

|C ∩ S| ⩾ hl + |C+ ∩ T |+ |C− ∩ T | ⩾ 6min(|T ∩ C+|, |T ∩ C−|).

A similar construction can be applied to the remaining cases where X is in the upper cen-
tral, central left or central right cell, which concludes the proof for Node c.

Node d: If now (n⃗u · e⃗2)(n⃗v · e⃗2) ⩽ 0, as arg(n⃗u− n⃗v) ∈
[
π
4 ,

3π
4
]
, we get n⃗u · e⃗2 ⩾ 0 ⩾ n⃗v · e⃗2.

Observe that C+ + e⃗2 ⊂ C+ since for all x ∈ C+,

(x+ e⃗2 − x) · n⃗u ⩾ (x− x) · n⃗u ⩾ cu and (x+ e⃗2 − x) · n⃗v ⩽ (x− x) · n⃗v < cv.

In the same way, C− − e⃗2 ⊂ C−. We now divide S into columns separated by the vertical
boundaries between cells, and in addition by vertical lines where ∆ intersects the two
horizontal lines separating cells of S, as illustrated in Figure 3.7.

∆

C+

C−

n⃗v

n⃗un⃗u − n⃗v

Figure 3.7: Generic situation for Node d, and partition of S into five columns: here, in addition to the four
vertical lines delimiting the cells of S, we added two vertical lines passing through the intersections of ∆
with the two horizontal cell delimiters
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Let U be such a column, and T a cell intersecting U . If T ∩ U ̸= T , ∆ intersects either
the upper or lower boundary of T , but not both since ∆ is at an angle of at most π

4 with
the horizontal axis. If it is the upper boundary, the symmetric of the part of T ∩ U above
∆ with respect to ∆ is in T ∩ U . If it is the lower boundary, the symmetric of the part of
T ∩U below ∆ with respect to ∆ is in T ∩U . Using the fact that C+ and C− are symmetric
with respect to ∆, we obtain

min(|T ∩ C+|, |T ∩ C−|) = min(|T ∩ U ∩ C+|, |T ∩ U ∩ C−|)
+ min(|T ∩ U c ∩ C+|, |T ∩ U c ∩ C−|).

Thanks to this observation, instead of (3.28) we only have to prove the inequality

|U ∩ C| ⩾ 6
∑
T⊂U

min(|T ∩ U ∩ C+|, |T ∩ U ∩ C−|) (3.29)

on each column U separately. We thus consider only one column U in the sequel, and
assume up to a horizontal dilation (which preserves the condition | arg(∆)| ⩽ π

4 ) that U
has width h and is composed of three full cells.

According to the definition of the columns, there is at most one cell T ⊂ U such that
T ∩ ∆ ̸= ∅, and as ∆ separates C+ and C−, it is only for this cell that we may have
min(|T ∩C+|, |T ∩C−|) ̸= 0. If there is no such cell, (3.29) trivially holds. Otherwise, similar
to Node c, we only need to prove

|U ∩ C| ⩾ 6min(|T ∩ C+|, |T ∩ C−|),

where T ⊂ U is the cell containing ∆∩U . Denoting P1, P2, P3 and P4 the upper left, upper
right, lower left and lower right corner points of T , we observe that the assumptions on ∆
and U imply P1, P2 /∈ C̊− and P3, P4 /∈ C̊+.

Node e: If U ∩ ∆u ∩ ∆v = ∅, that is, if U contains no intersection point between ∆u

and ∆v, we match five cases depending on the position of T in U , and of its corners with
respect to C. They are illustrated in Figure 3.8.
Case 6: If T is the bottom cell and P1, P2 ∈ C+, then the two other cells are included in
C+, so

|U ∩ C| ⩾ 2h2 + |T ∩ C| ⩾ 3|T ∩ C| ⩾ 6min(|T ∩ C+|, |T ∩ C−|).

Case 7: If T is the bottom cell and P1 ∈ C+ but P2 /∈ C+, T ∩ C+ is a triangle of width
and height at most h, so there is a rectangle R ⊂ (U \ T ) ∩ C+ of same width and twice as
high, and thus

|U ∩ C| ⩾ |R|+ |T ∩ C| = 4|T ∩ C+|+ |T ∩ C| ⩾ 6min(|T ∩ C+|, |T ∩ C−|).

The same argument holds when P2 ∈ C+ but P1 /∈ C+, and we necessarily have P1 or
P2 in C+ since T ∩ C+ ̸= ∅. If T is the top cell, applying a symmetry with respect to the
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P1 P2

P3 P4

R

P1 P2

P3 P4 R

R+

R−

Figure 3.8: Cases 6, 7, 8, 9 and 10

horizontal axis and exchanging C+ with C− brings us back to Cases 6 and 7.

Case 8: If T is the central cell, P1, P2 ∈ C+ and P3, P4 ∈ C− the two other cells are
included in C+ and C−, and we conclude as in Case 6.

Case 9: If T is the central cell, P1, P2 ∈ C+, P3 ∈ C− but P4 /∈ C−, the top cell is in-
cluded in C+, and there is a rectangle R ⊂ C− of same width and height as T ∩ C− in the
bottom cell, so

|U ∩ C| ⩾ h2 + |T ∩ C|+ |R| ⩾ 2|T ∩ C|+ 2|T ∩ C−| ⩾ 6min(|T ∩ C+|, |T ∩ C−|).

The same situation occurs when only three points among P1, . . . , P4 are in C.

Case 10: If T is the central cell, only one vertex among P1, P2 is in C+, and only one
among P3, P4 is in C−, both T ∩C+ and T ∩C− are triangles, and there exist rectangles R+
and R− of same widths and heights, so

|U ∩ C| ⩾ |R+|+ |T ∩ C|+ |R−| ⩾ 3|T ∩ C+|+ 3|T ∩ C−| ⩾ 6min(|T ∩ C+|, |T ∩ C−|).

As C+ and C− each contain at least one corner of T , we treated all cases for Node e.

Node f: Finally, we consider the situation where there is an intersection point X ∈ ∆u∩∆v

in U , and therefore in T . We again match five cases, illustrated in Figure 3.9, depending
on the position of T in U , and of its corners with respect to C.
Case 11: If T is the bottom cell, as ∆u and ∆v pass through the central cell of S, U is
included in the central column of S, and no corner of T can be in C̊+, since otherwise ∆
would have to pass through that corner, according to the definition of the columns. As
a consequence, ∆u and ∆v necessarily pass through the central cell of U , so T ∩ C+ is a
triangle, and we proceed as in Case 7. The same happens if T is the top cell, so in the rest
of the proof we only consider situations where T is the central cell.
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R

X

H

P1 P2

P3 P4
R

Y

ZP3

φ

ψ
l z

Figure 3.9: Cases 11, 12, 13, 14 and 15

Case 12: If the horizontal line H passing through X does not intersect C at any other
point, C+ is entirely above H and C− entirely below. Denoting z = X2 − x2 + h

2 ∈ (0, h),
the vertical dilation with respect to H by a factor 2h−z

h−z sends T ∩ C+ in U ∩ C+, and the
vertical dilation with respect to H by a factor h+z

z sends T ∩ C− in U ∩ C−, so

|U ∩ C| ⩾ 2h− z

h− z
|T ∩ C+|+

h+ z

z
|T ∩ C−| ⩾ 6min(|T ∩ C+|, |T ∩ C−|)

because 2h−z
h−z + h+z

z = 2 + h2

z(h−z) ⩾ 6 for z ∈ (0, h).

In the remaining cases, up to a symmetry with respect to the vertical axis, we can
assume that X + R2

+ ⊂ C+ and X + R2
− ⊂ C−, and in particular P2 ∈ C+ and P3 ∈ C−.

Case 13: If P1 ∈ C+ and P4 ∈ C−, the situation is similar to Case 8.

Case 14: If P1 ∈ C+ and P4 /∈ C−, the top cell is included in C+, and one of the lines
∆u or ∆v intersects the line segments [P1, P3] and [P3, P4] at points Y and Z. Then the
triangle Y P3Z is included in T and contains T ∩C−, so there is a rectangle R of same width
and height in (U \ T ) ∩ C−. In the end

|U ∩ C| ⩾ h2 + |T ∩ C|+ |R| ⩾ 2|T ∩ C|+ 2|T ∩ C−| ⩾ 6min(|T ∩ C+|, |T ∩ C−|).

The same approach treats the symmetric case P1 /∈ C+ and P4 ∈ C−,

Case 15: Finally, if P1 /∈ C+ and P4 /∈ C−, denote l = X1−x1+ h
2 ∈ (0, h), z = X2−x2+ h

2 ∈
(0, h), φ ∈ (0, π4 ) the angle between the vertical axis and the line among ∆u and ∆v that in-
tersects [P1, P2], and ψ ∈ (0, π4 ) the angle between the line among ∆u and ∆v that intersects
[P1, P3] and the horizontal axis. As | arg(∆)| ⩽ π

4 , φ ⩾ ψ so tan(ψ) ⩽ tan(φ) =: t ⩽ 1.
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We can now compute

|T ∩ C+| = (h− l)(h− z) + 1
2(h− l)2 tanψ + 1

2(h− z)2 tanφ,

|T ∩ C−| = lz + 1
2 l

2 tanψ + 1
2z

2 tanφ,

and
|(U \ T ) ∩ C| ⩾ (h− l)h+ (h− z)th+ lh+ zth = (1 + t)h2.

If l + z ⩽ h, we get

|(U \ T ) ∩ C| ⩾ (1 + t)(l + z)2 − (1− t)(l − z)2 = 4lz + 2t(l2 + z2) ⩾ 4|T ∩ C−|.

Similarly, l + z ⩾ h implies |(U \ T ) ∩ C| ⩾ 4|T ∩ C+|. In any case, we found

|U ∩ C| = |T ∩ C|+ |(U \ T ) ∩ C| ⩾ 6min(|T ∩ C+|, |T ∩ C−|),

which concludes the proof. □
As a last remark, note that the constants α = h−2 and µ = 3

2h
2 in Proposition 3.5.1

are sharp, since equality is attained by functions of constant sign on each cell for α, and by
w = u− v with arg(n⃗u) ∈ π

4Z, cu = 0 and v = 1− u for µ.



Chapter 4

High order recovery of geometric
interfaces from cell-average data

4.1 Introduction

4.1.1 Reconstruction from cell-averages

We consider the problem of reconstructing a function u : D → R defined on a multivariate
domain D ⊂ Rd from cell averages

aT (u) :=
1
|T |

ˆ
T
u(x)dx, T ∈ T , (4.1)

over a partition T of D. This task occurs in various contexts, the most notable ones being:

1. Image processing: here u is the light intensity of an image and T represents a grid
of pixels in dimension d = 2 or voxels in dimension d = 3. Various processing tasks
are facilitated by the reconstruction of the image at the continuous level, for example
when applying operations that are not naturally compatible with the pixel grid such
as rotations, or when changing the format of the pixel grid such as in super-resolution.

2. Hyperbolic transport PDE’s: here u is a solution to such an equation and T is
a computational grid, typically in dimension d = 1, 2 or 3. Finite volume schemes
evolve the cell average data by computing at each time step the numerical fluxes at the
interfaces between each cell. Several such schemes are based on an intermediate step
that reconstructs simple approximations to u on each cell and compute the numerical
fluxes by applying the transport operator to these approximations.

3. Inverse Problems: numerous inversion tasks can be formulated as the recovery of
a function from observational data, and this data could typically come in the form of
local averages of the type (4.1).

97
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In this paper, we consider functions defined on the unit cube

D := [0, 1]d,

and partitions Th of D based on uniform cartesian meshes, that is, consisting of cells of the
form

T = h(k +D), k := (k1, . . . , kd) ∈ {0, . . . , l − 1}d,

where h := 1
l > 0 is the side-length of each cell in Th, for some l > 1. The cardinality of

the partition is therefore
N := #(Th) = ld = h−d.

We are thus interested in reconstruction operators R that return an approximation
ũ = R(a) to u from the N -dimensional vector a = a(u) = (aT (u))T∈Th ∈ RN . The most
trivial one is the piecewise constant function

ũ :=
∑
T∈Th

aT (u)χT , (4.2)

which is for example used in the Godunov finite volume scheme. Elementary arguments
show that this reconstruction is first order accurate: if u ∈W 1,p(D), one has

∥u− ũ∥Lp(D) ⩽ Ch∥∇u∥Lp(D) ∼ N− 1
d ,

where C is a fixed constant, and the exponent in this estimate cannot be improved for
smoother functions.

A simple way to raise the order of accuracy is by reconstructing on each cell polynomials
of higher degree using neighbouring cell averages. For example, in the univariate case d = 1
and for some fixed m ⩾ 1, we associate to each interval Tk := [kh, (k + 1)h] the centered
stencil consisting of the cells Tl for l = k − m, . . . , k + m. Then, there exists a unique
polynomial pk ∈ P2m such that

aTl(pk) = aTl(u), l = k −m, . . . , k +m.

We then define a piecewise polynomial reconstruction by

ũ :=
∑

k=0,...,N−1
pkχTk .

This strategy can be generalized to higher dimension d > 1 in a straightforward manner:
for each cell T we consider the stencil S = ST of (2m + 1)d cells centered around T and
define the piecewise polynomial reconstruction

ũ :=
∑
T∈Th

pTχT ,
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where pT is the unique polynomial of degree 2m in each variable such that

aT̃ (pT ) = aT̃ (u), T̃ ∈ ST .

For example in the bivariate case d = 2, we may use 3×3 stencils to reconstruct bi-quadratic
polynomials on each cell. Standard approximation theory arguments show that these local
reconstruction operators now satisfy accuracy estimates of the form

∥u− ũ∥Lp(D) ⩽ Chr|u|W r,p(D) ∼ N− r
d ,

for r ⩽ 2m+ 1.

Remark 4.1.1. Polynomials of odd degree can also be constructed by using non-centered
stencils. Also note that non-centered stencils need to be used when approaching the boundary
of D, but this does not affect the above estimate.

These classical methods are therefore efficient to reconstruct smooth functions with a
rate of accuracy that optimally reflects their amount of smoothness. Unfortunately they are
doomed to perform poorly in the case of functions u that are piecewise smooth with jump
discontinuities accross hypersurfaces. For example, a piecewise constant reconstruction will
have O(1) error on each cell that is crossed by the interface. Since the amount of such cells
is of order Nd−1 = h1−d, we cannot expect a reconstruction error better than

∥u− ũ∥Lp >∼ (hdh1−d)
1
p = h

1
p = N− 1

dp . (4.3)

In particular, this reconstruction has first order accuracy O(h) in the L1 norm.
The use of higher order polynomial cannot improve this rate. In fact, a fundamental

obstruction is the fact that all the above methods produce approximations ũ that depend
linearly on a(u), and therefore belong to a linear space of dimension N . The bottleneck of
such methods for a given class of functions K is therefore given by the so-called Kolmogorov
N -width defined by

dN (K)Lp := inf
dim(VN )=N

sup
u∈K

min
v∈VN

∥u− v∥Lp .

Then, it can be shown that for very simple classes K of discontinuous functions such as
those of the form u = χH , where H is any half-space passing through D, the N -width in Lp

precisely behaves like N− 1
dp , see [NonLinearReduced]. In summary, any linear method

cannot do much better than the low order piecewise constant method, even for interfaces
that are infinitely smooth.

Improving the accuracy in the reconstruction of piecewise smooth functions from cell
averages therefore motivates the development and study of nonlinear reconstruction strate-
gies, which is at the heart of this work. We first recall the main existing approaches.
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X0i− 1 i i+ 1 i+ 3

Figure 4.1: ENO-SR in one dimension: the jump point X0 is identified by matching the average on the
singular cell with the piecewise polynomial reconstruction.

4.1.2 Reconstruction of discontinuous interfaces

One first approach aiming to tackle jump discontinuities while maintaining high order ap-
proximation in the smooth regions was proposed for the univariate case d = 1 by Ami
Harten in terms of ENO (Essentially Non Oscillatory) and ENO-SR (Subcell Resolution).
The ENO strategy [89] is based on selecting for each cell T a stencil ST that should not
include the cell T ∗ which contains the point of jump discontinuity. This is achieved by
choosing among the stencils that contains T the one where the cell average values have the
least numerical variation. For T ̸= T ∗ such adaptively selected stencils will tend to avoid
T ∗.

As a consequence high order reconstruction can be preserved in all cells where u is
smooth, and in addition this yields for free a singularity detection mechanism which identi-
fies the singular cell T ∗ that is avoided from both side by the stencil selection. The ENO-SR
strategy [88] then consists in reconstructing in this singular cell by extending the polyno-
mials fitted on both sides until a point for which the resulting average match the observed
average. The position of this point can therefore be identified by solving a simple algebraic
equation. This strategy is very effective in the univariate case as illustrated in Figure 4.1.

While the ENO stencil selection can be generalized to higher dimension, the ENO-SR
strategy does not have a straightforward multivariate version. This is due to the fact that,
instead of a single point, the jump discontinuity to be identified is now a hypersurface
(curve in 2d, surface in 3d, ...) that cannot be described by finitely many parameters.
The approximate recovery of geometric interfaces from cell-average has been the object of
continuous investigation, with the particular focus on functions of the form

u = χΩ, (4.4)

where Ω ⊂ D is a set with boundary Γ = ∂Ω having a certain smoothness. For such
characteristic functions, that could for example represent a two phase flow without any
mixing or the evolution of a front, the whole difficulty is concentrated in the recovery of Γ
since the smooth parts are the trivial constant functions 0 or 1.
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In this paper, we denote by

Sh := {T ∈ Th : |T ∩ Ω| ≠ 0 and |T ∩ Ωc| ≠ 0},

the set of cells that are crossed by the interface Γ in a non trivial way. Such cells are termed
as singular, the other as regular. Let us note that, for functions u of the form (4.4), singular
cells are characterized by the property

0 < aT (u) < 1,

and can thus be identified from the cell-average data.
Practical computational strategies, often termed as volume of fluid methods, consist in

using the cell-average data to reconstruct a local approximation of the interface that can
be described by finitely many parameters, such as lines in 2d or planes in 3d. This idea
was introduced in [118], and was significantly improved in [132] with the LVIRA algorithm
that consists in reconstructing in each singular cell a linear interface whose parameters are
found by least-square minimization of the difference between exact and reconstructed cell
averages on centered 3× 3 stencil, in the 2d case.

Note that this continuous least-square minimization is performed over a nonlinear set.
This induces a substantial computational burden that could be avoided through a variant,
the ELVIRA algorithm, in which the line selection is made between 6 possible configu-
rations explicitly computed from the cell averages. One main result is the fact that this
reconstruction returns precisely the true interface if this one is indeed a straight line. We
refer to [129] for a comparative survey on these reconstruction algorithms and to [93, 141,
136, 143, 84, 157, 68, 135] for improvements and applications in the domain of 2d and 3d
fluid mechanics.

u = 1

u = 0

Th

χP = 1

χP = 0

Th

Figure 4.2: Local approximation of a smooth interface by a line interface.

Intuitively the advantage of locally fitting a line or plane interface is that it has the ability
to better approximate the interface Γ if it is smooth, so that it is expected to improve the
low order of accuracy (4.3) of linear methods. More precisely, if Γ has C2 regularity, on
each cell of side-length h, it can be approximated with Hausdorff distance O(h2) by a line
in 2d, a plane in 3d, etc. Therefore, if the locally reconstructed linear interface is optimally
fitted, the O(1) error is observed on a strip of volume O(h2+d−1), see Figure 4.2. Since the
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amount of singular cell is of order #(Sh) ∼ h1−d, we may hope for a reconstruction error
with improved order,

∥u− ũ∥Lp ∼ (hd+1h1−d)
1
p = h

2
p = N− 2

dp , (4.5)

that is, we double the rate compared to (4.3). In particular, we obtain second order accuracy
O(h2) in the L1 norm.

However, to our knowledge such estimates have never been rigourously proved for the
aforementionned method. In addition the approximation power of linear interface is also
limited and we cannot hope to improve the above rate for interfaces that are smoother than
C2. In this context, the objective of this paper is twofold:

1. introduce a theoretical framework for the rigourous convergence analysis of local in-
terface reconstructions from cell averages,

2. within this framework develop reconstruction methods going beyond linear interfaces
and provably achieving higher order of accuracy.

4.1.3 Outline

In this paper, we will essentially work in the bivariate case d = 2 which makes the exposition
simpler while most of our discussion can be carried over to higher dimension.

The recovery methods that we study are local: on each cell T identified as singular,
the unknown function u = χΩ is approximated by a simpler ũ = χΩT

picked from a family
Vn that can be described by n parameters and that enjoy certain approximation properties
for interfaces having prescribed smoothness. This approximation is computed from the cell
averages of a rectangular stencil ST of m ⩾ n cells centered around T .

We begin Section 4.2 by giving examples of such families and discussing their approx-
imation properties for prior classes Ks of χΩ associated to sets Ω with Cs boundaries for
s > 1. Our ultimate goal is to develop recovery schemes such that the error between u and
ũ is near optimal in the sense of being bounded (up to a multiplicative constant) by the
error of best approximation of u by elements from Vn. This, in particular means that the
recovery should be exact if the true function u belongs to Vn.

We introduce in Section 4.3 a first class of recovery strategies which we call Optimization
Based Edge Reconstruction Algorithms (OBERA). Similar to LVIRA it is based on least-
square fitting of simpler interfaces such as lines, but also circles or polynomials that allow
to raise the order of accuracy. We show that near optimality of this recovery is ensured
by an inverse stability inequality which can in particular be established for line edges and
3× 3 stencils. Unfortunately, this property seems more difficult to prove when raising the
order of accuracy, which also leads to more difficult nonlinear optimization procedures.

As a more manageable alternative, we consider recovery methods that are based on the
identification of a certain preferred orientation - vertical or horizontal - for describing the
interface by a function in the vicinity of each such cell. This leads us to the second class of
recovery methods, termed as Algorithms for Edge Reconstruction using Oriented Stencils
(AEROS) which is discussed in Section 4.4. It avoids continuous optimization by finding
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an edge described by a polynomial function y = pT (x) or x = pT (y) after having used
the previously discussed orientation mechanism. The polynomial pT is identified by simple
linear equations. We show that this process satisfies an exactness and stability property
that leads to the near optimal recovery bound. In addition, the rate of convergence can be
raised to an arbitrarily high order by raising the degree of pT , however at the price of using
larger stencils. The analysis of the orientation selection mechanism, based on the Sobel
filter, is postponed to the Appendix, where it is shown that it correctly classifies the cells
when h is sufficiently small.

All these methods are numerically tested and compared in Section 4.5. The differences
in terms of convergence rates are confirmed, and we also compare the computational costs,
which are by far less for AEROS than OBERA. We also discuss and test the specific recovery
of corner singularities in the interface. Finally, in the case of linear transport, we illustrate
the propagation of error when using finite volume schemes based on these local recovery
strategies.

An open-source python framework1 is made available to show the methods presented
here but specially to allow an easy way of creating, testing, and comparing new subcell res-
olution and interface reconstruction methods without the need to re-implement everything
from scratch.

4.2 Numerical analysis of local recovery methods

4.2.1 Local approximation by nonlinear families

The methods that we study in this paper for the recovery of the unknown u = χΩ are based
on local approximations of u on each cell T ∈ Th that is identified as singular by simpler
characteristic functions picked from an n parameter family Vn.

Let us give three examples that will be used further. We stress that in all such examples
Vn is not an n-dimensional linear space, but instead should be thought as an n-dimensional
nonlinear manifold.

Example 1: linear interfaces. These are functions of the form v = χH where H is
a half-plane with a line interface L = ∂H. Such functions are described by n = 2 param-
eters. One convenient description is by the pair (r, θ), where r ⩾ 0 is the offset distance
between the center zT of the cell T of interest and the linear interface and θ ∈ [0, 2π[ is the
angle between this line and the horizontal axis. In other words, in this case we use

V2 := {vr,θ := χ{⟨z−zT ,eθ⟩⩽r} , θ ∈ [0, 2π[; r > 0},

where eθ = (− sin(θ), cos(θ)). Of course, the d-dimensional generalization by half-spaces is
a d-parameter family where the unit normal vector eθ lives on the d − 1-dimensional unit
sphere.

1https://github.com/agussomacal/SubCellResolution

https://github.com/agussomacal/SubCellResolution
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Example 2: circular interfaces. These are functions of the form v = χD or v = χDc

where D is a disc with circular interface, and Dc its complement. It is easily seen that the
corresponding space V3 is now a 3 parameter family, and its d-dimensional generalization
by characteristic function of balls and their complements is a d+ 1 parameter family. The
idea of using circles instead of lines is to increase the approximation capability. However,
as we will see, the next family turns out to be more effective both from the point of view
of theoretical analysis and computational simplicity.

Example 3: oriented graphs. These are functions of the form v = χP where P is
the subgraph or the epigraph of a function p ∈ Wn, either applied to the coordinate x or
y, where Wn is a linear space of univariate functions. In other words, P is given by one
among the four equations

y ⩽ p(x), y ⩾ p(x), x ⩽ p(y), x ⩾ p(y). (4.6)

Of course, the corresponding space Vn is an n-parameter family that is not a linear space,
while Wn is. Note that the linear interfaces of Example 1 are a particular case where W2 is
the set of affine functions. Raising the order of accuracy will be achieved by taking for Wn

the space of polynomials of degree n− 1. The d dimensional generalisation is obtained by
taking for Wn a linear space of functions of d− 1 variables and considering P to be defined
by one of the 2d equations

xi ⩽ p(x1, . . . , xi−1, xi+1, . . . , xd), xi ⩾ p(x1, . . . , xi−1, xi+1, . . . , xd), i = 1, . . . d,

for some p ∈Wn. In particular Wn could be a space of multivariate polynomials.

Example 4: piecewise linear interface. These are functions of the form u = χH1∩H2

where H1 and H2 are two half planes. Therefore the interface consists of two half lines that
touch at a corner point x0. The corresponding space V4 is a 4 parameter family, for example
by considering the coordinates x0 = (x1, x2) and the angles θ1 and θ2 of the normal vectors
to the two lines. The goal of this family is to better approximate piecewise smooth inter-
faces that have corner singularities. Note that Example 1 may be viewed as a particular
case where the two half-planes coincide and there is no corner point.

Given such a family Vn and a set S ⊂ D, we denote by

en(u)S = min
v∈Vn

∥u− v∥L1(S),

the error of best approximation on S measured in the L1-norm.

Remark 4.2.1. Throughout this paper, we shall systematically measure error in L1 norm
which is the most natural since in the case of u = χΩ and ũ = χΩ̃, this error is simply the
area of the symmetric difference between domains, that is,

∥u− ũ∥L1(D) = |Ω∆Ω̃| = |Ω ∪ Ω̃− Ω ∩ Ω̃|.
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Note however that estimates in Lp norms can be derived from L1 estimates in a straight-
forward manner since

∥u− ũ∥Lp(D) = |Ω∆Ω̃|1/p = ∥u− ũ∥1/p
L1(D).

In our analysis of the reconstruction error on a singular cell T , we will need to estimate
the local approximation error on a stencil S = ST that consists of finitely many cells
surrounding T . We shall systematically consider rectangular stencils of symmetric shape
centered around T , so in the 2d case they are of size

m = (2k + 1)× (2l + 1),

for some fixed k, l ⩾ 1.
The order of magnitude en(u)S both depends on the type of family Vn that one uses

and on the smoothness property of the boundary Γ = ∂Ω. We describe these properties by
introducing prior classes of characteristic functions χΩ of sets Ω ⊂ D with boundary of a
prescribed Hölder smoothness. There exists several equivalent definitions of a Cs domain.
We follow the approach from [116], that expresses the fact that the boundary can locally
be described by graphs of Cs functions (see also Chapter 4 of [2]).

Definition 4.2.2. Let s > 0. A domain Ω ⊂ R2 is of class Cs if and only if there exists an
R > 0, P > 1 and M > 0, such that for any point z0 ∈ ∂Ω, the following holds: there exists
an orthonormal system (e1, e2) and a function ψ ∈ Cs([−R,R]) with ∥ψ∥Cs ⩽M , taking its
value in [−PR,PR] and such that

z ∈ Ω ⇐⇒ z2 ⩽ ψ(z1),

for any z = z0 + z1e1 + z2e2 with |z1| ⩽ R and |z2| ⩽ PR.

Here, we have used the usual definition

∥ψ∥Cs = sup
0⩽k⩽⌊s⌋

∥ψ(k)∥L∞([−R,R]) + sup
s,t∈[−R,R]

|s− t|⌊s⌋−s
∣∣∣ψ(⌊s⌋)(s)− ψ(⌊s⌋)(t)

∣∣∣,
for the Hölder norm. In the case of integer smoothness, we use the convention that Cs
denotes functions with Lipschitz derivatives up to order s−1, so that in particular the case
s = 1 corresponds to domains with Lipschitz boundaries. This definition naturally extends
to domains of Rd with d > 2 with ψ now being a Cs function of d− 1 variables.

We can immediately derive a first local approximation error estimate for the the space
V2 of linear interfaces from the above Example 1: let u = χΩ with Ω a domain of class
Cs. Then, if S is a 2k + 1 × 2l + 1 stencil centered around a cell T that is crossed by the
interface, we apply the above Definition 4.2.2 taking z0 = zT the center of T . We assume
that the sidelength h is small enough so that the stencil S is contained in the rectangle
{z = z0 + z1e1 + z2e2 : , |z1| ⩽ R, |z2| ⩽ PR}, in which ∂Ω is described by the graph of the
Cs function ψ. For z ∈ S, we have in addition that |z1| ⩽ C0h ⩽ R where C0 depends only
on l and k. Using a Taylor expansion and the smoothness of ψ we find that there exists an
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affine function a such that

∥ψ − a∥L∞([−C0h,C0h]) ⩽ C1h
r, r := min{s, 2}, (4.7)

where C1 depends on C0 and the bound M on the Cs norm of ψ. For example, we can take
for a the Taylor polynomials of order 1 at z1 = 0 when s > 1, which corresponds to match
the tangent of the interface at the point z0+ψ(0)e2, or of order 0 when s ⩽ 1. Then, taking
v = χH ∈ V2, where

H := {z2 ⩽ a(z1)},

is the corresponding half-space, it follows that

∥u− v∥L1(S) = |S ∩ (Ω∆H)| ⩽ Chr+1,

where C depends on (M, l, k). In summary, for the local approximation error of Cs domains
by a linear interface we have

en(u)S ⩽ Chr+1, r := min{s, 2}. (4.8)

The same reasoning in d dimensions delivers a local approximation estimate of order hr+d−1.
One way to raise this order of accuracy for smoother domains is to use approximation

by circular interfaces from Example 2 since this allows us to locally match the curvature
in addition to the tangent. In turn we reach a similar estimate of order hr+1 however with
r := min{s, 3}. One more systematic way of raising the order arbitrarily high is to use
approximation by oriented subgraphs from Example 3. This approach is central to the
AEROS strategies discussed in Section 4.5 and we thus discuss it below in more detail.

We begin with the observation that when s > 1, the unit tangent vector varies contin-
uously on ∂Ω if Ω is of class Cs. It follows that locally around any point z0, this vector
remains away either from the horizontal vector (1, 0) or from the vertical vector (1, 0). This
allows us to locally describe the boundary by graphs of functions of the standard cartesian
coordinates, as expressed by the following alternate definition of Cs domains.

Definition 4.2.3. Let s > 1. A domain Ω ⊂ R2 is of class Cs if and only if there exists an
R > 0, P > 1 and M > 0, such that for any point z0 = (x0, y0) ∈ ∂Ω, the following holds:
there exists a function ψ ∈ Cs([−R,R]) with ∥ψ∥Cs ⩽ M , taking its value in [−PR,PR]
and such that the membership in Ω of a point z = (x, y) is equivalent to one of the two
equations

y ⩽ ψ(x), y ⩾ ψ(x), (4.9)

when |x− x0| ⩽ R and |y − y0| ⩽ PR, or one of the two equations

x ⩽ ψ(y), x ⩾ ψ(y), (4.10)

when |y − y0| ⩽ R and |x− x0| ⩽ PR.

The generalization of this alternate definition to higher dimension is straighforward by
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considering equations one of the form

xi ⩽ ψ(x1, . . . , xi−1, xi+1, . . . , xd) or xi ⩾ ψ(x1, . . . , xi−1, xi+1, . . . , xd), i = 1, . . . , d,

with ψ a Cs function of d− 1 variables defined on [−R,R]d−1.

Remark 4.2.4. We stress that this definition is only valid for s > 1 and not for less smooth
domains such as Lipschitz domains. For example if Ω is a rectangle with side oriented along
principal axes, then no such local parametrization can be derived if z0 is a corner point.

Consider now the family Vn of oriented subgraphs from Example 3, associated with the
linear space Wn = Pn−1 of univariate polynomials of degree n − 1. Let u = χΩ with Ω a
domain of class Cs for some s > 1. Then, if S is a (2k+1)× (2l+1) stencil centered around
a cell T that is crossed by the interface, we apply the above Definition 4.2.3 taking z0 = zT
the center of T . Without loss of generality, assume for example that the description of Ω
near z0 is by the equation

y ⩽ ψ(x),

for z = (x, y) in the rectangle {|x−x0| ⩽ R, |y−y0| ⩽ PR}. We assume that the sidelength
h is small enough so that the stencil S is contained in this rectangle. For z = (x, y) ∈ S we
thus have

|x− x0| ⩽ C0h ⩽ R, C0 = k + 1
2 .

Using Taylor formula and the smoothness of ψ we find that there exists a polynomial
p ∈ Pn−1 such that

∥ψ − p∥L∞([−C0h,C0h]) ⩽ C1h
r, r := min{s, n}, (4.11)

where C1 depends on C0 and the bound M on the Cs norm of ψ. For example, we can take
for p the Taylor polynomials of order ñ = min{⌈s⌉ − 1, n− 1} at x = x0. Therefore, taking
v, where

v := χ{y⩽p(x)} ∈ Vn,

the corresponding subgraph, it follows that

∥u− v∥L1(S) = 2C0hC1h
r = Chr+1.

where C depends on (M,k). We treat the other cases y ⩾ ψ(x), x ⩽ ψ(y) and x ⩾ ψ(y) in a
similar manner. In summary, for the local approximation error of Cs domains by polynomial
oriented subgraphs, we have

en(u)S ⩽ Chr+1, r := min{s, n}. (4.12)

The same reasoning in d dimensions delivers a local approximation estimate of order hr+d−1.
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4.2.2 Near optimal recovery from cell averages

The recovery methods that we develop in Section 4.3 and Section 4.4 are based on recovering
on each singular cell T an element ũT ∈ Vn where Vn is a given nonlinear family, based on
the data of the cell-averages

aS(u) = (aT̃ (u))T̃∈S ,

where S = ST is a rectangular stencil centered around T . It can therefore be summarized
by a local nonlinear recovery operator

RT : Rm → Vn

where m = (2k + 1)× (2l + 1) is the size of the stencil, such that

ũT = RT (aS(u)).

We are interested in deriving a favorable comparison between the local recovery error ∥u−
ũT ∥L1(T ) and the error of best approximation by Vn whose magnitude can be estimated
depending on the amount of smoothness of the boundary, as previously discussed.

Definition 4.2.5. The local recovery procedure is said to be near-optimal over a class of
function K if there exists a fixed constant C so that one has

∥u−RT (aS(u))∥L1(T ) ⩽ Cen(u)S , (4.13)

for all u in this class. In particular C should be independent of the considered singular cell
T and mesh size h.

Remark 4.2.6. In the above definition, the recovery error on T is bounded by the approx-
imation error on the larger stencil S. This is due to the fact that the recovery operator RT
acts on the cell averages aT̃ (u) for all cells T̃ ⊂ S.

On regular cells T ∈ Th \Sh, that is, such that aT (u) = 0 or aT (u) = 1, we simply define
the reconstruction by the constant value

ũT = aT (u),

which is then the exact value of u. The global reconstruction of u from the cell-averages
(aT (u))T∈Th is given by the function

ũ =
∑
T∈Th

ũTχT .

The global L1 error can be estimated by aggregating all local error estimates, which thus
gives

∥u− ũ∥L1(D) =
∑
T∈Sh

∥u− ũT ∥L1(T ) ⩽ C
∑
T∈Sh

en(u)ST . (4.14)
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T

(a) Line interfaces (b) Circular interfaces (c) Quadratic subgraphs

Figure 4.3: Cases of non-injectivity: two elements of Vn having same averages on a 3× 3 stencil.

where C is the stability constant in (4.13) and where ST denotes the stencil centered at T
which is used in the reconstruction of ũT .

If Ω is a Cs domain with s ⩾ 1, that is, at least a Lipschitz domain, one has the
cardinality estimate

#(Sh) ⩽ Ch−1 (4.15)

where C depends on the length of Γ. We may thus derive a global error estimate by
combining (4.14) and (4.15) and the local approximation estimates (4.8) and (4.12): is Ω
is a Cs domain with s ⩾ 1, we obtain

∥u− ũ∥L1(D) ⩽ Chr, (4.16)

with r := min{s, 2} when using local recovery by linear interfaces and r := min{s, n} when
using local recovery by polynomial subgraphs of degree n− 1. This estimate generalizes to
the higher dimensional case, combining local approximation estimates with the cardinality
estimate #(Sh) ⩽ Ch1−d.

Our central objective is now to propose local recovery methods that provably satisfy
the near optimal recovery bound (4.13). For this, we start by remarking that this bound
implies the property

RT (aS(v)) = v, ∀v ∈ Vn, (4.17)

that is, the recovery is exact for elements from Vn. This property itself implies that any
element from Vn should be exactly characterized by its cell-average on the stencil S. In
other words, the averaging operator

v 7→ aS(v) = (aT̃ (v))T̃∈S ,

should be injective from Vn to Rm. For this to hold, the classes Vn from Examples 1, 2, 3,
4 need to be restricted.

In the case of linear interfaces, if H and H̃ are two half-spaces that contain the stencil
S, the functions v = χH and ṽ = χ

H̃ obviously have the same cell-average vector aS
with component identically equal to 1. Asking that the linear interface passes through the
stencil is thus necessary but not sufficient as illustrated on Figure 4.3a: two lines passing
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T

(a) Line interfaces (b) Circular interfaces (c) Quadratic subgraphs

Figure 4.4: Illustration of the restrictions ensuring injectivity

only through a corner cell may result in identical cell averages. The correct restriction on
Vn in this case is obtained by imposing that the linear interface passes through the central
cell, which in the case of a 3×3 stencil suffices to ensure injectivity as recalled in Section 4.4
and illustrated on Figure 4.4a. An important observation is that this type of restriction
does not affect the local error estimates (4.8) since we are precisely considering a stencil S
centered at a cell T that contains the interface. Therefore, the tangent of the interface at
the point z0 + ψ(0)e2 delivering this estimate satisfies this restriction.

In the case of circular interface, asking that the disk intercepts the central cell is not
sufficient as illustrated on Figure 4.3b: two discs D and D̃ of equal size and contained in
the central cell will result in identical cell averages for v = χD and ṽ = χ

D̃. In this case,
an additional restriction should be that the radius of the disc is sufficiently large compared
to the size of the stencil, for example by imposing that the disc center is not contained in
S, as illustrated on Figure 4.4b.

In the case of subgraphs of polynomial functions, again two subgraphs passing through
several cells of the stencil might have the same cell averages. This typically occurs when
the polynomials are too peaky, as illustrated on Figure 4.3c. In this case, the additional
restriction should be that the range of p remains inside the stencil. By this we mean, say
for a subgraph of the type y ⩽ p(x) and a rectangular stencil S = [a, b]× [c, d], one has that
p([a, b]) ⊂ [c, d], as illustrated in Figure 4.4c. Similarly to linear interfaces, the local error
estimate (4.12) is not affected by such a restriction, as we discuss in Section 4.5.

A similar type of observation shows that there is no hope to uniquely characterize a
piecewise linear interface from the cell averages on a given stencil if it is too peaky, that is,
the opening angle of the cone embraced by the two lines cannot be arbitrarily close to 0 or
2π. In other words, corners cannot be arbitraritly acute or obtuse.

4.3 Reconstruction by optimization (OBERA)

4.3.1 Presentation of the method

Optimization-Based Edge Reconstruction Algorithms (OBERA) consists in recovering on
each singular cell T ∈ Sh a recovery ũT ∈ Vn by a best fit of the available cell-average data
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on the stencil S = ST . For this purpose, we solve a minimization problem of the form

ũT = RT (aS(u)) ∈ argmin
v∈Vn

∥aS(v)− aS(u)∥

where ∥ · ∥ is a given norm on Rm where m := #(S) is the size of the stencil. In a practical
implementation, one first simple choice is to use the Euclidean ℓ2 norm, that is, minimize
the loss function

L(u, v) :=
∑
T̃∈S

|aT̃ (u)− aT̃ (v)|
2,

over all v ∈ Vn. The case of linear interface corresponds to the LVIRA method [132]. Note
that v ∈ Vn is defined through an appropriate parametrization as in Example 1, 2, 3 and 4,

µ ∈ M ⊂ Rn 7→ vµ ∈ Vn,

where M is the restricted range of the parameter µ that defines the family Vn. Therefore
the optimization is done in practice by searching for

µ∗ ∈ argmin
µ∈M

L(u, vµ)

and taking ũT = vµ∗ .
It is interesting to note that this recovery method is not consistent in the sense that it

does not guarantee that
aT (ũT ) = aT (u), (4.18)

a property that is required, typically in finite volume methods since it reflects the conser-
vation of mass. In order to restore this property, one possibility is to define the recovery by
solving the constrained optimization problem

ũT ∈ argmin
v∈Vn

{L(u, v) : aT (v) = aT (u)} (4.19)

In practice, this can be emulated by modifying the loss function into

L(u, v) := K|aT (u)− aT (v)|2 +
∑

T̃∈S,T̃ ̸=T

|aT̃ (u)− aT̃ (v)|
2, (4.20)

and taking K ≫ 1 (in our numerical tests we took K = 100). As explained below, this
constrained recovery satisfies similar error bounds as its unconstrained counterpart.

The practical difficulty of the OBERA lies in the quick and accurate computation of
the cell averages aST (v) for any given cell T and v ∈ Vn, that is, have a fast evaluation
procedure for the parameter to average map

µ ∈ M ⊂ Rn 7→ aST (vµ) ∈ Rm,

as it is needed to calculate L(u, vµ) at each iteration of the optimization algorithm. While
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analytic expressions are easily available for linear interfaces, they become more difficult
to derive for more general curves like polynomials or circle interfaces. In such cases, the
exact computation of aS(vµ) is possible if for each cell T̃ ∈ ST one is able identify the
points where the curved interface crosses its boundary. We followed this approach in our
numerical implementation. Another option relies on quadrature methods as used in [62],
however at the expense of potentially many evaluations of v. Finally, another perspective
is to use machine learning methods in order to derive a cheaply computable surrogate of
the parameter to average map.

Even with such tools in hand, the computation of aS(vµ) for the many parameter values
µ that are explored through the optimization process results in a time overhead that one
would like to avoid. For linear interfaces, this was achieved by the ELVIRA method, as
it only requires 6 calculations of aS(vµ) in order to decide which µ∗ should be retained
(see Figure 4.9). This can also be avoided for more general interfaces having higher order
geometric approximations by the AEROS approach that we present in Section 4.4.

4.3.2 Analysis of the recovery error

In order to prove that the recovery error is near optimal in the L1(S) norm, we follow a
general strategy introduced in [50] which is based on comparing the continuous L1(S) norm
of functions and the discrete ℓ1(Rm) norm of their cell-averages.

In the 2d case, one obviously has on the one hand the inequality

h2∥aS(v)∥ℓ1 ⩽ ∥v∥L1(S), v ∈ L1(S), (4.21)

which is obtained by summing up

h2|aT̃ (v)| =
∣∣∣ ˆ

T̃
v
∣∣∣ ⩽ ∥v∥L1(T̃ ),

over all T̃ ∈ S. This property reflects the stability of the averaging operator, between
the continuous and the conveniently normalized discrete norm. Note that in more general
dimension d the normalizing factor is hd.

Conversely, we say that the family Vn satisfies an inverse stability property if there exists
a constant C independent of h such that

∥v − ṽ∥L1(S) ⩽ Ch2∥aS(v)− aS(ṽ)∥ℓ1 , ∀ v, ṽ ∈ Vn. (4.22)

We stress that such a property cannot hold for general pairs of integrable functions, their
membership in Vn is critical. Note that this property is a more quantitative version of the
injectivity of the map v 7→ aS(v) from Vn to Rm. Its validity is thus conditioned to a proper
restriction of the classes Vn from the various Examples 1, 2, 3, and 4, as already explained
in Section 4.2.2. In the particular case of linear edges the following result was proved in
[50].

Theorem 4.3.1. Let S be the 3× 3 stencil centered at T and let V2 be the family of linear
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interfaces from Example 1, with the restriction that the linear interfaces passes through T .
Then (4.22) holds and the best constant is C = 3

2 .

The above stability and inverse stability property allow us to assess the recovery error
in the following way. We first write that for any v ∈ Vn

∥u− ũT ∥L1(T ) ⩽ ∥u− v∥L1(T ) + ∥v − ũT ∥L1(T ) ⩽ ∥u− v∥L1(T ) + Ch2∥aS(v)− aS(ũT )∥ℓ1 ,

where we have used (4.22). We then have

∥aS(v)− aS(ũT )∥ℓ1 ⩽
√
m∥aS(v)− aS(ũT )∥ℓ2 ⩽ 2

√
m∥aS(v)− aS(u)∥ℓ2 ,

where the first inequality is Cauchy-Schwartz and the second comes by triangle inequality
and the ℓ2 minimization property of ũT . Finally, we have

∥aS(v)− aS(u)∥ℓ2 ,⩽ ∥aS(v)− aS(u)∥ℓ1 ⩽ h−1∥u− v∥L1(S),

by using (4.21). Combining all these, and using that v ∈ Vn is arbitrary, we obtain that

∥u− ũT ∥L1(T ) ⩽ (1 + 2C
√
m)en(u)S ,

which is summarized in the following.
Theorem 4.3.2. Under (4.21) and (4.22), the recovery by ℓ2 minimization is near optimal
in L1 norm with multiplicative constant 1 + 2C

√
m. In the case of linear interfaces using

3× 3 stencils (LVIRA), this constant is 1 + 23
2
√
9 = 10.

As observed in Section 4.2.2, near optimal local recovery allows us to derive convergence
rates for smooth domains in terms of the global error estimate (4.16). This gives the
following.
Corollary 4.3.3. If Ω is a Cs domain with s ⩾ 1, the LVIRA method which is OBERA
recovery based on linear interfaces converges in L1 norm at rate O(hr) with r = min{s, 2}.

Remark 4.3.4. Note that if we were using a more general ℓp norm for the data fitting, we
would obtain a similar result with constant 1 + C2m1− 1

p . The fact that we do not need to
restrict ourselves just to p = 2 had been mentioned in [129] concerning the LVIRA method.

As previously remarked, we can modify the OBERA approach in order to impose the
consistency condition (4.18), by solving the constrained optimization problem (4.19), that
is optimizing inside the subfamily

Ṽn := {v ∈ Vn : aT (v) = aT (u)} ⊂ Vn

It is obvious that if the inverse stability property (4.22) is valid for Vn, it is also valid for
the smaller set Ṽn. We thus reach a similar estimate

∥u− ũT ∥L1(T ) ⩽ (1 + 2C
√
m)ẽn(u)S ,
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Γ

L−

L

Lc

L+

T

Figure 4.5: By shifting the linear interface L one achieves average consistency on T by a linear interface Lc

having the same order of accuracy.

where ẽn(u)S is the error of best approximation of u in L1(S) norm from the element of
Ṽn, that is best approximation from Vn under the consistency constraint.

We thus need to understand if ẽn(u)S satisfies similar size estimates as en(u)S . While
this cannot be ensured in full generality (for example the set Ṽn could be empty), the
following simple argument shows that this indeed holds in the particular case of linear
interface : the estimate (4.7) shows that the function ψ describing the interface in the
stencil S satisfies

a− ⩽ ψ ⩽ a+,

where a− = a − C1h
r and a+ = a + C1h

r are two affine functions that parametrize two
linear interfaces L− and L+ that circumscribe Γ in S, as illustrated on Figure 4.5. For the
corresponding halfplanes H− and H+ thus satisfy

aT (χH−) ⩽ aT (u) and aT (χH+) ⩾ aT (u).

Therefore, by sliding continuously a linear interface between L− and L+, which corresponds
to the affine function a + t when t varies in [−C1h

r, C1h
r], there exists an intermediate

interface Lc corresponding to a particular tc and halfplane Hc for which one has

aT (χHc) = aT (u).

Therefore v = χHc ∈ Ṽn, and since one also has

∥ψ − ac∥L∞([−C0h,C0h]) ⩽ C1h
r, r := min{s, 2}, (4.23)

we reach the same estimate for ẽn(u)S as the one obtained for en(u)S .
From the theoretical perspective, one principle open problem is to establish the inverse

stability bound (4.22) for nonlinear families Vn offering higher order approximation proper-
ties than the linear interface, for which the proof of Theorem 4.3.1 is already quite involved.
This, together with the already mentioned computational complexity of the optimization
process, leads us to give up on OBERA for higher order geometrical approximation in favor
of the AEROS approach that we next discuss.
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4.4 Reconstruction on oriented stencils (AEROS)

4.4.1 Presentation of the method

Algorithms for Edge Reconstruction using Oriented Stencils (AEROS) are based on recov-
ering an element from the family Vn presented in Example 3. We thus recover on each
singular cell T ∈ Sh a domain having one of the four subgraph or epigraph forms (4.6), that
is, an interface having one of the two Cartesian forms y = p(x) or x = p(y), where p ∈Wn

a linear space of dimension n.
More specifically we consider for some fixed k ⩾ 1 the space

W2k+1 = P2k,

of polynomials of even degree 2k. We then use stencils ST containing T of the form (2k +
1)× L or L× (2k + 1), when reconstructing an interface of the form y = p(x) or x = p(y)
respectively, for some L > 0. As we further explain, the value of L and the exact positioning
of T inside ST may depend on the considered cell T .

As a first step we need to identify for each T ∈ Sh the exact orientation of the subgraph
or epigraph that we decide to use. The decision must be based on the available data of the
cell averages . We have already noticed that if Ω is a Cs domain for s > 1, then it can itself
be locally described by (at least) one of the four forms with a function ψ ∈ Cs describing
the interface, as expressed by (4.9) and (4.10) in Definition 4.2.3. Our objective is that our
choice of form in the recovery is consistent with the form of the exact interface over the
stencil ST for each cell T .

We thus need to identify for each T an orientation y = ψ(x) or x = ψ(y) for the exact
interface over the stencil ST . Let us immediately observe that this is only possible if h is
below a certain critical resolution h∗ = h∗(Ω) that depends on the amount of variation of
the tangent to the interface, as shown on Figure 4.6 for the case k = 1 (stencils of widths
3).

More precisely, when Ω is a Cs domain with s > 1, the variation of the slope of the
tangent to the interface between two points z and z′ is controlled by a bound of the form
M |z − z′|r where r := min{1, s − 1} and M the bound on the Cs norm of the functions ψ
that describe the interface. Therefore a given orientation, say y ⩽ ψ(x), can be maintained
on a stencil ST of width 2k + 1 in the x direction provided that h ⩽ h∗ ∼ k−1M−1/r.

For identifying the orientation, we introduce a selection mechanism based on a numerical
gradient computed by the Sobel filter. We denote by Te with e = (ex, ey) ∈ {−1, 0, 1}2 the
cells in the 3 × 3 stencil centered around T = T0,0 where ex and ey indicate the amount
of displacement by h from T in the x and y direction, respectively. We then define the
numerical gradient

GT = (HT , VT ),

with horizontal component

HT := 2aT1,0 + aT1,1 + aT1,−1 − (2aT−1,0 + aT−1,1 + aT−1,−1)
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Figure 4.6: On the left h = 1/10 and on the right h = 1/30. The singular cells idenfied as horizontally and
vertically oriented are pictured in blue and green. For h = 1/10, there exists a singular cell T (indicated in
red) for which the interface cannot be described by a graph y = ψ(x) or x = ψ(y) in any stencil ST of width
3 that contains T . This is no more the case for h = 1/30 when using an adaptive selection of the stencil.

obtained by convolution between the cell averages aTe = aTe(u) and the horizontal Sobel
kernel (see Figure 4.7). Similarly, the vertical component is defined as

VT := 2aT0,1 + aT1,1 + aT−1,1 − (2aT0,−1 + aT1,−1 + aT−1,−1).

The selection mechanism is based on comparing the absolute size of HT and VT and
examining their sign. More precisely:

1. If |VT | ⩾ |HT | and if VT ⩽ 0, we search for a subgraph of the form y ⩽ p(x).

2. If |VT | ⩾ |HT | and if VT > 0, we search for an epigraph of the form y ⩾ p(x).

3. If |VT | < |HT | and if HT ⩽ 0, we search for a subgraph of the form x ⩽ p(y).

4. If |VT | < |HT | and if HT > 0, we search for an epigraph of the form x ⩾ p(y).

One important result is that this selection mechanism correctly detects the orientation
of the exact interface for h sufficiently small, as also illustrated on Figure 4.6.

Theorem 4.4.1. Let Ω be a Cs domain for some s > 1, then there exists h∗ = h∗(Ω)
such that under the assumption h < h∗, the following holds for any T ∈ Sh: in each of
the above cases (1, 2, 3, 4) of the selection mechanism, the exact domain Ω can be described
by an equation of the same form with p replaced by a function ψ ∈ Cs over the stencil ST
centered at T and of size (2k+1)× (2l+1) in case (1, 2) or (2l+1)× (2k+1) in case (2, 3)
with l = k + 2. The graph of ψ remains confined in ST in the following sense: denoting
by I × J :=

⋃
{T̃ : T̃ ∈ ST } the total support of ST , one has ψ(I) ⊂ J in case (1, 2) and

ψ(J) ⊂ I in case (3, 4).

We postpone the proof of this result to the Appendix, and proceed with the description
and error analysis of the recovery method. We place ourselves in case 1 without loss of
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Figure 4.7: Steps for computing AEROS method. First the preferable orientation is extracted from a 3× 3
stencil centered around T by applying the Sobel filter (a convolution with the horizontal and vertical Sobel
kernels). Then an appropriate stencil is found so that the interface crosses the sides of the stencil. Finally,
the column averages are calculated and a polynomial is used to approximate the interface.

generality since all other cases are dealt with similarly up to an obvious exchange of x and
y or change of sign in one of these variable.

According to the above theorem, we are ensured that Ω is characterized by the equation
y ⩽ ψ(x) when (x, y) ∈ ST where ST is a stencil of size (2k+1)×(2l+1) with l = k+2. The
choice l = k+ 2 is conservative and our numerical experiments show that it can sometimes
be reduced while maintaining the property that the graph of ψ remains confined in ST . In
practice we use the following adaptive strategy to use a stencil of minimal vertical side.
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By convention, we denote by (i, j) the coordinates of a generic cell T̃ when the lower
left corner of T̃ is (ih, jh). Let (iT , jT ) be the coordinates of the singular cell T . We explore
the neighboring cells by defining

l− := min{l > 0 : aT̃ (u) = 1, i = iT − k, . . . , iT + k, j = jT − l − 1},

which is the smallest lower shift below which we find a row of non-singular cells. Likewise,
we define

l+ := min{l > 0 : aT̃ (u) = 0, i = iT − k, . . . , iT + k, j = jT + l + 1}.

Then, we take for ST the stencil that consists of cells T̃ of coordinates (i, j) for i = iT −
k, . . . , iT + k and j = jT − l−, . . . , jT + l+. This stencil has size (2k+1)× (1+ l− + l+) and
is centered around the cell T horizontally but not vertically. From the definition of l− and
l+ we have the guarantee that the graph of ψ remains confined in ST (see Figure 4.7). One
option to further adapt the stencil ST is to allow that it is also not centered horizontally
but still contains T . This leads to (2k + 1)× (1 + l− + l+) stencils corresponding to values
i = iT − k−, . . . , iT + k+ and j = jT − l−, . . . , jT + l+, where k−, k+ ⩾ 0 are such that
k− + k+ = 2k and are selected so to minimize the vertical size 1 + l− + l+.

Once the stencil ST has been selected, the polynomial pT ∈ P2k is constructed as follows.
For each i = iT − k−, . . . , iT + k+, we denote by Ri the column that consists of the cells
T̃ ∈ ST with first coordinate equal to i and define the corresponding column average

ai(u) = h

∑
T̃∈Ri

aT̃ (u)

 .

Since the graph of ψ remains confined in ST , it follows that ai(u) can be identified to the
univariate cell average of ψ on the interval [ih, (i + 1)h] after having subtracted the base
elevation of the stencil (see Figure Figure 4.7), that is,

ai(u) + bT = 1
h

ˆ (i+1)h

ih
ψ(x)dx, i = iT − k−, . . . , iT + k+, bT := (jT − l−)h.

We then define pT ∈ P2k as the unique polynomial of degree at most 2k that agrees with
the observed averages of ψ, that is, such that

1
h

ˆ (i+1)h

ih
pT (x)dx = ai(u) + bT i = iT − k−, . . . , iT + k+.

The polynomial pT is sometimes called the interpolant of averages, and its existence and
uniqueness is standard, similar to the more usual Lagrange interpolant of point values. In
particular, it is easily checked that the P2k interpolant of the averages of a function v on
2k + 1 adjacent intervals is the derivative of the P2k+1 Lagrange interpolant at the 2k + 2
interval endpoints for the primitive of v.
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Quite remarkably, although we are locally approximating u by a nonlinear family, we
observe that the recovery map

LT : ψ 7→ pT ,

is linear, and that the AEROS recovery approach amounts to solving a simple (2k+1)×(2k+
1) linear system, resulting in substantial computational saving compared to the OBERA
approach.

4.4.2 Analysis of the recovery error

In order to assess the recovery error, we first observe that the above described strategy has
the property of exact recovery for polynomials

ψ ∈ P2k =⇒ pT = ψ, (4.24)

due to the uniqueness of the interpolant of averages. In other words, AEROS recovers on
T the true interface if it is described by a polynomial of degree 2k on ST .

Our next observation is that the linear application LT is stable in the max norm over
the relevant interval IT = [(iT − k−)h, . . . , (iT + k+)h], with stability constant that does
not depend on h. This can be proved by making the affine change of variable

x = ϕ(x̂) = h(iT + x̂),

that maps the reference interval Î := [−k−, . . . , k+] onto IT . Then, it is readily checked
that

Lψ ◦ ϕ = L̂(ψ ◦ ϕ),

where L̂ is the average interpolant for the intervals of size 1 contained in Î. Therefore, we
may write

∥Lψ∥L∞(IT ) = ∥Lψ ◦ ϕ∥L∞(Î) = ∥L̂(ψ ◦ ϕ)∥L∞(Î) ⩽ C∥ψ ◦ ϕ∥L∞(Î) = Ĉ∥ψ∥L∞(IT )

where the constant Ĉ is the norm of L̂ acting on L∞(Î). This constant only depends on k.
We are now in position to obtain an error estimate by writing for all p ∈ P2k,

∥ψ−pT ∥L∞(IT ) ⩽ ∥ψ−p∥L∞(IT )+∥pT−p∥L∞(IT ) = ∥ψ−p∥L∞(IT )+∥L(ψ−p)∥L∞(IT ) ⩽ (1+Ĉ)∥ψ−p∥L∞(IT ),

where we have combined exact recovery of polynomials and uniform stability. Since p is
arbitrary we have obtained the following result.

Theorem 4.4.2. The AEROS recovery of the interface based on polynomials of degree 2k
satisfies for each singular cell the near optimality property

∥ψ − pT ∥L∞(IT ) ⩽ (1 + Ĉ) min
p∈P2k

∥ψ − p∥L∞(IT ). (4.25)
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This error bound of ψ in L∞ readily induces an L1(T ) error bound between the recovery

RT (aS(u)) = uT := χ{y⩽pT (x)}

and u by multiplying by the width of the cell. This gives

∥u−RT (aS(u))∥L1(T ) ⩽ (1 + Ĉ)h min
p∈P2k

∥ψ − p∥L∞(IT ). (4.26)

Note that the right-side is not en(u)S and we thus have not obtained the near-optimal
recovery property in the form (4.13). Nevertheless we can derive from (4.26) the same
convergence rates since these are based on the Taylor polynomial approximation error (4.11),
which thus yields the following result.

Theorem 4.4.3. Let Ω be a Cs domain for some s ⩾ 1. The AEROS recovery of the
interface based on polynomial of degree 2k satisfies for each singular cell T a local error
bound of the form

∥u−RT (aS(u))∥L1(T ) ⩽ Chr+1, r := min{s, 2k + 1}, (4.27)

and the global error bound (4.16) of order O(hr) for the same value of r.

4.5 Numerical experiments

4.5.1 Recovery of smooth domains

In this section, we compare various recovery strategies in terms of:

1. visual aspects,

2. quantitative rate of convergence,

3. computational time.

In order to draw the second comparison, we first consider the simple case of a domain Ω
with circular boundary (see Figure 4.8) for which the recovery error can be computed within
machine precision.

The following eight reconstruction strategies are compared:

1. Piecewise Constant: as mentioned in the introduction, the simplest linear method
that one can come up with is ũ :=

∑
T∈Th aT (u)χT , that is, on each cell T the value

given by the observed cell average aT (u).

2. OBERA Linear: we apply the minimization strategy described in Section 4.3 for
linear interfaces as in Example 1, with loss function L(u, v) = ∥aS(u)− aS(v)∥ using
ℓ1 norm and a 3× 3 stencil S.

3. OBERA-W Linear: we apply the same approach but enforcing area consistency on
T through the weighted loss function (4.20) with K = 100.
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(a) Circle. (b) h = 1/10. (c) h = 1/20.

Figure 4.8: Circular domain and its cell average data at different scales of refinement.

4. ELVIRA: following [129], the ELVIRA method consists on replacing, still for linear
interfaces, the OBERA continuous optimization strategy by providing only 6 combi-
nations of parameters µ from which to choose µ∗, the minimizer of L with ℓ2 norm
instead of ℓ1. The 6 alternatives are obtained by proposing, for the interface’s slope,
the 6 possible finite differences estimations of a 3× 3 stencil (see Figure 4.9).

5. ELVIRA-WO: we apply ELVIRA but choosing first an orientation, as in AEROS,
which allows to reduce the choice to 3 alternatives. In addition, we work with the
modified weighted loss function, with K = 100, to favor area consistency on T .

6. OBERA Quadratic: we apply the minimization strategy for quadratic interfaces
after choosing an orientation to have a Cartesian parametrization of the interface,
that is, vµ = χP , as in Example 3, and p ∈ P2 the space of univariate polynomials of
degree 2. Here, we also use a 3 × 3 fixed stencil and enforce area consistency on T
through the same modified loss function (4.20) with K = 100.

7. AEROS Quadratic: we apply the AEROS reconstruction strategy for quadratic
interfaces with the adaptive method, described in Section 4.4.1, to build stencils of
width 3 minimal height.

8. AEROS Quartic: we apply the AEROS strategy now with polynomials of degree 4,
therefore with stencils of width 5.

Figure 4.10 and Figure 4.11. display a detail of the recovery with h = 1/10 and h = 1/20
respectively in order to compare the visual quality.

As to linear interfaces, we clearly notice the relevance of enforcing area consistency on
the cell T of interest by appropriately modifying the loss function L. Although the four
methods benefit from similar convergence rates of O(h2) as expected from Corollary 4.3.3
and Theorem 4.4.3, see Figure 4.12, the reconstruction error improvement is of an order
of magnitude by this simple change. When area consistency is not imposed, the linear
interfaces are pushed towards the interior of the circle as the curvature of the original
domain points inwardly.

As to the AEROS strategies, we notice that for h = 1/10, they have difficulties to
reconstruct the interface on cells where Γ is rapidly passing from a situation where an
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Figure 4.9: ELVIRA 3 cases for the vertical orientation. The slope is estimated using the differences between
the two first column averages (left), the first and third (center) and the last two columns (right).

horizontal orientation is preferred to another in which a vertical one is better. This effect
if particulary evident for the case of AEROS Quartic as the method needs a stencil with 5
columns. At this scale we are above the critical scale (see Figure 4.6) in which for some cells
there is no stencil of the needed width allowing the curve to be described as a graph. This
problem disappears for h = 1/20, for which these methods have the best visual quality.

On Figure Figure 4.12, we see that in terms of convergence we obtain for both AEROS
the expected rates from Theorem 4.4.3: for quadratics we getO(h3) and we almost getO(h5)
for polynomials of degree 4. As mentioned before and graphically shown in Figure 4.10,
AEROS Quartic breaks down when the scale of the discretization is above the critical scale
which, for this particular, example is around h = 1/20.

Regarding the computational time per cell taken by each algorithm we observe on Ta-
ble 4.1 that OBERA strategies are two orders of magnitude slower than any AEROS ap-
proach. At the same time, although ELVIRA methods are faster than OBERA, they still
are an order slower than AEROS due to the bottleneck of having to compute the stencil
cell averages to compare the 6 or 3 alternatives under evaluation. This limit is justified by
the fact that choosing an orientation, as in ELVIRA-WO, cuts by half the computing time
of the overall algorithm, while the improvement in accuracy is achieved by modifying the
loss function.

In summary, all three comparisons in terms of visual aspect, order of convergence and
computational time are in favor of the AEROS strategy provided that h is below the critical
scale.

Finally, we show in Figure 4.13 how the best linear interface method, OBERA-W Lin-
ear, and the three higher order methods compare when used to reconstruct an arbitrary,
still smooth, domain. We see that by passing from the linear interface method to AEROS
Quadratic the reconstruction becomes smoother while still suffering from some imperfec-
tions, notably in regions where there is a stronger change in the orientation of the curve.
This is slightly improved by the optimization done in OBERA Quadratic method. An even
smoother result is obtained with AEROS Quartic at the expense of some small deviations
again in regions where the orientation is rapidly changing.
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(a) Piecewise Constant. (b) OBERA Linear. (c) ELVIRA. (d) ELVIRA-WO.

(e) OBERA-W Linear. (f) AEROS Quadratic. (g) OBERA Quadratic. (h) AEROS Quartic.

Figure 4.10: Reconstruction of a portion of the circle by different methods for a scale of h = 1/10.

(a) Piecewise Constant. (b) OBERA Linear. (c) ELVIRA. (d) ELVIRA-WO.

(e) OBERA-W Linear. (f) AEROS Quadratic. (g) OBERA Quadratic. (h) AEROS Quartic.

Figure 4.11: Reconstruction of a portion of the circle by different methods for a scale of h = 1/20.
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Piecewise Constant: O(1.0)

OBERA Linear: O(2.0)

ELVIRA: O(2.2)

ELVIRA-WO: O(1.9)

OBERA-W Linear: O(1.9)

AEROS Quadratic: O(3.1)

OBERA Quadratic: O(3.0)

AEROS Quartic: O(4.8)

Figure 4.12: Convergence for different reconstruction models. The convergence rates (in parenthesis) are
estimated using values 1/h > 30.

OBERA Linear 0.8
OBERA-W Linear 0.7
OBERA Quadratic 0.3

ELVIRA 0.04
ELVIRA-WO 0.02

AEROS Quadratic 0.003
AEROS Quartic 0.003

Table 4.1: Average time (in seconds) taken to find the parameters of the interface by the different tested
models. The average is taken over all instances in which each algorithm was called (to perform a local
approximation) to produce Figure 4.12 (which is in the order of the 4000 per method).
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(a) OBERA-W Linear. (b) AEROS Quadratic.

(c) OBERA Quadratic. (d) AEROS Quartic.

Figure 4.13: Reconstruction of a smooth domain by different methods for a scale of h = 1/15. The higher the
order the smoother the reconstruction except in the transitions of orientation where higher order methods
like AEROS Quartic struggle because there is not enough information or the stencil is too much de-centered.
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4.5.2 The treatment of corner domains

The previously tested strategies achieve to reconstruct, at their corresponding orders, differ-
ent smooth domains with Hölder smoothness s > 1. This excludes the case of domains with
piecewise smooth boundaries for which the presence of corners call for a specific treatment.
The simplest option that we study here is to use local recovery by the approximation family
V4 of piecewise linear interface from Example 4. We propose, in what follows, two methods
to deal with vertices of any angle, bearing in mind the limitations expressed in Figure 4.4c.

AEROS Vertex: The first method applies the AEROS strategy for v ∈ V̂4 a restric-
tion of V4 where π/2 < θ1 < 3π/2 and −π/2 < θ2 < π/2, i.e. elements v whose interface
can be written as an oriented graph, which is a particular instance of Example 3 where
instead of searching p in a space of univariate polynomials, we pick it into W4 the space of
piecewise functions with one breakpoint contained in T or its immediate neighbours. This
excludes the possibility of reconstructing a rectangle whose sides are parallel to the mesh
but it applies to the case of the same rectangle slightly rotated. Under this restrictions it
is possible, although lengthy, to extract explicit equations that allow us to derive a finite
set of admissible parameters µ = (x1, x2, θ1, θ2) from the observed cell averaged vector aS .
We compare each proposed local approximation v ∈ V̂4 as in ELVIRA or OBERA, that is,
by means of their associated loss L(u, v) while retaining at the end the one achieving the
minimal value between the many possibilities. This same model selection strategy can be
used to aggregate other competing models, like quadratic interfaces. This has the effect of
keeping higher order models when the interface is locally smooth, while taking corners into
account as illustrated on Figure 4.14. By this approach we avoid defining a vertex detection
mechanism at the expense of computational overhead as we now need to compute for each
cell many losses, which was already the time bottleneck for ELVIRA method.

Tangent Extension Method (TEM): The above restriction that the interface with a
vertex needs to be an oriented graph could be limiting in some applications but it can be re-
moved at the expense of complexifying the reconstruction procedure. Our second proposed
method deals with this aspect and consists in the following steps:

1. Associate to each singular cell T ∈ Sh some reconstruction vT stemming from any of
the local interface reconstruction methods discussed discussed so far.

2. For each cell where the presence of a vertex is suspected (eventually for all T ∈ Sh)
we search for two singular cells T1, T2 ∈ Sh satisfying the following

• T ̸= T1 ̸= T2 ̸= T

• ST1 ∩ {T} = ∅

• ST2 ∩ {T} = ∅

where SvTi denotes the stencil S used by a given smooth interface reconstruction
method (for example linear or quadratic) to produce local approximations vTi .
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3. Take the parameterized interfaces Γ1 and Γ2, associated to vT1 and vT2 respectively,
and do an order 1 Taylor expansion at an intermediate point between cells (T, T1)
and (T, T2) respectively. This yields the parameters of the two half planes H1 and H2
of Example 4 needed to define v ∈ V4.

4. Finally, we compare the new local approximation v ∈ V4 with the existing one vT , as
explained above, retaining only the one whose associated loss, L(u, v) or L(u, vT ), is
minimal.

This procedure will reconstruct exactly corners when the interface is a line along both
directions, but it will not produce area-consistent reconstructions on cell T otherwise. In
this regard, AEROS Vertex, being based on AEROS strategy, will yield interfaces that are,
though not cell-consistent as one could get with OBERA, at least column-consistent as
long as we remain in the interpolation case. This is ensured if the stencil width equals the
number of parameters of the approximating class which in the case of V̂4 is guaranteed by
using 4-width stencils.

Figure 4.14 displays the successive improvements in the reconstruction when combining
the different strategies described so far:

• On Figure 4.14 (up-left), we use the ELVIRA-WOmethod. We observe that it recovers
the interface in a satisfactory manner only far enough from corners.

• On Figure 4.14 (up-right), we use the AEROS Quadratic method. We observe that
it recovers the interface in a satisfactory manner only far enough from corners.

• On Figure 4.14 (center-left), we first find a curve for each singular cell using AEROS
Quadratic and then TEM. In this case, some of the problems are solved, in particular
corners with a 90◦ angle and parallel to the grid.

• On Figure 4.14 (center-right), we add to the previous method the first proposed
approach, based on AEROS for vertices. We obtain almost perfect results except
for some cells where the quadratic approximation of the interface given by AEROS
Quadratic was not replaced by a better one.

• On Figure 4.14 (down), this last issue is addressed by aggregating, before applying
any of the vertex mechanisms described before, an ELVIRA-WO strategy to offer an
alternative when AEROS Quadratic is too much affected by the presence of a nearby
corner.
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Figure 4.14: Reconstruction of a domain with corners from cell-averages of scale h = 1/30. Reconstructions
made with ELVIRA-WO (up-left), AEROS Quadratic (up-right), AEROS Quadratic + TEM (center-left),
AEROS Quadratic + TEM + AEROS Vertex (center-right) and finally ELVIRA-WO + AEROS Quadratic
+ TEM + AEROS Vertex (down). The red markings show the problems around vertices and how they are
progressively resolved when one puts all the methods to work together.
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4.5.3 Finite volume evolution in time

Finally, we use the interface recovery methods presented so far as a constituent part of a
finite volume solver with the objective of reducing numerical dissipation. We study the
particular case of a simple linear transport PDE:

∂u

∂t
+ b · ∇u = 0,

in the unit square domain D = [0, 1]2 with periodic boundary conditions and initial con-
dition being a piecewise constant function u0 : D → {0, 1} with Ω limited by a smooth
interface as in Figure 4.13 or an interface having corners as in Figure 4.14.

As in a large class finite volume schemes, the reconstruction is used at each step to com-
pute the flux that updates the averages at the next step. For simplicity of the presentation
we have set a constant (both in space and time) velocity field b = (h/4, 0) and worked with
unit time steps ∆t = 1 and coarse grids of size h = 1/30, so that the CFL condition is
maintained. In this case, the numerical flux induced by a local reconstruction uki,j on a cell
T of coordinate (i, j) at time step k takes the form

F(uki,j) :=
1

|RT |

ˆ
RT

uki,j(x)dx

where RT = [(i+1)h− b, (i+1)h]× [jh, (j +1)h]. The finite volume approximation at the
next time step k + 1 is then given by the updated cell-average

ak+1
i,j = aki,j + F(ũki−1,j)−F(ũki,j).

Figure 4.15a displays the evolution of the L1 error between the exact solution and
the reconstruction, for the time evolution of a smooth domain. In this case, all three
methods ELVIRA-WO, AEROS Quadratic and ELVIRA-WO + AEROS Quadratic + TEM
+ AEROS Vertex behave similarly with an error that is maintained at the same level for
all tested times showing that numerical dissipation has been avoided on the three cases.
This contrasts with the piecewise constant reconstruction that corresponds to the standard
upwind scheme.

Figure 4.15b shows the effect of the presence of corners in the interface of Ω in terms of
a slow but accumulative deterioration in both methods ELVIRA-WO, AEROS Quadratic
as they are not design to treat vertices. In contrast, ELVIRA-WO + AEROS Quadratic +
TEM + AEROS Vertex, as before, keeps its error on the same level for all the times tested.

4.6 Conclusion and perspectives

In this work, we have presented several interface recovery methods. For the two main classes
OBERA and AEROS, we have provided general analysis strategies for establishing conver-
gence rates that depend on the geometric smoothness of the interface. From a practical
perspective, the methods can be combined with the aggregation strategy outlined in the
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Figure 4.15: Time evolution of the finite volume scheme error for h = 1/30.

previous section, and we have made them available in the open-source python package 2.
Several natural perspectives are foreseen (and we have explored some of them already

in the open-source package):

1. Address the reconstruction of more general piecewise smooth functions with jump dis-
continuities across geometrically smooth or piecewise smooth interfaces. This requires
a proper adaptation of the interface recovery strategies, combined with a high-order
treatment of the smooth part of the function corresponding to the cell T /∈ Sh. The
latter can be done by using polynomial reconstructions on stencils not containing cells
of Sh following the standard ENO strategy.

2. Study the use of machine learning techniques trained on sufficiently rich sets of in-
terfaces for performing certain tasks in an automated and hopefully more efficient
manner. Such tasks include, for example, the fast reconstruction of the parameter
µ from the cell averages, the identification of cells that may contain vertices, or the
direct access to the numerical flux in the case of finite volume scheme, as proposed
for example in [62] for vertices forming angles of φ = 90◦. It should however be noted
that, as opposed to the approaches that we developped in this paper, the machine
learning-based approach does not offer rigorous convergence guarantees. Also, our
attempts to beat the AEROS method with machine learning strategies were so far
unsuccessful, both from the accuracy point of view, and the runtime point of view.
We provide our implementation of these strategies in the Python package.

4.A The orientation test
In this apprendix we give the proof of Theorem 4.4.1, which is based on:

1. First studying the case where the interface Γ is a line over the 3× 3 stencil where the
numerical gradient GT = (HT , VT ) is computed.

2https://github.com/agussomacal/SubCellResolution

https://github.com/agussomacal/SubCellResolution
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2. Second applying a perturbation argument in the case of a general Cs interface which
locally deviates from a line in a quantitatively controlled manner.

4.A.1 The case of a linear interface

We assume here that, over the 3×3 stencil S centered at T , the interface Γ is a line crossing
T . Therefore, the restriction of u to S is of the form

u|S = vr,θ := χ{⟨z−zT ,e⊥θ ⟩⩽r}.

where zT is the center of T and eθ = (− sin(θ), cos(θ)) with θ the angle between Γ and the
horizontal line, that is, eθ is the unit normal vector to Γ pointing to the outward direction
where u|S = 0. The following result shows that the orientation test discriminates exactly if
the direction of Γ is closer to horizontal or vertical. Its proof uses elementary geometrical
arguments, which are only sketched using pictures in order to avoid cumbersome analytic
developments.

Theorem 4.A.1. If GT = (HT , VT ) is the numerical gradient based on the Sobel filter for
the above function vr,θ, then the following holds:

• |VT | > |HT | if and only if θ ∈ [0, π/4[∪]3π/4, 5π/4[∪]7π/4, 2π[

• |HT | > |VT | if and only if θ ∈]π/4, 3π/4[∪]5π/4, 7π/4[

• |HT | = |VT | if and only if θ ∈ {π/4, 3π/4, 5π/4, 7π/4}

In addition

• VT > 0 if and only if θ ∈]π/2, 3π/2[ and VT < 0 if and only if θ ∈ [0, π/2[∪]3π/2, 2π[

• HT > 0 if and only if θ ∈]0, π[ and HT < 0 if and only if θ ∈]π, 2π[.

Proof: Without loss of generality, we only consider the case where θ ∈ [0, π/4] since all
other cases [kπ/4, (k + 1)π/4] for k = 1, . . . , 7 are treated in a similar way. In order to
understand the effect of θ on the values of HT and VT , we parametrize the function vr,θ
differently: we fix zT to be the point crossed by Γ on the descending diagonal of T (which
exists and is unique when θ ∈ [0, π/4]) and study HT and VT for the function

vθ := χ{⟨z−zT ,e⊥θ ⟩⩽0},

as we let θ vary. By scale invariance, we may assume that we work with cells of side-length
equal to 1 without affecting HT and VT .

Figure 4.16 (left) pictures the value of VT as the difference between areas of the portions
of cells from the upper and lower rows crossed by the half-plane below Γ with weight 2
for central cells and 1 for left and right cells. This difference is strictly negative for all
θ ∈ [0, π/4]. Its value at θ = 0 is equal −4. As θ grows towards π/4 it first stays equal
to −4 until it starts strictly increasing for some value θ∗ ∈ [0, π/4[ that depends on the
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position of zT on the diagonal. This monotonic growth can be checked by observing that
for 0 ⩽ θ1 < θ2 ⩽ π/4, one has VT (vθ2)−VT (vθ1) = VT (vθ2 − vθ1) and the function vθ2 − vθ1
is supported in a symmetric cone Kθ1,θ2 centered at zT and has value 1 on the right and
−1 on the left. Thus VT (vθ2)− VT (vθ1) is the sum of the areas of the portions of cells from
the upper and lower rows intersected by Kθ1,θ2 with weight 2 for central cells and 1 for for
left and right cells, which is strictly positive if θ2 > θ∗.

Figure 4.16 (center) pictures the value of HT as the difference between areas of the
portions of cells from the right and left columns crossed by the half-plane below Γ with
weight 2 for central cells and 1 for lower and upper cells. This difference is null when θ = 0
and increases strictly as θ grows from 0 to π/4. Once again, the strictly monotonic growth
is due to the fact that VT (vθ2)−VT (vθ1) is the sum of the areas of the portions of cells from
the left and right columns crossed by Kθ1,θ2 with weight 2 for central cells and 1 for for left
and right cells, which is strictly positive whenever 0 ⩽ θ1 < θ2 ⩽ π/4.
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θ
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1

Figure 4.16: Dependence of VT (left), HT (center), |VT | − |HT | (right) as θ varie in [0, π/4].

This demonstrates the second statement regarding signs of VT and HT .
On the other hand, by symmetry, we note that VT (vθ) = −HT (vθ̃) where θ̃ = π/2 − θ

with same base point zT . Therefore |VT | − |HT | = −VT −HT = HT (vθ̃ − vθ) and vθ̃ − vθ
is supported in a symmetric cone Kθ,θ̃ centered at zT with value 1 on the right and −1 on
the left. As pictured on Figure 4.16 (right), this quantity is the sum of the areas of the
portions of cells from the right and left column crossed by Kθ,θ̃ with weight 2 for central
cells and 1 for lower and upper cells. These quantities are null when θ = π/4 since the cone
is then restricted to a line, and increases strictly as θ decreases from θ/4 to 0 since the cone
is opening.

This demonstrates the first statement regarding comparison between |VT | and |HT |. □.

We will use the following direct consequence of this result, which is obtained by com-
pactness since VT and HT are continuous with respect to θ and zT : for any 0 < δ < π/4,
there exists a γ = γ(δ) > 0 such that

θ ∈ [π/4 + δ, 3π/4− δ] ∪ [5π/4 + δ, 7π/4− δ] =⇒ |HT | ⩾ |VT |+ γ (4.28)

and
θ ∈ [3π/4− δ, 5π/4 + δ] =⇒ VT ⩾ γ, (4.29)
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4.A.2 A perturbation analysis

We next turn to the proof of Theorem 4.4.1, focusing without loss of generality on case 1.
Let us assume that the interface Γ = ∂Ω has Cs smoothness for some s > 1, and let T be a
singular cell crossed by Γ and S the 3× 3 stencil centered at T .

We now fix z̃T to be one point of Γ ∩ T and e⊥θ = (− sin(θ), cos(θ)) be the outer unit
normal to Ω at z̃T . The function

vθ := χ{⟨z−z̃T ,e⊥θ ⟩⩽0},

is a perturbation of u as pictured on Figure 4.17 where the line interface L is the tangent
to Ω at z̃T . Since Ω has Cs smoothness, the deviation between the curved interface Γ and
its tangent L has area of order O(hs+1) over S, and therefore

|aT̃ (u)− aT̃ (vθ)| ⩽ Chs−1, T̃ ∈ S,

for some fixed constant C that only depends on the Cs norm of the graph that locally
characterizes Γ. In turn, up to multiplying the constant C by 8, one has

|HT (u)−HT (vθ)| ⩽ Chs−1 and |VT (u)− VT (vθ)| ⩽ Chs−1 (4.30)

eθ

L

vθ = 0

vθ = 1

Γ
u = 0

u = 1z̃T

Figure 4.17: Approximation of a smooth interface by its tangent

We now take any 0 < δ < π/4 arbitrarily small and consider the quantity γ = γ(δ) such
that (4.28) and (4.29) are valid. For h ⩽ h0 small enough, we are ensured that

Chs−1 ⩽
γ

3 ,

where C is the constant in (4.30). Therefore, if θ /∈ [0, π/4+δ]∪[7π/4−δ, 2π[, or equivalently
θ /∈ [−π/4− δ, π/4 + δ], we obtain either by (4.28) that

|HT (u)| ⩾ |HT (vθ)| −
γ

3 ⩾ |VT (vθ|+
2γ
3 ⩾ |VT (u)|+

γ

3 > |VT (u)|,

or by (4.29) that
VT (u) ⩾ VT (vθ)−

γ

3 ⩾
2γ
3 > 0.
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Therefore, we conclude for case 1 that if |HT (u)| ⩽ |VT (u)| and VT (u) ⩽ 0, the angle θ
of the tangent line L necessarily lies in [−π/4 − δ, π/4 + δ]. In other words, the points
z = (x, y) in the half plane {⟨z − z̃T , e

⊥
θ ⟩ ⩽ 0} can be characterized by an equation of the

form
y ⩽ a(x),

where a is affine and |a′(x)| ⩽ 1 + e such that 1 + e = tan(π/4 + δ), with 0 ⩽ e ⩽ δ and
e ∼ δ when δ is small. On the other hand the interface Γ is described on T by an equation
of the form

y ⩽ ψ(x),

where due to the Cs smoothness of Γ, one has an estimate of the form

|ψ′(x)− a′(x)| ⩽ Chs−1,

and the same will hold on a stencil ST of width 2k + 1 up to enlarging the value of C, so
that

|ψ′(x)| ⩽ 1 + e + Chs−1, x ∈ I,

where I is the horizontal support of ST . Therefore, we can find h∗ = h∗(Ω) such that if
h ⩽ h∗ we are thus ensured that

|ψ′(x)| ⩽ k + 2
k + 1 , x ∈ I.

This implies that the graph of ψ remains confined in ST if we choose it to be of size
(2k + 1)× (2l + 1) with l = k + 2, which concludes the proof of the theorem.



Chapter 5

Nonlinear compressive reduced
basis approximation for PDE’s

5.1 Introduction

The approximation of the solution of a parameterized partial differential equation (PDE) :
given µ, find u solution to

D(u;µ) = 0

can benefit from the a priori analysis of the set of all generated solutions when the parameter
µ is varied, that is,

K := {uµ : µ ∈ P},

where uµ is the solution for the given value µ = (µ1, . . . , µd) of the parameter vector that
ranges in some set P ⊂ Rd. The set K is also referred to as the solution manifold, since
it may be thought of as a parameterized d-dimensional manifold typically immersed in a
Hilbert space X, where the solution to the PDE is well defined. In what follows, the norm
in X and the scalar product are respectively denoted by ∥.∥X and ⟨., .⟩X .

Assuming K to be compact in X, its Kolmogorov m-width defined as

dm(K)X = inf
dim(Xm)⩽m

max
v∈K

min
w∈Xm

∥v − w∥X , (5.1)

describes how well the set can be approximated by an ideally selected (and usually out of
reach) m-dimensional space. If dm has a certain rate of decay as m → ∞, it is possible to
practically construct low-dimensional spaces Xm that perform with the same approximation
rate, by pre-computing offline a reduced basis consisting of m solutions associated with a
well-chosen set of parameters. If dm has a fast rate of decay, the RB method yields an
approximation of the solution for any parameter based on an algebraic system involving
very few unknowns. We refer to [133], [92] or [107] for a presentation of RB methods.

If the parameters µi are considered as random variables and thus uµ is an X-valued
random variable, a stochastic counterpart to these concepts is described by the principal
component analysis in the Hilbert space X, that is, the spectral analysis of the covariance

135
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operator
v 7→ E(⟨v, uµ⟩Xuµ),

once uµ has been recentered so that E(uµ) = 0. Denoting by σ1 ⩾ σ2 ⩾ · · · the sequence of
positive eigenvalues of this compact self-adjoint operator, and by e1, e2, . . . the Karhunen-
Loève orthonormal basis of eigenfunctions, it is well known that

κ2m := min
dim(Xm)⩽m

E( min
w∈Xm

∥uµ − w∥2X) =
∑
n>m

σn,

and that the minimizing space is spanned by e1, . . . , em. This is the starting point to the
Proper Orthogonal Decomposition (POD) method which amounts to replacing the afore-
mentioned eigenfunctions by approximations computed offline, based on a sufficiently large
set of training solutions.

These linear reduced modelling methods have penetrated industrial applications, a guar-
antee of their success. However, there are still cases where these approaches have difficulties
to overcome, namely, when the Kolmogorov width dm or eigenvalues σm do not decay fast.

This is in particular what happens for transport type problems. Even in the conceptually
simple case of constant speed translation of an initial condition given by a step function,
where the only parameter is the position of the discontinuity, it is well known that with
X = L2, the numbers dm and κm decay slowly like O(m−1/2). In other words, for a target
precision of ε, the basis is of prohibitive size O(ε−2).

For families of such functions, substantial gain can be expected when searching for
nonlinear reduced models. Prominent examples of nonlinear approximation include rational
fractions, finite elements on adaptive grids of fixed cardinality, n-term approximations in
a basis or dictionary, and neural networks, see [63, 64] for a general treatment. In these
methods, the “coordinates” describing the approximation to a function u are typically
nonlinear functionals applied to u, and the reconstruction map from such parameters is
also nonlinear. In the frame of model reduction, we refer to [7, 82, 33] that considers
libraries of affine reduced models, [16] that uses quadratic manifolds, and [104, 76, 83, 121,
125, 17] for neural network based approaches, see also [24, 40, 30, 86], and [124] for an
overview on these nonlinear approaches.

Interestingly, it appears that an efficient approach to nonlinear model reduction is to
maintain linear functionals for computing the coordinates while performing reconstruction
in a well-chosen nonlinear way. This state of affair is in particular illustrated by the devel-
opment of compressed sensing in the last two decades, where signals are reconstructed from
linear measurements by nonlinear methods promoting sparsity, such as ℓ1 minimization.

In this note, we begin by substantiating this idea more precisely in §2, by recalling and
comparing certain notions of linear and nonlinear m-widths. We present in §3 a general
approach that consists in taking as linear functionals the first components in a linear reduced
model (RB or POD) that has been learned offline; and also use the offline stage to learn
a computationally tractable nonlinear map that reconstructs the missing components from
these first ones to reach a better accuracy. One key aspect lies in the type of nonlinear
maps that is allowed. This approach is analyzed in §4, in the case of a simple univariate
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model of step functions; it is illustrated by numerical tests for this model in §5.

5.2 Linear and nonlinear notions of m-widths

Generally speaking, the process of dimensionality reduction can be described by a pair of
continuous mappings, the encoder

E : X → Rm,

and the decoder
D : Rm → X.

The maximum distorsion of the encoding procedure over K is given by the quantity

max
v∈K

∥v −D(E(v))∥X .

Then, for a general Banach space X and a compact set K ⊂ X, we can define various notion
of widths

inf
D,E

max
v∈K

∥v −D(E(v))∥X ,

by optimizing the choice of E and D, under specific restrictions:

• If D and E are both assumed to be linear, one obtains the approximation numbers

am(K)X := inf
L

max
v∈K

∥v − Lv∥X ,

where the infimum is taken over operators L of rank at most m.

• If only D is assumed to be linear, one obtains the already mentionned Kolmogorov
width dm(K)X . When X is a general Banach space, the inequality

dm(K)X ⩽ am(K)X ,

can be strict. Equality obviously holds in the case whenX is a Hilbert space since best
approximation in a subspace of X of dimension m is achieved by linear orthogonal
projection.

• The sensing numbers sm(K)X correspond to the reciprocal situation, where E is as-
sumed to be linear and D is assumed to be nonlinear. In other words, they can be
defined as

sm(K)X := inf
D,λ1,...,λm

max
v∈K

∥v −D(λ1(v), . . . , λm(v))∥X ,

where the infimum is taken over all choice of linear functionals λ1, . . . , λm ∈ X ′ and
decoding map D. These number are closely related to the Gelfand width classically
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defined as

dm(K)X := inf
λ1,...,λm

max{∥v∥X : v ∈ K, λ1(v) = · · · = λm(v) = 0}.

It is easily checked that sm(K)X = dm(K)X in the case where K is convex and centrally
symmetric; and that

sm(K)X ⩽ dm(K −K)X ⩽ 2sm(K)X ,

for a general compact set K and K − K is a notation for the set {u : u = v − w, v ∈
K, w ∈ K}.

• Finally, the nonlinear width or manifold width δm(K)X is defined when no other as-
sumption but continuity is made on the operators E and D. For numerical stability
purpose, it is interesting to tame this notion by imposing that D and E are both
Lipschitz continuous, that is

∥D(a)−D(b)∥X ⩽ γ∥a−b∥m and ∥E(v)−E(w)∥m ⩽ γ∥v−w∥X , a, b ∈ Rm, v, w ∈ X,

for some fixed γ > 1, with ∥ · ∥m an arbitrary norm on Rm. The resulting infimized
quantity δγm(K)X is referred to as the stable width.

The last two notions of width sm and δm (or δγm) are natural to describe the expected
performance of optimal nonlinear model reduction, since the manifold is approximated by
the set D(Rm) – which is no longer a linear space. However, the sensing numbers take the
view that encoding can be restricted to simple linear measurements.

As already mentionned, the quantities dm and am typically decay slowly for families of
piecewise smooth functions, which reflects the fact that they cannot be well approximated
efficiently by linear spaces. A substantial gain in the rate of decay can be expected how-
ever when considering the nonlinear widths δm and δγm. Interestingly, it appears that this
substantial optimal gain is already present when considering the sensing numbers sm.

As a basic example, consider the two-parameter family of univariate step functions

K := {u := χ[a,a+ℓ] : a ∈ R, ℓ > 0}.

Clearly, the parameters (a, ℓ) are not linear functionals of u. However, any u ∈ K can be
exactly reconstructed from two linear functionals, namely, the first moments

λk(u) =
ˆ
xku(x)dx, k = 0, 1.

Indeed, λ0 = ℓ and λ1 = 1
2ℓ(2a + ℓ), so that a and ℓ can be exactly recovered from such

data. Therefore, one has sm(K)X = 0 for any m > 2 and for any Banach space X.
At a more general level, it was proved in [53] that when X is a Hilbert space, then

both sm(K)X and δγm(K)X are tied to the so-called entropy numbers em(K)X defined as the
smallest value of e > 0 such that K can be covered by 2m balls of radius e. More precisely,
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it was shown that, on the one hand, for any s > 0, one has a Carl-type inequality

sup
m>0

msem(K)X ⩽ Cs sup
m>0

msδγm(K)X ,

where Cs depends on (s, γ), and that on the other hand, there exists c > 0 depending on
γ > 1 such that

δγcm(K)X ⩽ 3em(K)X , m ⩾ 1.

In the proof of this last inequality, the γ-stable encoding-decoding pair (E,D) which is
constructed has actually a linear E. In turn, one also has

scm(K)X ⩽ 3em(K)X , m ⩾ 1.

One consequence of these results is that sm(K)X , δγm(K)X and em(K)X share the same
algebraic rates of decay.

Remark 5.2.1. An additional aspect of nonlinear dimensionality reduction is the notion of
adaptivity, which means that the measurements E(u) = (E1(u), . . . , Em(u)) are chosen in-
crementally, that is, the functional Em is picked depending on the value of E1(u), . . . , Em−1(u).
This allows the definition of similar notions of adaptive sensing numbers and nonlinear
widths. Our next described approach is not of this form, since we use linear functionals that
are pre-defined through the standard POD or RB analysis.

5.3 Nonlinear compressive Reduced Basis approximation
In this contribution, we thus intend to deal with situations where:

• The Kolmogorov widths dm(K)X , or the singular values σn, decay slowly.

• The sensing numbers sm(K)X , and stable nonlinear widths δγm(K)X , decay much
faster.

In other words, a target accuracy e > 0 can be reached by dN (K)X or κN , however with a
dimension N = N(e) much larger than the value of n = n(e), such that sn(K)X reaches the
same accuracy.

Since the optimal linear functionals in the definition of sn(K)X are usually out of reach
and could be computationally unpractical to apply, we take the view of fixing these
measurements to be a small number n of components in the offline computed
(orthonormalized) RB or POD basis (ej)j=1,...,N for some N >> n. Typically, we
choose the n first ones, that is,

λj(v) = ⟨v, ej⟩X , j = 1, . . . , n.

Intuitively, it is expected that in the situation where sn(K)X is very small, then the unknown
component (λj(v))j=n+1,...,N should be somehow dependent, up to a small error, of the n
first ones that carry most of the relevant information. This idea was at first presented in
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[17]. Here, we formalize it and study its validity in detail on a simple step function model,
and propose a general numerical strategy that we test on this model.

Our objective is thus to predict from these first components the extra components
λk(v) for k = n+1, . . . , N that are needed to approximate the functions v ∈ K with target
accuracy e. We are thus interested to construct N − n functions ψk : Rn → R so that

λ̃k(v) := ψk(λ1(v), . . . , λn(v)),

is a very accurate approximation to λk(v) for k = n+1, . . . , N and can be fastly computed.
Let us stress that ψk should typically be a nonlinear function. Indeed consider the ideal

case of the PCA basis computed after having recentered the variable uµ. Then the variables

zj = λj(uµ),

are uncorrelated and centered, such that, for any k > n,

min
α1,...,αn

E(|zk −
n∑
j=1

αjzj |2) = E(|zk|2).

Thus, the best choice of a linear function would be the null one that does not deliver any
information.

On the other hand, the best choice of a nonlinear function in this mean square sense,
that is, minimizing E(|zk −ψ(z1, . . . , zn)|2) over all functions ψ, is given by the conditional
expectation

ψ∗
k(z1, . . . , zn) = E(zk|z1, . . . , zn),

which is out of reach and should be approximated by a computationally tractable function.
Our practical approach to the construction of ψk is by learning it in a second step of

the offline stage, after the basis (ej)j=1,...,N has been identified. Having in mind the above
mean square loss, one typical approach is to select ψk within a sufficiently rich class F
of nonlinear functions by empirical risk minimization : with (ui)i=1,...,M a training set of
random snapshots ui = uµi , we define

ψk := argmin
{ m∑
i=1

|λk(ui)− ψ(λ1(ui), . . . , λn(ui))|2 : ψ ∈ F
}
.

A critical aspect in this approach lies in the choice of the class F , which could be, for
example, the set of:

• Quadratic functions, as in [16] or [79].

• Polynomials of some higher degree d > 2.

• Neural networks with a given architecture, as proposed in [17] (see also [104] where
an autoencoder-based approximation was proposed, which was in a way a pioneering
idea but unfortunately not computationally tractable one).
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This class should be able to approximate correctly the ideal but out of reach ψ∗
k by a

computationally tractable function ψk ∈ F . Another difficulty with this approach is the
fact that when the number n of informative components is chosen to be not very small, one
faces a regressing problem in large dimension, for which classical methods such as splines
or polynomials are known to suffer from the curse of dimensionality.

For these reasons, we have also considered in our numerical tests regression methods
based on trees (CART) and random forests, that are both universally consistent and able
to tackle large-dimensional problems. These methods seem to deliver the best numerical
results for the considered problems.

5.4 Analysis of a model framework : periodic step functions

In order to investigate the aforementioned questions, we place ourselves in a framework
where the Karhunen-Loève basis is explicitely known. Specifically, we work in the Hilbert
space

X = L2(0, 1),

and consider a randomly parameterized family such that

E(uµ(x)) = ū,

independently of x ∈ [0, 1] and such that

E((uµ(x)− ū)(uµ(y)− ū)) = R(x− y),

where R is an even and 1-periodic function. In other words, uµ is a periodic stationary
process, its covariance operator coincides with the convolution operator by R, and therefore
its Karhunen-Loève basis is exactly given by the basis of the Fourier series on [0, 1] (see e.g.
[122]).

More specifically, we consider a simple model of periodic stationary step functions by
introducing the three-parameter family

uµ(x) :=
{ b for x ∈ (a, a+ ℓ) (mod 1)

0 for x ∈ (a+ ℓ, a) (mod 1) , µ = (a, ℓ, b), (5.2)

that is, uµ = bχ[a,a+ℓ] in a 1-periodic sense.
Here a, ℓ, and b are assumed to have independent uniform distributions. Taking the

base point a to be uniformly distributed over [0, 1], it is easily checked that the process is
periodic stationnary. In addition, we take the height b to be uniformly distributed in [0, 1]
and the length ℓ to be uniformly distributed in [ℓmin, 1− ℓmin] for some 0 < ℓmin <

1
2 .

The best linear approximation of dimension m = 2n+1 is thus given by the truncation
up to k ⩽ n of the Fourier expansion

uµ =
∑
k∈N

αk cos(2πkx) +
∑
k∈N∗

βk sin(2πkx) (5.3)
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where 
α0 = α0(a, ℓ, b) = bℓ

αk = αk(a, ℓ, b) = b sin(2πk(a+ℓ))−sin(2πka)
2πk = b sin(πkℓ)) cos(πk(2a+ℓ))πk

βk = βk(a, ℓ, b) = b cos(2πk(a+ℓ))−cos(2πka)
2πk = −b sin(πkℓ)) sin(πk(2a+ℓ))πk

(5.4)

Clearly σ0 = E(|α0|2) = E(ℓ2)E(b2) = 1
9((1 − ℓmin)3 − ℓ3min). It is also easily checked

that the eigenvalues associated to the functions x 7→ cos(2πkx) and x 7→ sin(2πkx) are the
same and are given by

σk = E(|αk|2) = E(|βk|2) =
c

k2
,

for some c = c(ℓmin) > 0. It follows that the best linear approximation has a mean-square
error κ2m behaving like m−1. Note that, for the corresponding manifold

K := {uµ : a ∈ [0, 1], ℓ ∈ [ℓmin, 1− ℓmin], b ∈ [0, 1]},

one obviously has dm(K)X ⩾ κm, since a worst case error dominates the average error. On
the other hand, it is also readily seen that the worst case approximation by Fourier series
behaves like m−1/2, and therefore

dm(K)X ∼ κm ∼ m−1/2.

We also consider the two-parameter family Kℓ0 obtained by freezing the value ℓ = ℓ0 and the
one-parameter family Kb0,ℓ0 obtained by freezing in addition the value b = b0. It is easily
checked that one has the same behaviour m−1/2 for κm and dm after such restrictions.

The one-parameter family Kb0,ℓ0 can be encoded by the data of a, so that its nonlinear
width satifies

δm(Kb0,ℓ0)X = 0, m > 1.

It is easily seen that the data of only one Fourier coefficient is not sufficient to characterize
the elements of this family. Indeed, α0(a, ℓ, b) is independent of a, αk(a, ℓ, b) = αk(1/2 −
a− ℓ, ℓ, b), and βk(a, ℓ, b) = βk(1/4− a− ℓ, ℓ, b) for k ̸= 0.

On the other hand, the recovery of a can be done through the data of the two coefficients
α1 and β1 since

a = − ℓ2 − 1
2π arctan

(β1
α1

)
(mod 1) (5.5)

Similarly, any element in the two-parameter family Kℓ0 , parametrized by a and b, can
be recovered from the data of these two coefficients, since one also has

b = π

sin(πℓ0)
(α2

1 + β21)1/2. (5.6)

When more coefficients are available, we note that there is not a unique reconstruction
map : for example from the three coefficients α0 , α1, and β1, we can also recover b according
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to
b = α0

ℓ0
.

Finally, in the case of the three parameter family K, exact recovery of (a, b, ℓ) can be
obtained by solving the nonlinear system

a+ ℓ
2 = − 1

πarctan(
β1
α1
)

πb sin(πℓ) = (α2
1 + β21)1/2

bℓ = α0

(5.7)

however the exact recovery map does not anymore have an explicit form.

These exact recovery procedures induce for all k > 1 an exact recovery map ψ∗
k such

that
αk = ψ∗

k(α0, α1, β1).

and similarly an exact recovery map ψ̃∗
k such that

βk = ψ̃∗
k(α0, α1, β1),

In this very simple case, the success of the learning strategy outlined in the previous section
therefore depends on how these maps can be approximated by the family F .

A simple intuition can be given when looking at the particular case of ψ̃∗
k for the one-

parameter family Kb0,ℓ0 , when b0 = 1 and ℓ0 = 1
2 . Then, we find that

βk = b
sin(πk/2) cos(2πka)

πk
,

which is null for even values of k, and for odd values k = 2j + 1 satisfies

βk =
b

kπ
(−1)jTk

(π
b
β1
)
,

where Tk is the Chebychev polynomial of degree k. Therefore for such values, the optimal
reconstruction is exact and given by

ψ̃∗
k(x, y, z) =

b

kπ
(−1)jTk

(π
b
z
)
.

Clearly, the function ψ̃∗
k cannot be well approximated by polynomials of moderate dimen-

sions for large values of k. On the other hand, it is well known that the derivative of Tk has
maximal norm of order k over [−1, 1], and this implies that the functions ψ̃∗

k are Lipschitz
continuous with Lipschitz constant bounded independently of k > 0.

This property holds in more generality from the following argument: the derivative of
the arctan function being upper bounded by 1, the recovery of a from α1(a, ℓ0, b0) and
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β1(a, ℓ0, b0), still in the case of the one-parameter family Kb0,ℓ0 , is stable as

da

dα1
= 1

2π
1

1 +
[
β1
α1

]2 β1α2
1
= − 1

2π
β1

α2
1 + β21

(5.8)

and
da

dβ1
= − 1

2π
1

1 +
[
β1
α1

]2 1
α1

= − 1
2π

α1
α2
1 + β21

(5.9)

are both bounded since, by construction (see (5.6), with b = b0 fixed),

[α1]2 + [β1]2 = b20
sin2(πℓ0)

π2
.

Hence, an error in the values of α1 or β1 will induce an error of comparable size on a. The
same holds for the determination of b in the case of Kℓ0 .

On the other hand, it is readily seen from the definition of Fourier coefficients that the
two maps

µ 7→ αk(uµ) and µ 7→ βk(uµ),

are Lipschitz continuous with Lipschitz constants bounded independently of k > 0. In turn,
the stable recovery of a and b from α0, α1 and β1, induces recovery maps

(α1(a, ℓ0, b0), β1(a, ℓ0, b0)) 7−→ (αk(a, ℓ0, b0), βk(a, ℓ0, b0)) (5.10)

and
(α0(a, ℓ0, b), α1(a, ℓ0, b), β1(a, ℓ0, b)) 7−→ (αk(a, ℓ0, b), βk(a, ℓ0, b)) (5.11)

that are Lipschitz continuous with Lipschitz constants bounded independently of k > 0.
This state of affairs explains that universally consistent methods such as random forests

are well adapted for the joint approximation of ψ∗
k and ψ̃∗

k, while approaches based on low
order polynomials are doomed to fail. This is confirmed by the numerical tests presented
in the next section.

In the perspective of recovering more general piecewise smooth functions, we expect that
the low-order components are affected by the smooth pieces in addition to the jumps, while
the high-order components are only affected by the jumps. Thus it is interesting to adress
the question of the recovery of the parameters of the step function from a few components
αk and βk for larger values of k.

This task appears to be more involved and requiring more coefficients. For example,
when recovering a as in (5.5), we find

a = − ℓ2 − 1
2π arctan

[βk
αk

]
(mod 1/k). (5.12)

One possiblity to lift the indeterminacy (mod 1/k) is to combine the information coming
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from (5.12) and
a = − ℓ2 − 1

2π arctan
[βk+1
αk+1

]
(mod 1/(k + 1)) (5.13)

since a = a′, (mod 1/k), a = a′, (mod 1/(k + 1)), and a, a′ ∈ (0, 1) imply a = a′.
Thus we can in principle recover the parameters a and b out of 4 coefficients of arbitrary

high frequencies (k, k + 1). However we also observe that the stability of this recovery is
deteriorated since da

dαk
and da

dβk
increase linearly with k. We may hope to improve the

stability by using a larger number of coefficient values with indexes (k, k+1, . . . , k+ d) for
some d > 1.

5.5 Numerical illustrations
In this section, we investigate the ability of different methods to learn mappings that use
different amount m of components, namely

m = 2, (α1, β1) 7−→ (αk, βk)
m = 3, (α0, α1, β1) 7−→ (αk, βk)
m = 5, (α0, α1, β1, α2, β2) 7−→ (αk, βk)

for each of the three families Kb0,ℓ0 (Figures 5.1 and 5.2), Kℓ0 (Figures 5.3 and 5.4), K
(Figures 5.5 and 5.6), for all 2 ⩽ k ≤ 500. In these Figures, the average recovery error for
the αk and βk are presented in a symmetric manner, on the left and right side of the x-axis
respectively.

The learning methods are

• linear regression: F is the set of linear functions,

• quadratic regression: F is the set of polynomials of total degree 2,

• quartic regression: F is the set of polynomials of total degree 4,

• decision tree [90],

• random forest [35] [80].

For all the numerical illustrations we used Python 3.8 and scikit-learn 1.2.2 [123] for the
implementation of each of the regression methods described above. For more information,
the code can be found at https://github.com/agussomacal/NonLinearRBA4PDEs.

As can be expected, linear regression give the same results as the null forecast, and
quadratic and quartic regression give the same (bad) result here, with some improvement
over the null forecast only for very small value of k in certain cases (see Figures 5.3 and 5.4).

In contrast, decision tree and random forest are well suited as can be seen for the one
parameter family on Figure 5.1, with improved results on Figure 5.2 obtained from a larger
training samples (10 000 rather than 1 000). This reflects the universal consistency of these
methods that are guaranteed to converge towards the regression function as the number of
samples tends to +∞.

https://github.com/agussomacal/NonLinearRBA4PDEs
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The same also holds for the two parameter family, as seen on Figures 5.3 and 5.4 : the
problem is slightly more involved but nevetheless decison tree and random forest manage
to obtain a fair (resp. good) approximation after a learning phase of 1 000 (resp. 10 000)
training samples.

The numerical results for the three parameter family are displayed on Figure 5.5 for the
range ℓ ∈ [0.4, 0.6], and on Figure 5.6 for the range ℓ ∈ [0.01, 0.99], that is ℓmin = 0.4 and
0.01 respectively. One first observation is that all methods fail in the case of m = 2 known
component since they are insufficient to characterize an element of K. Secondly we observe
that the performance deteriorates as ℓ is allowed to be very small in which case the exact
recovery becomes less stable in view of the multiplicative coupling between b and ℓ in the
last two equations of the system (5.7). These last results reveal difficulties for these too
simple nonlinear recovery methods to achieve a satisfactory recovery. We expect that more
involved approaches such as deep neural networks can improve this state of affair.

Finally, in the case of the two parameter family (ℓ fixed), we study the recovery error
of (αk, βk) for k > 10 + d when using information from high frequency coefficients (αj , βj)
for j = 10, 11, . . . , 10 + d. As explained in the end of the last section, the exact recovery
is feasible for d = 1, yet less stable and thus more difficult to learn. This is confirmed
by Figure 5.7, where we see an improvement when using a larger value of d and a larger
training sample.
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Figure 5.1: In this figure we plot the error obtained from different recovery methods for the family Kb=1,ℓ=.5
where we recover all coefficients αk and βk in (5.3) for 2 ⩽ k ≤ 500 from 2 (left) 3 (center) and 5 (right)
Fourier coefficients with different approaches: linear, quadratic, quartic, tree and random forests. Note that
linear, quadratic, quartic are superposed and do not improve over the trivial recovery of the missing modes
by value 0. The learning phase is based on 1 000 training samples. The x-axis represents (in a log scale)
the index k of αk and the index k of βk and the y-axis the mean-square reconstruction error on the mode.
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Figure 5.2: Sames test as Figure 1 with 10 000 training samples.
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Figure 5.3: Same test as Figure 1 for the two parameter family Kℓ=.5, using 1 000 training samples.
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Figure 5.4: Same test as Figure 3 for the two parameter family Kℓ=.5, using 10 000 training samples.
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Figure 5.5: Same test as Figure 1 for the three parameter family K, using 10 000 training and ℓmin = 0.4.
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Figure 5.6: Same test as Figure 1 for the three parameter family K, using 10 000 samples and ℓmin = 0.01.
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Figure 5.7: Recovery of components k for k > 10 + d for the two parameter family Kℓ=.5 using random
forest and components j for j = 10, 11, . . . , 10 + d with d = 4 (left) and d = 9 (right), and various numbers
of training samples.
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Chapter 6

Deep learning-based schemes for
singularly perturbed
convection-diffusion problems

6.1 Introduction

6.1.1 Scientific context and goals

Singularly perturbed differential equations are typically characterized by a small parameter
ε > 0 multiplying some of the highest order terms in the differential equation. In general,
the solutions to such equations exhibit multiscale phenomena, and this raises significant
challenges to classical numerical methods such as finite elements or finite volumes. To build
accurate and robust approximations with these methods as ε decreases, it is necessary to
develop elaborate numerical discretizations. In addition to the mathematical difficulties of
the formulation, the resulting numerical schemes are often not entirely trivial to implement:
they often require mesh adaptation, and working on complicated geometries is challenging.
These difficulties motivate the search for new discretization schemes, hopefully mesh-free,
with potential to deliver good quality approximations with easier implementation tech-
niques. In this work, we explore this research direction, and consider strategies based on
deep learning techniques. Our main goal is to test various neural network-based schemes,
so as to design a strategy which should be robust when ε → 0, easily implementable even
for complicated geometries, and with potential to scale in high dimension.

The idea of working with neural network functions to solve PDEs is by far not novel,
and countless contributions have been proposed on this front in recent years. The strategies
can be roughly classified into two categories:

1. In the first category, deep neural networks are employed to assist classical numerical
methods by improving some limitations, or accelerating certain steps (see, e.g., [103,
154]). It has notably been used to assist in the construction of numerical fluxes
adapted to Finite Volumes (see, e.g., [62]). They can also be used in order to compute

155
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reduced-order models of parametric problems: for each value of the parameters, the
solution (or other quantities of interest) of the model of interest is computed by means
of a standard numerical scheme, and the values of the solutions are interpolated by
mean of a deep neural network over the whole range of parameter values [151, 75].

2. In the second category, neural networks are used to directly approximate the solution
of PDEs. The solution schemes become in this case an optimization problem where it
is crucial to design appropriate loss functions. The loss functions are mostly based on
residuals of the equations, and yield to different methods depending on the specific
choice:

(a) Physics-informed neural networks (PINNs, [134]) is a collocation-based method.
One finds the coefficients of the neural network solution by minimizing a dis-
cretized version of the L2 norm of the strong form of the residual of the PDE.
This method is very easily implementable but it implicitly assumes that solutions
are very regular.

(b) Other strategies leverage weak variational formulations where less regular solu-
tions are allowed. On this front, most of the classical methods originally for-
mulated for piecewise polynomial functions have by now been tested with trial
and test spaces of neural network functions. In this respect, the deep Galerkin
method (DGM, [146]) is based on a least-squares formulation, and the varia-
tional PINNS (VPINNs, [99, 100]) is based on the Galerkin method. The main
drawback of this approach is that the approximation quality depends on the
architecture of both the trial and the test neural network classes. In addition,
numerous evaluations for multiple test functions need to be performed. Also,
strategies involving the minimization of weak-form residuals are usually not triv-
ial to implement because they involve the computation of norms in very weak
spaces which necessitate extra discretization steps.

(c) Another approach based on weak variational formulations is the so-called deep
Ritz method (DRM, [70]). It leverages the fact that the solution of certain
PDEs is the unique minimizer to a certain energy functional. When possible,
this approach seems the most appealing: the loss function is naturally given by
the problem, it can accommodate low regular solutions, and the computational
cost is moderate in the sense that it only requires to handle test functions (no
trial functions). It also carries potential to address high dimensional problem as
illustrated in [69, 70, 139].

6.1.2 Contribution

The goal of this work is to compare and develop several neural network schemes for
singularly perturbed problems when ε → 0. We focus more particularly on convection-
diffusion (or stationary Fokker-Planck) problems with vanishing diffusion for which we ex-
plore schemes from the second category according to the above distinction. In other words,
we approximate solutions of singular PDEs with feed-forward neural network functions.
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When ε → 0, the regularity of the solutions is deteriorated because of local or boundary
thin layers. The classical formulation commonly used in neural network based schemes is
constructed from the strong formulation of the problem, where the analytical solution is
approximated by the one generated by evaluations on the sampling points. It is referred in
this paper as vanilla PINNs, which has been introduced in the (2)-(a) subcategory above.
More details could be found in Section 6.2.3. Therefore, it is expected to perform poorly for
small values of ε because it commits a "variational crime" (and this is actually confirmed in
our numerical experiments). By "variational crime", we mean that the norm of the residual
which is traditionally used in vanilla PINNs methods requires that the solution of the PDE
has to be more regular than what would naturally be expected from the theory. In our case
(convection-diffusion problems), the Vanilla-PINN method requires the solution to belong
to an H2 space, whereas it is more natural from a theoretical point of view to look for an
approximation of the solution in a set of H1 functions. Methods based on weak variational
formulations seem better adapted, and on that front, it is desirable to work with the deep
Ritz method. However, finding energy formulations is not straightforward due to the non-
symmetric nature of convective effects. We show how this method can be applied in this
context thanks to a change of variable. We compare its numerical robustness with respect
to the PINNs method, and a naive finite element discretization with a uniform grid. In the
present study, our tests are performed on a 1D example. Despite its simplicity, the example
exhibits all the features that are challenging for numerical schemes. For our purposes, the
example also presents the important advantage of having analytic solutions which we can
leverage in our error analysis, and our validations. Higher-dimensional tests involving also
more elaborate sampling strategies are left for future work.

The paper is organized as follows. In Section 6.2, various formulations of the convection-
diffusion problem we are interested in are introduced. In Section 6.3, we introduce various
neural networks-based schemes which are inspired from the various formulations introduced
in Section 6.2. The reader is encouraged to observe that an expert mathematical insight
is required in order to build formulations that do not incur in variational crimes. In Sec-
tion 6.4, these various schemes are compared for one-dimensional problem. To conclude,
in Section 6.4.4, after the presentation of the numerical results, it is summarized how each
one of the PINN methods behave for small values of ε and its comparison with the FEM
method.

6.2 A singularly perturbed convection-diffusion equation

The aim of this section is to introduce the singularly perturbed convection-diffusion equation
we consider in this work, and various formulations of the problem which will be used in
Section 6.3 so as to design various neural networks-based schemes for its numerical solution.

6.2.1 Problem definition

As a prototypical example, we consider the following singularly perturbed convection-
diffusion equation on a given domain Ω ⊂ Rd, with d ∈ N∗. Let F : Ω → Rd be a
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given force field, 0 < ε ≪ 1 a small parameter, and f : Ω → R be a given right-hand side
function. Our goal is to find a solution u : Ω → R to

−ε(∆u)(x) +∇ · (Fu)(x) = f(x), ∀x ∈ Ω, (6.1)

together with Robin boundary conditions

α(∇u · n)(x) + κu(x) = g(x) ∀x ∈ ∂Ω, (6.2)

where n refers to the outward unit vector of ∂Ω, α, κ ⩾ 0 and g is a real-valued function
defined on ∂Ω. In the following, we assume that the force field F derives from a potential
function V : Ω → R, in the sense that

F (x) = −∇V (x), ∀x ∈ Ω.

Under appropriate assumptions on F (or V ), f and g, which are assumed to be smooth
functions for the sake of simplicity, (6.1) and (6.2) can be proved to have a unique solu-
tion [137, 97, 31]. Note that, more generally, α and κ could also be given as real-valued
functions defined on ∂Ω, instead of constants, and our subsequent developments could be
easily adapted.

The equation represents the change in the concentration u of a quantity in a given
medium, and in presence of convective and diffusive effects. The force field F represents
the drag force while the singular perturbation parameter ε represents the diffusivity of the
medium. In the limit of an inviscid medium as ε→ 0, the equation changes from elliptic to
hyperbolic nature, and from second to first order. For Dirichlet boundary conditions u = 0
on ∂Ω, the solution can develop sharp boundary layers of width ε near the outflow. We
refer the reader to [138] for general references on this equation regarding its analysis and
numerical methods.

Classical numerical methods are challenged by problem (6.1) when ε is small. In the case
of the Galerkin finite element method, the poor performance for this problem is reflected in
the bound on the error in the finite element solution. For Ω = (0, 1) and Dirichlet boundary
conditions, a standard Galerkin method with a uniform grid of size h delivers a solution uh
on a finite element space Ph that satisfies

∥u− uh∥H1(0,1) ⩽ C(ε) inf
wh∈Ph

∥u− wh∥H1(0,1), (6.3)

where C(ε) ∼ ε−1, so that the constant blows up as ε → 0 (see [138, Theorem 2.49]). The
dependence of C on ε is usually referred to as a loss of robustness in the sense that, as ε de-
creases, the Galerkin method is bounded more and more loosely by the best approximation
error. As a consequence, on a coarse mesh and for small values ε, the Galerkin approx-
imation develops spurious oscillations everywhere in the domain. This very well-known
behaviour will actually be observed later on in our numerical tests.

Numerous methods have been proposed in order to address this loss of robustness in
finite element methods. An important family of methods is based on using residual-based
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stabilization techniques. Given some variational form, the problem is modified by adding to
the bilinear form the strong form of the residual, weighted by a test function and scaled by a
stabilization constant τ . The most well-known example of this technique is the streamline
upwind Petrov-Galerkin (SUPG) method (see [36]). The addition of the residual-based
stabilization term, can be interpreted as a modification of the test functions which means
that these methods seek stabilization by changing the test space, and motivates to search
for optimal test spaces in the spirit of [61, 44].

Other classical discretization methods such as finite volumes suffer from similar issues,
and strategies involving layer-adaptive grids such as Shishkin meshes have been proposed
(see, e.g., [101]).

The aim of this work is to explore the potential of approximating solutions of such
problems with neural network functions, and the next section presents several options for
this, with a discussion on their merits and limitations.

6.2.2 General formulation

Any neural-network based numerical scheme for the solution of (6.1) and (6.2) relies on
the use of a variational formulation of this problem which enables to write u (or another
function defined from u) as a minimizer of a problem of the form

min
v∈V

J (v), (6.4)

where V is a particular set of real-valued functions defined on Ω. The loss function J : V →
R is usually of the form

J (v) :=
ˆ
Ω
R(v)(x)dρ(x) +

ˆ
∂Ω

S(v)(r)dτ(r), ∀v ∈ V, (6.5)

where for every v ∈ V, R(v) and S(v) are real-valued functions defined on Ω and ∂Ω
respectively. They are assumed to be measurable with respect to the measures ρ and τ ,
which are defined on Ω and ∂Ω respectively. Note that the measures ρ and τ have to be
chosen a priori, and they can greatly affect the final result. The question of discovering the
optimal weights is beyond the scope of our present investigation.

The aim of the next sections is to introduce various formulations of (6.1) and (6.2) under
the form given by (6.4) and (6.5). This requires appropriate definitions of the set V, the
functions R(v) and S(v) for any v ∈ V and the unknown function solution of (6.4). Unless
otherwise stated, the measures ρ and τ will be defined as the Lebesgue bulk measure and
Lebesgue surfacic measure respectively.

6.2.3 Vanilla (V) formulation

We begin by introducing the most classical formulation used in neural network-based nu-
merical schemes such as PINNs. For the reasons that we outline next, different aspects of
this formulation can be improved, therefore we refer to it as vanilla (V) formulation in the
following.
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The formulation consists in interpreting the solution u of (6.1) and (6.2) as the unique
solution of a minimization problem of the form (6.4) with V = H2(Ω) and to define for all
v ∈ V, {

R(v)(x) := λ |−ε(∆v)(x) +∇ · (Fv)(x)− f(x)|2 , for all x ∈ Ω,
S(v)(x) := (1− λ) |α(∇v · n)(x) + κv(x)− g(x)|2 , for all x ∈ ∂Ω,

(6.6)

for some λ ∈ (0, 1). In this approach, the parameter λ enables to tune the respective
weight of the contributions of the bulk and boundary terms in the total functional J to
be minimized. In practice, in the numerical tests presented in Section 6.4, λ will always be
chosen to be equal to 1

2 .
Note that such an approach requires the solution u to belong to H2(Ω), which implies

that the solution has to be sufficiently regular. When ε→ 0, this assumption becomes less
and less realistic due to the formation of boundary layers. This raises the question as to
whether it is possible to introduce another formulation of (6.1) and (6.2) which would allow
for less regular solutions. The goal of the next section is to introduce such an alternative
formulation.

6.2.4 Weak variational (W) formulation

In this section we develop an avenue based on an energy minimization approach which
requires less regularity in the solutions than the vanilla formulation. To this aim, we
introduce the change of variable

u(x) = ecV (x)z(x), (6.7)

where c ∈ R is a constant yet to be determined. Taking first and second derivatives in (6.7)
yield that for all x ∈ Ω,

∇u(x) = ecV (x) (c∇V (x)z(x) +∇z(x))
∆u(x) = ecV (x) (c∆V (x)z(x) + |c∇V (x)|2z(x) + 2c∇V (x) · ∇z(x) + ∆z(x)

)
.

Now, setting the value of c to be
c = 1

2ε,

and inserting the change of variable into (6.1), we conclude that u is a solution to (6.1) if
and only if z is a solution to the elliptic problem

−∆z(x) +
(
∆V (x)

2ε + |∇V (x)|2
4ε2

)
z(x) = f(x)e

−V (x)
2ε

ε
, ∀x ∈ Ω, (6.8)

with Robin boundary conditions

α(∇z(x) · n(x)) +
(
κ+ α

2ε∇V (x) · n(x)
)
z(x) = e

−V (x)
2ε g(x), ∀x ∈ ∂Ω. (6.9)
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At this stage, one could of course apply the vanilla formulation to solve (6.8) and (6.9) and
compute z solution of a minimization problem of the form (6.4) with V = H2(Ω) and the
functionals R and S defined byR(v)(x) := λ

∣∣∣∣−∆v(x) +
(
∆V (x)

2ε + |∇V (x)|2
4ε2

)
v(x)− f(x) e

−V (x)
2ε
ε

∣∣∣∣2 , ∀x ∈ Ω,

S(v)(x) := (1− λ)
∣∣∣α(∇v(x) · n(x)) + (κ+ α

2ε∇V (x) · n(x)
)
v(x)− e

−V (x)
2ε g(x)

∣∣∣2 , ∀x ∈ ∂Ω,
(6.10)

for all v ∈ V = H2(Ω) and some λ ∈ (0, 1). The value of λ chosen in our numerical tests is
λ = 0.5. We will refer to this approach as the vanilla-z (V z) formulation.

Note that this method does not fully exploit the change of variables since the elliptic
nature of (6.8) allows us to easily build a weak formulation of this equation. Testing against
a smooth test function v and integrating by parts we obtain the weak formulation

ˆ
Ω
∇z · ∇v −

ˆ
∂Ω
v∇z · ndx+

ˆ
Ω

(
∆V
2ε + |∇V |2

4ε2

)
zv =

ˆ
Ω
f
e−

V
2ε

ε
v.

Using equality (6.9), we get
ˆ
Ω
∇z · ∇v +

ˆ
Ω

(
∆V
2ε + |∇V |2

4ε2

)
zv +

ˆ
∂Ω

(
κ

α
+ 1

2ε∇V · n
)
zv

=
ˆ
Ω
f
e−

V
2ε

ε
v +
ˆ
∂Ω

1
α
e

−V
2ε gv.

Therefore the weak formulation of (6.8) is to find z ∈ H1(Ω) such that

a(z, v) = ℓ(v), ∀v ∈ H1(Ω) (6.11)

with

a(z, v) :=
ˆ
Ω
∇z · ∇v +

ˆ
Ω

(
∆V
2ε + |∇V |2

4ε2

)
zvdx+

ˆ
∂Ω

(
κ

α
+ 1

2ε∇V · n
)
zv

l(v) :=
ˆ
Ω
f
e−

V
2ε

ε
v +
ˆ
∂Ω

1
α
e

−V
2ε gv.

To ensure that the symmetric bilinear form a is continuous and coercive, we assume in the
sequel that the following conditions are satisfied:

(
∆V (x)

2ε + |∇V (x)|2
4ε2

)
⩾ a0 > 0, ∀x ∈ Ω(

κ
α + 1

2ε∇V (x) · n(x)
)
⩾ 0, ∀x ∈ ∂Ω

f ∈ L2(Ω), g ∈ L2(∂Ω)
(6.12)

If conditions (6.12) are satisfied, z can be equivalently rewritten as the unique solution
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of a minimization problem of the form

z = argmin
v∈H1(Ω)

1
2a(v, v)− ℓ(v). (6.13)

This implies that z can equivalently be recast as the unique solution of a minimization
problem of the form (6.4) with V = H1(Ω) andR(v)(x) := 1

2

[
|∇v(x)|2 +

(
∆V (x)

2ε + |∇V (x)|2
4ε2

)
|v(x)|2

]
− f(x) e

−V (x)
2ε
ε v(x), ∀x ∈ Ω,

S(v)(x) := 1
2
[(
κ
α + 1

2ε∇V (x) · n(x)
)
|v(x)|2

]
− 1

αe
−V (x)

2ε g(x)v(x), ∀x ∈ ∂Ω.
(6.14)

We will refer to this approach as the weak-z (Wz) formulation.
Moreover, using (6.7), we can equivalently express u as a solution of a minimization

problem of the form (6.4) with

V :=
{
v = e

V
2ε v, v ∈ H1(Ω)

}
, (6.15)

and rewriting the Equation (6.14)R(v)(x) := 1
2

[
|∇v(x)|2 +

(
∆V (x)

2ε + |∇V (x)|2
4ε2

)
|v(x)|2

]
− f(x) e

−V (x)
2ε
ε v(x), ∀x ∈ Ω,

S(v)(x) := 1
2
[(
κ
α + 1

2ε∇V (x) · n(x)
)
|v(x)|2

]
− 1

αe
−V (x)

2ε g(x)v(x), ∀x ∈ ∂Ω,
(6.16)

for all v ∈ V with v := ve−
V
2ε the change of variable suggested above. We will refer to this

formulation as the weak (W) formulation.
Note that in the non-discretized case, formulations (W) and (Wz) are equivalent up to

the exponential change of variable. However, when the minimizer of both formulations is
computed by means of a neural network, the corresponding approximations will be different
and have different accuracies. The (W) formulation has the advantage to avoid potential
machine precision issues linked to the presence of the exponential term when ε becomes
small.

6.2.5 Rescaled formulation

In this section, we introduce another formulation based on a change of scale in the original
problem. More precisely, introducing Ωε := 1

εΩ, we introduce auxiliary functions ũ : Ωε →
R, z̃ : Ωε → R and Ṽ : Ωε → R defined so that for all x ∈ Ω,

u(x) = εũ
(x
ε

)
, z(x) = εz̃

(x
ε

)
, V (x) = εṼ

(x
ε

)
. (6.17)

Notice that if u and z satisfy (6.7), then

z̃(y) = ũ(y)e 1
2 Ṽ (y), ∀y ∈ Ωε.
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Denoting by F̃ (y) := −∇Ṽ (y) = F (εy) for all y ∈ Ωε, it holds that u is solution to (6.1)
and (6.2) if and only if ũ is solution to

−∆ũ(y) +∇ ·
(
F̃ ũ
)
(y) = f̃(y), ∀y ∈ Ωε (6.18)

where f̃(y) := f(εy) for all y ∈ Ωε with boundary conditions

α(∇ũ · n)(y) + εκũ(y) = g̃(y), ∀y ∈ ∂Ωε, (6.19)

with g̃(y) := g(εy) for all y ∈ Ωε.
Using similar calculations to the ones done in Section 6.2.4, the Lax-Milgram theorem

guarantees that z̃ is the unique solution in H1(Ωε) of the following variational problem: for
all ṽ ∈ H1(Ωε),
ˆ
Ωε

∇z̃(y) · ∇ṽ(y) dy +
ˆ
∂Ωε

(
εκ

α
+ 1

2∇Ṽ (y) · n(y)
)
z̃(y)ṽ(y) dy

+
ˆ
Ωε

(
∆Ṽ (y)

2 + |∇Ṽ (y) |2
4

)
z̃ (y) ṽ(y) dy

=
ˆ
Ωε

f̃(y)e− 1
2 Ṽ (y)ṽ(y) dy +

ˆ
∂Ωε

1
α
e−

1
2 Ṽ (y)g̃(y)ṽ(y) dy. (6.20)

The result is valid provided that the following assumptions on the coefficients hold
∆Ṽ (y) + |∇Ṽ |2(y) ⩾ 0, ∀y ∈ Ωε,
κε
α + 1

2∇Ṽ (y) · n(y) ⩾ 0, ∀y ∈ ∂Ωε,
f̃ ∈ L2(Ωε), g̃ ∈ L2(∂Ωε).

The above conditions are equivalent to the assumptions (6.12) stated in Section 6.2.4.

As in the previous section, the function z̃ is then the unique solution of a minimization
problem of the form (6.4) with V = H1(Ωε) withR(v)(y) := 1

2

[
|∇v(y)|2 +

(
∆Ṽ (y)

2 + |∇Ṽ (y)|2
4

)
|v(y)|2

]
− f̃(y)e−

Ṽ (y)
2 v(y), ∀y ∈ Ωε,

S(v)(y) := 1
2

[(
εκ
α + 1

2∇Ṽ (y) · n(y)
)
|v(y)|2

]
− 1

αe
−Ṽ (y)

2 g̃(y)v(y), ∀y ∈ ∂Ωε.
(6.21)

We will refer to this approach as the rescaled-weak-z (RWz) formulation.

6.2.6 Summary of the methods

For the sake of clarity, we summarize here the main features of each method.
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Method Acronym Unknown V R and S
vanilla V u H2(Ω) Equation (6.6)
vanilla-z Vz z H2(Ω) Equation (6.10)
weak-z Wz z H1(Ω) Equation (6.14)
weak W u (6.15) Equation (6.16)

rescaled-weak-z RWz z̃ H1(Ωε) Equation (6.21)

6.3 Neural networks based numerical schemes

In this section we describe the numerical approach used in order to compute an approxima-
tion of the solution of a minimization problem of the form (6.4) by means of a neural-network
based method. We first present in Section 6.3.1 the general principle of such approaches.
The main ingredients to design a neural-network based method consist in the choice of
a class of neural network functions and of sampling schemes in order to approximate the
integrals involved in the definition of the loss function J defined by (6.5). These two in-
gredients are detailed respectively in Sections 6.3.2 and 6.3.3. Finally, some details on the
numerical implementation are given in Section 6.4.2.

6.3.1 General principle

The numerical solution of a minimization problem of the form (6.4) usually requires to
consider alternatives to V and J that are amenable for practical implementation. The
strategy thus consists in formulating a related problem of the form

min
v∈K

Ĵ (v), (6.22)

where

• K ⊂ V is a set of functions parametrized by a finite number of scalar coefficients. A
classical class of functions are finite elements. Here, we consider neural networks (see
Section 6.3.2 below);

• Ĵ is an approximation of the loss function J where the integrals are approximated
using some particular quadrature or sampling schemes.

More precisely, for given integers K,M ∈ N∗, given sets of points (xk)1⩽k⩽K ⊂ Ω,
(ym)1⩽m⩽M ⊂ ∂Ω, and given sets of weights (ρk)1⩽k⩽K ⊂ R and (τm)1⩽m⩽M ⊂ R, for all
v ∈ K, the functional Ĵ (v) is defined by

Ĵ (v) :=
K∑
k=1

ρkR(v)(xk) +
M∑
m=1

τmS(v)(ym). (6.23)

As a consequence, the definition of a neural-network based numerical scheme for the
approximation of a problem of the form (6.4) requires the definition of two ingredients:
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• the class K ⊂ V of neural network functions;

• the sampling scheme, i.e. the choice of K,M , (xk)1⩽k⩽K , (ym)1⩽m⩽M , (ρk)1⩽k⩽K and
(τm)1⩽m⩽M in order to define the approximate functional Ĵ given by (6.23).

The set of neural network functions K we consider in our numerical experiments is pre-
sented in Section 6.3.2. The various sampling schemes tested here are given in Section 6.3.3.

6.3.2 Neural Network classes of functions

In this work, we only consider classes of functions defined by means of feed-forward neural
networks whose definition we recall next (see [106] for general references).

Let X ⊂ RdX and Y ⊂ RdY be some input and output sets of finite dimensions dX , dY ∈
N∗. A feed-forward neural network is a function

ψ : X → Y

which reads as
ψ(x) = TL(σ(TL−1(σ(. . . σ(T0(x))))), ∀x ∈ X . (6.24)

For every ℓ ∈ {0, . . . , L},

Tℓ :
{

Rpℓ → Rpℓ+1

xℓ 7→ Tℓ(xℓ) := Aℓxℓ + bℓ
(6.25)

is an affine function which can be expressed through a matrix Aℓ ∈ Rpℓ+1×pℓ , and an offset
vector bℓ ∈ Rpℓ+1 , and σ : R → R is called the (nonlinear) activation function. By a slight
abuse of notation, for all p ∈ N∗ and for any vector w := (wi)1⩽i⩽p ⊂ Rp, the notation σ(w)
actually denotes the vector of Rp with entries σ(wi), that is, σ(w) = (σ(wi))pi=1. Note that
since ψ maps X onto Y, it is necessary that p0 = dX and pL+1 = dY . The layers numbered
from 1 to L are usually called the hidden layers of the neural network.

To define a class of feed-forward neural networks, we fix an architecture by prescribing
a given activation function σ, depth L ∈ N, and layer widths p = (p0, . . . , pL+1) ∈ (N∗)L+2.
Once the values of σ, L and p have been chosen, we view the coefficients (Aℓ, bℓ)0⩽ℓ⩽L of
the affine mappings T0, · · · , TL as parameters. We gather these coefficients in the vector of
parameters

θ := {(Aℓ, bℓ)}Lℓ=0,

and assume that θ takes values in a set

Θ ⊆
L

×
ℓ=0

(
Rpℓ×pℓ+1 × Rpℓ+1

)
.

For any θ ∈ Θ, we define by ψθ : X → Y the function ψ defined by (6.24) with θ =
{(Aℓ, bℓ)}Lℓ=0 ∈ Θ.

The class of neural network functions with architecture (σ, L,p) and coefficient sets Θ
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is then defined as
N (σ, L,p,Θ) := {ψθ : θ ∈ Θ} .

In our context, the input and output sets X and Y are respectively given by

X = Ω (or Ωε) and Y = R,

so that dX = d and dY = 1. In all the numerical tests presented below, the class K is chosen
as

K := N (σ, L,p,Θ),

with
σ = tanh, L = 2, p = (d, 10, 10, 1) and Θ =

L

×
ℓ=0

(
Rpℓ×pℓ+1 × Rpℓ+1

)
.

Note that the set K is then a subset of V for all the formulations of the convection-
diffusion problem we introduced in Section 6.2. Moreover, the solution of the approximate
(6.22) is equivalent to finding a minimizer θ∗ ∈ Θ solution to

min
θ∈Θ

Ĵ (ψθ). (6.26)

Remark: In many machine learning applications, the choice of relu activation functions
is very common due to its low computational cost when performing evaluation or first order
differentiation. However, in our problem, second order derivatives are needed to calculate
the loss function. If relu activation functions were used, then the second order derivative
terms would be 0, and no good approximation could be learned. This reason motivates our
choice of tanh as the activation function.

6.3.3 Sampling schemes

We detail in this section the various sampling schemes we considered in our numerical tests
in order to define the approximate loss function Ĵ .

Since we work with one-dimensional examples, we carry the discussion for dimension
one. In fact, we consider (6.1) and (6.2) with Ω = (0, 1) so that ∂Ω = {0} ∪ {1} (and
∂Ωε = {0}∪ {1/ε}). Thus, for all our tests, the domain boundary has M = 2 points y1 = 0
and y2 = 1 (or y2 = 1

ε for the RWz method). Taking τ1 = τ2 = 1 for the surface weights,
the surface term in (6.23) takes the simple form

M=2∑
m=1

τmS(v)(ym) =
ˆ
∂Ω

S(v) dτ ∀v ∈ V (or
ˆ
∂Ωε

S(v) dτ for the RWz formulation).

We consider three different sampling schemes for the approximation of the bulk term´
ΩR(v) dρ:

1. The first choice is a simple uniform sampling scheme (labeled −u in our tests). For a
given K ∈ N∗, we set ρk = 1

K and (xk)1⩽k⩽K as the centers of the intervals given by
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a uniform discretization grid of the interval (0, 1).

2. The second sampling scheme, called random (−r) scheme, consists in choosing ρk = 1
K

and the points (xk)1⩽k⩽K as a collection of random points, identically independently
distributed according to the uniform distribution on (0, 1).

3. We lastly consider a third sampling scheme, called exponential (−e) scheme, which is
specific to the Wz formulation. Recall that in this case, for all v ∈ K, the expression
of R(v) is given by (6.14), namely

R(v)(x) = R(1)(v)(x) +R(2)(v)(x), ∀x ∈ Ω

with R(1)(v)(x) := 1
2

[
|∇v(x)|2 +

(
∆V (x)

2ε + |∇V (x)|2
4ε2

)
|v(x)|2

]
R(2)(v)(x) := −f(x) e

−V (x)
2ε
ε v(x), ∀x ∈ Ω.

Thus, the bulk integral term:
ˆ
Ω
R(v)(x)dρ(x) =

ˆ
Ω
R(1)(v)(x)dρ(x) +

ˆ
Ω
R(2)(v)(x)dρ(x),

and we approximate each component separately as follows. For the first term, we
draw a collection of K1 ∈ N∗ independent identically distributed (iid) random points
(x(1)k )1⩽k⩽K1 from the uniform distribution on (0, 1) and for all 1 ⩽ k ⩽ K1, the
weights ρ(1)k are chosen to be equal to 1

K1
. For the second term, we draw K2 ∈ N∗ iid

random points (x(2)k )1⩽k⩽K2 following the probability density

ρ(2)(x) := e−
V (x)
2ε

Zε
, x ∈ Ω,

with
Zε :=

ˆ
Ω
e−

V (x)
2ε dx.

Setting now ρ
(2)
k = Zε

K2
for all 1 ⩽ k ⩽ K2, the integral

´
ΩR(v) is then approximated

by

K1∑
k=1

ρ
(1)
k

(
1
2

[
|∇v(x(1)k )|2 +

(
∆V (x(1)k )

2ε + |∇V (x(1)k )|2
4ε2

)
|v(x(1)k )|2

])

−
K2∑
k=1

ρ
(2)
k

(
f(x(2)k )1

ε
v(x(2)k )

)
. (6.27)

In the following, we use the notation −u (respectively −r and −e), after the name of
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a formulation, in order to refer to the numerical method obtained by using this formula-
tion, together with a uniform (respectively random or exponential) sampling scheme. For
instance, the V − u method refers to the vanilla formulation used in conjunction with a
uniform sampling scheme.

Note that to tackle higher-dimensional problems, special sampling techniques such as
adaptive Markov-Chain Monte-Carlo or Quasi Monte Carlo would be required.

6.3.4 Comparison with finite element schemes

One important point in the investigation of the merits and limitations of deep learning-
based numerical schemes is to understand how they compare with respect to other existing
schemes. In our tests, we provide a numerical comparison with a vanilla finite element
Galerkin scheme involving a uniform mesh. For the sake of completeness, we briefly recall
the main steps of our finite element Galerkin approach.

Integrating the original Equation (6.1) against a sufficiently smooth function v ∈ C∞(Ω),
and integrating by parts, it follows that a weak formulation of problem (6.1) is to find
u ∈ H1(Ω) such that

a(u, v) = l(v), ∀v ∈ H1(Ω)

with

a(u, v) =
ˆ
Ω
∇u · ∇v + ε−1

ˆ
Ω
∇ · (Fu)v + κ

α

ˆ
∂Ω
uv (6.28)

l(v) = ε−1
ˆ
Ω
fv −

ˆ
∂Ω
gv. (6.29)

We numerically solve this problem by Galerkin projection. For this, we consider a mesh
(Tn)Nn=1 of Ω and define the associated P1 finite element space

VN := {v ∈ C 0(R) : ∀0 ⩽ s ⩽ N − 1, v|[xs,xs+1) ∈ P1([xs, xs+1])}

with
P1([xs, xs+1]) := {v : [xs, xs+1] → R, v(x) = ax+ b, (a, b) ∈ R2}.

We then search for a solution uN ∈ VN ⊂ H1(Ω) by Galerkin projection, that is, we search
for uN ∈ VN such that

a(uN , v) = l(v), ∀v ∈ VN .

We next take as a basis of VN the set of tent functions defined as

ϕi(xj) = δij , for 1 ⩽ i, j ⩽ N,

and we express the solution as uN =
∑N

i=1 ciϕi. Gathering the expansion coefficients in the
vector c = (ci)Ni=1, and injecting the expansion of uN in the variational formulation, we are
led to the system of equations

Mc = q
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where

M = (Mi,j)1⩽i,j⩽N , Mi,j := a(ϕi, ϕj),
q = (qi)Ni=1, qi := l(ϕi).

6.4 Numerical Results

6.4.1 Test case and comparison criteria

In this section we show the results obtained by approximating the exact solution of the
problem described in (6.1) using the methods introduced above.

Here, we work in the case when d = 1, Ω = (0, 1), and F , f are assumed to be equal to
some constant real numbers. Then, the solution of (6.1) and (6.2) has an analytic expression
which is given hereafter. Let us also introduce g0, g1 ∈ R so that g(0) = g0 and g(1) = g1.
The problem then reads as follows: find u : (0, 1) → R solution to

−εu′′(x) + Fu′(x) = f, ∀x ∈ (0, 1),
−αu′(0) + κu(0) = g0,
αu′(1) + κu(1) = g1.

(6.30)

Then, it can be easily checked that the solution to this equation reads as

u(x) = C1 + C2e
Fx
ε + f

F
x

where C1 and C2 are constants that are determined with the Robin boundary conditions.
They satisfy the system(

κ κ− αF
ε

κ κe
F
ε + αFε e

F
ε

)(
C1
C2

)
=
(

g0 + α f
F

g1 − f
F (κ+ α)

)
which is invertible except for

κ = 0, or α

κ
= ε(1− e

F
ε )

F (1 + e
F
ε )
.

In the following, the values of κ and α are always chosen so that the above system is
invertible.

In the numerical tests presented below, we fix F = 1, f = 1. We choose Robin boundary
conditions that mimic Dirichlet conditions and we set α = 10−3, κ = 1, g0 = g1 = 0. Note
that we cannot take α = 0 since all variational methods are not well defined for pure
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Dirichlet boundary conditions. With these choices, the equation reads
−εu′′(x) + u′(x) = 1, ∀x ∈ (0, 1),

−10−3u′(0) + u(0) = 0,
10−3u′(1) + u(1) = 0.

(6.31)

Since the exact solution has an analytic form, we can thus easily compare the approxi-
mation quality of the output functions û from our methods by computing a discrete version
of their L2(Ω) error norm with respect to the exact solution:

e2L2 := ∥u− û∥2L2(Ω) ≈
1
K̃

K̃−1∑
k=0

(u(xk)− û(xk))2 =: e2ℓ2 .

The points xk are sampled uniformly as defined in Section 6.3.3. We use 10 times more
points than the ones used for approximating the integral, so K̃ = 10K. Similarly, we also
compute the error with respect to the H1(Ω) semi-norm:

e2H1 := ∥u′ − û′∥2L2(Ω) ≈
1
K̃

K̃−1∑
k=0

(u′(xk)− û′(xk))2 =: e2h1 .

Note that one can obtain the H1 error by adding the above error components.
We study the impact on the errors of the following parameters:

• The values of ε. They range from 5 · 10−3 to 10.0 with a logarithmic spacing.

• The numberK of training points (or collocation points). We considerK = 10, 102, 103, 104.

• The choice of the sampling method for the training points (uniformly spaced or uni-
formly random, labelled as −u and −r).

• The impact of the machine precision (Float16, Float32, Float64).

Due to the randomness in the initialization of weights on the neural networks, for each
combination of parameters (ε, K, sampling type, and machine precision), we perform 10
repetitions with different initializations. Since we didn’t notice a big difference between the
l2 error and the h1 error, we keep just the second one for clarity and put in Section 6.A the
plots in l2 error.

6.4.2 Our code and practical implementation details

All our neural network based numerical tests were performed in Python 3.6 and using the
TensorFlow 1.13.1 library [1]. The code provided in the original paper on PINNs [99] was
used as the starting point for our own code developments, and we have followed similar
guidelines to generalize and enlarge it where needed. In the same way, for each numerical
method, derivatives of functions v ∈ K are computed using automatic differentiation. The
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numerical optimization procedure used in order to compute an approximation of θ∗ a min-
imizer of (6.26) is given by the quasi-Newton L-BFGS algorithm [59]. The code used to
generate the examples shown here is available at

https://github.com/agussomacal/ConDiPINN

The interested reader can reproduce our results and test the impact of the variations of
certain parameters such as ε, K, the sampling method, and the machine precision.

6.4.3 Discussion

6.4.3.1 Impact of the number K of training points

In this section we discuss the impact of the numberK of training points. We fix the machine
precision to Float32, and the uniform sampling −u.

Figure 6.1 shows the best result obtained in the tests, i.e., the minimum value of the h1
norm obtained in the 10 different simulations, plotted against the values of ε. In Figure 6.2,
we fix ϵ = 10, and plot statistics on the accuracy eh1 (left plot) and computation runtimes
for different K (right plot), and for the different methods.

From these figures, we first notice that the approximation of FEM degrades when ε
decreases. However, the accuracy improves when the number of discretization points in-
creases (see, e.g., Figure 6.2 - left plot). The rate of improvement is linear as we can see
from the right plot in Figure 6.2, as expected. In addition, when looking at the runtimes
(Figure 6.2 - right) we observe the expected linear increase with respect to the number K
of discretization points.

We can next study the behavior of Vanilla PINN and compare to FEM. We observe
that it performs at an almost constant accuracy for any number of training points until
around ε = 0.027 where it stops producing reliable approximations (see Figure 6.1). One
remarkable observation is that the Vanilla PINN error for large values of ε and small number
of training points K = 10 is comparable to the FEM errors with a much larger number
of degrees of freedom K > 103 (see left plot in Figure 6.2). However, we observe that
the running times of FEM computations remain much lower than the ones of PINN-based
methods (right plot in Figure 6.2). Note that the low runtime of the FEM approach is due
to the fact that the associated resulting linear system is tridiagonal, and this allows to solve
with a linear cost w.r.t. the number of degrees of freedom.

We next comment on the other PINN-based variational methods. For ε large enough,
we observe that all the variational based methods follow the same error trend as FEM both
with respect to ε and K and for K < 104 they even perform marginally better. With
respect to the computing time, all the methods perform with almost constant time with
respect toK and similarly to a FEMmethod withK = 100 degrees of freedom. However, for
ε < 0.63, the methodsWz,Wz−e and V z blow up and lose completely their approximation
capabilities. We conjecture that this is due to the fact that the neural network is used to
approximate the solution z from the transformed problem, and there is an exponential
term to go back from z to u (see (6.7)). This may lead to machine precision overflows (in
the exponential computation) and underflows (the neural network has to learn very small

https://github.com/agussomacal/ConDiPINN
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values of z which also are in the limits of precision). To address this issue, we have explored
two possible strategies: one was by directly minimizing over u while maintaining the weak
formulation which accounts for the method W . The second approach is to perform the re-
scaling of the domain RWz. In both cases the blow up caused by the exponential is solved
although the re-scaling method RWz doesn’t perform as good as others in the region with
large ε values.

We finish this section by plotting in Figure 6.3 the best approximated solution for each
model, and different values of ε. The interested reader may experiment other configurations
in our provided code. The most striking observation is that only FEM and the vanilla PINN
method recover the final shape of the exact solution when ε is small. The other variational
PINN methods fail despite that some of them exhibit comparable values to FEM in the
generalization errors as Figure 6.1 illustrates. This observations suggests that perhaps other
types of error metrics should be introduced in order to be able to better distinguish between
“good solution shapes” and “bad ones”.

Figure 6.1: Comparison of the behavior of the h1 error for the different methods and different number of
sampling points in training. From top to bottom and from left to right, the first figure is produced for
K = 10, the second for K = 100, the third for K = 1000 and the last one for K = 10000. The set of points
to train and test have been chosen with the uniform sampling method. The precision has been fixed to
Float32 for all the tests.
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Figure 6.2: For ε = 10 (region where all methods work well), we look at the comparison between methods
and the difference with respect to the number of training points K. The h1 error (left) and the computation
times (right). The set of points to train and test have been chosen with the uniform sampling method. The
precision has been chosen as Float32 for all the tests.

Figure 6.3: The best approximated solution out of 10 repetitions, for each model, and with K = 100 training
samples. From left to right: ε = 0.039, 0.18, 10. The interested reader may experiment other configurations
in our provided code.
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6.4.3.2 Impact of Machine Precision

Figure 6.4 shows the h1-error of the different approximated solution by changing the machine
precision in the parameters of the neural networks for the different values of ε: Float16,
Float32 and Float64. There is an improvement when going from Float16 to Float32 in
all methods. Interestingly, we did not obtain very satisfactory results when working with
Float64 precision. This precision seems to difficult the convergence to good quality minima:
even after 10 repetitions, we failed to find good results. However, as the plots show, when
a good minimum is found, it delivers slightly better approximation than lower machine
precisions. For these reasons we have performed our experiments using the Float32 which
seemed the most stable choice.

Figure 6.4: Here, the comparison of the behavior of the model for different float precision. The tests have
been performed for K = 100 and uniform sampling.
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6.4.3.3 Impact of Sampling Strategy

Figure 6.5 shows the h1-error of the different approximated solution by changing the sam-
pling strategy. For all models, the uniform strategy is found to be either as good as the
random or slightly better. For this reason we performed all the experiments using the
uniform strategy.

Figure 6.5: Here, the comparison of the behavior of the model for the two different sampling strategies. The
tests have been performed for K = 100 and the float precision equal to Float32.
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6.4.4 Conclusions from the numerical experiments

The above numerical experiments depict a contrasted landscape concerning the merits and
limitations of deep learning-based approaches when the solutions become low regular:

• For large values of ε when solutions are rather regular, some PINNs perform clearly
better than FEM regarding the generalization errors. The superiority is particularly
remarkable for very small number K of training points. However, the shapes of PINN
solutions are sometimes not as satisfactory as the ones given by FEM.

• For the challenging case where ε becomes small and solutions become less regular
(which was the main motivation of our study), the accuracy of the variational neural-
network methods is essentially comparable or worse to the one given by FEM in terms
of generalization errors. Some PINN variational approaches become too unstable and
the errors blow up. Only FEM and the vanilla PINN approach seem to be able to
recover the correct shape of the exact function. The latter one has however the risk
of sometimes falling into local minima with bad shapes.

• The run-times are clearly in favor of FEM, as Figure 6.2 illustrates, provided one uses
sparse representations of the system matrices. However, the simplicity of implemen-
tation is in favor to all PINN methods.

6.5 Future research directions and extensions
One important point to explore in future works concerns the choice of the loss function for
the training, and also the metric to evaluate generalization errors. It will also be interesting
to explore if adaptive sampling strategies during the training could help to recover good
solutions in a more stable manner. Finally, the impact of the machine precision in some steps
involving exponential transformations seems also to be an important obstacle to retrieving
stable solutions. It would be interesting to develop strategies that circumvent this issue. All
these developments will play a crucial role in order to address higher dimensional problems
with similar characteristics as the one considered here.
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6.A l2 error plots

Figure 6.6: The comparison of the behavior of the l2 error for the different methods and different number of
sampling points in training. From up to down and from left to right, the first figure is produced for K = 10,
the second for K = 100, the third for K = 1000 and the last one for K = 10000. The set of points to train
and test have been chosen with the uniform sampling method. The precision has been chosen as Float32
for all the tests.
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Chapter 7

State estimation of urban air
pollution with statistical, physical,
and super-learning graph models

7.1 Introduction

7.1.1 Background and motivation

Data-driven estimations are becoming increasingly relevant and widespread as the volume
and heterogeneity of available data increases. A fundamental challenge is to build numerical
methods for which one can estimate how optimally they exploit the given information. The
present paper addresses some essential computational aspects connected to this question.
More specifically, our goal is to reconstruct a state u of a physical process, for which we
have at hand very heterogeneous sources of data coming from direct partial observations of
u, from quantities related to u, and from the knowledge that the physics can be modelled
by Partial Differential Equations (PDEs).

Assume that u belongs to some Banach space U of potentially infinite dimension, with
associated norm ∥·∥U , and that all the available information is given by an element xu from
some abstract metric space X . Our goal is thus to build a mapping A : X → U such that
A(xu) approximates u at best, in the sense that the approximation error

e(A, u) = ∥u−A(xu)∥U (7.1)

is as small as possible, for any configuration (u, xu) of the system. In practice, finding the
optimal map A is not feasible, and various suboptimal reconstruction techniques have been
proposed, each of them having its own virtues and drawbacks: statistical approaches such
as BLUE [142] and kriging [57], model order reduction of parametric PDEs [92, 115], or
more recently approximations by neural networks and machine learning strategies [114, 60].
Since all of these strategies are sub-optimal, and each one is based on different a priori
assumptions, one should not make the methods compete against each other, but rather
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collaborate with each other to enhance their respective strengths. This leads naturally to
explore approaches based on ensemble super-learning [34, 152, 131] as we consider in the
present work.

7.1.2 Urban air pollution modelling

There are numerous applications in which one is confronted with the above state estimation
problem. As a guiding example, we consider in this paper the real-time reconstruction of ur-
ban pollution fields. Beyond the relevance of such a task to limit environmental and health
risks in the city, pollution state estimation is an excellent example where collaborative,
super-learning methods are required. This is because the problem accumulates several diffi-
culties that make the reconstruction challenging for most common reconstruction methods.
Among the issues, we may mention the following:

• Scarcity of pollution measurements: The amount of reliable sensor devices measuring
pollutant concentrations is often limited, and the measurements are usually taken
at fixed locations. As a result, reconstruction methods based solely on these mea-
surements lack spatial resolution, and exhibit huge uncertainties in regions without
sensors.

• Heterogeneous data: In addition to the pollutant measurements, other sources of
relevant information are available such as traffic estimations in each street, wind
speed, topography, temperature, etc. However, it is not obvious how to meaningfully
combine this data to enhance the estimation. Some attempts have been tried in [58]
through the use of Gradient Boosting Machines and Universal Krigging, with positive
results for the estimation of PM10 particle levels in the city of Barcelona.

• Lack of training data: Even when incorporating other sources of information, the
available data may be insufficient, noisy or hardly correlated to the pollution levels we
wish to caracterize. Purely data-driven models greatly suffer from these impediments
in their training phase.

• Complexity of the physical problem: The equations governing the dispersion of pol-
lutants in the atmosphere are nonlinear, with turbulent effects at the street scale,
thus imposing a fine spatial resolution, at least near the sensor stations [58]. On the
other hand, the computational domain is of the size of a city, making it prohibitively
expensive to solve a full model like 3D Navier-Stokes equations.

• Parameter calibration: Reduced models use effective parameters, which account for
large-scale averages of local effects, in order to alleviate the requirements on the
resolution. However these parameters must be calibrated based on the available data
or preliminary simulations, which is a hard task given the above issues.

The above obstructions advocate for collaborative strategies combining physics-driven and
data-driven approaches such as the one that we develop in this paper. A similar idea has
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been explored in [117], but for forecasting temporal series of pollutant, instead of performing
state estimation on a large spatial domain.

It should be noted that the limited number of reliable measurements will still pose
problems for validating and assessing the quality of each model, which is a crucial part in
collaborative strategies. We will mitigate this defect by operating multiple leave-one out
cross validations, which preserve as much data as possible for the training part of each
model, while testing them on many instances.

7.1.3 Contributions and layout of the paper

Our main contributions are:

1. the construction of numerous physics-based and data-driven models for state estima-
tion;

2. the construction of a very general ensemble super-learning method combining the
above models;

3. its application to the task of recovering urban pollution maps at a city scale, together
with a comparison of its constitutive submodels;

4. the development of a routine extracting car emissions in each street from traffic maps.
Moreover, we have created a dataset comprised of processed traffic data from Google
Maps screenshots, which can be used for future research.

In our numerical experiments, we work with the inner city of Paris, which covers a
surface of about 140 km2. The pollutant we consider is NO2, which is monitored for its
respiratory effects, while being mainly produced by vehicle emissions. We use concentra-
tion measurements from Airparif sensors1, and real-time traffic data from Google Maps2.
Compared to previous contributions and other existing reconstruction methods (see, e.g.,
[111, 149]), the use of such online traffic data is rather novel. It gives a rough estimation
of the spatial density of street traffic, benefits from a very fine spatial resolution, and can
be freely updated as frequently as desired, in contrast to many existing approaches which
only use time averages of traffic data.

Another distinctive aspect of our approach is the representation of the city by a graph,
where nodes and edges correspond to crossroads and street segments, instead of considering
an open subset of R2 or R3 as the spatial domain. This description immediately includes
geometric specificities of the agglomeration under study, such as the orientation of each
street or the configuration of each neighborhood. It is a natural framework for taking into
account pollutant emissions caused by traffic, which are located on the graph. Moreover, it
is in adequacy with our goal of estimating local variations in the concentration of pollutants
close to the ground, since the streets are isolated from each other at this height.

1We extracted data from the Airparif database, which can be found at https://data-airparif-asso.
opendata.arcgis.com

2The permission to use Google Maps data for non-profit research is stated here: https://about.google/
brand-resource-center/products-and-services/geo-guidelines/#google-maps

https://data-airparif-asso.opendata.arcgis.com
https://data-airparif-asso.opendata.arcgis.com
https://about.google/brand-resource-center/products-and-services/geo-guidelines/#google-maps
https://about.google/brand-resource-center/products-and-services/geo-guidelines/#google-maps
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Physical models can be solved on such domains thanks to the theory of quantum graphs,
that is, metric graphs endowed with a differential operator acting on functions defined on
the graph (see [23] for details and references). The metric graph structure leads to the
definition of suitable and natural function spaces to pose the problem. Of course, several
physical models of different complexity could be considered. In this paper, we work with
simple elliptic operators, obtained by assuming that the emission and diffusion of pollutant
reached a steady state, thus allowing us to treat each time step independently. The model
could however be refined by considering, for instance, advection-reaction-diffusion operators
in a time-dependent setting.

The rest of the paper is organized as follows. In Section 7.2 we present our guiding
numerical example of the Parisian area, and the available data. Section 7.3 explains the
different reconstruction methods we have used for our numerical experiments, including
ensemble super-learning methods combining the previous ones. By construction, the super-
learner has higher approximation power than each individual model. Section 7.4 discusses
how to theoretically quantify performance and optimality of the numerical algorithms, and
why leave-one-out is a good way to estimate this performance in practice. We summarize our
numerical experiments and provide some illustrations in Section 7.5. Finally, Section 7.A
details the mathematical setting for the problem of pollution state estimation on graphs.

7.2 Available data and pre-processing

7.2.1 Pollution sensors

The main information we use consists of direct measurements of the NO2 concentration
field u at Airparif sensor stations. There are m = 13 such stations, which are placed at
fixed locations

robs := {robs1 , . . . , robsm } ∈ (R2)m, (7.2)

see Figure 7.1. Each of the stations provides hourly averages of the concentration of nitrogen
dioxide, in µg/m3, of the form

zi = u(robsi ) + ηi, i = 1, . . . ,m,

where ηi is some noise in the measurements, with nominal relative error |ηi|/u(robsi ) ⩽ 15%.
Note that, in principle, the equations governing the dispersion of pollutants are time

dependent. However, as we only have measurements every hour, we opt for a static model,
where the state at a given time is computed based on the data available at this time only.
This essentially amounts to assuming that the emissions vary slowly over time, and that
the system reaches an equilibrium state in less than one hour.

7.2.2 Meteorological conditions

Wind, as well as stratification effects in the atmosphere due to variations in temperature,
play a major role in the dispersion of pollutants [41]. Moreover, the chemical equilibrium
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Figure 7.1: Cropped Google Map screenshot of Paris and the m = 13 available stations in the study: red
dots represent the projection of the station locations to the nearest vertex in the graph of streets, while the
blue crosses correspond to the exact position of the station.

between NO and NO2 depends on the cloud cover [105]. Therefore, we collect the temper-
ature θ ∈ R and the wind speed w ∈ R2 at every hour from a weather archive 3. These
two quantities are measured at one point above the Seine river, near the Eiffel tower, and
treated as global, that is, they are assumed to be constant over the spatial domain, apart
from possible local effects at the level of each street.

7.2.3 Traffic

Car traffic is responsible for more than half the emissions of NO2 in urban environments
[102]. There is an increasing number of available sources that give access to traffic data. In
our case, we work with traffic information extracted from Google Maps. We have designed
a script using the Python library Selenium to automatically take screenshots of Paris every
15 minutes over an area of 1253× 1253 pixels with zoom level 13. An example of resulting
raw image can be seen in Figure 7.2. Note that city landmarks could not be removed before
taking the screenshot, nor even by substracting a background image, since each screenshot
has slight color variations, rendering this approach impractical. Another issue is the absence
of traffic data in the smallest streets of the city. In addition, linking it to the pollution field
requires some calibration.

On the one hand, this kind of information is very rich because of its availability in real
time, and its spatial coverage of the whole city at high resolution. On the other hand, it is

3See https://www.windguru.cz. For the wind, we combined the absolute wind speed with the wind
direction to obtain a vector in R2.

https://www.windguru.cz
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Figure 7.2: Raw data from Google Maps: the image contains the city with its main landmarks, and some
streets are highlighted with one of the four colors corresponding to traffic.

very partial: it comes in the form of four colors, each representing a certain traffic intensity,
which gives a qualitative estimate of the number of cars in each street: a street marked in
red is, for instance, more congested than one marked in green. One main goal in our work is
to examine the potential of incorporating such low-quality information for state estimation
tasks.

7.2.4 Graph of Paris

In order to locate our sources and to express the spatial dependence of a state, we consider
a graph domain with streets as edges and intersections as vertices. We use a metric graph
G = (V,E) provided by Open Street Maps, together with the Python library osmnx. For
the mathematical definition of metric graphs and their associated function spaces, we refer
to Section 7.A. The graph G covers the whole inner ring of the city, as shown in Figure 7.3.
The full graph has |V| = 12963 vertices and |E| = 25476 edges, but we restrict it to the
biggest connected component of the subgraph that remains after filtering out all the edges
which have never been colored with traffic information. After this operation, our actual
graph has |V| = 10116 vertices and |E| = 18713 edges. The street network is relatively
dense, most nodes having 3 to 6 edges.

The vertices v ∈ V come with precise geographical coordinates. In the following, we
assume that the graph is embedded in the two-dimensional plane, and do not take altitude
into account. Each edge e ∈ E is a street or a portion of it, and we have access to its length
ℓe as well as its shape, number of lanes and speed limit. The information is so detailed
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Figure 7.3: The metric graph downloaded from Open Street Maps, with the edges that never had Google
Traffic activation in red, and the edges remaining after filtration in yellow.

that the streets are represented by paths that are not necessarily straight lines. However,
in the following, we replace every street path by a straight line between its endpoints, for
simplicity.

The location of the sensor stations is known, but does not exactly match with vertices
of the graph. We therefore project the positions robs from (7.2) onto the nearest vertices,
which yields observational nodes

vobsi := argmin
v∈V

|robsi − v|, i = 1, . . . ,m.

As Figure 7.1 illustrates, the projected locations are very close to the exact locations, with a
maximal discrepancy of 165m, to be compared with the width of the domain, of about 12km.
As a consequence, we will assume that the observations zi correspond to the values u(vobsi ),
up to a slight increase in the measurement errors, since ηi is replaced by ηi+u(robsi )−u(vobsi ).
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7.2.5 Pre-processing of traffic data

We also map the traffic information onto pollutant emissions on the graph edges, by imple-
menting the following pipeline:

• Cropping: Starting from a raw image like Figure 7.2, we first crop it to the shape
800× 1000, in order to eliminate toolbars and adapt it to the size of the graph. The
background of Figure 7.1 is obtained by the same procedure.

• Traffic colors extraction: The colors associated with the four levels of traffic

colors := {green, orange, red, dark-red}

are easily identified4. They seem to be used exclusively for that purpose, hence it
suffices to extract the pixels having one of these colors.

• Projection on graph edges: These pixels, once expressed in their geographical
coordinates, almost perfectly overlap the metric graph from Open Street Maps. For
each edge e ∈ E and each color c ∈ colors, we count the number pec of pixels of color
c that are closest to edge e. Note that the traffic color might change along an edge, in
which case we give up on some local information by only considering the total traffic
on the edge.

• Edge normalization: We then transform these pixel counts into proportions of
traffic colors on each edge. As the edges may remain blank at times where there is no
traffic, we take as a normalizing constant the maximal amount of pixels encountered
over all times T for which we collect traffic data:

qec(t) =
pec(t)

maxt′∈T
∑

c′∈colors p
e
c′(t′)

, t ∈ T.

In this way, qec(t) ∈ [0, 1] indicates the proportion of edge e colored with c at time t,
but remains null if no traffic is reported.

• Hourly averaging: As the pollution information is only available every hour, we
take the average of the four values of qec encountered every fifteen minutes, which we
still denote qec in the sequel.

• Projection on graph nodes: In our models, it is in fact simpler to localize emissions
on the nodes of the graph. For this reason, we calculate the density of each traffic
color c around a vertex v ∈ V as a weighted average on its neighboring edges E(v)

qvc(t) =
∑

e∈E(v) aeq
e
c(t)∑

e∈E(v) ae
,

4The RGB value of each color is given by: green = (99, 214, 104), orange = (255, 151, 77),
red = (242, 60, 50), dark-red = (129, 31, 31)
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where ae stands for the area of the road associated to edge e, given by the product of
its length ℓe with the number of lanes.

7.2.6 Summary

While the history of sensor and weather data can be found on archives, our script for
capturing traffic images only runs in real time, since Google Traffic only provides current
information. We collected all types of data on an hourly basis for a period of time comprised
between December 9, 2022 and March 19, 2023. After removing time stamps for which some
data was missing, we end up with a set of acquisition times T , of cardinality |T | = 1712,
which we divide into a set Ttrain of 1338 training times, and a set Ttest of 374 testing times.

In the end, given the graph G = (V,E), the available information at any time t ∈ T is
of the form

x = (vobs, z, θ, w, (qvc)c,v) ∈ X = Vm × Rm × R× R2 × R4|V|. (7.3)

In the next section, we present various models to estimate the pollution field from this
data, using either statistical inference, linear mappings based on expert knowledge, or neural
networks.

7.3 Reconstruction methods

We have implemented several methods of state estimation by leveraging the different in-
formation sources. Our methods give reconstructions on the metric graph G, that is, we
consider mappings A : X → U where U is a space of functions defined on G. Typical
examples are U = C(G), L2(G) or H1(G), as defined in Section 7.A. As our main interest is
in assessing the effect of incorporating indirect information like the real-time traffic data,
we first consider models that take only a portion of x ∈ X as input.

7.3.1 Spatial average

If we give up on all the spatially-dependent data vobs and (qec)c,e, the reconstruction is
necessarily constant over the whole domain G, which yields no better choice than the average
of the observed concentration values

Aavg(x)(r) = z̄ = 1
m

m∑
i=1

zi, ∀r ∈ G.

This extremely simple reconstruction will serve as our baseline to compare more sophisti-
cated reconstructions. In the sequel, we will add the spatially-dependent data and view
the other models as corrections to the spatial average above. This will result in spatially
unbiased estimators, provided that the locations of the sensors are representative of the
whole pollution field. More precisely, assuming that the stations are randomly drawn ac-
cording to the uniform probability distribution µ on G, the expectation over z1, . . . , zm of
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the spatially-averaged error is

Ez
(ˆ

G

(
u(r)−Aavg(x)(r)

)
dµ(r)

)
=
ˆ
G
u dµ− Ez

(
1
m

m∑
i=1

zi

)
= 0,

and this remains true when adding to Aavg a correction of vanishing expectation.

7.3.2 Best unbiased linear estimator

If we only want to estimate a missing measurement zi at a given station i ∈ {1, . . . ,m},
we may also use statistical information stemming from the history (zti) of the station at
previous times t, as well as the observations from other stations j ̸= i in the present and
the past, denoted respectively zj and (ztj). For Ttrain the set of training times, define the
empirical average

⟨zi⟩ :=
1

|Ttrain|
∑

t∈Ttrain

zti

and empirical covariance matrix K ∈ Rm×m with entries

Ki,j :=
〈(
zi − ⟨zi⟩

)(
zj − ⟨zj⟩

)〉
= ⟨zizj⟩ − ⟨zi⟩⟨zj⟩.

Any unbiased linear estimator z̃i of zi is of the form

z̃i = ⟨zi⟩+
∑
j ̸=i

cj
(
zj − ⟨zj⟩

)
,

for some coefficients (cj)j ̸=i. Let c ∈ Rm be the vector with coordinates cj for j ̸= i and
ci = −1. Then the best linear unbiased estimator (BLUE) is obtained by optimizing the
averaged squared error

argmin
(cj)j ̸=i

〈(
z̃i − zi

)2〉 = argmin
(cj)j ̸=i

c⊤Kc =
[
(Kj,k)j,k ̸=i

]−1(Kj,i)j ̸=i,

where (Kj,k)j,k ̸=i and (Kj,i)j ̸=i are seen as a matrix in R(m−1)×(m−1) and a vector in Rm−1.
If the set of training times Ttrain is large enough, we expect an ergodicity property of

the form ⟨zi⟩ ≈ E(zi) to hold. For this reason, BLUE should be a near minimizer of the
expected squared error, given the available data. Therefore, in the numerical experiments,
we will evaluate the different methods A by comparing A(x \ {zi})(zi) and zi, and the error
|z̃i − zi|2 will act as an optimality benchmark.

It should be emphasized that BLUE itself is not a valid reconstruction method, since it
requires statistical information which is accessible only at the locations of the stations vobsi .
Hence this estimator cannot be computed at any point r ∈ G of the graph domain.
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7.3.3 Kriging

In order to transform BLUE into a reconstruction method, one needs to propose a surrogate
for the correlation between any two points in the graph. Moreover, as we don’t know the
average pollution at all points of the graph, we proceed without subtracting spatial averages
⟨zi⟩ in this subsection, in contrast to the previous one. Therefore, we consider the Gram
matrix of normalized second-order moments

Gi,j =
⟨zizj⟩√
⟨z2i ⟩⟨z2j ⟩

.

Taking the positions vobs of the stations into account, we observe that each entry Gi,j
partly depends on the distance |vobsi − vobsj | between the stations, see Figure 7.4. A typical
choice of approximant is the Gaussian kernel

Gi,j ≈ Ĝi,j := C exp
(
−
|vobsi − vobsj |2

2σ2

)
+ (1− C)δi,j ,

with parameter values C = 0.968 and σ = 33.4km obtained by fitting the station data in
our case.
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Figure 7.4: Correlation between stations as a function of the distance. The vertical slashed red line marks
the maximal separation between vertex and station (165m) which still lays in the zone of high correlation.

Remark 7.3.1. The fact that C < 1 can be interpreted as the presence of random noise ηi
on the measurements zi = u(vobsi ) + ηi. As a safety check, one may notice that the average
relative error

⟨η2i ⟩
⟨u(vobsi )2⟩

= ⟨z2i ⟩
⟨u(vobsi )2⟩

− 1 ≈ 1
C

− 1 = 3.31%
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is effectively much smaller than the uniform error guarantee ∥ηi/|u(robsi )∥L∞ ⩽ 15% that
we discussed in Section 7.2.1. Adding the matrix (1 − C)I ensures that Ĝ has ones on
its diagonal, as expected of a correlation matrix, and regularizes the system, by making
the inversion of Ĝ stable. More practically, the reconstructed value A(x)(vobsi ) will not be
exactly zi, but rather an average of the measurements close to vobsi .

Let r ∈ G, we again examine a linear model

Akrig(x)(r) =
m∑
i=1

cri zi,

with coefficients cr ∈ Rm to be determined. This estimator is unbiased if and only if∑m
i=1 c

r
i = 1, and in that case we can write it as a correction to the temporal or spatial

average

Akrig(x)(r) = ⟨Akrig(x)(r)⟩+
m∑
i=1

cri (zi − ⟨zi⟩) = z̄ +
m∑
i=1

(
cri −

1
m

)
(zi − z̄).

By analogy with BLUE, we thus define the weights as the renormalized solution of a system
of correlation equation

cr = ĉr∑m
i=1 ĉ

r
i

, ĉr = Ĝ−1gr, gri = C exp
(
−|vobsi − r|2

2σ2

)
.

Although there are no optimality guarantees, we expect kriging to have intermediate per-
formance when compared to the spatial average baseline, and to the ideal BLUE recon-
struction. However, due to the important spacing between peripheral stations, we only
observe an improvement in the central part of Paris. The insufficient density of pollution
measurements calls for models involving other sources of information, such as traffic data.
This is the objective of the next two subsections.

7.3.4 Source model

The simplest way to incorporate traffic data consists in using only local values qec for esti-
mating the pollution on an edge e ∈ E, or qvc for a node v ∈ V. As we projected the station
locations on V, we focus on the latter case here. We call such a method a source model,
since it directly maps the sources of emission to pollution values.

We opt for a linear model acting as a correction on the spatial average baseline:

Asrc(x)(v) = z̄ +
∑

c∈colors
αc(qvc − q̄), (7.4)

where we subtracted the spatial average of traffic q̄ for unbiasedness. The vector of coeffi-
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cients α ∈ R4 is found by solving a LASSO problem

min
α∈R4

∑
t∈Ttrain

m∑
i=1

|zti −Asrc(x(t))(vobsi )|2 + λ∥α∥1,

and we perform a cross-validation to estimate the optimal parameter λ, in order to prevent
overfitting.

Alternatively, we can also write nonlinear variants, of the form

Asrc(x)(v) = z̄ + Tα ((qvc), θ, w) , (7.5)

which may take into account other sources of information like temperature θ and wind w.
Here, T : R#α×R4×R×R2 → R can be a polynomial combination of the inputs ((qvc), θ, w),
a neural network, or any other nonlinear mapping. The set of parameters α is no longer
associated to the four traffic colors, but still needs to be learned via a LASSO regression.

All such models rely on the assumption that pollution depends on its sources in a very
localized manner. However, the traffic charts (qvc)v∈V exhibit sharp variations from one
node to its neighbors, which incites to smooth the emissions before applying the above
methods. This is the purpose of the following section, which attempts to model such a
diffusive behavior.

7.3.5 Physical modelling

An important inspiration for reconstruction methods comes from the physical modelling
of pollution dispersion. In our setting, we resort to building a quantum graph, that is, we
endow our metric graph G with a differential operator acting on functions from functional
spaces such as L2(G) or H1(G), as defined in Section 7.A (we also refer to [23] for more
details and references). Our approach can be summarized as follows:

Elliptic equation: One can first model pollution with a time-independent elliptic equa-
tion, by assuming that all time-dependent parameters have sufficiently slow variations, here
over the course of an hour, for the pollution field to reach a steady state. For any point
r ∈ G, the pollutant concentration is modelled by a function u : G → R solution to the
diffusion-reaction equation

P(u) := − d
dr ·

(
a(r) ddru(t, r)

)
+ h(r)u(r) = q(r), r ∈ G, (7.6)

which we choose to complement with “Newmann-Kirchoff” conditions on the vertices, that
is, ∑

e∈E(v)

du
dr

∣∣∣
e
(v) = 0, v ∈ V, (7.7)

expressing the conservation of the quantity of pollutant at every crossroad v ∈ V. Here,
E(v) denotes the edges having v as an endpoint, and the derivatives are assumed to be taken
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in the directions away from the vertex.
In (7.6), the function a ∈ L∞(G) is an effective diffusion coefficient, which takes into

account turbulent dissipative effects. The absorption coefficient h ∈ L∞(G) models the
leakage of pollutants from the streets to the higher atmosphere, as well as chemical reaction,
in particular between NO2 and other nitrogen oxides, which are not measured by the sensors.
Lastly, the source term q ∈ L2(G) models all possible emissions of pollutant, which in the
case of Paris essentially come from traffic, local heating, and industrial and urban activity
outside the city. As we only have access to local traffic data, we assume that the other
sources are spatially constant, and average them out by solving P(u− ū) = q − q̄, where ū
is the spatial average of the pollutant concentration, estimated by Aavg(x) = z̄, and q − q̄
corresponds to the variations of traffic around its spatial average, computed through the
procedure from Sections 7.2.5 and 7.3.4.

Remark 7.3.2. Equation (7.7) has a similar effect as Newmann conditions at the borders
of the spatial region under consideration, here the rectangle contour of Figure 7.1. Therefore
the only exchanges with the exterior of this region are contained in the source term q. As this
no-flux condition only give a very rough approximation of the solution close to the border,
in the numerical experiments of Section 7.5, we will concentrate on the accurate prediction
of the pollution in the central part of the city.

Variational formulation: The operator P(u) in (7.6) is defined for functions u ∈ H2(G),
but the equation can be stated in a weak form, which only requires that u ∈ H1(G).
Multiplying (7.6) by a sufficiently smooth test function v ∈ H1(G), and using the Kirchoff-
Neumann boundary conditions, it follows that the corresponding weak formulation of the
problem is to find u ∈ H1(G) such that

b(u, v) = f(v), v ∈ H1(G) (7.8)

where b is the symmetric bilinear form defined as

H1(G)2 → R

b : (u, v) 7→
∑

e∈E

{ˆ
e
a(r)dudr (r)

dv
dr (r)dr +

ˆ
e
h(r)u(r)v(r)dr

}
and f : v ∈ H1(G) 7→

∑
e∈E
´
e q(r)v(r)dr is a continuous linear form.

Assuming that a(r) ⩾ a0 > 0 and h(r) ⩾ h0 > 0 for r ∈ G a.e., we see that b
is continuous and coercive in H1(G) with coercivity constant min(a0, h0), and continuity
constant max(∥a∥L∞(G), ∥h∥L∞(G)). By the Lax-Milgram theorem, problem (7.8) admits a
unique solution u ∈ H1(G).

Discretization: In our numerical tests, we discretize the equation with P1 finite elements,
that is, continuous functions whose restriction to any edge is affine. We describe below the
main guidelines, and refer to [10] for further details and a complete analysis.
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We define the set of hat functions {ϕv}v∈V by ϕv(v′) = δv,v′ for any vertices v, v′ ∈ V,
and

∀xe ∈ [0, ℓe], ϕv(xe) =
{
1− xe

ℓe
, if e ∈ E(v),

0, if e ̸∈ E(v),

for any edge e ∈ E. Fixing our finite element space P1 = span{ϕv}v∈V ⊂ H1(G), we search
for the Galerkin solution û =

∑
v∈V cvϕv ∈ P1 such that

b(û, v̂) = f(v̂), v̂ ∈ P1.

Gathering the expansion coefficients of the solution in the vector c = {cv}v∈V, we obtain
the linear system of equations

B c = f (7.9)

with B = (b(ϕv, ϕv′))v,v′∈V and f = (f(ϕv))v∈V. Again by Lax-Milgram theory, this system
is invertible, which allows to compute the solution û.

Reduced models: Unfortunately, solving Equation (7.9) is expensive, given the size
|V| ≈ 104 of the graph, so we cannot afford to find û at each time step. In order to mitigate
the computational cost, we rely on model order reduction techniques, which have received
much attention in the context of parametrized elliptic PDEs [52, 54, 71, 92, 140, 161].
Here, the parameters would be the diffusion a, the reaction h, and the right-hand side q.
We consider three reconstructions methods.

1. Eigenstates of the graph Laplacian: One option consists in taking as a reduced
model the subspace Vn ⊂ H1(G) spanned by the n first eigenfunctions of the Laplacian
in P1. As this operator is self-adjoint and coercive, it admits a spectral decomposition
with positive eigenvalues, and the coefficients of the eigenstates in the basis {ϕv}v∈V
are the eigenvectors of B. Assuming that the diffusion and reaction coefficients a
and h are constants calibrated in a pre-processing phase, we define the reconstruction
mapping A : X → H1(G) by taking û = A(q) the Galerkin projection of u onto Vn,
that is, by searching û ∈ Vn solution to

b(û, v̂) = f(v̂), v̂ ∈ Vn,

which is simply a diagonal system in the eigenstate basis. We then plug û instead of
q in equation (7.4) or (7.5), and learn the coefficients associated to each color, or the
more general parameters α.

2. Principal components of traffic data: Starting with the whole history of traffic
data (q(t))t∈T ∈ R|T |×|V|, we can also perform a singular value decomposition to find
the n first modes q1, . . . , qn, compute the solutions to P(uk) = qk, and assemble
them in a reduced space Vn = span{u1, . . . , un}. In this way, we expect Vn to better
capture physical properties of the pollution field, such as strong correlations along a
large avenue.
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As full-order solves remain costly, we resort to a convolution with a gaussian kernel:

(uk)vc =
∑

v′∈V e
−d2vv′/2δ

2(qk)v
′
c φv′∑

v′∈V e
−d2vv′/2δ

2

where dvv′ = |v − v′| is the distance in R2 (which is equivalent, up to constants, to
the distance on the graph). We set δ = 400m, after observing that pollution data is
optimally correlated to regularized traffic information for δ close to this value.

In our experiments, we perform the smoothed projections q 7→ û =
∑n

k=1⟨q, qk⟩uk
into a different reduced space for each of the four traffic colors. After this operation,
we can apply any of the strategies described in Section 7.3.4 to û instead of q.

These two methods regularize the traffic data, but they do not exploit the information
from the pollution sensors, apart from the average value z̄. In order to assimilate data of
both types, it is possible to use a combined least-squares fit of the form

A(x) = argmin
v̂∈Vn

∥z − v̂(vobs)∥22 + λ′∥q − q̂∥2ℓ2(V),

where λ′ > 0 balances the contributions of z and q, and q̂ = P(v̂) =
∑n

k=1 ĉkqk for the
coefficients ĉ ∈ Rn such that v̂ =

∑n
k=1 ĉkuk. However, this approach requires tuning

an additional parameter λ′, and creates spatial correlations in the pollution output based
on the traffic history, without taking distances into account. These non-local effects are
amplified by the noise in the data. As the method did not perform well in practice, we did
not include it in the numerical experiments.

In the last method, if m ⩾ n and λ′ tends to 0, the prediction û does a least squares
fit of u at the available measurement points vobsi . In general, it is possible to enforce
û(vobs) = u(vobs) by applying a correction to the prediction. This post-process, called
Parameterized Background Data-Weak method, was originally introduced in [108] and has
been analyzed and extended in a series of papers such as [26, 47, 48, 50]. The whole
approach has found numerous applications, including pollution dispersion [87].

It would of course be possible to gain in accuracy, by considering more refined equations
for pollution dispersion, which capture additional physical properties, and thus by encoding
these properties into the reduced space Vn. One could for instance think of advection by
wind, vertical fluxes or stratification of the atmosphere depending on the temperatures,
changes in the chemical equilibrium between NO and NO2 caused by cloud coverage and
precipitations [105], as well as local turbulent effects near the sensor stations. Note that,
if nonlinear equations are involved, Vn can be a nonlinear approximation space defined
through a chart of n parameters, and approximation guarantees are more difficult to obtain
[50].
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7.3.6 Super-Learning as a collaborative approach

To gain in accuracy over each individual model, one can combine a set of p available
mappings A1, . . . , Ap coming from the previous methods, and build a super-learner

F(X ,U)p −→ F(X ,U)
S : (A1, . . . , Ap) 7−→ S(A1, . . . , Ap),

where F(X ,U) denotes the set of functions from X to U . The most simple merger, usually
called aggregator in statistics, amounts to taking a linear combination

Sω(A1, . . . , Ap) =
p∑
i=1

ωiAi,

for some weights ω = (ω1, . . . , ωp) expressing the confidence in each individual model.
More sophisticated strategies involve nonlinear combinations and compositional struc-

ture. One could think of using a first model to obtain a rough estimation, and compose
it with a second model performing refinements based on its output. This is already an
underlying idea in our constructions, where we start with the spatial average, and add
spatially-dependent corrections. The physical models involve one more compositional step,
since they are of the form Asrc ◦ û(q).

Neural networks constitute another prominent example of nonlinear super-learners: one
could treat A1(x), . . . , Ap(x) as inputs, and train the parameters ω by minimizing an empir-
ical loss. We would like to emphasize here that properly training the super-learner requires
to implement a nested leave-one-out strategy: one should first train each parametrized
submodel by leave-one-out, and then optimize the neural network with another leave-one-
out step, in order to avoid overfitting. As a consequence, at least two observation points
are removed from the training set of the submodels, which may cause a loss of accuracy,
especially when the number m of observations is small.

In our application, the advantage provided by nonlinear approaches was limited, and the
neural network super-learner performed slightly worse than its linear counterpart, which
should come as no surprise in view of the above observation.

7.4 Reconstruction benchmarks and Leave-One-Out

There are several ways to quantify the quality of a reconstruction map A : X → U . Ideally,
given a state u ∈ U and the associated observations x ∈ X , one would like to find A such
that the error ∥u−A(x)∥U is as small as possible. Assuming that (u, x) is a random variable
with distribution π ∈ Prob(U × X ), we define the performance of A as the L2 norm of the
error

e(A)2 :=
ˆ
U×X

∥u−A(x)∥2U dπ(u, x),

which acts as a good compromise between the L∞ worst-case error and the L1 average error.
In addition, although the state u has in principle H2 regularity, we asses the spatial error
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also in L2, that is, we take U = L2(G). Unfortunately, finding A minimizing e(A) is out
of reach for several reasons. First, we don’t know the distribution π, nor even its support,
which is the set of all possible states and observations. Second, given u ∈ U , we cannot
evaluate u(r) at any point r ∈ G, making the computation of ∥u−A(xu)∥U intractable.

Concerning the first issue, as we have access to hourly data on a large period of time,
we can replace the integral over π by an empirical average

e(A)2 ≈ 1
Ttest

∑
t∈Ttest

∥u(t)−A(x)(t)∥2U

over the set Ttest of 374 test times. Assuming that these states are independent, this
approximation induces an error of order

E(∥u∥2U )1/2√
|Ttest|

≈ 41
19.3 ≈ 2.1µg/m3,

which is totally acceptable in view of the noise level on the measurements.
The second obstacle is more tricky, because we only know u at a very limited number

m of fixed positions, and because these observations are also needed for constructing A.
Ignoring the last issue leads to an systematic underestimation of e(A), as we detail below.

Assume that the observation points vobsi are distributed uniformly at random on G,
define the discrete semi-norm

∥u∥2m = 1
m

m∑
i=1

|u(vobsi )|2

corresponding to an empirical version of ∥u∥2U , and consider map A solution to

min
A:X→Vn linear

1
Ttrain

∑
t∈Ttrain

∥u−A(x)∥2m

for some linear space Vn ⊂ U of dimension n. This setting is valid for most of our methods,
with Vn the set of constant functions in the case of Aavg (of dimension n = 1), but also
Vn = span{r 7→ cri }1⩽i⩽m in the case of Akrig (of dimension n = m), and Vn the reduced
basis in the methods based on physical modeling.

Then, for A∗ the optimal map taking values in Vn

A∗ = argmin
A′:X→Vn linear

E(∥u−A′(x)∥2U ) = Eπ(u|x),

we obtain, by applying Pythagoras theorem both for ∥ · ∥U and ∥ · ∥m,

e(A)2 = E(∥u−A(x)∥2U ) ⩾ E(∥u−A∗(x)∥2U ) = E(∥u−A∗(x)∥2m) ⩾ E(∥u−A(x)∥2m),

where the central equality comes from the assumption that the vobsi are random. This
proves that ∥u − A(x)∥2m is a biased estimator for e(A)2 as soon as one of the inequalities
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is strict, that is, as soon as A(x) ̸= A∗(x). Note that separating the training and test
data by splitting the set of time indices T is not sufficient, since the algorithm will then fit
its prediction to the station locations, without generalization guarantees to the rest of the
domain G.

As a consequence, we must separate the stations into a training set and test points.
In order to compute an unbiased estimator of e(A)2 with minimal variance, while keeping
the maximal number of stations in the training set, we proceed to leave-one-out cross-
validation. This procedure is very standard and has been used in other works on pollution
reconstruction, such as [58]. For 1 ⩽ i ⩽ m, denote

∥u∥2m\i =
1

m− 1
∑
j ̸=i

|u(vobsj )|2 and Ai = argmin
A:X→Vn linear

1
Ttrain

∑
t∈Ttrain

∥u−A(x)∥2m\i.

Assuming that the station locations are independent random variables, the cross-validation
estimator of the error

eCV(A)2 :=
1

Ttest

∑
t∈Ttest

1
m

m∑
i=1

|u(vobsi )−Ai(vobsi )|2

is unbiased, since

E(eCV(A)2) = E(|u(vobsi )−Ai(vobsi )|2) = E(∥u−Ai(x)∥2U ) = e(A),

with the difference that x contains only m− 1 direct evaluations of u this time.

7.5 Numerical results

We have implemented and tested numerous variants and combinations of the models from
Section 7.3. This was done thanks to a Python code we have developed, which can be
found at https://github.com/agussomacal/CityPollutionModeling. The interested
user could add its own models for further testing. In this section, we summarize the most
important results that emerge from our tests. We report on the performance of the following
reconstruction strategies:

• Spatial average: We take a simple spatial average, as in Section 7.3.1. The resulting
error serves as a baseline, which we expect to beat with the other more sophisticated
models.

• BLUE: As explained in Section 7.3.2, BLUE can be seen as an estimate of the optimal
linear reconstruction method. It can be used as a benchmark of the best performance
that we can expect of linear methods. Note that, in principle, nonlinear strategies
could be more accurate than BLUE. However, we will see in our experiments that
none of our methods achieves such accuracy.

• Kriging: We apply the kriging method depicted in Section 7.3.3 with an exponential

https://github.com/agussomacal/CityPollutionModeling
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kernel. The parameters σ and C are obtained by fitting an exponential to the corre-
lation between training stations (that is, we do not into account correlations with the
station that is set aside for testing) as a function of their distance (see Figure 7.4).

• Source: We apply a linear source model, as described in Section 7.3.4, with temper-
ature θ and wind w as extra regressor variables.

• Physical-PCA: We apply the second physical model from Section 7.3.5, using a
gaussian kernel to smooth the node traffic data. The four reduced spaces Vn, associ-
ated to the four traffic colors, each consist of the first 10 principal components of the
corresponding traffic data, as observed in the training set. After the smoothing and
projection operations, we assemble the variables θ, w and the qvc on each node v into
a vector s = (qvgreen, qvorange, qvred, qvdark-red, θ, w) ∈ R6 and build a polynomial model of
degree 2:

Tα(s) :=
6∑
j=1

αjsj +
6∑

j,k=1
αjksjsk,

where α ∈ R42 is computed following the lines of Section 7.3.4.

• Physical-Laplacian: We apply the first physical model from Section 7.3.5, with
the reduced space consisting of the first 5 eigenvectors of the graph laplacian. After
projection into the subspace, we take the 4-colour traffic values on each node (qnc )·,i
and obtain their degree-3 polynomial combinations. Finally we apply a neural network
consisting of two hidden layers of 20 neurons each and a ReLU activation function.
The neural network is trained with ADAM optimizer with early stopping to prevent
overfitting.

• Ensemble: We apply an ensemble model, as described in Section 7.3.6, combining
the Kriging method Akrig, the Source model Asrc and the Physical-Laplacian model
Alapl. We train each of them separately and compute the following linear combination:

Aens(x)(r) = ω(r)Akrig(x)(r) +
1− ω(r)

2 Asrc(x)(r) +
1− ω(r)

2 Alapl(x)(r),

with a weight function ω(r) = exp(min1⩽i⩽m |r − vobsi |/δ), where δ = 800m. Essen-
tially, we favour Kriging when r is close to one of the sensor stations, and average the
predictions of models using local or global traffic information otherwise.

In Figure 7.5, we show the root mean square error (in µg/m3) for each model’s predic-
tions on the test times Ttest and tested stations i:

eRMSE(A, i) :=
(

1
Ttest

∑
t∈Ttest

|u(vobsi )−Ai(vobsi )|2
)1/2

.

Note that the cross-validation error eCV(A) from Section 7.4 is just the ℓ2-average of these
errors over all stations. For the tests, we only keep the 10 stations located in the interior of
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Paris. The remaining 3 are set aside because they have a significant proportion of missing
values (in average 10% of the data is lacking in each of these stations), and because they lay
close to the border of the image, making the surrounding traffic information incomplete.

The shaded blue area is the region corresponding to errors smaller than the reference
BLUE model. On the opposite side, the shaded red area marks situations in which the
prediction is worse that the spatial average baseline. The white margin in between indicates
the region where we expect feasible improvements.

We first notice that using a linear source model already yields reliable improvements
with respect to the spatial average baseline. It fails, however, in HAUS and OPERA stations
due to the absence of traffic information around the former, as the Google Maps symbol
for the Paris Opera is drawn over the location of the sensor. This affects the predictions on
both stations but most prominently on HAUS. This problem can be alleviated if we average
traffic information over a bigger region, as done in Pysical-PCA thanks to the Gaussian
smoothing, at the expense of losing precision on other stations like PA18.

TheKriging model manages to produce enhanced predictions in both HAUS and OPERA
stations because of their proximity and correspondingly high correlation in pollution val-
ues. However, for other stations, especially those further from the center, the performance
highly deteriorates.

With the Physical-Laplacian model, we get further improvements in 6 stations compared
to the linear source model, while losing some advantage in the remaining 4. Finally, the
ensemble method, by combining two traffic models and the Kriging method, manages to
exploit the advantages of each in a pretty decent way. It yields predictions that beat or equal
the spatial average baseline on all stations, and that reach the best average error among all
our tested methods. In Figure 7.6, we show an example of pollution maps generated with
this last model.

7.6 Conclusion and future works

In this work, we have shown that it is possible to leverage pollution sensor data, meteo-
rological information and Google Traffic images to create pollution maps in real time. In
particular, we explained how to build statistical, physics-based and ensemble reconstruc-
tion strategies by posing the problem of pollution state estimation on metric and quantum
graphs. Furthermore, the right combination of these techniques produced systematic im-
provements over the proposed baselines, namely the Spatial average and Kriging.

Neither our linear reconstruction strategies nor our nonlinear ones could beat the BLUE
benchmark that indicates the accuracy of the best linear estimator. We conjecture that this
is due to the limited amount of stations giving us spatial information on the pollution field,
and to the indirect nature of traffic data. Regarding the last point, even though the volume
of traffic information is large, it still remains of reduced utility. This is due to the fact that
we only measure the fluidity of traffic, instead of the actual amount of passing vehicles,
which is the relevant variable directly impacting emissions. One can then hope to obtain
further improvements by following a similar approach with better suited data.

Another limitation is the unavailability of local pollution averages for the city of Paris.



200 CHAPTER 7. State estimation of urban air pollution

Figure 7.5: Root mean square error on tested stations for the different proposed methods

Having access to this kind of data through intensive measurement campaigns lasting a few
weeks, but employing hundreds to thousands of sensors, as done in [58] for the city of
Barcelona, would give a much more precise baseline, and allow to learn corrections to the
local average instead of the global one.

Finally, in setting the problem on the graph, we did not take into account the vicinity
of open spaces like parks or rivers, nor the topology and variations in altitude. This is
particularly visible in Figure 7.6, where the parks of Boulogne and Vincennes are colored
in red because of the surrounding highways, and the absence of small internal streets. We
leave the inclusion of such relevant features to future studies.
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7.A Metric graphs
Here we recall several notions about graphs that are necessary in our developments. The
presentation is based on the book [23], which provides a comprehensive introduction to
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Figure 7.6: Pollution map for the ensemble model at 8am on March 1st, 2023. Based on the predictions on
the node, one can linearly extrapolate pollution values even outside of the graph edges. Note that the fine
variations in pollutant concentration (between 45 and 55 µg/m3) seem to trace the main circulation axes.

quantum graphs, and on the paper [10], which develops finite element discretizations of
elliptic operators in quantum graphs. We sometimes narrow down the generality of certain
notions for the purposes of the present paper.

A combinatorial graph G = (V,E) is a collection of a finite number of vertices V and of
edges E ⊂ V×V connecting pairs of vertices. We restrict our attention to undirected graphs
where no orientation is assigned to the edges, and denote |V| and |E| the number of vertices
and edges, respectively.

We will work with connected graphs, where any two vertices v,w ∈ V are connected by
at least one path (v, v1), (v1, v2), . . . , (vk,w) made by consecutive adjacent edges in E. A
connected graph becomes a metric graph if we assign a length ℓe > 0 and a local coordinate
re(x), for x ∈ [0, ℓe], to each edge e = (v,w) ∈ E, in such a way that re(0) = v and re(ℓe) = w.

In our case, the crossroads V are embedded in R2 through their geographical coordinates,
and the streets re([0, ℓe]) ⊂ R2 are differentiable curves with no loops. However, as done
very often, we redefine them as simple straight lines joining the two vertices. Regardless of
the choice of the edge curves, the points r in a metric graph G are thus not only its vertices
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but also all intermediate points on the edges as well, parametrized by the local coordinates
re:

V ⊊ G =
⋃
e∈E

re([0, ℓe]).

As the name suggests, any metric graph can be endowed with a natural metric as fol-
lows. The distance between two vertices v, w ∈ V is usually defined as the length of the
shortest path connecting them. This notion of distance between vertices is then extended
in a natural way to any two points possibly lying on different edges, by further adding the
local coordinates along these edges.

We may now introduce function spaces and linear differential operators on a metric
graph G. The space of continuous functions C(G) contains the functions u : G → R such
that u ◦ re is continuous on [0, ℓe] for any edge e ∈ E, which implies in particular the
continuity of u along any path in G. The space of square-integrable functions

L2(G) =
⊕
e∈E

L2(re([0, ℓe]))

is a Hilbert space when endowed with the inner product

⟨u, v⟩L2(G) :=
ˆ
G
u(r)v(r)dr =

∑
e∈E

ˆ ℓe

0
u(re(x))v(re(x))dx.

Finally, the Sobolev space

H1(G) = C(G) ∩
⊕
e∈E

H1(re([0, ℓe]))

is also a Hilbert space, for the norm

∥u∥2H1(G) :=
ˆ
G
u2dr +

ˆ
G

(
du
dr

)2
dr =

∑
e∈E

ˆ ℓe

0
u(re(x))2dx+

ˆ
G

(
d(u ◦ re)
dx

)2
dx.

The restriction to C(G) in the definition of H1(G) stems from the fact that functions
in H1(re([0, ℓe])) are continuous (because their domain is one dimensional), which auto-
matically implies that functions in H1(G) must be continuous also at the vertices. In the
same vein, one has to impose restrictions on the derivatives of u, such as Newmann-Kirchoff
boundary conditions, for functions u ∈ H2(G).
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Model reduction for forward simulation and inverse problems: towards non-linear ap-
proaches

Abstract
Model reduction is a technique used to compute fast and accurate approximations of physical sys-
tems’ states when they are described through parametric Partial Differential Equations (PDEs).
In the classical setting a linear subspace is carefully built, in an offline stage, using a set of high
resolution descriptions of possible states of the system of interest. Afterwards the subspace is used
to quickly and accurately solve forward or inverse problems. It is known that these strategies can
approximate well the solution of elliptic PDEs but they fail on hyperbolic PDEs or when states
present jump discontinuities. In this context, this thesis focuses on developing efficient non-linear
strategies to tackle the limitations of linear approximation spaces.
Chapter 2 extends the approximation guarantees offered by linear spaces for the stationary diffusion
equation when extreme levels of contrast in the diffusivity constants are possible.
Chapter 3 presents a theoretical framework to analyse the effectiveness of non-linear strategies for
inverse problems while Chapter 4 focuses on the practical implementation of high-order techniques
to locally reconstruct interfaces from cell average data. In Chapter 5, we show a method to accelerate
the reconstruction of 1d characteristic functions by a machine learning strategy trained to learn a
mapping from lower order Fourier coefficient values to higher order ones. In Chapter 6, we turn the
attention to another learning technique, known as Physics Informed Neural Networks (PINNs), to
tackle a linear advection-diffusion equation when the diffusivity vanishes and shocks appear.
Finally, in Chapter 7, we apply a combination of linear and non-linear methods to a real case scenario
in which the objective is to predict the pollution on every point in a city using heterogeneous sources
of data like temporal pollution series on specified locations, the geometry of the streets, and Google
Maps traffic information.
Chapters 2, 3, 5 and 6 are based on the published articles [51, 50, 55, 20] respectively while Chapters 4
and 7 are based on the submitted articles [56, 67].

Keywords: Non-linear approximation, Reduced order modelling, Numerical approximation

Laboratoire Jacques-Louis Lions
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Réduction de modèle pour des problèmes directs et inverses: vers des approches non
linéaires

Résumé
La réduction de modèle est une technique utilisée pour calculer des approximations rapides et pré-
cises des états de systèmes physiques, décrits par des Équations aux Dérivées Partielles (EDP)
paramétriques. Dans le cadre classique, un sous-espace linéaire est construit dans une étape offline
en utilisant un ensemble de descriptions à haute résolution des états possibles du système d’intérêt.
Ensuite, le sous-espace est utilisé pour résoudre rapidement et avec précision des problèmes directes
ou inverses. Il est connu que ces stratégies peuvent bien approximer la solution des EDP elliptiques
avec peu d’éléments de base mais échouent sur les EDP hyperboliques ou lorsque les états présentent
des discontinuités. Dans ce contexte, cette thèse se concentre sur le développement de stratégies non
linéaires efficaces pour aborder les limitations des espaces linéaires.
Le Chapitre 2 étend les garanties d’approximation offertes par les espaces linéaires pour l’équation
de diffusion stationnaire pour des niveaux extrêmes de contraste dans les champs de diffusion.
Le Chapitre 3 présente un cadre théorique pour analyser l’efficacité des stratégies non linéaires pour
les problèmes inverses tandis que le Chapitre 4 se concentre sur la mise en œuvre pratique des
techniques d’ordre élevé pour reconstruire localement des interfaces à partir des moyennes. Dans le
Chapitre 5, nous montrons une méthode pour accélérer la reconstruction de fonctions caractéristiques
en 1d par une stratégie d’apprentissage automatique entraînée à fournir une correspondance entre
les valeurs des coefficients de Fourier d’ordre inférieur et celles d’ordre supérieur. Dans le Chapitre 6,
nous portons notre attention sur une autre technique d’apprentissage connue sous le nom de réseaux
neuronaux informés par la physique (PINN) pour traiter une équation de transport-diffusion linéaire
lorsque la diffusivité tend vers zéro et que des chocs apparaissent.
Enfin, dans le Chapitre 7, nous appliquons une combinaison de méthodes linéaires et non linéaires
à un scénario réel dans lequel l’objectif est de prédire la pollution en tout point d’une ville en
utilisant des sources de données hétérogènes telles que des séries temporelles de pollution sur des
emplacements spécifiques, la géométrie des rues et les informations de traffic de Google Maps.
Les Chapitres 2, 3, 5 et 6 sont basés sur les articles publiés [51, 50, 55, 20] tandis que les Chapitres 4
et 7 sont basés sur les articles soumis [56, 67].

Mots clés : Approximation non-lineaire, Modeles reduites, Approximation numérique
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