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Abstract

The characterization of the interaction between a spacecraft entering a planetary
atmosphere at hypersonic speeds and its surrounding gas is a challenging task, re-
quiring accurate experiments and high- delity simulations. Numerical predictions
strongly depend on modeling and experimental uncertainties, as well as numerical
errors, which accumulate during the inference process. In this context, uncertainty
guanti cation methods offer a powerful framework to account for several sources
of uncertainty. High- delity predictions for aerospace applications combine: )
physical models suf ciently complete to account for complex ow features, leading

to expensive and hard-to-perform numerical simulations, Il) rigorous uncertainty
quanti cation permitting the use of experimental data to improve the prediction
of quantities of interest. Because of the large number of simulations requested
to conduct uncertainty quanti cation studies, ef cient low- delity representations
are appealing to reduce the computational effort. However, the simpli cations
contained in the low- delity models can lead to reduced accuracy, potentially dete-
riorating the outcome of an inference problem.

In this thesis, our objective is to develop tools and methodologies to perform
accurate predictions using high- delity solvers and state-of-the-art experimental
data. This approach involves the use of the US3D CFD solver and an overall UQ
framework to solve inference problems, which permits to include mesh error and
to employ multi- delity strategies. The rst contribution of this thesis concerns
the production of high- delity solutions for each phenomenon of interest with the
US3D solver. We coupled US3D to the open-source Mutation++ physicochemical
library, which we expanded to incorporate a state-of-the-art ablation model. The
second contribution concerns a study about the in uence of the mesh error on the
convergence of high- delity simulations under uncertainty. We constructed an
ef cient surrogate model by balancing the grid's numerical errors and the problem-
related uncertainties. We applied this methodology to the propagation of model
uncertainties to characterize the pressure and heat ux experienced by a re-entry
vehicle. Accurate results were obtained with a coarse mesh automatically aligned to
the shock for each training point. The third contribution concerns the development
of a multi- delity formulation to alleviate the computational cost associated with
the construction of the surrogate model for the high- delity solver and its use in
an inference problem. In particular, we de ned a methodology to characterize an
under-expanded high-enthalpy jet obtained in the von Karman Institute Plasma-
tron facility, for which no standardized rebuilding procedure for the free-stream



conditions existed to date. The description of such a ow required axisymmetric
simulations. The analysis allowed us to characterize the ow conditions at the
entrance of the nozzle and the nitrogen catalytic recombination coef cient of the
probe used to measure the heat ux and pressure at the stagnation point. The char-
acterized uncertainties were then propagated through the numerical solver yielding
an uncertainty-based high- delity representation of the supersonic ow structure
variability. In the last application, we devised a methodology for the calibration
and assessment of a nite-rate chemistry gas-surface interaction model for ablation.
Speci cally, we inferred the rate coef cients of the elementary reactions occurring
between a carbon surface and a nitrogen gas from both molecular beam-surface
scattering and Plasmatron experiments. The analysis highlighted that both experi-
mental data sets are compatible with the same calibrated model.

In conclusion, we proposed powerful stochastic tools, encompassing one or
more delity levels, to infer hypersonic ow free-stream conditions and heteroge-
neous chemical model parameters.



Réesung

La carackrisation de l'interaction entre un vaisseau spatial entrant dans une at-
mosplere plataire et le gaz environnant est udetie dif cile, nécessitant des
experiences picises et des simulations hautegldé. Les pédictions nurériques
dépendent fortement des incertitudes de élisdtion et exprimentales, ainsi que
des erreurs nugriques, qui s'accumulent pendant le processus &t'arice. Les
méthodes de quanti cation de l'incertitude offrent une structure puissante pour
tenir compte de plusieurs sources d'incertitude. Lesdmtions haute- @lité

pour les applicationséospatiales combinent des nebes physiques suf samment
complets pour prendre en compte des camstiques cecoulement complexes,

et une quanti cation rigoureuse de l'incertitude. En raison du grand nombre de
simulations requises pour mener étsdes de quanti cation de l'incertitude, des
repiesentations ef cacea basse @lité sont attrayantes pougduire I'effort de
calcul. Cependant, les simpli cations contenues dans lesafesd basse @lité
peuvent conduir@ une pécision eduite, @triorant potentiellement l&sultat

d'un probleme d'inference.

Dans cette thse, notre objectif est dé&delopper des outils et desthodologies
pour effectuer des pdictions pecisesa l'aide de solveurs haute-@&lité et de
donrées exprimentales de pointe. Cette approche implique I'utilisation du solveur
CFD US3D et d'une structure globale UQ poésoudre des prodines d'inErence,
ce qui permet d'inclure I'erreur de maillage et d'utiliser des &ggs multi- délité.

La premere contribution de cettedlse concerne la production de solutions haute-
d élité avec le solveur US3D pour chaqueepbnene d'inérét. Ce dernier &t
coupka la librairie Mutation++, que nous avoatendue pour incorporer un meld
innovant d'ablation. La deugime contribution concerne ugéude sur I'in uence

de l'erreur de maillage sur la convergence des simulations ha@éédsous incer-
titude. Nous avons construit un meld de substitution ef cace egquilibrant les
erreurs nurarigues assoees au maillage et les incertitudesds au prol@me. Nous
avons appliqé cette néthodologiea la propagation des incertitudes du ratedpour
caracériser la pression et le ux de chaleur subis par @hicule de renée. Des
résultats pecis ontété obtenus avec un maillage grossier automatiquementalign
avec le choc pour chaque point d'efitrament. La troig#me contribution concerne
le developpement d'une formulation multi-&lité pour aleger le céit de calcul
assoce a la construction du made de substitution du solveur hauteélitée eta

son utilisation dans un prodaine d'inference. En particulier, nous avorgs i une
méthodologie pour caragtiser un jet hypersonique soustendu obtenu dans le



moyen d'essai Plasmatron de I'Institut von Karman, pour laquelle aucunéguoe
standard de reconstruction des conditions en amont n'exéstatour. L'analyse
nous a permis de car#&eiser les conditions écoulemena I'entrée de la tugre et le
coef cient de recombinaison catalytique de l'azote de la sonde @ilour mesurer
le ux de chaleur et la pression au point d'atr Les incertitudes caragises ont
ensuitette propagesa travers le solveur nuanique, fournissant une reggentation
haute- delité bage sur l'incertitude de la variabiéitde la structure dedcoulement
supersonique. Dans la deené application, nous avoifabog une néthodologie
pour I'étalonnage et é&valuation d'un modle chimique d'interaction gaz-surface
a taux de @action nis pour l'ablation. Plus faciement, nous avonsduit les
taux de coef cients desaction£lementaires se produisant entre une surface de
carbone et un gaz d'azogepartir d'exgeriences de faisceau néglulaire-surface
de diffusion, ainsi que Plasmatron. L'analyse a memnfue les deux ensembles de
donrees exprimentales sont compatibles avec l[eme moéle étalonre.

En conclusion, nous avons projades outils stochastiques puissants, englobant
un ou plusieurs niveaux de &lité, pour é&duire des conditions dcoulement libre
hypersonique et de paratnes de moeles chimiquesé&érogenes.
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Introduction

September 16, 2021, Kennedy Space Cemalcon 9 launches the Dragon capsule

and the Inspiration4's crew for the rst private citizen's orbital space ight. A new

era has come, where private ventures are taking the way opened sixty years ago by
the space agencies. After three days of orbital ight, Dragon's thrusters perform
the last burn, and the nose-cone closes. Dragon is ready to experience one of the
most fascinating and challenging features of space igthts:atmospheric entry

Figure 1.1: SpaceX's Dragon re-entering atmosphere. Credit: SpaceX.



2 INTRODUCTION

1.1 Atmospheric entry ows

During the atmospheric entry from low Earth orbit, spacecraft approach a peak
velocity of 8kms 1. Itis a velocity20 times higher than the speed of sound at
standard conditions and the kinetic energy that they have to dissipate is enormous.
While this is bene cial for space debris, such as meteors or satellites, as they get
degraded through the atmosphere, spacecraft need to be protected for a safe return
of both the crew and payload.

The blunt body design was proposed in 1951 by Allen to minimize the amount
of energy transferred to the vehicle. Such a geometry provokes a strong detached
shock ahead of the vehicle, as sketched in Figure 1.2. Across it, the kinetic energy of
the ow is converted into particles' translational energy [4, 5]. Then, progressively,
the internal energy is excited rotationally, vibrationally, and electronically. In the
shock layer, the gas is outside chemical equilibrium and emits radiation because of
the high temperatures reached. The chemistry kicks in and the molecules dissociate
and ionize, driving down the temperature. When the shock is suf ciently far
from the body, the particles reach a thermo-chemical equilibrium plateau before
the Boundary Layer (BL) that develops in front of the vehicle. Within the BL,
strong temperature and velocity gradients cause the chemistry to be again outside
equilibrium: a chemically reactive gas diffuses toward the surface and interacts
with it through heat and mass exchange. Such a phenomenon is generally referred
to as Gas-Surface Interaction (GSI).

Figure 1.2: Sketch of an entry hypersonic ow.

Even if lowered by using a blunt geometry, the heat ux experienced by the
spacecratft is still signi cant and they need to be protected by means of a Thermal
Protection Material (TPM). There are two main classes of TPMs: ablative and
reusable materials [6]. Ablative TPMs are generally made up of carbon bers in a
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phenolic resin. When they get heated by the hot gas, the virgin material degrades
into a porous char and pyrolysis gases. Such a reaction is endothermic and adsorbs
part of the incoming heat. Additionally, the charred material gets ablated by exother-
mic chemical reactions (mostly oxidation) and mechanical removal. Pyrolysis gases
and ablative products are injected in the BL creating a barrier that further protects
the vehicle from the incoming hedilpwing effect. Depending on the TPM, the
surface might also promote exothermic recombination reactions. Because they
experience signi cant mass loss, ablative TPMs have to be changed every mission.
Contrarily, reusable TPMs, generally ceramic materials, can withstand multiple
atmospheric entry missions. They do not experience signi cant degradation and
cool down by re-radiating most of the incoming energy. The surface might pro-
mote catalytic reactions (recombination of atoms at the wall). Being this reaction
exothermic, energy is released to the surface, increasing the heat ux. Hence, they
are characterized by a low catalytic surface, low thermal conductivity, and high
emissivity. These materials cannot withstand severe heat loads, and they are mostly
used for orbital re-entry.

Depending on the type of the TPM, ablative and/or catalytic reactions can occur.
Ablative reactions cause material degradation and shape change, which, in turn,
alters the aerodynamic coef cients. Oxidation and catalytic reactions are strongly
exothermic, increasing the surface temperature. In both cases, the thermo-chemical
environment has to be correctly characterized for a robust simulation of the vehicle
heat loads.

1.2 Flow and material characterization in hypersonic
applications

As discussed above, atmospheric entry ows, and more generally hypersonic
ows, are complex phenomena involving several physical features, such as high-
temperature effects, nite-rate chemical processes, GSI, laminar-turbulent transi-
tion, turbulence, and radiation. A robust design of the hypersonic vehicles requires
the characterization of the ow conditions and the TPM response. To this end,
ground-testing facilities are widely used as they can duplicate the physical features
encountered in ight and, compared to ight testing, they are less expensive and
allow for better controlling the ow conditions [7]. To date, no facility is able to
obtain a proper scaling of the phenomenon and the common practice is to decouple
the high-velocity from high-temperature effects [7]. For instance, the aerodynamic
forces experienced by hypersonic vehicles can be reproduced in a hypersonic wind
tunnel, such as the Longshot facility at the von Karman Institute (VKI) [8], by
jointly duplicating the in- ight Mach and Reynolds numbers. These facilities are
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characterized by short testing time and low enthalpy of the gas, and the relevant
heat loads cannot be reproduced. These can be obtained in a high-enthalpy, but
low-speed, ground testing facility, such as the VKI Plasmatron [9], by duplicating
the in- ight total enthalpy, stagnation pressure, and velocity gradient [10]. Such
duplication ensures the reproduction of the same Gi#ngt number (ratio between

the ow and the chemistry characteristic times) that characterizes the in- ight BL
chemical non-equilibrium. The biggest drawback of the experimental approach is
that an experimental campaign can be still rather time-consuming and expensive,
making it prohibitive to analyze a large number of con gurations.

Alternatively, Computational Fluid Dynamics (CFD) solvers can simulate sev-
eral ow conditions in a cost-ef cient manner. Among others, US3D [11] has been
developed to robustly compute hypersonic ows. For example, it has been em-
ployed to simulate several aspects of the atmospheric entry, including 1) steady-state
con gurations [12], 1l) ablative shape changing, coupling the code with a material
response solver and mesh motion algorithm [13, 14], Ill) turbulent and unsteady
wakes, leveraging high-order numerical schemes{¥} and 1V) dynamic stabil-
ity [18]. In the case of numerical predictions, the biggest challenge arises from
properly describing the complex physics involved in the hypersonic regime. In
fact, CFD solvers embed several physical models for nite-rate chemistry, thermal
relaxation processes, multi-component transport, and GSI, to name some. Correctly
modeling them is not a trivial task. For instan8¢-tables have been widely used
for predicting the ablative response of TPMs. This model assumes that the gas is in
chemical equilibrium and overestimates the surface recession when this assumption
is not valid [19, 20]. In these cases, nite-rate models should be used. The rst of
such models was proposed by Park [21]. It describes the macroscopic oxidation and
nitridation reactions at the surface by means of Arrhenius formulations. Another
widely used model was derived by Zhluktov and Abe [22]. It includes detailed
processes, such as the adsorption/desorption of atoms at the surface, and describes
both the forward and backward mechanisms. Differently from the Park model,
the latter does not account for the nitridation reaction, which was later added, in
a modi ed version, by Alba et al. [23]. More recently, Poovathingal et al. [24]
leveraged informative molecular beam data to derive a detailed ablation model,
which was later improved by Prata et al. [1], supported by new experiments. Itis
important to remark that substantial differences were found in the predictions of
these models [2828], and that GSI characterization is, to date, an active area of
research.

Experiments offer a natural source of data for the calibration and subsequent
validation of the model parameters [7]. It is therefore evident that a tight com-
plementarity between experiments and numerical simulations exists. The main
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differences between the two approaches are reported in Table 1.1. On top of what
was discussed above, experimental observations are affectetbstaintyin the
measurementsvhile the outcome of the numerical simulations, excluding those
relying on sampling strategies, is deterministic, it can be perfectly duplicated [29].
In fact, the uncertainty associated with numerical simulations is upstream, linked to
its input. For instance, it can derive from the simulated geometries, the Boundary
Condition (BC) imposed, the mesh used (and the relative numerical error), or, as
we previously saw, from thorm of the modelsand the choice of thepparameters

Experiments Numerical Simulations
Time-consuming/Costly Cost-ef cient
The physics is intrinsic The physics is modeled

Uncertainty in the measurements  Uncertainty in the inputs

Table 1.1: Experiments and simulations: main differences.

These uncertainties can severely undermine the accuracy of the numerical pre-
dictions, especially for atmospheric entry ows as they require the modeling of
several physical features. Uncertainty Quanti cation (UQ) methods aim at iden-
tifying, characterizing, and potentially reducing the uncertainties involved in the
studied phenomena, allowing one to obtain robust predictions. UQ analysis can be
divided into two main categories. The rst one concernsftrerard propagatiorof
the input uncertainties to estimate the one on the model output. The forward model
can also be used to determine which input uncertainty affects the most the one on
the output. Such a method is referred tsaasitivity analysisThe second category
regards thestochastic inverser inference problemwhich aims at reducing the
uncertainty on some model input, given the uncertainty on the model output.
Stochastic inverse methods offer a robust bridge between experiments and simula-
tions, as they allow for accounting for the different sources of uncertainty. The steps
involved in such a stochastic approach are sketched in Figure 1.3: I) an experiment
is designed to reproduce a Quantity of Interest (Q8l)which is measured with a
given uncertainty; 1) a modef,(X ), is derived to describe the experiment, input
are the experimental conditions and the unknown model parameters; lll) in the ma-
jority of the applications, such a model is solved in a discrete fashion, introducing a
discretization error In this case, one shoulerify that the mathematical structure
of the model is correctly implemented in the solver and that the discretization error
in the solution is negligible. IV) The unknown model parameters are inferred and
validated by comparing the model output to the experimental observations. The
analysis also allows for characterizing the uncertainty associated with the model
parameters. Hence, V) when the model is exploited to reproduce the phenomenon
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of interestf (X ), these uncertainties can be propagated to estimate the uncertainty
associated with a given Qol.

Figure 1.3: Sketch of a stochastic inference process.

A central element in both the uncertainty propagation and the inference problem
is the model employed to represent the phenomenon of interest. It expresses the re-
lationship between the input and the output. In the above-mention context, the input
of the model would be the parameters that one intends to calibrate (e.g. the catalytic
ef ciency of a TPM surface), along with the conditions de ning the experiment
(e.g. the surface temperature), while the output would be a related experimental
observation (e.g. the surface heat ux). Different models can be used to describe
the phenomenon. Each of them embeds a given amount of assumptions and/or
simpli cations that de ne its degree of accuracy, or, said differently, dislity .
Following the de nition proposed by Peherstorfer et al. [3@]model that estimates
the output with the accuracy that is necessary for the task at'hamchigh- delity
model Contrary, dow- delity modelis "a model that estimates the same output
with a lower accuracy than the high- delity modellower delity could arise from
a reduction of the problem dimension, the use of a coarser grid, or a simpli cation
in the physical model, to name some. However, one should keep in mind that a
low- delity model does not necessarily produce a low- delity solution. Let us
imagine describing a plasma ow over a probe. Resorting to a nite-rate chemical
model would have higher accuracy than assuming chemical equilibrium. However,
if the ow is characterized by small velocity gradients, such that it has the time to
relax towards its equilibrium condition, the assumption contained in the low- delity
model is adequate, hence the results are accurate. That said, higher accuracy is
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generally expected by models embedding fewer assumptions. In this manuscript,
we will refer to a high- delity solver as one containing fewer assumptions and
which is expected to produce the most accurate solution and to a low- delity solver
as the one with a higher degree of assumptions.

Since UQ analysis generally requires a large number of computations, low-
delity solvers are attractive as they are characterized by a pronounced ef ciency.
However, if they are used outside the range of validity of their underlying assump-
tions, or if the model inadequacy is not correctly accounted for, they may lead to
erroneous results. In these cases, one should resort to high- delity simulations.
Surrogate models represent a convenient method to restore the ef ciency required
to perform UQ studies when computationally expensive high- delity solvers are
needed [31]. They are trained on a limited number of simulations (much lower than
the ones required to perform the UQ study) and capture the underlying relationship
between input and output. However, there might be situations where the cost associ-
ated with high- delity simulations is so high that it is not affordable even producing
only the simulations requested to adequately train the surrogate model. To cope
with this problem, multi- delity models have been proposed [30]. They allow for
leveraging low- delity solutions to reduce the number of high- delity computations.

Different models, characterized by different degrees of delity, have been used
to perform hypersonic-related UQ studies. In the following, we revise the state-
of-the-art concerning the forward propagation rst, and then the inverse problem,
highlighting the delity of the solvers used in the analysis and the strategies em-
ployed to improve the ef ciency of the method. We also distinguish works that
focus on atmospheric entry ows from those addressing speci ¢ features of the
ow, duplicated in on-ground facilities.

Pioneer works focused on the characterization of uncertainty related to the stagnation-
point convective and radiative heat ux [324]. In these studies, the uncertainties

on some hundred parameters (including chemical rate and transport coef cients,
relaxations rates, and catalytic ef ciencies) were propagated employing a Monte
Carlo (MC) technique directly coupled to the numerical solver. The analysis re-
quired the evaluation of thousands of costly 2D axisymmetric high- delity CFD
simulations. Forward propagation of the model uncertainties was also performed to
characterize the ablative response of TPMs [35, 36]. In these studies, the analysis
was conducted by means of a more ef cient 1D material response solver. Similarly,
1D ow computations were employed by Ghaffari et al. [37] to quantify the un-
certainties related to stagnation-point radiative heat ux. With respect to Bose et
al. [34], the reduced computational cost associated with the dimension reduction,
allowed them to increase the delity in the physical modeling, and therefore the
robustness of the numerical predictions. Improvement in the method ef ciency was
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later achieved by approximating the computationally expensive high- delity solvers
with cheap surrogate models. The number of computations requested to perform
the UQ studies was reduced to some hundreds. For example, Hosder and Bettis [38]
employed a Polynomial Chaos Expansion (PCE), constructed on 2D axisymmetric
high- delity computations, for characterizing the uncertainty on the surface heat
loads under atmospheric entry conditions. Other similar applications can be found
in [39-42]. West et al. [43] coupled the surrogate model to a sensitivity-based
dimension reduction strategy to further enhance the method's ef ciency. It was
applied for characterizing the stagnation-point radiative heat ux on a Hypersonic
Inatable Aerodynamic Decelerator (HIAD), whose ow eld was simulated through
2D axisymmetric high- delity computations. In a subsequent work [44], a subset of
the training points required for a total-order expansion was used to further reduce
the computational effort. The surrogate model accuracy was assessed by monitoring
the evolution of the Sobol indices and model error, computed on veri cation points.
The latter strategy was then employed by Brune et al. [45] to study coupled uid-
structure interaction for a HIAD, also simulated employing expensive high- delity
computations. The characterization of the uncertainties related to the surface heat-
ing on HIADs was very recently tackled by Santos et al. [46, 47] in a multi- delity
framework. They used a co-Kriging strategy that leverages low- delity simulations
for the construction of the surrogate model, reducing the number of high- delity
computations to those required to preserve accuracy. A co-Kriging method was
also employed by Quinlan et al. [48] to approximate the high- delity response of

a hypersonic ow over a blunted cone. It was used to construct an aerodynamic
database for trajectory simulations.

Forward propagation studies addressed also the characterization of the ow and the
material response in ground testing. Sorensen et al. [49] employed a MC technique
to propagate the uncertainties on selected rates of a nite-rate catalytic model to
assess their in uence on the heat ux experienced by a cylinder immersed in a
hypersonic ow. The MC strategy was directly coupled to a high- delity solver.
Sanson et al. [50] estimated the uncertainty on the catalytic ef ciency of a TPM,
and identi ed the parameters contributing the most to its variability, from subsonic
Plasmatron experiments. Experimental and modeling uncertainties were propagated
through a PCE model constructed on 1D stagnation-line computations of the BL. A
similar approach was employed by Turchi et al. [51, 52] with regards to ablation-
related Qols. Brune et al. [53] estimated the uncertainties associated with the
stagnation-point pressure and heat ux experienced by a calibration probe exposed
to a low- and a high-enthalpy supersonic ow obtained in arc-jet experiments. The
forward analysis was performed by means of a PCE trained on high- delity 2D
axisymmetric computations. Georgii and Volker [54] used a PCE built on inviscid
quasi-1D computations of expanding high-enthalpy ows in nozzles to assess the
sensitivity of the free-stream conditions to nite-rate processes and reservoir condi-
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tions.

The works above mentioned concerned only the forward problem. The UQ
literature also includes stochastic inferences related to hypersonic ows. They
mostly concern the reconstruction of free-stream conditions, the calibration of GSI
chemical models, and the characterization of gas-phase chemical rate coef cients.
Tryoen et al. [55] attempted to reconstruct the free-stream conditions in a trajectory
point of the EXPERT vehicle from the stagnation-point measurements of pressure
and heat ux. A PCE was constructed from 2D axisymmetric simulations. The CFD
solver turned out to be not robust under all the free-stream conditions, resulting
in poor estimations of the heat ux. Consequently, the resulting surrogate model
predicted non-physical negative values, and the analysis was performed with only
stagnation-point pressure. This problem was later tackled by Cortesi et al. [56]
rebuilding the free-stream conditions of a hypersonic ow over a cylinder, also from
stagnation-point measurements. To improve the heat ux numerical predictions
the mesh was automatically adapted to capture the shock at each training point.
Furthermore, an active subspace was exploited to reduce the dimensionality of
the input space. In a different study, Cortesi et al. [57] exploit the possibility of
rebuilding the free-stream conditions, the angles of attack, and the catalytic ef -
ciency of the surface in a trajectory point of the EXPERT vehicle. Both stagnation-
and off-stagnation-point measurements provided by sensors located in the vehicle
forebody were used in the Bayesian analysis. To this end, 2D axisymmetric simula-
tions were needed to capture the angular dependency of the Qols. Similarly, Ray et
al. [58] employed a Bayesian methodology to infer the free-stream conditions in
three experiments consisting of a hypersonic ow over a double cone. The pressure
and heat ux measurements from those sensors located in the region where the ow
was attached were used as trustworthy observations. The resolution of the complex
shock interactions and of the separation regions required the computations of 2D
axisymmetric simulations. However, the authors concluded that 3D simulations
might be necessary to explain some of the departure observed in the simulated pre-
dictions from the experimental measurements. As a result, these 2D axisymmetric
simulations should be considered low- delity predictions. Chowdhary et al. [59]
also rebuilt the free-stream conditions from pressure and heat ux measurements on
the surface of the HIFIRE-1 probe exposed to a hypersonic ow. Also in this case,
2D axisymmetric simulations were performed. Unlike the laminar applications
previously mentioned, turbulence was expected in this test. It was described using
a Shear Stress Transport (SST) model, whose parameters were inferred during the
same analysis.

Regarding the calibration of chemical models for GSI, Upadhyay et al. [60] rstly
employed a Bayesian framework to infer the probability of the nitridation reac-
tion from a furnace-heated quartz tube experiment [27]. The ow in the tube was



10 INTRODUCTION

reconstructed through a 1D approximation. Four different models, differing in
the assumptions used to describe the nitridation surface reaction and the consid-
ered experimental uncertainties, were employed in the Bayesian analysis. The
experimental data informed a temperature-dependent nitridation probability law
for each model. Later, Sanson et al. [61] estimated the ef ciency of the catalytic
reaction on ceramic matrix composite samples from Plasmatron experiments. A 1D
solver was used to describe the BL developing in front of the sample. The authors
rst recognized the importance of prescribing an epistemic uncertainty also to the
catalytic ef ciency of the calorimeter employed to measure the BL edge enthalpy.
However, it turned out that the experimental data were not enough informative to
learn the targeted ef ciencies. In a following work, del Val et al. [62] upgraded
the inference methodology by including in the process a coupled optimization
procedure to estimate some nuisance parameters, such as the BL edge enthalpy.
This approach led to an improved exploitation of the experimental data, resulting
in more accurate posterior predictions of the catalytic ef ciencies. Later, the same
authors [63] characterized the ef ciency of the nitridation reaction from Plasmatron
experiments. Speci cally, an Arrhenius law was calibrated considering jointly four
experimental points at distinct surface temperatures. In a subsequent work [64],
some of the model assumptions contained in the previous calibration, such as no
surface recombination and thermal equilibrium, were relaxed by introducing a
model-form uncertainty in the inference problem. An Arrhenius law was computed
by means of a Bayesian model averaging strategy.

Stochastic inference methodologies have also been employed in the characteriza-
tion of gas-phase properties. Miki et al. [65, 66] performed a Bayesian calibration
of several parameters included in the nite-rate chemistry and in the radiative
models from shock-tube spectrographic data. The plasma radiance was computed
with a line-by-line radiation code fed with 1D inviscid computations of the shock
layer. Recently, del Val and Chazot [67] investigated the possibility of learning
gas chemical rates, along with the probes' catalytic ef ciencies, from Plasmatron
experiments. The BL developing in front of the sample was simulated by means of
1D computations.

1.3 Objectives and outline

Figure 1.4 is intended to summarize, for application and delity, the UQ works
reviewed in the previous section. The studies resorting to geometrical assumptions
or where the solver was not capable of correctly reproducing the phenomenon
of interest have been classi ed as low delity. Those applications in which a
surrogate model was built fusing low- and high- delity information were classi ed

as multi delity, while the remaining works as high delity. We remark that such a
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classi cation was performed purely by considering the solver assumptions. Thus,
studies that have been performed with low- delity solvers might result in accurate
predictions if the underlying assumptions are adequate for the task at hand.

Figure 1.4: Summary of the UQ works related to atmospheric entry ows reviewed in
Section 1.2.

The gure depicts that the biggest body of the hypersonic-related UQ literature
concerns forward propagation studies. Fewer works focused on solving the inverse
problem. Furthermore, the vast majority of these studies have been performed re-
sorting to ef cient low- delity solvers. This highlights a gap in the current literature
concerning the use of high- delity models in hypersonic-related inverse problems.

Hence, the overarching purpose of this thesis @deaeelop tools and method-
ologies to obtain accurate predictions of atmospheric entry conditions using
high- delity simulations and state-of-the-art experimental data. For this rea-
son, an overall UQ framework, embedding a surrogate-based approach coupled to
mesh-error estimations and multi- delity methods, is employed to solve inference
problems. We considered both in- ight and on-ground testing conditions, spanning
a wide range of ow regimes: from subsonic to hypersonic velocities. These ows
might include high-temperature and multi-components effects, homogeneous and
heterogeneous chemistry, GSI, strong detached shocks, shock-shock interactions,
unsteadiness, and turbulence. High- delity simulations are then required to fully
capture such complex and rich physics. The associated humerical solutions strongly
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depend on the model parameters (that most of the time are affected by severe
uncertainties) and on the mesh employed to discretize the physical domain. Fur-
thermore, their computation is time-consuming, making them poorly ef cientin a
UQ framework, where the evaluation of many model outputs is required.

The main objectives of the thesis are the following ones:

O1: to produce an accurate high- delity reference solutionfor each phe-
nomenon of interest. For what discussed above, it is essential to employ a
high- delity multi-dimensional solver equipped with speci ¢ BCs to deal
with chemically reacting surfaces, that is robust under hard-to-compute hy-
personic conditions. Such a reference solution can be used to assess the
accuracy of lower- delity solvers and determining whether they are adequate
for performing UQ studies.

02: toinvestigate the bene ts and the challenges associated with the system-
atic use of a high- delity solver in a UQ framework. On the one hand, as
the model delity increases, the resolution of the ow improves and we get
access to more, and more reliable, features. This guarantegisex accu-
racy of the inference problem Furthermore, having access to more ow
features is desirable as one can compare additional numerical predictions
to experimental observationgptentially reducing the posterior uncer-
tainties on these quantities that one intends to characterize. On the other
hand, UQ analysis requires the computation of a large number of simulations.
It is computationally expensive, especially when high- delity solutions are
needed. Thus, we interid restore the ef ciency of the methodby cou-
pling surrogate-based techniques to mesh-error estimates and multi- delity
strategies. Furthermore, a xed mesh is generally used to perform all the
simulations requested in the UQ analysis. This practice might be inaccurate
in the presence of strong shocks, where grid misalignment can lead to nu-
merical errors. For this reasone explore the bene ts of systematically
resorting to alignment toolsto automatically produce a shock-error-free
solution for each condition.

03: to use (sometimes limited) experimental data to reduce the uncertainty
on the prediction of the Qols. Bayesian methods have been proven to
offer an optimal framework to account for all the different sources of uncer-
tainty involved in the inference process. Henwe,will employ a Bayesian
methodology, accelerated by the above-discussed surrogate-based strategy,
to characterize selected model parameters leveraging state-of-the-art experi-
mental data.

To investigate these objectives, we performed several actions. With regard to
the rst objective:
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Al:

We employed the US3D solver [11] to produce high- delity solutionf

each phenomenon of interesYe coupled it to the open-sourcMlutation **

library [68], which provides state-of-the-art thermodynamic and transport
properties, as well as the solution for GSI balances, essential to describe
chemical reacting surface¥/e included in Mutation** a recently devel-

oped detailed ablation model It captures both the temperature and the
pressure dependence of the surface response, enabling us to explain experi-
ments characterized by different operating pressures with the same ablation
model.

With respect to the second objective:

A2:

A3:

We proposed a methodology balance the grid's numerical errors and
problem-related uncertainties to produce the optimal representation for

a given computational budget We applied it to characterize the surface
pressure and heat ux experienced by a hypersonic entry object under un-
certainty both in the free-stream conditions and in the catalytic ef ciency
of the TPM. It was simulated by means of axisymmetric computations per-
formed with the US3D solver. Furthermosge investigated the bene ts of
systematically resorting to a mesh-shock alignment tool

We developed aadaptive/multi- delity strategy to alleviate the compu-
tational cost associated with the construction of a surrogate model from
high- delity simulations. We apply it taescribe an under-expanded high-
enthalpy jet recently obtained in the Plasmatron facility at the VKI. Particu-
larly, we were interested in the computations of the stagnation-point pressure
and heat ux, and of the mass ow rate in the nozzle. A low- delity model
was derived to determine them. However, it underestimated their values
compared to the high- delity counterpart. For this reason, 2D axisymmetric
US3D computations were needed. Moreover, the grid required to accurately
compute the Qols was too expensive to be directly employed to construct
the surrogate model, making necessary the use of the adaptive/multi- delity
strategy. Furthermoreye investigated what additional information can

be extracted by the high- delity simulations. These data can be potentially
observed in future experiments to enrich the inverse analysis.

Finally, concerning the third objective:

A4:

We characterized the previously-mentioned under-expanded high-enthalpy
jet, for which no standardized rebuilding procedure existed to date. Speci -
cally, we investigated whether the conditions at the inlet of the sonic nozzle,
and the catalytic ef ciencies of the probes, can be reconstructed by mea-
suring the stagnation-point pressure and heat ux, and the mass ow in the
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nozzle. To this end, we resorted to a Bayesian methodology, accelerated by
the adaptive/multi- delity surrogate model.

A5: Weinferred the rates of the elementary reactions of an ablation model
from two distinct experiments. Speci cally, we intend to verify whether
the observations obtained in a molecular beam-surface scatter apparatus, at
high-vacuum conditions, and in the VKI Plasmatron facility, at much higher
pressure, can be compatible through the same ablation model. Compared
to the phenomenological models used in the other two applicatieem-
ployed a higher- delity GSI model to capture the ablative behavior of the
surface at different temperatures and pressuresas the ones encountered
in the two experiments. On the other hand, 1D simulations were employed
to accurately describe the Plasmatron conditions, while 0D computations to
explain the molecular beam-surface scatter experiment.

The manuscript is structured as follows:

Chapter 1 introduced the atmospheric entry ows and the challenges as-
sociated with their duplication. After a review of previous UQ works, we
outlined the objectives of the thesis.

Chapter 2 revises the governing equations used to describe the phenomena
of interest, as well as the closure for the chemistry, the thermodynamic

and the transport properties, and the GSI modeling. The Mutatldmary

is presented too. Finally, the experimental campaigns supporting the UQ

analysis are introduced.

Chapter 3 introduces the UQ methodologies and tools. Speci cally, we
describe both the forward and the inverse problem, along with ef cient
algorithms for their solution, and the construction of (adaptive/multi- delity)

Kriging surrogate models.

Chapter 4 describes the solvers employed in thesis. We present also the
coupling that we have performed between the US3D code and Muftation
along with the veri cation test cases. Finally, we show the results of the
characterization of the pressure and heat ux experienced by the EXPERT
vehicle under both BC and numerical uncertainties.

Chapter 5 presents the methodology employed to characterize an under-
expanded high-enthalpy jet obtained in the Plasmatron facility. Speci cally,
we resorted to a multi- delity adaptive Bayesian framework to characterize
both the conditions at the entrance of a sonic nozzle and the catalytic ef -
ciencies of the probe used to measure stagnation-point heat ux and pressure.
The variability of the ow structure is also exterminated.
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Chapter 6 describes the characterization of the rates of a nite-rate model
for carbon ablation. Speci cally, the rates were informed by means of both
Plasmatron and molecular beam experiments.

Chapter 7 draws down the overall conclusions of this thesis and outlines
future perspectives.






Physical modeling

This chapter provides an overview of the governing equations and of the physical
models used to describe atmospheric entry ows. First, chemical reacting Navier-
Stokes equations are presented along with the closure for transport uxes and
chemical reaction rates. The modeling of the thermodynamic properties of the
gas in the presence of high-temperature effects is also discussed. An important
aspect of this thesis is the description of the chemical reactions, either catalytic or
ablative, between a gas and a surface. The description of two different closures for
gas-surface interaction, phenomenological and nite-rate coef cient-based, for the
chemical source terms is provided. A state-of-the-art air carbon ablation nite-rate
model is presented and included in the Mutatiodibrary, which is described

next. Mutatiori* is also employed during the CFD simulations to compute both
the thermophysical properties of the gas and to solve the gas-surface interaction
balances. We nally introduce three different experimental campaigns whose data
served as input for the analysis in the following chapters. The rst two are subsonic
and supersonic tests performed in the VKI Plasmatron facility. This facility allows
for determining macroscopic aspects of the surface reactions, such as the mass
blowing rates and heat uxes. The third one is a molecular beam-surface scattering
experiment, which provides more insights into the nature of the surface reactions.
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2.1 Overview

The description of hypersonic ows, including atmospheric entries, is a changeling
task, involving a multi-disciplinary description of the phenomena, sophisticated
numerics, and complex experiments. Vehicles entering the atmosphere go through
different ow regimes: free molecular, transitional, and continuum [69]. Typically,
the Knudsen numbeKn, is used as a reference quantity to determine in which
regime the gas is. Itis de ned as the ratio between the mean free path (average
distance a particle has to travel between one and the consequent collision) and a
characteristic length of the phenomenon.

The free molecular regim&n > 10, is encountered at altitudes higher tH0 km

and during rapid expansions. The gas is extremely rare ed and is characterized by
a negligible amount of particle collisions. The velocity distributions strongly depart
from the Maxwellian equilibrium limit [70]. The Boltzmann equation, mostly
solved with Direct Simulation Monte Carlo (DSMC) [71] and Bhatnagar—-Gross-
Krook (BGK) [72, 73] methods, is used to describe the ow. At lower altitude,
the vehicle enters the slip ow regimé;1 < Kn < 10, where a continuum for-
mulation, supplied with velocity slip and temperature jump BCs, might be used to
describe the ow [74]. At altitude lower tharn0 km, the vehicle is in the contin-

uum regime Kn < 0:1): the density increases, driving up the rate of collisions [69].

This manuscript focuses on the characterization of entry ow conditions in the
continuum regime. Transport phenomena distribute mass, momentum, and energy,
and the equilibrium regime can be approached, allowing one to describe the ow
using the Navier-Stokes equations. They describe the macroscopic behavior of the
ow in terms of bulk properties (such as density, velocity, and temperature) and
enforce the conservation of mass, momentum, and energy: the variation in time of a
conservative variable in a given volume is a balance between uxes on its boundary
and internal production.

Both in- ight and on-ground applications are targeted in this manuscript. These are
characterized by high temperatures (ud®®000 K) and relatively low pressures
(20020000 P3. High-temperature effectseed to be accounted for: particles’
vibrational and electronic energy modes get excited, and their non-linear contri-
butions have to be included in the thermodynamic modeling. Furthermore, the
high temperatures promote the dissociation/ionization of the moleculesranttia
component, chemically reactitigeatment of the gas should be employed. Although
free electrons can be present in the applications considered, we will restrict our at-
tention to quasi-neutral (net charge of the mixture equal to zero) and unmagnetized
plasmas. Both the low pressures and the low residence times of the ow prevent
the equilibrium of macroscopic quantities. The degree of such non equilibrium
is generally estimated by means of the Dénller numberPa, which is de ned
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as the ratio between the ow residence time and the characteristic chemistry time.
For relatively low ow residence times, the gas chemistry is outside the equilib-
rium condition Pa 1) andFinite-Rate Chemistry (FRQ)as to be included in

the modeling of the gas phase (homogeneous chemistry). Shorter ow residence
times cause also the internal energy modes to deviate from equilibrium conditions.
Moderate non-equilibrium can be described by means of multi-temperature models,
such as the two-temperature model proposed by Park [5]. This model assumes
that the translational and rotational modes of heavy species are characterized by a
temperature which may be different from the one of the vibrational and electronic
modes and the translational mode of the electrons, and that the population of each
mode follows a Maxwell-Boltzmann distribution. When non-equilibrium becomes
stronger, and the energy population deviate from the Maxwell-Boltzmann distri-
bution, more complex models, for instance the state-to-state one [75], should be
employed. State-to-state models consider as a pseudo-species the particles charac-
terized by a speci ¢ energy level, whose conservation is governed by rate processes.
Thus, it requires the solution of a large number of continuity equations. In this
manuscript, we will consider the ow to be chemically reacting and in thermal
equilibrium.

As said before, molecules dissociate because of the high temperatures involved
in the hypersonic ows. The resulting atoms diffuse towards the surface of the
object, reacting with it through ablative and catalytic reactions. Thus, another
feature that requires to be modeled is G&s-Surface Interactio(GSl). In this
regards, balances of mass and energy on reacting surfaces were derived to describe
the material surface response [76].

Lastly, turbulence, transition to turbulence, and radiative energy transfer might have
a signi cant in uence on the computation of the Quantities of Interest (Qols) in
hypersonic ows. Turbulence is not expected in the applications targeted in this
manuscript as they are characterized by high temperatures (and thus high viscosity),
resulting in low Reynolds number (ratio between inertial and viscous foR®s,

On the other hand, the temperatures are not suf ciently high to make radiation
transport processes relevant. Hence, their formulation will not be presented.

To summarize, we will consider ows that are 1) in the continuum regime
(Kn < 0:1), Il) in thermal equilibrium, 111) in chemical non-equilibrium (Da 1),
IV) unmagnetized and quasi-neutral, V) laminar (IR, and do not include V)
radiative phenomena. In Section 2.2, we revise the multi-component, chemically
reacting, laminar Navier-Stokes equations in thermal-equilibrium for dilute gases,
presenting the state-of-the-art modeling for the chemistry, thermodynamics, trans-
port, and GSI phenomena. Ef cient algorithms for their solution are included in the
Mutation™ library, which is introduced in Section 2.3.
The above-mentioned physical models are generally affected by uncertainties either
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in the their form and in their parameters. Experimental data are essential to reduce
such an uncertainty. We are primary interested in the stochastic inference of GSI
parameters. Section 2.4 provides the description of the experiments that we em-
ployed for the GSI characterization. The rst two are a subsonic and a supersonic
experimental campaign performed in the VKI Plasmatron facility. The last one, is a
molecular beam-surface scattering experiment.

2.2 Governing equations

The applications targeted in this manuscript can be fully described by means of
the multi-component chemical reacting Navier-Stokes equations [4, 5, 77, 78]. In
conservation form, they are:

%ﬁr (iu+j)=Li; 8 2[Lns]; 2.1)
%+r (u u+p  )=0; (2:2)
@E “o:

@+r ( uH u+q)=0: (2.3)

External forces contributions are considered negligible in the treated applications.
In fact, gravity does not to play a signi cant role, while Lorentz forces are null as
we restrict our attention to quasi-neutral and unmagnetized plasma ows.

Equation(2.1) represents thepecies mass conservatiosymbolu is the
mass-averaged (bulk) mixture velocity, the partial density of speciésj; its
diffusive mass ux,!; its chemical production/destruction rate, andthe number
of species in the mixture. Thetal continuity equatiorcan be obtained by summing
Equation (2.1) over all the species, it reads:

@

—+r u)=0; 24

o~ (W (2.4)
as the diffusive mass uxes and the chemical production rates sum to zero for mass
constraints [78]. Symbol = i”jl i is the mixture density.

Equation(2.2) represents theonservation of momenturaymbolp stands for
the thermodynamic pressure of the mixtureghe unit tensor, and the viscous
stress tensor. Under the Stokes assumption, it reads:

=2D = ru+(r u)T %r ul (2.5)

where is the viscosity of the mixture (whose closure is given in Section 2.2.3),
andD is the deviatoric part of the strain rate (symmetric part of the the velocity
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gradient).

Finally, Equation(2.3) represents theonservation of energysymbolE =
e+ %u u is the total energy, sum of the thermodynamic contribut&ratd the
kinetic one %u u),H = E + p= is the total enthalpy, ang the total heat ux.
Neglecting the radiative component, it is composed of both a conductive and a

diffusive contribution: .
q= rT+ iihi; (2.6)
i=1
where is the gas thermal conductivity (whose closure is given in Section 2.2.3),
andh; is the speci ¢ enthalpy of the species

Given the relatively low pressures involved in the applications treated in this
manuscript, no dense effects are encountered and the ideal law for dilute gas applies:

pi=Ri iT: 2.7)

SymbolR; = R=M; is the species gas speci ¢ constan{y; its partial pressure,
andM; its molar mass, whil® is the universal gas constant. Dalton's law does
also apply:

p= b (2.8)

2.2.1 Homogeneous nite-rate chemistry

When advection/diffusion phenomena are slow enough, the gas has the time to
relax toward its chemical equilibrium condition: its chemical composition depends
only on the thermodynamic state of the mixture. Generally, hypersonic applications
deviate from this condition and the gas is in chemical non-equilibrium. The non-
equilibrium degree can be estimated by means of the Bamek number [5]. As

we saw in Section 2.1, it is de ned as:

t ow

Da= {chemistry (2.9)
wheret ® is the ow residence time (which can be associated with advection
phenomena in most of the ow, or diffusive ones inside the BL), Hi8Ms"is the
characteristic chemistry time. A very sm8lanumber 0 < Da 1) suggests
frozen chemistryno reaction has the time to occur), while a high numipea ( 1)
achemistryin equilibrium In the middle rangedda 1), we deal withchemical
non-equilibrium(5].
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Example Let us consider an adiabatic box containing oxygen, which is ini-
tialized with a temperature df, = 10000 K and mass fractions equal to
Yo, = 1:0andYp = 0:0. The evolution in time of the mass fractions can be
described by the conservation of mass and energy:

@i @E _
@t ot
and by the dissociative reaction:

=1, withi 2 [O; Oy]; 0;

O,+ M 20+ M, with M 2 [O; O]:

According to the law of mass action, the molecular oxygen chemical produc-
tion rate reads:

| X 2
o
m2[0;0,] 0, Vim

m

6 _m .
Mo Mpy

where M indicates a third body in the reaction, &ad, andky,, are, respec-
tively, the forward and the backward reaction rate coef cients.

If we consider solely the forward direction of the reaction, and only the
molecular oxygen as third body, the characteristic chemistry time is:

o, Mo, _ RT

tchemistry: - :
o, kio, 0, Kfro,(T)po,

Hence, we can expett"®™sto be inversely proportional to the gas pressure.
To highlight such a dependence , let us consider four different initial pressures
of the box, speci callypg = [10; 1; 0:1; 0:01] atm. The system is left free

to time march towards equilibrium. The evolution of the molecular oxygen
mass fraction versus the time is plotted in the gure below.
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Given the high temperature, the oxygen dissociates with a speed that depends
on the gas pressure. A0 atm the chemistry takes 10 ®sto relax. As

we decrease the pressure, fewer and fewer particles collide, and the chemistry
slows: for a pressure @1 atm, typical of entry applications, the characteris-

tic chemistry time isl 10 3s.

Let us also assume a characteristic ow time representative of entry ows.
When associated to advection phenomena, it can be computed as the inverse
of the stagnation-point velocity gradiert’ = ( du=dx) 1 R=u; , where

R is the effective radius of a hypothetical entry object andits velocity. If

we takeR =2m andu; = 12000 m=s, we obtaint °¥ = 1=6000 s

At this point, we can compute the Daigter number. At pressures represen-
tative of entry ows, we had®"®™sty=1 10 3s, leading to dDa= 1=6, in

the chemical non-equilibrium regime. By contrast, with a characteristic chem-
istry time of 1. 10 8 s, relative to pressures much higher than those involved

in the targeted applications, we would hada 10°, in the equilibrium
range.

The applications treated in this manuscript are characterized by low pressures and
high speeds. Both contributes to havin@paranging from non-equilibrium to
frozen values. In these cases, homogeneous FRC should be accounted for.

All elementary reactions are reversible [78], and they can be written in compact

form as:
Xs . Xs )
iir Si iir Si; (2-10)
i=1 i=1

where [ and P are the forward and the backward stoichiometric reaction
coef cients for the speciesin the reactiorr, andS; is the species with indeix
The Maxwellian net chemical production rate of each spetigs;an be computed
by means of the law of mass action [78]:

2 3
X Caau T S it
=M r:1( i ir ) 7K | M, K; M, 5 (211

wheren, is the number of reactions considered, &hcndk? are, respectively, the
forward and the backward reaction rate coef cients.
The forward reaction rate coef cients are generally given in the empirical Arrhenius
form:

T,

k(M =AT"exp == ; (2.12)
where the pre-exponentiad,, the exponentialn,, and the activation energy,
Tar, are usually calibrated on shock-tube experimental data. Example of rates
coef cients for hypersonic applications can be found in Park et al. [5, 79], Olynick
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et al. [80] (for Earth atmosphere) andkgen [81] (for Titan atmosphere).

In order to satisfy the chemical equilibrium condition and respect the second law of
thermodynamics [78], the backward rate coef cients are obtained by means of the
equilibrium rate:

kf
kP = L (2.13)
r
de ned as:
_ Gi (Prer; T) Pret
In kg9 = (e % In % ; (2.14)

i=1

whereg is the Gibbs free energy of the speciesndp,.s a reference pressure,
which is arbitrary. Note that the equilibrium rate coef cient depends on the only
temperature. Alternatively, the equilibrium rate coef cients can be obtained using
empirical polynomials [79].

2.2.2 Multi-component thermodynamics

The thermodynamic properties of a mixture can be obtained by averaging the ones
of the species composing it:

s
e=  Ye; (2.15)
i=1
p_ X
h=e+ == Yihi; (2.16)
i=1
Xs Xs @h
Coifr = YiCp;i = Yo —= ; (2.17)
i=1 i=1 @T p
Xs Xs
s= vis ™7 xinx: (2.18)
i=1 i=1
Xs Xs
g=" Yig+ 2T yinx; (2.19)
i=1 i=1
with:
g=nh Tsi (2.20)
whereY; = = is the mass fraction of specieandX; = p;=pits molar

fraction. Symbols, h;, si, andc,; stand respectively for the species' internal
energy, enthalpy and entropy, and speci ¢ heat at constant pressure kylisle

the Boltzmann constant. The second term on the Right Hand Side (RHS) of Equa-
tion (2.18) represents the mixture's mixing entropy. Symbg}, is the mixture
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frozen speci c heat at constant pressure.

From a microscopic point of view, particles can store energy in different
modes [4, 5]. They are:

1. Translational modge™): kinetic energy associated with the motion of their
center of gravity.

2. Rotational modde®): kinetic energy associated with the rotation around
their axis of inertia.

3. Vibrational modg(e"): sum of potential and kinetic energies associated with
their vibration.

4. Electronic mod€eF): sum of a potential and kinetic contributions associated
with the rotation of the electrons in a speci c shell.

The translational mode has three thermal degrees of freedom, as the particles
can move in three independent directions, while the rotational and the vibrational
degrees of freedom depend on the structure of the particle.

Assuming that these modes are independéiné energy of a molecule is the sum

of the above-mentioned contributions:

e=¢g+ef+e +e+e (2.21)

and of the formation energg®, which accounts for the chemical energy. It is

de ned as the enthalpy adsorbed or released upon the formation of one mole of

substance from its constituent elements, at standard conditions. Since in a reactor it
is only possible to measure this difference in energy, the formation enthalpy cannot

be determined in absolute way for each species. It is a convention to assume it to be
zero for those elements in their standard states and to attribute the whole difference
as formation energy to the other species.

Contrary to molecules, the energy of atoms does not include the vibrational and

rotational contribution.

1For gas with weakly interacting particles (that react only upon collision), it is safe to separate
the translational by the internal (roto-vibronic) energy: = eiT + ei' [82]. Additionally, the use
of the Born-Oppenheimer approximation allows for splitting the latter term in an electronic and a
roto-vibrational contributione! = eF + eRV. The rotational and vibrational mode are closely coupled
as the rotation induces centrifugal forces that, in turn, affects the vibration, while the vibration changes
the moment of inertia of the molecule, affecting the rotation [82]. Accounting for such a coupling is
crucial to correctly model the thermodynamics at high temperatures, for example when dealing with
radiation. However, the general practice in CFD simulations is to consider independent also these two
modes because ) it is more ef cient, and Il) at those temperatures where the roto-vibrational coupling is
important, if the gas is not too far from the equilibrium condition, the mixture is fully dissociated [83].
The same holds true for the computation of the entropy and Gibbs free energy.
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Example Let us consider an air mixture of 11 species (S 3,[®;, NO, N, O,

No*, O,", NO*, N*, OF, €] ). The evolution of the equilibrium composition

of the main species at atmospheric pressure is shown below against the gas
temperature. It is followed by the contributions of each energy mode to the
mixture enthalpy.

At room temperature, only translational and rotational modes are activated.
Since they are linear il the gas isalorically perfect For temperatures above
1000 K the vibrational mode starts getting excited and, as its contribution is
not linear inT, the gas is no longer calorically perfeddigh-temperature
effectshave to be taken into account and the gas is said tthéamally
perfect Further increase in temperature drives molecule dissociation and the
formation enthalpy sharply increases. Arol@D0 K, the electronic mode
starts to get excited and, at higher temperature, drives the ionization of the
mixture. Around9000 K, free electrons and ions appear in the mixture. By
contrast, vibrational and rotational energy decreases at temperatures higher
than5000 K, as, because of the dissociation, the number of molecules that
can vibrate and rotate decreases too.

For a thermally perfect gas, the thermodynamic properties of each species can be
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computed either by means of the Rigid Rotor Harmonic Oscillator (RRHO) model
or employing the NASA polynomials.

Rigid rotor harmonic oscillator

The RRHO is a theoretical model for computing thermodynamic properties. It
assumes that I) the molecules rotate around their center of mass as a rigid body (the
intermolecular distance does not change), 1) the vibration can be described using a
simple harmonic potential energy function (anharmonicity is neglected), and Il1) the
rotational and vibrational modes are decoupled. Despite these strong assumptions,
the RRHO is widely used in the hypersonic community as the mixture is dissociated
at those temperatures where they are inadequate to describe the molecules [83].
The RRHO formulation can be found in classical textbooks [4, 82], following, we
brie y present the main concepts.

As we saw before, particles can store energy in different modes. According
to quantum physics, this energy is quantized: it can only have discrete values.
However, we will present a semi-classical formulation, since the translation modes'
energy levels are so packed that can be safely considered as a continuum. For the
same reason, also the rotational mode is described with a continuous representation.
When the mixture is in thermal equilibrium, assuming the gas to be non-degenerate
(assumption valid for tempeature higher tfal [4]), the population of the species
i living in the mode energy levgl (with energy"{;m ) can be obtained by the
Boltzmann distribution:

. ; P wim

nji _ g{exp( m2M W)

-+ = ; (2.22)

n; Qi
wheren{ is the number density of speciewith energy levej , such that the total
number density of thespecies isxrespected:

n{ = nj; (2.23)
J

gf is product of the modes degeneracy:

d=d'gd"d'd" (2.24)
and the superscriph indicates the index for each energy modes, with =
[T; R; V; E]. The quantityQ; is the total partition function:

Qi = QIQFQYQr; (2.25)

where each component reads: |
X wjpm
- 1 .
Qn = | d exp T (2.26)
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The evaluation of the partition function allows for computing all the macroscopic
thermodynamics properties, such as the internal energy, the pressure, the enthalpy,
and the entropy:

m — . my2 @ m .
g =R (TM) T In Q L (2.27)
p" = nikgT™ @In (O (2.28)
| @V i T ]
pm
h" = " + = (2.29)
i
@ Qm
m = R mo_=_ m i =t
Si R T aT In Q; . +1 + Rjln n (2.30)
For the translational mode, this leads to:
T_ 315 .
€ = ET Ri; (2.31)
pi = nikeT': (2.32)
5
h'= >T'Ri; (2.33)
3 2!
hT keTT 2m kgTT ~°
T — B i kB .
ST = o5+ Riln 5 2 ; (2.34)

Only the translational mode contributes to the pressure, recovering the ideal gas
law.
For the rotational mode:

hR = R = %TRRi; (2.35)
hR L TR
sk = TfIR + R 5 In — In | (2.36)

whereL is equal to 2 if the molecule is linear, 3 otherwisp,is the characteristic
rotational temperature, and is the steric factor, equal to 2 for symmetric molecules,
and to 1 otherwise.
For the vibrational mode:

X \

Voo R oo
h' = e = R ol L =T 1 (2.37)

V=L R In 1 exp -2 (2.38)
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Finally, for the electronic mode:

05 Eexp( B)=TE

QF

hF=ef = R; (2.39)

E

sE= % + R; In QF: (2.40)
The quantities, and &, are the characteristic vibrational and electronic temper-
atures. The sum in the Equati¢2.39)is divergent and a cut-off value"® is
usually imposed.
The energy and the enthalpy of the free electrons can be computed using, respec-
tively, Equation(2.31)and(2.33)with the free electrons temperatufié. Their
entropy is:

!

he keT® 2m okgTe 32
s = — + Rgln
Te € pe h2

+ Reln2; (2.42)

where the last term in the RHS is the spin contribution to the entropy of the free
electrons.

In order to close the above equations, one need to speci city particles' degeneracy
and characteristic temperatures. They can be found in thermodynamic tables [84,
85]. Furthermore, in this thesis we will assume that the thermal equilibrium
condition holds in all the applications, such that:

TI=TR=TV=TF=T°=T: (2.42)

NASA polynomials

Alternatively, NASA polynomials can be used to compute the thermodynamic
properties [86, 87]. They were obtained in @@0-20 000 K temperature range,
and accounts for roto-vibrational coupling and anharmonicity. A seven-coef cients
polynomial was chosen to t the dimensionless heat capacity of each species:
%: a T 2+ %‘* agi tagT+ayT?+ a5 T+ ag T (2.43)
i

The enthalpy can be obtained by integratimg in T, while the entropy by integrat-
iNg Cp; =T in T. They read:

hi InT T T2 T3 T4 ay

e = AT Aot At A 5t At A A gt o (2.44)
I

S| T 2 . TZ T3 4

a T
R %+aziInT+a3iT+a4i7+a5a§+aai7+asi:(2-45)
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2.2.3 Multi-component transport

Particles move in the ow with a peculiar velocity, which, in general, is different
both in module and direction from the one of the mixture. This allows them to dif-
fuse, transporting momentum and energy. The kinetic theory allows for expressing
transport uxes as products between macroscopic properties gradientsXj.e.

r u, andr T) and transport coef cients. The latter can be rigorously obtained by
the rst-order Chapman-Enskog expansion of the Boltzmann equation [78, 88].

The viscosity and the translational thermal conductivity of single species re-
spectively are:

P
5 m ikBT
i = 772;2 , (246)
16 Qff®
15
I= ZRib (2.47)
while, the binary diffusion coef cient of speciediffusing in specie$ is:
s
2k gT(m; + m;
S AU ALY (2.48)
16nQt" m; m;

ij

whereQ!"®

i is the reduced collision integral, which links macroscopic properties
of the gas to the microscopic dynamics of the collisions [78, 89]. It is the average,
over all the relative energies, of the relevant cross sections in the binary collision
between thé andj particles. The quantitied; s) represent the order of the Sonine
polynomial employed in the spectral method used to solve the equation arising from

the rst-order Chapman-Enskog expansion.

Mass diffusion

Accurate diffusion velocities\ ;) can be computed by solving tistefan-Maxwell
system [78, 89, 90]. In the absence of an electric eld, and neglecting the pressure
and the thermal driving forces, it reads:
Xs
p
GYV. =
i=1 ! I nkBT

r Xi; (249)

whereGV is the diffusion matrix, whose de nition is given in Appendix B. The
system is closed with the mass constraint:
Xs
YiVi=0: (2.50)
i=1
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The diffusion matrix is singular. Following Giovangigli [78], Magin and Degrez

obtained a non-singular form by regularizing the diffusion matriég{sz GV +
y Yy, where is a constant of the same order of the matrix, for example
1=max(Dj ) [89]. Finally, the diffusive uxes are obtained as:

Ji= iVi: (2.51)

Alternatively, Fick's law can be employed by using effective binary diffusion
coef cients (diffusion of speciesin the pseudo-species composed by the rest of
the mixture S,;). Itis de ned as:

1 X
D; = p—X'J (2.52)
jgi Dy
Enforcing the mass constraint on the diffusive uxes leads td3ék-Consistent
Effective Binary Diffusion (SCEBDrmulation proposed by Ramshaw [91, 92]:

oML R v _
Ji= RTD.rX|+Y.|:1—RTD|rX|. (2.53)

Momentum and energy transport

The multi-component mixture coef cient$, =[ ; T], are obtained by the aver-
age:

T= X (2.54)

where the coef cients | are solution of the transport linear system:
GT T =[Xy X1 (2.55)

SymbolsG andG " are the transport matrices, whose de nition can be found in
Appendix B.

The total thermal conductivity is then computed as:
= T+ '+ & (2.56)
where the internal thermal conductivity is usually obtained through the Eucken

correction:

X X Xs i
| = R+ \ + E = m = P s pv)(ij, (257)
m2Mm .1 m2M ,ri=1  J=1 Dj
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beingM .1 = [R,V,E], and the thermal conductivity of the free electrons reads:

2 22
e_ X e ee .
1 22 12)2 :
ee ee ee

(2.58)

The expressions for thele terms can be found in [89, 90, 93]. On the other hand,
due to their lower mass, electrons do not contribution to the viscosity [93].

Alternatively,approximate transport coef cientsan be obtained by employing
mixture rules [94-96].

Example Let us consider an air mixture @fL species in chemical equilibrium

(S= [Nz, Oz, NO, N, O, N, O*, No*, Oy, NO*, €]) in the temperature
range200- 15 000 Kand atmospheric pressure. The temperature-dependent
transport coef cients are plotted in the gure below.

The viscosity rst increases with the temperature, in accordance with Equa-
tion (2.46), which shows a square root dependencd ofror higher tempera-
tures, the mixture ionizes, resulting in an increase in the collision cross section
and, consequently, in the co[gision integrals. For temperatures dlfb9e0 K

the teeri(iz;Z) dominates on T and the viscosity decreases.

At room temperature, only the translational and the rotational degree of free-
dom are excited, so only these components of the energy can be transported.
Being the translational thermal conductivity linearly depended on the viscos-
ity, Equation(2.47) it follows the same trend. The vibrational and electronic
energies increase with the temperature. Consequently, their thermal conduc-
tivity component increases with, until a point in which they start decreasing,

rst because of dissociation, then because of ionization. At this point, the
mixture's thermal conductivity greatly increases because of the contribution
of the free electrons. Note that the the diffusive component of the heat ux
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P
( i”jl j i hi) is an important contribution, but was not included in the example.

2.2.4 Gas-surface interaction

In all the applications targeted in this manuscript, a reacting ow impinges an object
whose surface undergoes either catalytic or ablative reactions. In the rst case,
the surface (s) acts as a catalyzer for the recombination reaction of two gas-phase
atoms, for example:

N+ N +s! N, +s.

In the second case, a surface atogh eacts with a gas-phase one. An example is
the oxidation of a carbon surface:

Cp+O! CO.

Both reactions are exothermic and increase the surface heat ux. Additionally,
the oxidation reaction ablates the material and generates a blowing velocity at the
surface. Furthermore, they both affect the BL chemical composition.

To rigorously capture the physics of the material response, CFD and material
computations should be coupled as in [97, 98]. This approach can be computation-
ally expensive. Under some assumptions, one can model the material response only
in terms of surface mass/energy balances on its surface [76, 99].

Gas-surface balances can be derived for any conservative vatighig, means
of the Reynolds transport theorem [100]. On the in nitesimal volume containing
both the gas and the surface, under steady-state assum@ior@t 0), the
balance reads:
[Fg Fg n=S (2.59)

whereF g andF s respectively are the uxes in/from the gas- and the solid-interface,
Ss is the surface source terms, amds the normal to the surface, pointing the
gas-phase.

Following, we will present the mass and energy balances. No balance is provided
for the momentum, as its closure is given by the no-slip condition. Furthermore,
phenomena like pyrolysis, spallation, or mechanical removal will not be considered.

Figure 2.1: Sketch of the surface mass balance.
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When the surface temperature is known, one only needs to s@8lugface Mass
Balance (SMB)which is sketched in Figure 2.1: the surface chemistry generates a
species gradient at the surface, driving diffusion. Assuming the recession velocity
(u/) to be negligible compared to the blowing or advection ang,(the SMB for
each speciesreads:

Li=( iug+j;) n; 8i2[Lu;ns]: (2.60)

When reactions involve material removal, the material recedes, and the products are
advected out from the surface (blowing effect). The blowing velocity is de ned as:

Ug = @; (2.61)
while the recession one as:
u = 2. (2.62)
S
wherem is the blowing mass rate:
Xs
m = i (2.63)

i=1

L ) . P . )
which is greater than zero for ablative materials; i”jl i, and sis the density

Bf the material. These two velocities are null in the case of catalytic surfaces as
Ns . = 0
i=1 .

Also the GSI chemistry is a rate process, thus, it can be characterized by a

Damlkbhler number. It can be de ned as:
| i BL
Da'= ——: 2.64
i D12 ( )

where Bl is the BL thickness. A value dda” ! 0 suggests @&eaction limited
regimewhile D& ! 1  adiffusion limitedone [101].

When the surface temperature is not known, a coufledace Energy Balance
(SEB)has to be solved. It is sketched in Figure 2.2.

Figure 2.2: Sketch of the surface energy balance.
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The conductive heat ux toward the material is either neglected (for low ther-
mal conductivity materials), or approximated by the steady-state ablation assump-
tion [102]. The SEB balance reads:

@T X
ugh =+ jihi = Snd (2.65)
@n i=1

whereS;,q = T “#isthe raditive energy ux, is the Stefan—Boltzmann constant,
and the body emissivity.

The surface chemical source terrhg, can be computed either by means of
phenomenological approaches or by using FRC models.

Phenomenological approaches

Phenomenological approaches [103] are extensively used in the hypersonic com-
munity to model both catalysis and ablation [21, 99, 104]. They are rather simple
methods as they only require the de nition of the probability that a macroscopic
reaction takes place. For this reason, they can be calibrated by means of macro-
scopic experiments, for example using Inductively Coupled Plasma (ICP) facilities
or arc-jets data.

The probability or ef ciency of the reaction is de ned as:

NY.
i NI’

r—

(2.66)

wtbereNi’ is the number ux of species subject to the reaction andN; =

ni ksTs=(2 m i), the number ux of speciesimpinging the surface. A fully
catalytic behavior is obtained when the probability approaches unity; whereas a
non-catalytic behavior is reached when is equal to zero, in the between the surface
is partially catalytic.

In this case, the chemical production rate reads:

li=m; irNiZ (2.67)

Finite-rate chemistry models

Alternative formulations are FRC models [1, 22, 24, 105, 106]. They describe each

elementary reaction occurring on the surface (adsorption/desorption, oxidation,
nitridation, recombination, etc.). They have the advantage of capturing the pressure
dependence of the chemical reactions and the surface coverage.
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In this case, the chemical production rate reads:
X Y i iir
L= M ir Ky M—] : (2.68)

The form of the rate coef cient, , depends on the type of reaction [1, 106]. Let us
consider a surface characterized by a total active site ddBsi§as atoms can be
absorbed on a surface free site:

G +s! Gs.
Similarly, absorbed atoms can desorb from the surface:
Gs! G+s,

as sketched in Figure 2.3. Symbol G stands for a gas-phase atom, s is a free spot on
the surface, and the subscripindicates that the atom has been absorbed by the
surface.

Figure 2.3: Sketch of atomic adsorption/desorption.

Adsorption rates are in the form:

S
Kabsi = B

T .
Vriexp  —TE (2.69)
heres is the selectivity of the adsorption, which lies between 0 andrl,=

zkgfi represents a quarter of the thermal velocity of the spéeciaad Taps;

indicates the activation energy of the absorption process.
According to the simple transition state theory assumption, desorption rates read:

2m i kBT2 Tdesi
Kdesi = — o3

NaBh® OF 1

(2.70)

whereN, is the Avogadro's constarnt, the Plank's one, antlyesi Stands for the
activation energy of the desorption process.

Recombination reactions can be provoked by a gas-phase atom, which, striking a
surface, recombines with an absorbed atom (Eley-Rideal (ER) reactions, sketched
in Figure 2.4). Alternatively, two absorbed atoms can recombine. If they interact
with enough energy, the molecule can escape the potential barrier of the surface
(Langmuir-Hinshelwood (LH) reactions, sketched in Figure 2.5).
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Figure 2.4: Sketch of ER reaction.

In the rst case, the reaction rate is in the form:

1 Teri
ker,i = gVT;i eri €XP _T_ﬁl ;
where ¢ is the probability of the ER reaction, with value between 0 and 1 and
Teri represents the activation energy of the reaction.

(2.71)

Figure 2.5: Sketch of LH reaction.

In the case of a LH reaction, the rate coef cient is:
r

N Tini
Kihi = —Vrapi ih €Xp % ;

5 (2.72)

whereVropi = q ';;;T is the two-dimensional thermal velocity, afgl; indicates

the activation energy of the reaction.

The same processes can yield to surface ablation when one of the reactants is a
carbon surface atom. When the reaction is gas-dependent, the reaction rate reads:

Kgi = VTi g (2.73)

being 44 the probability of the reaction to take place.

When the reaction is gas-independent, the kgtehas an Arrhenius-like formula-
tion:

Tyii
Koy = Agi T" exp  —= (2.74)
During the reactions, the total number of active sites is conserved, such that:
B =[Gg+[sl (2.75)

Furthermore, in practical applications, one is not interested in the reactions transient
and the steady-state solution is usually sought:

%[s] =0: (2.76)
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Air carbon ablation model

The Air Carbon Ablation (ACA) model proposed by Prata et al. [1] is a state-of-the-
art FRC model. It comprises 20 elementary reactions occurring between a carbon
surface and an air gas. As it will be discussed in Chapter 6, we used the subset
of reactions involving atomic nitrogen to model the ablative behavior of a carbon
surface exposed to a nitrogen plasma. Such a subset, as well as the corresponding
rates, is reported in Table 2.1.

Index Reaction Reaction Rate Rate Coef cient
1 N+s! N ka[N][s] \%’: exp —20
2 NtN+s N S exp
3 N+Ns+Cy! CN+N+s  Kk[N]Ng “BA L5 exp 2%
4 N+Ns! Ny+s K[N][N o] q 7%0:5 exp—2%
5 Ns+Ns! Ny+2s ks[Ns][Ng] T2 Vr2p N0 1 exp 2%
6 Ns+Cp,! CN+s ks[Ng] 10° exp%

Table 2.1: Subset of the FRC reactions involving nitrogen in the ACA model.

Figure 2.6 shows the ef ciencies of nitridation and the recombination reactions
predicted by the ACA model, both at low and high pressure. Such predictions were
compared both to high-presséiand to low-pressufeexperimental data to infer
the rate coef cients.

The model ef ciencies can be computed as follows. According to the law of mass
action, the set of surface production rates read:

%[N] = ka[N][s] + ka[Ns]  Ka[N][Ns]; (2.77)
SINaT = KaINIING + ks[NP 279)
2 1ONI= KaINIING + Ko[Nd] 279)

d%[Ns]: kl[N][S] kZ[Ns] k3[N][Ns] k4[N][Ns] 2k5[Ns]2 k6[Ns]: (2-80)

Such a system is closed with the conservation of active sites, Equation (2.75), and
the steady-state assumption, Equa(@i76) Further inputs to the model are the
surface temperature, and the gas pressure and temperature, used to compute the

2|CP experiments from Lutz [107] and from Helber et al. [3]; the latter is introduced in Section 2.4.1.
3Molecular beam-surface scattering experiments from Murray et al. [108], described in Sec-
tion 2.4.2.
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concentration of the atomic nitrogen. For the high-pressure predictions, the gas
pressure was set equal 1600 Paand the gas temperature equal to the surface
one. For the low-pressure predictions, these two values were set to produce an
equivalent ux close to the one experimentally observegd{, = 0:024 Paand
Theam= 1000 K). Finally, the ef ciencies of the macroscopic recombination (N +

N! Ny)and nitridation (N + G! CN) reactions can be computed as:

. = Z(d[Nz]:dt); (2.81)
Nn
= (dICNJ=dt). (2.82)

Nn
whereNy is the number ux of particles of nitrogen impinging the surface.

Figure 2.6: ACA model predictions of the ef ciency of the nitridation and the recombination
reactions at low pressure (solid lines) and high pressure (dashed lines) versus the
experimental values. Adapted from Prata et al. [1].

The adsorption process (reaction 1) was modeled as an activated process to
reproduce the drop of theNf ciency observed at low temperatures in the molec-
ular beam experiments. The rate coef cient of the desorption process (reaction
2) was computed based on the transition state theory. A desorption energy equal
to the bound energy of a double bound between C and N was chosen to describe
the non-decreasing ef ciency trend observed at high temperatures in the molecular
beam experiments. Two nitridation reactions were included in the model to capture
the signi cantly different experimental ef ciencies at low and high pressure: a
gas-phase dependent reaction (reaction 3) allows for capturing the high-pressure
behavior, while the gas-independent reaction (reaction 6) for describing the behav-
ior at low pressure. Lastly, both ER (reaction 4) and LH (reaction 5) mechanisms
were included in the model to describe the nitrogen recombination. Although
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molecular beam experiments only showed evidence of LH recombination, the ER
recombination was necessary to describe the recombination at different pressures
and temperature [1].

2.3 Gas surface interaction boundary condition in
MUTATION **

In this section, we brie y introduce the Mutatihlibrary and its main features.
Then, we describe the implementation of the FRC reactions reported in Table 2.1
into Mutatior™.

2.3.1 MUTATION ™ description

The MUIticomponent Thermodynamic And Transport properties for IONized
gases library written in C++ (Mutatioh) was developed at the VKI to central-

ize physico-chemical models, algorithms, and data into a single software pack-
ages [68, 90, 99, 109], which may be shared among several CFD solvers. Ex-
amples of coupled codes are US3D [11], Argo [110], PATO [111], HDG [112],
COOLFluid [113], CHESS [114], Inca [115], SU2-NEMO [116], and a solver
developed by Margaritis et al. [117], that also support a surrogate version of the
library [118].

Resorting to an external library presents several advantages: the equations imple-
mented in the library can be veri ed separately, and the CFD code veri cation
process is replaced by a veri cation of the coupling; being Mutdtiampen source,
different CFD solvers share the same features, helping with code-to-code compar-
isons, as well regular updates of the library.

As discussed in the previous section, most of the gas properties depend solely
on the thermodynamic state of the gas. The Mutdtidibrary takes such a state as
input to return:

1. Thermodynamic propertieg hey can be computed either using the RRHO
model or by means of the NASA polynomials. Different options are available:
thermochemical equilibium, chemichal non-equilibrium, and thermochemical
non-equilibrium (Park's two temperature model).

2. Transport coef cients and diffusion velocitiegiscosity and thermal conduc-
tivity are computed by means of the Chapman-Enskog solution. Diffusive
velocities can be computed either by using the full diffusive matrix or by
means of the Stefan-Maxwell formulation. In the latter case, together with
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the thermodynamic state of the gas, the diffusion driving force should be also
passed to the code.

3. Chemical production ratesThe user has to specify the set of gas-phase
reactions along with the relative Arrhenius parameters. They are used to
compute the forward reaction rate coef cients. The backwards coef cients
are evaluated based on the equilibrium constant, which is determined by
solving Equation (2.14).

4. Transfer termsEnergy modes exchanges are provided when working in a
multi-temperature framework. Its description goes behind the scope of the
thesis and is not given here.

2.3.2 Nitridation model implementation and veri cation

The Mutatiori* library was expanded by Bellas [99, 109] and Dias [119] to enable
the solution of the GSI balances. It works as sketched in Figure 2.7. The user has
to specify the set of surface reactions, the type of approach (phenomenological or
FRC), and the surface emissivity when solving a coupled energy equation. At this
point, the module can be called by the CFD solver passing a tentative value of the
surface state (when an isothermal BC is used, the surface temperature is known
and its value will not be updated), the gas state in the rst cell close to the surface,
and the distance of the cell-center/surface, for computing the transport uxes. The
GSI module then solves, through a Newton method the Syg&eifi)coupled, if
necessary, to Equatid@.65) and returns to the CFD solver the surface state and
the mass blowing rate. The Newton algorithm is terminated when the iterative error
drops below a tolerance aD '3 or when a maximum db iterations is reached.

Both phenomenological and FRC approaches are supported. In the latter case,
a Newton sub-loop is performed to obtain the free sites steady-state solution,
Equation (2.76).

Figure 2.7: Sketch of the surface balance solution.

We expanded the GSI module of Mutatfério handle thermal non-equilibrium
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phenomena at the surface [120] - whose description goes behind the scope of the
manuscript - and to incorporate the FRC model in Table 2.1 [121]. The subset of the
ACA reactions involving nitrogen was included in the library. Given the abstract
architecture of the code, such an implementation is relatively straightforward. We
wrote a GSI le containing the set of reactions, and included in the library the
missing reaction rates laws. Furthermore, the default number of sub-iter&)ons (

to achieve the sites steady-state condition (Equdfor6) was increased t60to

have a well converged solution. Such an increment was necessary because of the
gquadratic dependence in {\contained in Equatiof2.80) The implementation

was veri ed by comparing the solution at high pressuyse< 1600 Pa) from

Prata et al. [1] with the one returned by Mutatibnin the temperature range

T =[850;2700] K. As one can see in Figure 2.8, the two solutions perfectly agree,
verifying the implementation. The model predictive capabilities were then assessed,
through CFD simulations, against experimental data. More details will be given in
Chapter 6.

Figure 2.8: Veri cation of the implementation of the reactions in Table 2.1 into Mut&fion

2.4 Experiments in ground testing facilities

Experiments in ground testing facilities can serve two distinct purposes. They
can be directly used for the characterization of the Qols. In the context of TPM
thermo-chemical characterization, plasma wind tunnels can duplicate the in- ight
response at precise trajectory points. ICP facilities [9, 122] and arc jets]283

are capable of sustaining a high-enthalpy ow for a relatively long time, typically
several minutes or higher, which makes them suitable for the TPM characteriza-
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tion. Nevertheless, when one is interested in collecting information at different
trajectory points, this practice might result time-consuming. Alternatively, one can
employ the experiments to inform physical models, which can be plugged in a
CFD solver to reproduce more cost-ef ciently different trajectory points. Plasma
wind tunnel experiments have been widely used to characterize GSI models. In
fact, the observed quantities, heat uxes or recession rates, can be related to the
macroscopic ef ciencies of catalytic or ablative reactions. Nevertheless, along with
the GSI phenomena that one is interested in characterizing, gas-phase phenomena
(chemistry and diffusion) are also present. Therefore, the assumptions contained in
the modeling of these processes directly affect the characterization of the surface
reactions [26, 67].

When experiments are used to inform a model, one does not necessarily need
to duplicate speci c in- ight conditions and different type of experiments might
be used. For instance, molecular beam-surface scattering experiments [126] can
be performed to isolate the GSI phenomenon by bombarding a sample placed in
a high-vacuum chamber with a beam of atoms or molecules. These experiments
provide more insights on how the surface reactions do proceed, which are useful
for calibration purposes. However, while these experiments manage to avoid the
appearance of spurious gas-phase phenomena, we cannot fully trust that they are
representative of hypersonic ight conditions because of the low pressures involved.
Good practice would then be to calibrate the models based on informative molec-
ular beam experiments, and to use plasma wind tunnels to assess their validity at
atmospheric entry conditions.

In this section, we describe two types of facilities whose data were employed to
inform the targeted GSI models. The rst one is the Plasmatron ICP facility at VKI,
and the second one is the molecular beam-surface scattering apparatus.

2.4.1 VKI Plasmatron

The VKI Plasmatron facility is a plasma wind tunnel that has been extensively used
for the characterization of TPMs. In fact, when the Local Heat Transfer Simula-
tion (LHTS) constraints are met, the Plasmatron can duplicate the stagnation-point
heat ux and recession experienced by an object traveling at hypersonic speed by
means of a subsonic ow [10, 127, 128]. Particularly, when the two edge conditions
are identical in terms of total enthalpy, pressure, and radial velocity gradient in
radial direction, the two BLs coincide. Although this feature is not strictly necessary
for modeling purposes, it is desirable to ensure that the model is representative of
atmospheric entry conditions.
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The Plasmatron facility, sketched in gure 2.9, generates high-purity/high-
enthalpy ows by means of 460 mm diameter ICP torch powered by a high-
frequency, high-power, high-voltagéQoO kHz, 1:2 MW, 2 kV) generator [9]. The
facility is started with a gas of Argon, as it is easy to ionize. Once the plasma is
stabilized, the gas is switched to the operating one (aipMNC(0,). The gas exits
in the test chamber, where vacuum pumps maintain the pressure to the operating
value. A holder injects the test sample on the centreline of the plasma jet.

Figure 2.9: Sketch of the Plasmatron facility, adapted from Fagnani [2].

For ow characterization, a copper calorimeter can be inserted in the plasma jet
to measure the cold wall heat ux at the stagnation point. It can be swapped with
a Pitot probe, which allows for determining the stagnation pressure. Both probes
are water-cooled: the temperature is kept aro®B@K. The heat ux is retrieved
by using the known water mass ow along with the measured temperature differ-
ence in the water at the inlet and the outlet of the calorimeter, which is measured
by two type-E thermocouples. The chain leads to an uncertainty of 10% of the
measurement. The pressure is measured by a Validyne variable reluctance pressure
transducer whose signal is ampli ed by a voltage demodulator. The uncertainty on
the measurement is estimated to be 0.25% of the reading scale. The static pressure
is assessed by means of an absolute pressure transducer, with uncertainty also of
0.25% of the reading scale. The mass ow rate is controlled by a rotameter, with an
accuracy of 5%.
These measurements, along with the power supplied by the generator and its ef -
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ciency, serve as an input for the ow rebuilding procedure developed at VKI [129].
First, the VKI ICP code [130, 131] simulates the Plasmatron torch and the test
chamber by solving magneto-dynamic equations, under the Local Thermodynamic
Equilibrium (LTE) assumption. In this way, it is possible to retrieve the ow con-
ditions at the edge of the BL that develops in front of the probes. After that, the
VKI BL code [104] solves the chemically reacting Navier-Stokes equations in the
BL to compute the heat ux on the probe, assuming it to be catalytic. The BL edge
temperature is then iterated until the numerical and the experimental heat ux do
coincide.

Further ow characterization is possible by means of several windows, which
allows for optical measurements [3, :334]. A spectrometer can detect the
locally-resolved radiative signature, and, under LTE assumption, the gas temper-
ature. A high-speed camera is used to measure the sample recession, while a
pyrometer the surface temperature. Infrared thermography can be used to obtain
3D temperature maps of the sample.

The facility has been extensively used in subsonic regime for the characteriza-
tion of catalytic and ablative materials [3, 23488]. Nevertheless, a convergent or
a convergent/divergent nozzle can be attached at the torch exit to accelerate the ow
to supersonic conditions [13®41]. This allows for maximizing the stagnation-
point heat ux and the shape change of ablative samples.

Subsonic campaign

An experimental campaign was performed at VKI to study the temperature-dependency
of the nitridation reaction ef ciency on carbon surfaces [3]:

Cp+N! CN.

The experiment consisted of a plasma nitrogen ow over a super ne-grain/high-
density graphite (s = 1760 kgeFm?), in-house machined to have2d mm radius
hemispherical shape with2b mm cylindrical after-body. It was placed at a dis-
tance 0445 mmfrom the exit of the torch.

The experimental set-up included a digital camera for the determination of the
stagnation-point recession, a two-color pyrometer for measuring the surface tem-
perature of the sample, and a spectrometer to record the violet system of the CN
molecule in the BL. It resolved the radial distribution (on the vertical line of the
right Figure 2.10) versus the wavelength of the signal (on the horizontal line of the
right Figure 2.10). Such a 2D matrix can be Abel-inverted to obtain the locally-
resolved CN-emission. By post-processing it, it was possible to retrieve both the
gas temperature and the CN concentration in a point belonging to the BL.
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Figure 2.10: Ablative carbon sample in a nitrogen ow in the left gure. Spectrometer
output matrix, in the right one, with spectral emission on the horizontal axis, and radial
position on the vertical axis. The spectrometer slit position is indicated with dashed red line

in the left gure. Figure courtesy of Helber et al. [3].

Seven runs were performed. From one to the other, the electrical power supplied
to the generator was progressively increased to obtain a higher free-stream enthalpy,
and, in turn, a higher surface temperature of the sample.

The BL edge conditionsT§, ue) were obtained through the rebuilding procedure [3]
using the dynamic pressure and the heat ux measured, respectively, by a Pitot
probe and a calorimeter, the chamber pressure, and the power supplied to the
Plasmatron and its ef ciency.

Three of the seven runs exhibited a strong thermal non-equilibrium and will not be
considered for the calibration proposed within this manuscript. An overview of the
conditions of the four considered runs is given in Table 2.2.

Experimental Rebuilt
CASE Pd Pel Tw m Te Ue
[Pa] [kW] K] [g/m?/s] [K]  [m/s]

G4 | 231 46 280 2225 22 2.49 0.91| 10005 554
G5 | 268 54 330 2410 24 2.89 0.97| 10280 562
G6 |312 6.2 370 2535 26 4.41 0.80| 11040 846
G7 | 330 6.6 390 2575 26 4.56 0.70| 10970 859

Table 2.2: Overview of Plasmatron test conditions for a nitrogen o%®0 50 Paover
a 25 mm radius hemisphere carbonaceous sample: dynamic preggugenerator power
Pe1, sample mean temperatufg, mass blowing raten, and reconstructed BL edge
conditions (temperaturd,e, and velocityue). Conditions from Helber et al. [3].
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Supersonic campaign

An experimental campaign was conducted at VKI using a supersonic jet to maximize
the heat ux experienced by the sample, as well as its shape change. In the used
con guration, the supersonic condition was achieved by accelerating the ow
through a sonic nozzle, mounted at the exit of the plasma torch. The chamber
pressure was lowered enough to generate a highly under-expanded jet.

Figure 2.11: Under-expanded air jet over the catalytic probe obtained in the VKI's
Plasmatron facility.

Speci cally, the chamber pressure was seb®hPa, against a reservoir pres-
sure of165 hPa resulting in a total pressure ratio of = po=p. = 30. The sonic
nozzle has an exit diameter 86 mm and the probe was placed at a distance of
75 mmfrom the exit of the nozzle, before the occurrence of the Mach disk, after
which the ow would become subsonic. The mass ow entering the plasma torch,
measured through a rotameter, véags *, and the Plasmatron was supplied with
an electrical power o800 kW. These conditions allowed for reaching a target heat
ux of 45MW.

The supersonic ow is shown in Figure 2.11: it expands out of the nozzle and a
detached shock develops in front of the sample. The interaction between it and the
barrel shock (developing from the exit of the nozzle) generates secondary shocks,
that get re ected on the jet boundary.

Unlike the subsonic experiments, the chemistry in the supersonic ow is not
expected to be in equilibrium and the VKI rebuilding procedure cannot be used. In
fact, the VKI ICP code assumes an LTE condition. In Chapter 5, we will describe a
novel methodology to characterize such a ow.

2.4.2 Molecular beam-surface scattering apparatus

Recent FRC models for describing carbon ablation [1, 24] were inferred from
molecular beam-surface scattering experiments performed by Murray et al. [108,
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126, 142, 143], as they provide microscopic insights on how surface reactions

proceed. In fact, molecular beam-surface scattering is a technique that allows for
assessing the dynamics of the interaction between a molecular beam (collisionless
and well collimated plume of gas) and a surface [144].

The main components of the experimental apparatus are |) a beam source (for
example a high-pressure radio frequency discharge source), 1) a heated sample,
over which the beam is directed, Ill) a rotatable mass spectrometer, and 1V) a
chopper wheel to modulate the scattered products. The sample is placed in a high-
vacuum room, where pumps guarantee pressure of the ordér ofL0 ’ torr,
essential to avoid gas-phase collisions. In addition, the sample temperature is
measured by means of a calorimeter.

The rotatable mass spectrometer detects the number density distribution of
the scattered products as a function of tirhg(t), at different nal angle, i,
corresponding to an incident angle, The relative curves are generally referred to
as Time-Of-Flight (TOF) distributions. The ux of the scattered particles at a given
nal angle is computed as:

Z,,
[(¢)/ NT(t)dt; (2.83)
ti
wheret; is the time at which the chopper wheel slot passes in front of the detector,
andt; is the time at which the signal drops to the background level. The plot of
the ux versus the nal angle is referred to as angular distribution. By analyzing
the shape of the TOF distributions, and of the angular and translational energy
(P(ET) / t2N(t)) distributions, insights on the type of mechanisms can be derived
(impulsive scattering VS thermal desorption, LH VS ER mechanisms, etc.). For
example, in a LH reaction the incident atom and the produced molecule does not
thermalize with the surface. As a result, the products retain most of the incident
atom's high translational energy. The relative TOF curves are characterized by a
peak at short ight time and the angular distributions by a lobular shape [126].

As we will discuss in Chapter 6, we informed an FRC model by means of
an experiment performed by Murray et al. [142]. Following, we present its main
features. In the experiment, low-energy continuous beams were employed to study
the reactions between a nitrogen, and an oxygen, gas and a vitreous carbon surface.
Compared to the hyperthermal pulsed beams employed in previous studies by the
same author [108, 143], low-energy and continuous beams ensured that the surface
chemical processes were more representative of atmospheric entry conditions. Both
oxygen and nitrogen beams were used. Being in this manuscript interested in cali-
brating the reactions involving nitrogen, we will consider only the results obtained
using nitrogen beams.
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The nitrogen beam was produced usin@gsanbar mixture (2.5% N in He) dis-
charged by a high-pressure radio frequency discharge source and expanded through
a0:48 mm diameter nozzle. It is then collimated by means of a skimmer with a
diameter 0f0:8 mm and after by @:4  0:4 mm? aperture. The resulting beam is
composed byy = 0:18andxy, = 0:82with an average velocity of 2000 rnrs.

The data were collected at increasing temperatures (&@dto 1873 K), annealing,

before each test, the samplel&73 K for aroundl h.

Results showed that the surface undergoes only recombination and nitridation
reactions. Their reaction probabilities were determined as:

. ux of r product _nf (product) (2.84)
" ux of N atoms onto the surface f (N + 2N, + CN)’ '

wheren is the number of nitrogen atoms in the speci c product. The ux of prod-
ucts was computed by integrating the ux of the scattered particles over all the nal
angles.

This is the only application treated in this manuscript which is not described by
means of the Navier-Stokes equations. Indeed, being the experiment conducted in
high vacuum, one can neglect the gas collisions. We employed the 0D model pro-
posed by Prata et al. [1] to simulate the experiment. It was presented in Section 2.2.4
(Air carbon ablation modetubsection).

2.5 Summary

This chapter aimed to present a comprehensive understanding of the equations that
govern a hypersonic ow in the continuum regime and to describe the experimental
facilities and campaigns that we will analyze in the following chapters.

The chapter begins by introducing the chemically reacting Navier-Stokes equa-
tions, which express the conservation of mass, momentum, and energy. In many
hypersonic ows, the chemistry deviates from the equilibrium condition and homo-
geneous FRC needs to be accounted for. We presented the expression of the net
chemical production rates, based on the law of mass action and empirical Arrhenius-
like reactions rate coef cients. The chapter then moves into the descriptions of
the thermodynamic properties of high-temperature gases. Two commonly used
approaches are detailed: the RRHO model and the NASA polynomials. The chapter
also covers the modeling of transport properties. The Chapman-Enskog formulation
is presented to compute the gas viscosity and thermal conductivity, while the gener-
alized Stefan-Maxwell equation to compute the diffusive velocities. Additionally,
simpli ed mixture rules are described. The chapter then delves into the modeling
of the GSI, needed to describe the interaction of the reacting gas and catalytic
or ablative materials. We introduced two different approaches for the closure of
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the surface chemical source term: the phenomenological and the FRC models.
Both of them are available within the Mutatitnlibrary, which was described

next. We implemented in the library the reactions involving atomic nitrogen of a
state-of-the-art FRC model and we presented a veri cation test case. Finally, the
chapter concludes by introducing a subsonic and a supersonic test performed in the
VKI Plasmatron facility and a molecular beam-surface scattering experiment.



Uncertainty quanti cation methods

This chapter reviews the formulations behind the uncertainty quanti cation tools
employed in this thesis. We rst introduce the forward propagation problem. The
Monte Carlo method is described, highlighting the differences among various
sampling strategies. Next, we present the Bayesian formulation, used in this thesis
to solve the inverse problem in a stochastic fashion. We show that a Markov Chain
Monte Carlo can be employed for approximating the target posterior distribution.
Examples of ef cient algorithms used to construct such a chain are then described:
Metropolis-Hasting, adaptive Metropolis, and the af ne invariant ensemble sampler.
Both the forward propagation and the inverse problem require the computation of a
large number of numerical solutions. They can be ef ciently performed through
surrogate models. Their mathematical formulation is outlined at the end of the
chapter, focusing on the Kriging method and on two strategies to enhance its
ef ciency and accuracy: multi- delity methods and adaptive sampling. Finally, we
introduce the UQLAB software, that we employed in the thesis to perform the UQ
studies.

3.1 Overview

Nowadays, it is common practice to rely on computer simulations for the analysis,
design, and optimization of engineering systems [145]. In the context of aerospace
applications, high- delity CFD simulations integrate ground testing experiments in
the design of high-speed, access-to-space, and re-entry vehicles [146].
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CFD predictions are the solution of an user-implemented algorithm, that translates
the mathematical formulation of a physical model, solved on a discrete grid by
marching in a discrete time. As pointed out by Roy and Oberkampf [147], they are
thus prone to three main classes of uncertainties/errors:

1. Coding mistakes

2. Numerical approximationsnite time-steps and volumes make the solution
dependent on the degree of the discretization;

3. Model uncertaintymodels are mathematical representations of the physics
and they suffer from uncertainty both in their form and in their input param-
eters. Uncertainties on the simulation surrounding (for example boundary
conditions), simulated geometries, and initial conditions also pertain to this
category.

Ideally, coding mistakes are not present in robust solvers: they are identi ed and
eliminated through theode veri cationand theregression testsduring which we

make sure thawe solve the equations correctly

The majority of hypersonic simulations are performed using a second-order-space-
accurate nite-volume formulation: discretization erroris - in the asymptotic

limit - quadratically dependent on the mesh resolution. Further numerical errors
may derive from the inability of the grid to well capture some of the ow features.
For example, they can arise from mesh-shock misalignment or from cells extremely
non-orthogonal to the wall, if speci ¢ treatments for dealing with such features
are not included in the numerical methods. A broad class of applications seeks a
steady-state solution. In these casesative errorsrefer to the lack of convergence

to steady-state. On the other hand, when one is interested in the solution time
dependency, an error is dependent on the time step employed to time march. The
magnitude of these errors is controlled during $b&ution veri catiorn common
practice is to have a drop in the residual of at least ve orders of magnitude for the
steady-state applications and a mesh-independent solution.

Model uncertainties derive from a lack of knowledge (they mostly are ppie

temic uncertaintiels Ad hocexperimental campaigns can be designechidbrate

and, subsequentlyalidatethe model. In this way, we make sure tha solve the
correct equations

Experiments are not exempt from uncertainty due to the variability of the system
and the nite precision of the instruments. This kind of uncertainty is generally
irreducible (calledaleatory) and can be characterized by a Probability Density
Function (PDF).

While predictions can rely on deterministic simulations, reducing the whole
chain of uncertainties to a safety factor, stochastic frameworks allow for a robust
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characterization of the output [148]. In this contest, UQ designates the set of
methods aiming at dealing with these uncertainties by characterizing, propagating
and, possibly, reducing them.

Following the framework outlined by Roy and Oberkampf [147], one should rst
identify the uncertainties: sensitivity analysis helps in recognizing the most relevant
sources of uncertainty. The associated sensitive variables are then treated as random
variables by assigning a PDF to each of them. PDFs are chosen based on expert
judgment, previous characterization, or derive by experimental uncertainties. At
this point, the uncertainties can be propagated through a model - provided that the
numerical error does not exceed a certain threshold - using, for example, sampling
techniques. Forward propagation problems are described in Section 3.2.

Alternatively, the uncertainty can be propagated backward and the experimental
data can be exploited to characterize/reduce the uncertainty on the model inputs.
Such an inverse problem is commonly referred tonaslel calibration A Bayesian
framework well suites this purpose as it allows for simultaneously accounting for
prior knowledge, epistemic and experimental uncertainties, and inadequacies of
the model [147, 149]. The Bayesian formulation will be discussed in Section 3.3,
along with the algorithms used to solve the inverse problem.

Both forward and inverse problems are generally solved by means of sampling
strategies. The statistical convergence of the output PDFs is achieved upon the use
of thousands of points. In order to enhance the method's ef ciency, it is common
practice to approximate the numerical solver response with a computationally
cheaper mathematical representation of it. Such representations are generally called
surrogate models Examples are Gaussian Process (GP) or Kriging [29, 150],
PCE [151, 152], and arti cial neural network [153]. In this thesis we resorted to
GPs, whose mathematical formulation is presented in Section 3.4.

3.2 Forward propagation

In many engineering applications, one is interested in characterizing & Qbét

is not experimentally measurable or theoretically derivable. Auxiliary parameters,
X , may be used for its determination though a magdel M (x ). In general, the
input vectorx contains both parameters that we know within a given uncertainty,
X, and parameters assumed to be perfectly know8jnce the latter are considered
xed in the forward problem, in the following, we will omit the model dependence
ont.

Forward propagation refers to the characterization of the stochastic model
response given the stochasticity of the model input. The de nition of a proba-
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bilistic spacé allows for expressing the model input and output as random vec-
tors/variables They are usually indicated with capital letters, respectively
andY = M (X). Itis then possible to evaluate the output's PDFs or statistical
moments. Of main importance for engineering applications are the rst (mgan,
and the second (variancef) moment. They are de ned as:
Z,
y = E[M (x)] = . M (x)p(x)dx; 3.1

h i Z,
2=E (M(x) EM )’ = , M) EM D p(x)dx; (3.2)

wherep(x) is the joint PDF of the random vectr, and the operatdg[ | denotes
the expectation.

The majority of engineering applications do not offer an easy analytical form of
Equations (3.1) and (3.2) and numerical methods are generally employed for their
computation. Two main classes of methods exigrusive methodsequires the
modi cation of the numerical structure of the code to accommodate a stochastic
representation of the problem, enabling it to output the response in terms of random
vectors. On the other handpn-intrusive methoddo not require any code modi -
cation. The numerical solver, used as a black box, is called several times to sample
realizations of the output. Non-intrusive methods have the advantage to be robust,
as no code modi cation is needed, and easy to parallelize. A popular choice for
uncertainty propagation is to resort to spectral methods, as the PCE [151], which
express the model response in terms of a series of orthonormal polynomials. The
forward problem can be then performed either analytically, exploiting the polyno-
mial coef cients, or through sampling strategies, using the PCE model as surrogate
model. A review of intrusive and non-intrusive methods is given by Lé&tdand
Knio [155]. Following, we will describe non-intrusive sampling strategies.

The MC technique [156, 157] is the most straightforward and popular non-
intrusive method. It requires to quasi-randomly sanipléndependent realizations
of X, x ™, according to its joint PDF. Then, the random varialean be inferred
through the collection of thils independent model realizationd, (x ()). Specif-
ically, the numerical approximations of the rst two moments can be computed

1A probability space is de ned by a sample spaceset of all possible outcomes), an event
space (collection of subsets of ), and a non-negative probability meas&reThe event space is a

eld on :itis a non-empty collection of subset of closed under complementation, union, and
intersection [154]. An important- eld is the collection of all the open intervals &, the Borel - eld,
B.

2A random variableX , assigns a real number to each possible outcome of a stochastic experiment.
Considering the probability space( ;P), anR-valued random variable is a measurable function
from ( ; )to (R;B). The same de nitions hold in the case oR4 -valued function from (; ) to
(R"; BM). In this caseX is called random vector.
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as:
1 X .
y=3 MOy (3.3)
Ns i=1
1 X i 2
izNi. Mx®Dy (3.4)

i=1

The law of large numbers ensures that the MC estimators converge to the expected
values (y !' , y ! ) foralarge number of sample points{! 1 ).

The convergence rate of the MC metho®igN ¢ %°). Itis the strongest and the
weakest point of MC techniques. In fact, on the one hand, it is independent of the
dimension of the problem, on the other, it requires the collection of an important
number of points. For this reason, numerous strategies were developed to accelerate
the method's convergence [156]. Among other methods, the Latin Hypercube
Sampling (LHS) [158] ensures better coverage of the sampling space by dividing it
into N equally probable subspaces and drawing a sample from each of them. The
same is achieved by quasi-MC methods by employing a low-discrepancy sequence,
for example, the Sobol's sequence [159].

Example Let us consider the Sutton Graves [160] correlation for stagnation-
point heat- ux computation:

r
q=1:7415 10 * ﬁv3:

Let us assume that we perfectly know the atmosphere densit:88 10 4
kg=m3, and the object radiuR = 0:3 m and that we want to characterize
the uncertainty o given the uncertainty on the object velociy,assumed
normally distributedy = N (4900, 490). We randomly sampleNyc 1 =
100andNyc » = 10° points with a MC technique, ard, 4s = 100 using a
LHS method. We propagated them though the analytical ng{ai¢) obtaining
the following probabilistic densities:
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The distribution obtained usint®® MC points (MC 2) appears to be well
converged and can be used as a reference. As one can see, such a distribution
is approximated much better employih@0LHS points, tharlOOMC points

(MC 1). In fact, although the LHS is a stochastic technique as the MC one
(the sampled points are different every time we run the algorithm), it provides
an improved lling of the sampling space.

3.3 Stochastic inverse problem

Inverse problems aim at inferring one or more model input parametergjven

N °bs quxiliary experimental observations2®s. In deterministidnverse problems,

the best estimate of is found by optimizing an error or likelihood function,

f (y°°$ M (x)). The outcome is a punctual realization of an underlying distribution
which is not characterized. Contrary, stochasticnverse problems, the input
parameters that one intends to infer, as well as all the other model parameters
affected by uncertainty °, are treated as random vectors [161]. Speci cally, a
Bayesian formulation allows one to obtain the posterior distributions of the parame-
ters given the uncertainty on the observations.

Letus denote = fx ;x %, the random vector including all the unknown/uncertain
parameters. According to Bayes' theorem, the posterior distributicnisf

_p () (%)

i ,0b .
Y™ = Ry

(3.5)

where (x) is the prior distribution ok, (y°x) indicates the likelihood of an
observable quantity °®s givenx , and the integral at the denominator represents the
marginal likelihood or evidence, which ensures the distribution to integrate to 1.
Although the Bayesian approach may look straightforward, several crucial aspects
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need to be correctly addressed.

The rst aspect to consider is the de nition of thwior distribution [161],
which express our prior belief/lknowledge abauprior to observing the data. It can
come from a previous calibration, from experiments, or from expert judgment. A
correct speci cation of (x) is particularly important when the number of observa-
tions is limited (prior-dominated problem). In order to let the likelihood dominate
the posterior, uniforrmon-informativeprior should be speci ed. Log-uniform
priors represent a preferable choice when the ignorance about the parameters spans
several orders of magnitude. It is of course possible, when one has a strong belief
over a quantity, to specifnformativepriors, for example, Gaussian experimental
uncertainties. Of utmost importance is the de nition of the range of the prior. Let
us image to specify that(x < a) = 0, then the posterior distribution far< a
will always be equal to zero, whatever number of observations would indicate the
opposite. This property can be used to constrain the posterior to physical values,
for example to non-negative pressures or densities.

The second aspect concerns the de nition of the likelihood function [162],
which expresses how likely the realizatigf can be obtained by the inpmt
through a numerical mod#fl (x). A discrepancy terntdlescribes the departure
of the model prediction from the observed quantity. It comprises both the model
inaccuracy and the measurement noise. It is common practice to express it as an
additive term:

=y M (x): (3.6)

Assuming that I) the model error is negligible with respect to the experimental uncer-
tainty, i, on the measuremen$®s, I1) the experimental uncertainty is known and
normally distributed around the mea (0; 2)), and Ill) independence between
the N °PS observations, the likelihood reads:

No

6T NOPIM ;D) @)

i=1

Lastly, in many engineering applications, the evidence of Equd8d) is
dif cult to compute analytically. For this reason, methods that allow for sampling
directly from the posterior distribution are very attractive. Markov Chain Monte
Carlo (MCMC) algorithms are an important class designed for this purpose.

3.3.1 MCMC algorithms

MCMC algorithms are powerful tools as they allow for approximating the posterior
distribution of a Bayesian problem with the invariant distribution of a Markov
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chain. An exhaustive explanation of the Markov chains can be found in the text-
books [161, 163]; next, we will present the main features.

A sequence of realizations @) ; x @ ; ::;; x (V) is a Markov chain on the state
spaceR¢ if for all the iterationst and for all the measurable setsthetransition
probability to move to the stat& (**Y only depends on the staxd!). Such a
condition is generally referred to as Markov property and is expressed as:

P(X D 2 Ajx©:x(t D5 @)= p(x D 2 AjxO): (3.8)

If the transition probability does not depend on the iteration, the Markov chain is
said to betime-homogeneous simply homogeneous
A Markov chain is thus fully de ned by an initial state(©) , and by the transition

kernel,K(x;x9. Itis de ned as:
Z

P(X 2 Ajx)=  K(x;x9dx® (3.9)
A

The chain should be able to explore the whole support starting from an arbitrary
initial state to eventually converge to the posterior distribution. It is essential that )
all the states communicate (the chain is said tarteglucible), and I1) it is possible
to return to any state at any time (the chain is said tajperiodiq. If these two
conditions hold, the chain isrgodic It is an important property as it ensures that
the chain will converge to thmvariant or stationarydistribution whatever the
initial point is. A distribution ,Z( ), is invariant if the global balance is respected:

(x(t* Dy = K(x®;x D) (x@)dx (3.10)
Rd

meaning that the chain reached the stationary regime whereloes not depend

on the iteration.

A chain isreversiblg meaning that the probability to be in the stat® and move

to the statex (**1) is the same of being in the staté*) and move to the state

x (1), if the detailed balance condition is satis ed:

(XK (xD;x Dy = (x (D K (x (D 2 x (O): (3.11)

It can be shown that if a chain is reversible, it is also stationary. It is an important
property because the condition in Equat{Brill)is easier to be assessed than the
condition in Equation (3.10) [161].

Several algorithms have been proposed in literature to obtain such an invariant
chain. Next, we will revise three of them.

Metropolis-Hastings

The Metropolis-Hastings algorithm, initially proposed by Metropolis et al. [164],
successively extended by Hastings [165], is the rst and the most popular MCMC
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algorithm. Its implementation is very easy and straightforward. The main steps are
summarized in the algorithm 1.

Initialize x @
fort=1toN do
Samplex from proposal distributiog(x j x(t 1)
Compute acceptance probability:
Sampleu from uniform distributionU (0; 1)
if u then
Accept statex () = x
else
Reject statex (V) = x(t 1

algorithm 1: Metropolis-Hastings algorithm

The chain is initialized at a statel® , sampled from the prior distribution.
Successively, a new sample is generated accordingpi@@osal distribution
qix j x® ), which may depend on the state at the previous iteration. The
sample is then accepted with acceptance probability

(x jy*™q(x Yjx )
(x(t Djyobsg( (x jx(t D)
It depends both on the proposal and on the target distributions. According to

Equation(3.5), the ratio between the target distributions at the proposed state,
and the previous state{! Y, can be rearranged as:

Oy ) 6™x)
(< Djy®9 T (@ D) (yor9x( )’

as the evidence cancels out. The transition kernel is then independent of the hard-
to-compute evidence, which is the strength of the algorithm.

=min 1, (3.12)

(3.13)

It can be shown, that a chain produced with the Metropolis-Hastings algorithm
is aperiodic and irreducible; furthermore, the transition kernel respects the detailed
balance [163]. Thus, the chain can converge to the stationary distributigg °°S).

What remains to be de ned is the proposal distribution. It should resemble the
target distribution to guarantee a good convergence of the chain. However, most of
the time, we do not have assess to its shape.

In the original algorithm by Metropolis et al. [164], the proposal distribution was
designed to be symmetric, such tiggt ¢ 2 jx )= q(x jx® D). Inthis case,
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the acceptance probability depends solely on the target invariant distribution:
(x jy°™
(X (t l)]yObS

Popular choices for the proposal distribution are uniform or normal distributions
centered ax (! . In the latter case:

YM=min 1; (3.14)

x =xtV+N(@©;) ; (3.15)

where is the covariance matrix. This choice generates the so-calt@bm walk
Metropolis

The choice of the covariance matrix, but more in general of the proposal distri-
bution, signi cantly impacts the convergence rate of the chain. If the covariance
matrix induces large changes in the state, most of the proposed states will be re-
jected. On the other hand, if the covariance matrix produces small changes in the
state, most of the proposed states will be accepted, but the chain will move slowly.
One should manually adjust the proposal distribution to have an acceptance rate
close to the empirical optimal acceptance rate of 0.234 [166].

Example Let us consider again the Sutton Graves [160] correlation for
stagnation-point heat- ux computation:

r __
q=1:7415 10 * §v3:

This time, we assume that we perfectly know the atmospheric density,
2:88 10 “ kg=m® and the object radiuB = 0:3 m, and that we want to
characterize the uncertainty on the object veloaifygiven the uncertainty
ong, Q= N (6 10°;10°). To illustrate the importance of the choice of the
proposal distribution, we run the algorithm 1, using 3 similar distributions,
N (0; ), characterized by a different value of. Specically: | = 10,

= 1500, and ;; = 25000. The three random walks af versus the
iteration (referred to as trace plot) are shown in the gures below:

The rst gure on the left is the trace plot of the chain built usingianall
standard deviation: many states are accept&d'(= 0:9878, but the chain
evolves slowly. It appears to @orly mixed and we can assume it will
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need many iterations to converge to the stationary distribution. On the other
hand, as one can see in the rst gure on the right, a chain built witfiga
standard deviation leads to many points being reject&d(= 0:0137. Also
in this case, the chain is poorly mixed, and the statistical convergence will
be dif cult. Finally, the trace plot in the middle was obtained by tuning
the standard deviation to have an acceptance rate close to the optimal value,
SYm=0:2259 In this case, we can see how the chaiwél mixed
The estimate of the posterior distribution wiis shown, for the three different
chains, in the gure below on the left, while in the gure on the right, we can
see the posterior predictive distribution @gnThe imposed uncertainty anis
represented with a black solid line.

Contrary to the chains built using too small or too big values,dhe chain

built using the optimal value is characterized by smoother and more continuous
histograms, which best approximates both the distributicm ahd the target
posterior distribution.

Adaptive Metropolis

To avoid such a manual tuning, Haario et al. [167] proposed an adaptive variant of
the Metropolis algorithm. It requires an initial run wfiterations to estimate the
covariance matrix of the invariant distribution®. The normal proposal distribution

is then characterized by a covariance matrix which will depentd on

(

0 ift+1
(1)= Ift to

3.16
sqg At) ift+1 >ty (3.16)

wheresy = 2:38°=d andd is the problem dimension [168]. This formulation
makes the chain dependent on all the previous steps and does not satisfy the Markov
property. However, it was shown that the chain respects the correct ergodicity
properties and thus can converge to the target distribution [167].

Example Considering the same case as before, we employed the adaptive
Metropolis algorithm, with © = 10 andt, = 1000. In the gure below, the
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trace plot of the chain is shown.

As one can see, after a slow convergence during thel@80iterations, where
the original Metropolis algorithm is used, the chain is well mixed when the
standard deviation is estimated on the chain sample points.

Af ne invariant ensemble sampler

When the posterior distribution is characterized by high-dimensional and highly-
correlated parameters, the performance of the Metropolis algorithms might deteri-
orate and important tuning of the proposal distribution is required to converge to
the invariant distribution. To improve the convergence, Goodman and Wear [169]
proposed to use an ensemble of MCMC chains, referred waleers such that

the target distribution is invariant to af ne transformations of the paramét@&tss
property allows the algorithm to equally sample dif cult-to-sample distributions
and easy-to-sample transformations of them.

The Af ne Invariant Ensemble Sampler (AIES) algorithm, outlined in algo-
rithm 2, starts by sampling walkersX @ = [x{;::::x @7 from the prior
distribution, withC > d + 1, whered is the dimension of the parameters. The
proposal state for eaghwalker is sequentially obtained by means of all the current
states. One common approach to achieve this is by using the symstedtah
move

®

x =x" Y4z X; t

X : (3.17)
wherexj“) is aconjugate walkerrandomly selected among all the walkers exclud-
ing i, andf'represents the current state of jhealker:

t if j<i
t 1 ifj>i

f= (3.18)

3Given the af ne transformatiog = Ax + b, whereA is a non-singular matrix artala scaling
vector, the target distribution enjoy the af ne invariance propertyrify) = t(Ax + b)/  (x).
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Initialize C chainsX @ =[x{?;:::;x 9]

fort=1toN do

Create temporary vectot "™ = X ©
fori=1toC do

Randomly chose a conjugate walker fox; = X E’j"gi)
Samplez according tay(z) =1="z
Compute proposal state = x! =+ z(xit 1 Xj)

Compute acceptance probability?'S = symzd 1
Sampleu from uniform distributionU (0; 1)
if u then
Accept stateX V(i) = x
Update temporary vectoX ™P(i) = x
else
Reject stateX (V(i)= xt 1

algorithm 2: Af ne Invariant ensemble sampler algorithm

The variablez is randomly drawn from the PDF:
o(z) = pl—z; with z in [1=a; &; (3.19)

anda > 1lis a tuning parameter, generally set equal to 2 [169]. The proposal state
is then accepted with probability:

AIES — symzd l: (320)

The ensemble of walkers respects the detailed balance condition and can be used to
approximate the posterior distribution.

One limitation of the algorithm is that th@ walkers have to be computed se-
qguentially since each update depends on the current state of all the other walkers.
This sequential nature of the algorithm leads to a computational cost equal to
C t9, wheret?9 represents the cost of the algorithm if it were run in parallel on

C processors.

Example Let us consider the highly stretched Rosenbrock function [170]:

(1 x1)2+100(xz x3)2

(x1;%2) I exp >0

We create@®0 chains 0fL0000samples using the Metropolis algorithm setting
002 O

0 002

with a = 2. The former chains are shown in the gure below on the left, the

and20 chains 0f10000samples using the AIES algorithm
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latter on the right.

As one can see the chains generated with a Metropolis algorithm slowly
converge to the target distribution, whose analytical joint distribution kernel
is plotted on the background with a gray scale. The convergence can be
improved by better tuning the covariance matrix. On the other hand, the AIES
makes a much better job at approximating the distribution without requiring
any tuning process, as one can see in the gure on the right.

3.3.2 Chain convergence

An MCMC chain approximates the posterior distribution of the Bayesian problem

when a suf ciently large number of points are sampled. It is then important to have
a criterion to establish when a chain is converged.

As discussed earlier, the chains are initialized at arbitrary points, which might
be far from the area characterized by the stationary distribution. It is especially true
when little information is possessed about the target distribution and we have to
use large priors. Consequently, there will bgtatistical transientluring which
the chain approaches the stationary regime. It is important to discard the points
belonging to the transit prior to using the chain. The fraction of discarded points is

calledburn-in. We revise now three methods to assess the chain convergence after
the burn-in phase.

Acceptance rateThe acceptance rate gives a rst indication of whether a chain
is converged. It is de ned as the ratio between the accepted points (points such that
x( & x( 1) and the total number of points. A high acceptance rate suggests
that the support has been poorly explored, while low values indicate that most of
the proposal lay in a low probability region [162]. An optimal value of 0.234 is
targeted. In practice, one avoids falling in the two extreme values of the interval.

Trace plots and histogramdrace plots represent the evolution of a speci c
chain dimension over the iterations, while the histograms approximate the target
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PDF. By visually inspecting the trace plots, we can determine if the chain mixes
well, as shown above in the examples, and if it has converged to the stationary
regime, where the chain shows an asymptotic behavior. Additionally, when inde-
pendent chains, initialized at different points, follow similar paths, it indicates that

the target area has been reached. One can also assess that the chain has reached
the stationary regime by monitoring the histograms. For example, in the station-
ary regime, they are characterized by smooth variation, and they exhibit minimal
changes with respect to the iteration.

Gelmen-Rubin diagnosti®Vhile the above-mentioned methods are qualitative,
the Gelmen-Rubin diagnostic [171, 172] is a quantitative method that assesses the
convergence by comparir@ independent chains. It requires the computation of a
within-sequence varianc®V , and of abetween-sequence variang&e. The former

reads:
1 X
W = W W i (321)
i=1

whereW ; is the covariance matrix of each chain

1 X T
W = N xi(t) Xi xi(t) Xi (3.22)
t=0
andx; its mean:
(RS
Xj= — X (3.23)
N +1 im0
The second matrix is de ned as:
1 ¥ T
B = c 1 xi xX)(xi x); (3.24)
i1
wherex is the mean of the means:
1 X
X = Xi: (3.25)

At this point, themultivariate potential scale reduction factoan be then computed

as:
N C+1

= + .

R N +1 c ’

(3.26)

where is the largest eigenvalue of the matik 1B . A chain is well converged
forR! 1.
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3.4 Surrogate models

As we saw before, UQ studies, either related to uncertainty propagation or inverse
problems, require the evaluation of a large number of model realizations. Hence,
they are generally ef ciently performed through surrogate models. These are
trained on numerical computations and mimic the response in terms of input-output
relationship for a reduced computational cost [31]. PCE [151, 152] and Kriging
models [29] are widely used for this purpose. In this thesis, we resorted to Kriging
models, as they have been proven to be adequate in similar applications [57, 173].
Their formulation dates back to 1951 when Krige [174] proposed to use Gaussian
processes for geostatistics applications. The method was later mathematically for-
malized by Matheron [150] and initially employed to ef ciently represent computer
experiments by Sacks et al. [29]. Since then, Kriging models have been extensively
used over a wide range of applications and numerous techniques have been pro-
posed to enhance their ef ciency.

Practical applications might require the solutions of very expensive numerical
models. In these cases, even if associated only with the surrogate model training,
the total computational cost of the simulations can be high. A cure to this problem is
represented by multi- delity methods, which allows for lowering the computational
effort by leveraging cheaper lower- delity representations [30]. These methods
are gaining increasing and rapid attention over a wide range of elds{ili73,
including aerospace applications [47, 146, 178]. Kriging methods are very suitable
to be applied in a multi- delity fashion: Co-Kriging [174.81] and Hierarchical
Kriging [182] aim at combining different delity information to produce an ac-
curate, but ef cient, regression. Different delity can be obtained by employing
models with different physics, from crude approximation to high- delity computa-
tions. They can also be obtained using differently re ned meshes in a multi-level
formulation. A review of multi- delity methods can be found in Peherstorfer et
al. [30].

Ef ciency can be also increased by reducing to the minimum the number of training
points, and successively enlarging the set by means of adaptive strategies [183].
When dealing with optimization problems, one is interested to exploit the already
existing surrogate model, and its associate Gaussian variance, to locally re ne
the model in points that are candidates tonti@imaor maxima Among these
exploitingmethods, the Expected Improvement (El), proposed by Jones et al. [184],
and its variations [185] are widely used examples. Contrary to éxigloring
strategies are used to globally increase the overall quality of the surrogate model.
Gaussian processes are very suitable for this, as they are characterized by a process
variance, which in a nutshell measures how uncertain we are on the prediction on a
given untrained point. It thus makes sense to sample where this uncertainty is the
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highest [183].

Practical applications might also involve a large number of input variables, which
leads to an exponential increase of the number of training points, and of the com-
putational cost, required to obtain an accurate surrogate model. This challenge,
commonly referred to asurse of dimensionalitycan be mitigated by resorting

to dimensional reduction techniques. For instance, one can perform a sensitivity
analysis to identify and eliminate the less important variables.

We revise the mathematical formulation of the Kriging in Section 3.4.1, and
the one of the hierarchical Kriging in Section 3.4.2. Finally, in Section 3.4.3, we
present the adaptive sampling methodology employed in this work to improve the
accuracy of the surrogate models.

3.4.1 Kriging model

A Kriging model can be built for each observatigrof interest. Let us assume
that we have a modéll (x) providing the responsgas a function of some input
quantityx . Let also assume that we havgtraining points K = fx @ ;::::x (") g),
and the corresponding model realizatiois £ fy®;::;y("g). A surrogate
model can be trained on these pairs to provide the response at an unkaihed
point for a cheaper price.

The assumption behind the Kriging model is that the respbhgg) is the realiza-
tion of a Gaussian processuch that:

Mx) M x)= Tfx)+ 2Z(x): (3.27)

The rstterm in the RHS is a regression function, referred to as the mean or trend
of the process. It captures the main features of the mathematical Mo@e) and

is characterized by the regression coef cientand the basis functiorfs(x). The
second term, ?Z (x), accounts for the departure of the model's trend from the
real response. The symho(x) represents a zero-mean unit-variance stationary
Gaussian process with a constant varian€e Since the Gaussian process has
zero-meanZ (x) is fully characterized by its covariance functid®(x ();x (1)),

It is also known as correlation or kernel function and quanti es the correlation
between each pair of in nite points [187].

Smoothness and stationarity are desirable properties of the Gaussian processes,
and they can be obtained by opportunely modeling the covariance function. Sta-
tionary Gaussian processes are achieved by employing stationary kernels, which

4Rasmussen de nes a Gaussian process aslkction of random variables, any nite number of
which have a joint Gaussian distributiofL86]
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have the form:
Rx@W;x0y= Rr(x®  x0)y: (3.28)
In this case, the correlation is solely dependent on the distance between two points,
and not on their speci ¢ values, guaranteeing the stationarity of the process. We
employed kernels belonging to the Mat family. The Maérn correlation function
is de ned as:
\

R(xM:xWj:v) = 2\/171(\/) ZpVh Ky ZpVh : (3.29)
whereh = jx()  x0)jis the distance between the two pointgndv respectively
represent the length-scale and the shape parameterg, @ndndK, indicates the
Euler's Gamma and the modi ed Bessel functions [187]. The relative Gaussian
process igive 1 times differentiable (beind ethe ceiling function). Thus, the
parametewr can be used to control the level of smoothness of the process. Half
integer values o¥ are widely used, as this choice leads the kernel to have the form
of the product of an exponential function and a polynomial function of cider
We used a value of = 5=2, which leads to a twice differentiable Gaussian process
with a relativity smooth behavior.

In what was discussed above, the kernel was parameterized by mdansof
jx(M  x)j= and is thus invariant to all rigid motions. Such kernels are said to be
isotropic However, when the behavior of the response cannot be assumed to be the
same across the various dimensions, one may use district length sgafes.each
dimension. The kernel is said to baisotropic In this work, we used anisotropic

ellipsoidal kernels, in which the scale parameter is computed as:

\
u

: 1>
o BR 0 0
LA

(3.30)
k=1
Another important aspect to consider when building the Kriging model is the
trend function. One may model it as a known regression function (simple Krig-
ing), as an unknown regression constant (ordinary Kriging), or as a regression
polynomial function (universal Kriging). In most cases, apriori estimation
of the trend function or of its form is rather complex, and one generally opts for
ordinary Kriging, relying on the stationary process to capture the model behavior.
Nevertheless, when a model hierarchy can be de ned, an estimation of the trend
function can be obtained by means of a lower- delity representation, as in the
hierarchical Kriging formulation, which we will describe in the next section. In
this work, we resorted to an ordinary Kriging formulation when no lower- delity
representation was available. In the following, the unknown regression constant of
the ordinary Kriging will be indicated as.
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Example In the ordinary Kriging, the hyperparameters , and g respec-
tively govern the main value, and the amplitude and frequency of the variation
of the Gaussian process realizations with respect to change in
Let us consider the case in which we model the Gaussian processgntlo ,

= 1, and a Ma¢rn kernel withv = 5=2 and three different values of,
respectively ; =0:01, ,=0:1,and 3 =0:5.
Examples of functions sampled from the Gaussian pra&%®; 2R(x;x9 i),
for the three different values ofare respectively plotted below with dashed
lines. In the same plots, the trend function is plotted with a solid line, and the
shadow represents the 95% con dence interval.

As one can see in the left gure, when small values @fre employed, the

points are correlated over a short length, inducing rapid variations in the model

realizations. When the value ofis increased, as in the central gure, the

correlation scale enlarges, causing less variation in the process realizations.

Ultimately, when the value of is very large, points are highly correlated over

a large length, resulting in little variations of the response.

Regarding the other two hyperparameters, the effect of using a different
o is to shift the mean of realizations toward its value, while the one of

increasing/decreasingis to stretch/contract the oscillations.

In the example above, no point was constrained to a speci ¢ value. Now, let
us include in the analysis the training points(X ;Y). According to the Gaus-
sian assumption, they are characterized by a multivariate joint distribution with
any untrained pointx ( );y( )). Once the Gaussian process is conditioned to the
training points, one can compute the posterior mean of the prdde$ex( )), at
any untrained point, and its standard deviati®fi(x ( )).

When the response is noise-free, the Kriging posterior mean reads:
MExOY= ElYOjy]= f TxO)y+ rTx()R Yy F); (3.31)

whereF is the matrix of the trends computed at the training points. ’) is the
vector of cross-correlations betwerh) and each of the training points, aRdis
then; n; correlation matrix between all the training points. Their components
respectively ar€; = f;(xM), r; = R(x();xM), andRy = R(xM;x0)). In

the case of ordinary Kriging, the functions reducd t& 1 andF = 1. As one
can see in Equatio(B8.31) the evaluation of the Kriging predictor requires the
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inversion of any  ny matrix. This represents the bottleneck of the Kriging model,
as this computation has a cost®@(n), limiting the number of training points to a
maximum of10* for practical applications.

One of the reasons that make the Kriging model attractive over other kind of
surrogate models is the possibility to estimate the level of trust associated with the
model prediction. In fact, one can compute the process' variance as:

(M92(x ) = varly Ojy]
= 21 rI"&xXOHR rxI)+ uTxOYFTR F) Tu(x())
(3.32)

whereu(x())= FTR r(x()) f (x()). When the response is noise-free, the
variance falls td at the training points.

Example Let us consider the Forrester function [181]:
M(x)=(6x 2)?sin(l12x 4) withx 2 [0;1]: (3.33)

We trained a Kriging model on six training points, equally spaced between
0 andl. For the model construction, we usegl= 0, a Maern kernel with
v=5=2and ; =0:01, ,=0:1,and 3 =0:5. The value of was naively
computed as the standard deviation of the realization points.
In the plots below, the true model's response is plotted with black solid line,
and the Kriging predictor with gray solid lines. The shadow areas represent
the Kriging uncertainty ( 1:96”%(x)). Examples of functions sampled from
the joint multivariate distribution are plotted with dashed gray lines.

In the gure on the left, a small value of was used: the training points

are correlated over a small range and the Kriging predictor approaches their
values only when the points are very close. Away from them, the Kriging
predictor is dominated by the trend function, resulting in large uncertainty in
the prediction. Contrary, when a large value d$ used, as in the gure on

the right, all the points are very correlated, driving down the uncertainty in the
prediction, which does not include the real function. The optimum behavior is
obtained with a correct value of as shown in the central gure. In this case,
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all the points are well correlated, but not too much to cancel the prediction
uncertainty.

As highlighted in the above example, the quality of the Kriging response is
strongly determined by the choice of the hyperparameters’, and . Neverthe-
less, their optimum values are not knoaipriori and they have to be estimated
based on the available training points solving an optimization problem. Maximum
likelihood estimation or cross-validation methods can be used for this purpose. In
the former case, the likelihood of the observed output is maximized:

"= argmin %Iog(det(R))+ %Iog(z 2)+% : (3.34)

In the latter case, one rst splits the set training points into two subgets:ng,
points are used to train the model, amg points are retained to compute the model
error. Atotal ofng = ny+1 ng, subsets can be created. Wheg =1, n, pair
of subsets can be created (Leave-One-Out (LOO) method). The optimum values of
hyperparameters are then estimated by minimizing the error between the training
point realizations and the Kriging predictor built on tle 1 points:

" #

X 2
" = argmin M(x()) MKXxO)Y (3.35)
i=1

3.4.2 Hierarchical Kriging

Now, let us assume to hawg different solvers characterized by distinct delity,
ranked from the lowest to the highest delity. In such a scenario, the Kriging
surrogate model can be built in a hierarchical way to reduce to the minimum the
numerical effort of sampling solutions from the highest- delity model.

The hierarchical Kriging, mathematically formulated by Han [182], proposes
to exploit thel 1 delity prediction (M' %! 1(x)), scaled by a parametel, as
trend function for the delity Kriging:

MKSI(x)= 'MX Yx)+ z'(x): (3.36)

The hyperparameter' captures the correlation between the 1 and thel -
delity. Thel delity predictor, M' K (x), and the associated varianc&X (x) 2,
are obtained conditioning the Gaussian process omthteaining points, ac-
cording to Equationg3.31)and(3.32), in whichf (x()) = M K! 1(x()), and
F=[MK 3(x®) MK Lx()y),

The main advantages [176, 182] of the hierarchical Kriging formulation are
) its ef ciency and implementation ease: it does not require a cross-correlation
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function to be built, as for co-Kriging modeling; being one Kriging evaluated per
delity, it demands the inversion dfl; correlation matrices of sizg  n, in spite

of a biggermn; n; matrix, which is advantageous for computer performing; Il)
training points independence, i.e., the set of lower delity training points does not
require the inclusion of the high- delity ones; and Ill) ease of application of in Il
techniques, i.e., its Gaussian variance is well suited for adaptive sampling.

Example Let us consider the high- delityyl HF, and low- delity functions,
M F, proposed by Forrester to test the multi- delity model [181]:

MHFx)=(6x 2)2sin(12x 4) withx 2 [0;1]: (3.37)

MY(x)=0:5M FF(x)+10(x 0:5) 5 withx2[0;1]: (3.38)

We trained three different Kriging models. The rd] ¥'F(x), has been
constructed using ten equally-spaced low- delity points. Its response is plotted
in orange in the gure below, and it correctly mimics the real low- delity
function, plotted in red.

The second model ¥HF(x), has been constructed using four high- delity
points. Its response is plotted in gray. The main trend does not correctly repro-
duces the real high- delity function, plotted in black, and the uncertainty in
the prediction is large. The third modéf, “MF(x), has been constructed us-

ing the same four high- delity points, but employing the low- delity function

as trend function. Its response is plotted in green. As one can see, construct-
ing the model using a multi- delity formulation dramatically increases the
accuracy of the Kriging prediction.
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3.4.3 Adaptive sampling

The accuracy of Kriging models can be increased by enlarging the set of training
points through space- lling strategies. If they rely on the current version of the
surrogate model, they are said to be adaptive.

When working in a multi- delity framework, one is not only interested in sampling

in the stochastic space, but also in having a criterion to establish which delity
level to re ne. To this end, we slightly modi ed the strategy proposed by Zhang
et al. [188]. Since the high- delity prediction is correlated to the low- delity by
means of the factor, the uncertainty in the high- delity prediction associated with
the low- delity model is dependent on the same factor, such that:

( HFALF(x))2 if | = low- delity

(\HF(x))2if I = high- delity (3:39)

(M2 (x;1) =

Zhang's work concerns an optimization problem, thus, the El was maximized:
(x; 1) = argmaxEl (x;1): (3.40)

Contrary to Zhang's work, we want to rely on more than two delity models and
adaptively explore the high- delity one. Following Zhang's work, it makes sense to
scale thd delity variance, by the products of tHescaling factors that separate it
from the high- delity one:

(M92(x;1) = ML (2 ()2 16 high-delity

(3.41)
("HF(x))2 if | = high- delity

Furthermore, for exploring purposes, we want to train the model where the Kriging
standard deviation is maximum:

(x;1) = argmax™(x;1) (3.42)

Example Let us consider again the Forrester functions [181]:
MHFx)=(6x 2)%sin(12x 4) withx 2 [0;1]: (3.43)

M YF(x)=0:5M "F(x) +10(x 0:5) 5 withx 2 [0;1]:  (3.44)

We trained two different Kriging models. The rsiM XF(x), has been
constructed using ve points. Its response is plotted in orange in the gures
below on the left, while its standard deviation, multiplied BY"F, is shown

in the gures on the right. The real low- delity function is plotted in red. The
second modelM KMF(x), is a multi- delity model trained on three training
points, using the low- delity Kriging predictor as trend function. Its mean
and its standard deviation are plotted in the gures below in green. Both sets
of training points have been generated using an LHS strategy.
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At each iteration, a new training point is selected according to the adaptive
sampling methodology. It is highlighted in the standard deviation gures with
a circle marker. The predictions at each iteration are plotted consecutively.
At the rst iteration, the largest Kriging uncertainty is associated with the
low- delity model, where the rst adaptive training point is selected. The
process is then iterated until the Kriging predictor well approximates the
real function. A total of four points were added to the ef cient low- delity

model, and only one to the expensive high delity model to obtain a good
representation.



UNCERTAINTY QUANTIFICATION METHODS 75

1D Algebraic Veri cation Test Case

The Forrester function [181] is employed to test the hierarchical Kriging with the
adapting sampling strategy above proposed. As seen in the examples above, it
consists of two delity, namel\M (x), andM (x). Two further delity were
addedM (x), andM (x), to mimic the four- delity form that we intend to use

in the application in Chapter 5. Furthermore, we assumed a ctitious computational
cost,tep, in line with the one observed for the corresponding CFD simulations.
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The four functions are:

g M (x)=(6x 2)?sin(12x 4) tcp,=1600
M (xX)=1:9M (x)+2:5 tepy =30

3M (x)=4M (x)+5:5 tepy=4

"M (xX)=0:5M (x)+10x 10 tepy=1

(3.45)

A normalized error between the high- delity prediction and the real function is
computed as:

S

Pi”;o(M (xi) M (x))? 100

NRMSE = Ny max(M (Xi)) mln(M (Xi)) ’

whereN, is the number of validation points, aM (x;) is the multi- delity
model prediction at the validation points. A total ¥00equally-spaced points
were used for validation. The initial surrogate model was built on gmaining
points, and three training points for the remaining delity, sampled in the range
[0; 1] with a LHS technique; 15 more points were adaptively added. The whole
experiment was rug00times to avoid the veri cation being in uenced by initial
luckyor unluckypoints. The results were averaged on20Qrepetitions.

Figure 3.1: Statistical convergence history for adaptive sampling: mean (solid line) plus and
minus one standard deviation (shadow area).

The exercise showed that an averagé @93 points were added in the ef cient

model, andl:34and1:28 on the medium and delity. Only an average of.:45
points were sampled from themodel. The statistical convergence history averaged
on the200repetitions, is plotted in Figure 3.1: the normalized error dropped from
a value of19:7% to 0:32%. The difference in performance is evident when we
compare this result to the one we would get using the same equivalent computational
cost only on high- delity LHS points: we could have afforded only an average of
around4:55 LHS training points, which would lead to #RMSE = 17:48%. To
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achieve a comparable error @f35% we would nee@0 LHS high- delity training
points, corresponding to a computational cost of more than four times higher.

4D Algebraic Veri cation Test Case

A second test was performed using a four-dimensional input space and four models
characterized by a different delity. The high- delity function was built to mimic

the stagnation-point heat ux computatfymwhile the lower delity to imitate the
numerical error. Also in this case, we assumed a ctitious computational cost, equal
to the one of the previous test. The four functions are:

8

%M (x;y;z;w):x3py+ y (0:2z + 0:8w) tepy = 1600
M (Xy;z;w)=1:9M +2:5 tepy = 30
3M (xy;z;w)=4M  +5:5 tepy = 4

"M (x;y;z;w)=0:5M 10+1Ox2py+ y(0:1z+0:2w) tepy=1

A total of 10* LHS points were used for validation. The initial surrogate model was
built on six training points, and three training points for the remaining delity,
sampled in the rangd,; 5] with an LHS technique50 more points were adaptively
added. The whole experiment was r200times and the results averaged on the
200repetitions.

Figure 3.2: Statistical convergence history for adaptive sampling: mean (solid line) plus and
minus one standard deviation (shadow area).

The exercise showed that an averag2®835points were added in the ef cient
model, and7:3 and6:865on the medium and delity. Only an average of
9:5 points are sampled from the high- delity model. The statistical convergence

51t is the sum of a conductive and a diffusive part. The conductive part can be assumed to be
dependent on the cube of the velocity and the square root of the density, while the diffusive contribution
can be modeled as linearly dependent on the density and the recombination ef ciencies of oxygen and
nitrogen:q = q"Yv3; " )+ ¥ ( o o; ni N)= 0OVE T )+ qi(0:2; 0;0:8; ).
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history averaged on th&00 repetitions, is plotted in Figure 3.2: the normalized
error dropped from a value df0:19% to 1:26%. The difference in performance

is evident when we compare this result to the one we would get using the same
equivalent computational cost only on high- delity LHS points: we could have
afforded only an average of aroufi@: 73 LHS training points, which would lead to
anNRMSE = 3:31%. To achieve a comparable errorlo?7% we would need

28 LHS high- delity training points, corresponding to a computational cost of more
than two times higher.

3.5 UQLab

All the UQ analyses performed in this thesis were conducted using the UQLab
software [189] (Uncertainty Quanti cation in matLAB). Itis an open-source Matlab-
based software developed at ETiHrieh with the aim of providing a user-friendly,
highly optimized, and extensible package for dealing with non-intrusive stochastic
problems. The package includes modules for sampling, training surrogate models
(PCE, Kriging, and Polynomial Chaos-Kriging techniques are available), perform-
ing sensitivity analysis, classi cation, and Bayesian inversion. Speci cally, we
used the modules for the Kriging training [187], implementing the hierarchical
Kriging formulation, as outlined in Abdallah et al. [176], and for the Bayesian
inversion [162].

3.6 Summary

In this chapter, we revised methods, algorithms, and tools for UQ. We rst intro-
duced the forward problem and the MC technique. It is used for computing the
PDFs and the statistical moments associated with the output of a model by propa-
gating the uncertainties on its input parameters. An example was used to highlight
the differences in the statistical convergence of the method when a LHS sampling
strategy, which improves the space lling, is employed over a MC one. Next, we
presented the stochastic inverse problem. We shown that Bayesian methods allow
for mapping the uncertainties in the model output back to the ones on the model
input and that the target posterior distribution can be approximated by an MCMC.
We also presented three algorithms to build such a chain: the Metropolis-Hasting
algorithm, and its adaptive form, as well as the AIES. The latter improves the
quality of the chain when dealing with highly-correlated parameters. After that, we
described the formulation behind the Kriging surrogate models. Particularly, we
introduced its ordinary and hierarchical form, which alleviates the computational
cost associated to its construction by leveraging low- delity representations. We
also showed how to increase the surrogate model accuracy by resorting to adaptive
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sampling strategies. Two test cases were used to highlight the bene ts of employing
such a strategy. Finally, we introduced the UQLab software that we used in this
thesis to perform the UQ studies.






Multi- delity and multi-level numerical
simulations

In this chapter, after a brief introduction to nite volume methods for hypersonic
applications, we describe the numerical solvers employed in this work. They
are characterized by three different delity. The rst one is a three-dimensional
high- delity solver (US3D), the second is an in-house code (stagnation-line code)
solving dimensionally-reduce Navier-Stokes equations, and the last is a low- delity
solver that computes the pressure and the heat ux at the stagnation point of a
probe exposed to a supersonic jet. We then present a methodology to estimate
the numerical error associated with a given mesh. After that, we delve into the
description of the coupling that we performed between the US3D solver and the
Mutation™ library. The coupling allows us to use Mutatitnto compute both the
transport and the chemistry gas properties, as well as to solve the GSI balances.
We also introduce the test cases performed to verify the coupling. Finally, we
present the result of a study that aims at balancing the numerical and the epistemic
uncertainties in an atmospheric entry ow.

4.1 Overview
As discussed in the previous chapter, CFD simulations are integrated into the design

phase of vehicles traveling at hypersonic speed. Despite progresses, challenges
still remain in the accurate prediction of the aero-thermodynamic loads [190, 191].
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Besides the complexity of the physical modeling, which was addressed in Chap-
ter 2, dif culties also arise in devising well-suited numerical algorithms. In fact,
hypersonic ows are characterized by I) a wide range of time scales, Il) a strong
discontinuity at the shock layer, which induces numerical instabilities, and III)
a stagnation region characterized by strong gradients. These features impose a
trade-off in the characteristics of the numerical algorithm. High dissipation is
desirable at the discontinuities to produce a stable solution. On the other hand, low
dissipation is essential in the BL to well capture the strong gradients developing
in front of an object. Such strong gradients further require high grid resolution,
leading to heavily stretched cells and limiting the explicit time step employable. It
is thus essential to resort to implicit methods. They are also important for resolving
all the different time scales [192].

Despite the progress in high-order methods, essential to deal with turbulent and
unsteady ows, classical Finite Volume (FV) formulations with second-order lim-
ited upwind schemes on hexahedral elements and implicit time-integration still
represent the most reliable combination for hypersonic steady-state applications.

An important source of numerical error can derive by the discretization associ-
ated with the FV representation of the physical domain. Such an error is inversely
proportional to the grid density and can be estimated by using at least three geomet-
rically similar meshes [145, 193]. Such a rigorous estimation is often replaced by
the pragmatic practice to prove that the solution is grid-independent, i.e. that the
discretization error is almost null. In fact, one veri es that the solutions obtained
on a medium and on a ne grid are almost superimposed. While such a practice is
customary for deterministic applications, in a UQ framework, it is possible to relax
this constrain and to use a grid whose numerical error is lower than the experimen-
tal or propagated uncertainty on a given Qol. A rigorous estimation of the mesh
numerical error is thus required.

In Section 4.2, we rst describe the FV method and its main features for dealing
with hypersonic ows, then we present the three different solvers employed in this
work. In Section 4.3, the method proposed lpaf145] to evaluate the numerical
error associated with a given mesh is outlined. Section 4.4 is devoted to illustrating
the coupling that we have performed between the US3D solver and the Mitation
library. The test cases carried out to verify the coupling are presented in the same
section. Finally, in Section 4.5, we present a study in which we aim at balancing
the deterministic numerical errors and the stochastic uncertainties. To this end, we
performed a systematic quanti cation of the numerical error and the uncertainty-
induced variability for the simulation of an atmospheric entry hypersonic ow.
Speci cally, a mesh-convergence study using grid adaptation tools is coupled with
surrogate-based approaches to UQ.
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4.2 CFD Solvers

In this section, we describe the solvers employed in this work. They span different
delity. The lowest delity one is used to compute the pressure and the heat ux at
the stagnation point of a probe exposed to a supersonic jet. Conservation laws allow
for reconstructing the state of the gas at the exit of a convergent-divergent nozzle,
just before the detached shock. From here, the ow is simulated by an in-house
CFD solver, the stagnation-line code [194], which represents the medium- delity
solver. We also resorted to the high- delity US3D solver [11]. Both US3D and the
stagnation-line code are FV solvers.

When employing a FV formulation, the rst step to obtaining the system to
solve is to recast the governing equati¢2d), (2.2), and(2.3) into the integral
form: I

@ 1 i \

—U + — F'+F nds= ; 4.1
e’ TV . (4.1)
where the overlineindicates a volume-average quantiyjs an arbitrary integra-

tion volume, ands represents its boundary with outward normalThe vectotJ =

[ 100 ng U E]TcontainstheconservativevariablEé,:[ U op U U
u+ pl; uH]" theinviscid uxes,F¥Y =[J1;::5dn,; ;  u+ q]' the viscous
uxes,and =[! ;5! ,.0;0]" the source terms.

After that, the physical domain is discretizednpcells of volumeV; charac-
terized byn; faces of surface are®;; . For cell-centered methods, the values of
the ow quantities are stored at each cell center. Such a discretization allows for
solving the systen@.1) for each celi by time marching in the discretized time
tN*1 = (N + tN_If the system is solved implicitly, it reads:

¢ X
UM+ oo AR ong =t T 4.2)
| j:1

where, for simplicity, the overline has been dropped, and the inviscid and the viscous
uxes have been grouped = F'+ F'. Theterm UM = yM* Ul

is the update at the iteratiod + 1. A steady-state condition is achieved for
UN* 1 0. The uxes and the source terms at the iterathor+ 1 can be

obtained by linearization:

FN+1 FN+@ UN+1:FN+A UN+1; (43)
@

N +1 N+Q UN+l: N+B UN+1: 4.4
@ (4.4)

The next step is to de ne the numerical uxes, the source terms, and the Jaco-
bians,A andB .
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Given the complex structure of hypersonic ows, the computation of the inviscid
uxes is a challenging task [190]. As highlighted in Section 4.1, high dissipation is
desirable at the shock layer to enhance the numerical stability, while low dissipation
in the BL is requested to accurately compute the wall gradients without resorting to
very re ned grids. Upwind schemes, such as the modi ed Steger-Warming [195],
are widely used in the hypersonic community. In a general form, the Steger-

Warming numerical ux can be computed at each cell interface as:

F=F'+Fg =AU +AgUg; (4.5)

whereF|" is the ux entering from the left, whose JacobiAj is characterized

by positive eigenvalues. Contrafyg is the ux that exits toward the left, whose
Jacobiam, is characterized by negative eigenvalues. The stencil on which the
left and right states are computed controls the degree of dissipation of the scheme,
hence its numerical accuracy and stability.

The numerical dissipation associated with a constant reconstruction of the states
is high. Itis a preferable propriety in the shock region, but it leads to inaccurate
predictions of the BL gradients. On the other hand, second-order accuracy is
achieved by reconstructing the state linearly, for example through the Monotonic
Upstream-centered Scheme for Conservation Laws (MUSCL) method, proposed by
van Leer [196]. However, such a reconstruction causes numerical oscillations in the
shock region. Thus, it is customary to use a second-order reconstruction, limiting it
to the more dissipative rst-order when a discontinuity is detected.

It is worth noticing that even limiting the reconstruction to the rst-order, it may
not completely prevent non-physical results across shocks if the mesh is not aligned
with the discontinuity. Although manually or automatically aligning the mesh is
the best solution, limiting the value of the eigenvalues outside the BL represents a
partial cure to the problem [190].

The computation of the viscous uxes is more straightforward, as they can be
expressed as a function of the primitive variable gradients. On structured grids, such
gradients can be computed based on grid metrics, whereas, for unstructured meshes,
the Green-Gauss and weighted least square approaches are widely used. Their
formulation has to be corrected when dealing with high aspect-ratio cells [192], as
those in a hypersonic BL.

Source terms are also easy to be computed: they are simply evaluated at the cell
center. When using an implicit method, particular attention should be devoted to
the computation of the Jacobia@ =@ , as little numerical errors can severely
deteriorate the rate of convergence of the algorithm [192].
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4.2.1 High- delity: US3D

US3D is a high- delity three-dimensional FV CFD solver developed at the Univer-
sity of Minnesota in collaboration with the NASA Ames Research Center [11]. It is
speci cally designed for high-velocity/high-temperature applications.

One of the main features of US3D lies in the capability to work with unstruc-
tured grids, which is advantageous in generating meshes for complex geometry. It
supports hexahedral, tetrahedral, prismatic, and pyramidal elements. Hexahedra
are the most reliable choice to solve hypersonic ows, as they well capture wall
gradients and they are relatively easy to be aligned to the shocks.

Different schemes for the computation of the numerical uxes and for the time
integration are available. For steady-state applications, the customary choice is
the modi ed Steger-Warming scheme [195], with a MUSCL-limited reconstruc-
tion [196], and the Data Parallel Line Relaxation (DPLR) [197] implicit time
integration. They ensure stable and rapid convergence to the steady-state solution.
On the other hand, the time resolution of unsteady problems requires low dissipation.
For these cases, unbiased second-, fourth-, and sixth-order numerical uxes [198]
may be used, adding numerical dissipation at discontinuities to prevent numerical
instabilities. For the time integration, one may resort to second- or third-order
Runge-Kutta scheme or to second-order implicit methods. For the computation of
the gradients required for the viscous uxes, both weight least-squares and Green-
Gauss methods are available. A deferred correction approach is used to improve
the accuracy of such a computation in highly stretched cells [199].

US3D also offers a tailoring routine to automatically align the grid to the shock,
reducing the magnitude of the error generated at the discontinuity. The solution
is rst obtained on an initial mesh and the routine is run: it detects the shock and
the mesh is aligned to it. The solution is then reconverged. Two tailoring steps are
generally suf cient to obtain satisfactory accuracy.

Being designed for hypersonic applications, US3D solves multi-species/multi-
temperature Navier-Stokes equations. Chemical relaxation is obtained through
homogeneous FRC, while non-equilibrium phenomena are captured by means of
the Park's two temperatures model with a Landau-Teller relaxation. Thermody-
namic proprieties can be computed either by using the RRHO model or the NASA
polynomials. Regarding the transport, various models are available. For example,
accurate values of the multi-component viscosity and thermal conductivity are
obtained by means of the Gupta-Yos mixture rule along with the Eucken correc-
tion for the internal modes. The computation of diffusion velocities relies on the
SCEBD model. Finally, turbulence can be modeled using Reynolds-Averaged
Navier-Stokes (RANS) or Large-Eddy Simulations (LES).
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We nally remark that US3D is highly scalable and ef cient. It is then possible
to run the simulation in parallel, reducing the time requested to converge. Itis an
essential quality to perform UQ studies.

4.2.2 Medium- delity: stagnation-line

The governing equation®.1), (2.2), and(2.3), can be simpli ed to a quasi-1D
formulation when dealing with an axisymmetric ow over spherical/cylindrical
bodies. Based on the Dimensionally Reduced Navier-Stokes Equations (DRNSE)
proposed by Klomfass andiMer [200], Munab [194, 201] developed the VKI
stagnation-line code. It has been extensively used and extended to study stagnation-
point ablation, catalysis, evaporation, and ow radiation [90, 99, 119, 128]. It
has also been employed to ef ciently perform UQ studies regarding the ablative
response of materials exposed to Plasmatron conditions [51, 52, 173].

To achieve the dimension reduction, the set of equations is rst expressed in
a spherical coordinates system { ), wherer is the radial coordinate, and
and are respectively the zenith and the azimuth angles. Exploiting the problem
axisymmetry, the temperature and the mass fractions can be expressed as a function
of the only radial coordinate:

T=T(): Y= Yi(r);

while the radial and the azimuthal components of the velocity, as well as the
pressure, depend also on the azimuthal angle:

U =T (r)cos; u =u(r)sin: andp p: = p(r) cos :

Then, the DRNSE formulation is obtained by lettingg 0. In discretized form, it
reads:

t X
UM+ —  FN™ ong = 6 M eogst (4.6)
j=1
where r; = V,=A = lel  To1 In the case of DRNSE; = F'+ FY,
wWithF' = ju; u2+p;usu; uHIWFYDir: w: G wul™ The
vector S represents the numerical source term that arises from the dimension

reduction. It reads:

3 2 3
2Ji;r 2 i

2
S= }g 2( + ) é u +u g 2u; Z
- 3, .43y 2o p 5"

+u
2(0 + Uy r U + u) 2H
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In the stagnation-line code, the inviscid uxes can be computed either by using
the Roe scheme [202], or the AUSM family ones [203], using a MUSCL-limited
reconstruction [196]. The viscous uxes and the source terms are evaluated using
primitive variablesP = [ i;u,;u ;T]"). Their value at the interface is calcu-
lated through a weighted average, while the relative gradients employing nite
differences. The DRNSE numerical source term requires the computation of the
primitive variable gradients at the cell center, which are also computed with nite
differences.

Fast convergence to steady-state is achieved with an implicit method employing
a local time step:
CFL

ti = ; 4.7
C juj+ et tmax i (4.7)

Cy i

where CFL represent the Courant-Friedrichs-Lewy (CFL) number,the gas
frozen speed of sound, amylis the frozen volumetric speci ¢ heat at constant
volume.

The code is fully coupled to Mutatiét which is called for the computation of
thermodynamics, chemistry, and transport properties, as well as for the GSI BC.
Further details about the stagnation-line code can be found in [119, 201].

4.2.3 Low- delity: supersonic nozzle OD model

A low- delity solver was built to compute the pressure and the heat ux at the
stagnation point of a probe exposed to a supersonic jet. It enhances the ef ciency
of the UQ study.

First, we compute the state of the gas just before the detached shock in front of
the probe, as sketched in Figure 4.1. The geometrical throat area, together with

Figure 4.1: Sketch of an under-expanded jet over a probe.

the sonic condition at the exit of the nozzle, the conservation of total enthalpy and
pressure, and frozen chemistry are imposed to compute the nozzle's choked mass
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ow and the gas state at the outlet, for a given reservoir condition. After that, the
state of the gas before the shock is computed imposing the previously computed
mass ow and the total enthalpy and pressure conservation. The jet diameter before
the shock was imposed as a function of the reservoir pressure, whose law was
calibrated based on three US3D simulations performed on a relatively coarse mesh.
By means of the same computations, it was also inferred a law for the velocity
gradient ( = @v=@yThese values, together with the gas state, were used as input
to the stagnation-line code to compute the stagnation-point pressure and heat ux.

The method was veri ed by comparing the US3D solution extracted along
the stagnation line and the low- delity one, obtained with the above-mentioned
procedure. The two different solutions are plotted in Figure 4.2. As one can
see, the solution is well approximated. Nevertheless, the value of the stagnation
pressure, and of the stagnation-point heat ux, turned out to be lower than the
high- delity ones, probably due to some two-dimensional effects that were not
accounted for. However, we remind that we make use of this procedure to compute a
good approximation of the Qols, being the accuracy guaranteed by the high- delity
simulations. We nally remark that the whole procedure takes negligible time to
converge, allowing us to cost-ef ciently capture the input-output dependency.

(a) Pressure. (b) Temperature. (c) Normal velocity.

Figure 4.2: Comparison between the high- delity solution extracted along the stagnation
line (US3D, in solid blue line), and the low- delity one (in dashed red line). The solution is
well approximated by the low- delity solver.

4.3 Mesh numerical error

When conservation laws are solved on a discretized representation of the physical
domain, a numerical error is inherited by the solution. This error is a function
of the grid density: it approaches zero as the cell dimension approaches the in-
nitesimal size. Several methodologies for estimating such a numerical error have
been proposed in the literature. Historically, the rst method was proposed by
Richardson [204]: the numerical error, and, thus, the extrapolated solution, can be
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characterized using the solution of two nested meshes. This method assumes that
the order of convergence of the numerical scheme is known and respected. To get
rid of this assumption, Roache [193] proposed to use three grids for evaluating also
the observed order of convergence. More recentiy, [E45] developed a procedure

that, unlike the rst two methods, can be applied even outside the asymptotic range
of spatial convergence. In this thesis, the numerical uncertainties associated with
the used meshes were computed according to the procedure proposegal [ty &.

Such a procedure is outlined in the following.

The numerical error of a given grid can be estimated as:
Re= i o= hp; (4.8)

where the quantity; is a local or integral ow Qol at the grid re nement
represents the estimate of the exact solutioa,constant to be determined, the
typical cell size angb the observed order of grid convergence. In most applications,
the exact solution of the Qol cannot be analytically computed. In these cases,
it can be estimated as the asymptotic limit for the element size approaching the
in nitesimal value. Hence, the Qol at the re nemdntan be approximated as:

i= o+ hM (4.9

By using a minimum of four nested meshes, the valugs and ( can be estimated
through a least-squares methodology. A positive value of the order of convergence,
p, implies a monotonic convergence, in contrast, a negative value a monotonic
divergence.

The assumptions behind the use of Equati@n8)and(4.9) are that the grids
are 1) in the asymptotic range, such that we can describe the error only through the
highest-order term, and Il) geometrically similar, such that we can represent the grid
density solely by means of the quantity. However, these two assumptions are not
always met in practical applications. For instance, in hypersonic simulations, the
employed limiters induce scatter in the data. In these cases, the use of E¢d&tjon
may lead to poor ts and not reliable estimates, and a xed order of convergence in
the tlaw is suggested, such as:

i= o+ hy; (4.10)
i= o+ h? (4.11)
when the convergence behavior is monotonic, or

i= ot 1hi + 2h|2, (412)
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when it is not.

The procedure also allows for determining the uncertainty on the prediction as-
sociated with the mesh at the re nemeéntJnlike the grid convergence index [193],
such an evaluation also accounts for how well the data agree with the t. The mesh
numerical uncertainty reads:

(
Fs ( i)+ +j i tj; if <
U= : , . 4.13
o) 3—( (i)+ +ji tj); otherwise (4.13)
where isthe tstandard deviation, =( ™ {“i”):(ng 1) is a data range

parametemyg is the number of grids employed to perform the convergence study,
andF; is a safety factor equal to 1.25 if the error estimate is considered reliable, i.e.
if 5<p< 2land < , and to 3 otherwise.

4.4 US3D-Mutation™ coupling

The coupling between the US3D solver and the Mutdtidibrary was propaedeu-
tic to perform the UQ studies as it allows us to modify the simulation model
parameters through Mutatith In this section, we rst describe the coupling, then
we present the test cases carried out for veri cation purposes.

4.4.1 Description

The US3D solver was coupled to the Mutatibdibrary by means of the code
interface, which allows for expanding the code's capabilities without accessing its
source code. Speci cally, we wrote an interface to call the Mutdtisrmodules

for 1) viscosity and thermal conductivity, II) diffusion IIlI) gas chemistry, and V)
GSl.

The interface works as follows. First, the start-up utility is invoked to create a
Mutation™ object, specifying the mixture, the mechanism, and the GSI les. At
this point, Mutatioii* can be employed for the following routines:

The results of this section were included in the following publications:

* Baskaya, A., Capriati, M., Ninni, D., Bonelli, F., Pascazio, G., Turchi, A., Magin, T., Hickel,
S., Veri cation and Validation of Immersed Boundary Solvers for Hypersonic Flows with
Gas-Surface Interactions AIAA AVIATION, 2022, Chicago, IL & Virtual.

» Capriati, M., Prata, K., Schwartzentruber, T., Candler, G., Magibelelopment of a nitrida-
tion gas-surface boundary condition for high- delity hypersonic simulations, ECCOMAS,
2021, Virtual.
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I) Computation of the viscosity and the thermal conductivity
Input of this function are the mass fractions, the density, and the temperature(s) of
the gas. These quantities are rearranged to set the gas state in Mtt#iiongh
the partial densities and the temperature(s). After that, Mutdtisrcalled to get
the gas viscosity and the components of the thermal conductivity, which are then
cast in an array according to the thermodynamic model employed in the simulation.
These values represent the output of the function.

II) Computation of the diffusive uxes
Input of this function is the number of the face where to compute the diffusive
uxes and the indices of the left and the right cells. First, the state at the interface is
computed as average between the left and the right states. This is used to set the gas
state in Mutatio#*. Then, the molar fractions gradient at the interface is computed.
It is approximated with nite difference, instead of using a multi-dimensional
reconstruction approach, such as Green-Gauss or weighted least square, as we have
access only to the left and the right variables. It is passed to Mutatiorobtain
the diffusion velocities according to the Stefan-Maxwell formulation. Finally, the
uxes at the interface are computed as:

Species diffusive ux = Vi jAinterace

Energy diffusive ux = X (Species diffusive ux ) h;j;
i=1
whereV; is the species diffusion velocity, andAneriaceiS the area of the interface.
The Jacobian of the diffusive uxes is analytically obtained from the SCEBD for-
mulation as a function of the effective binary diffusion coef cients, which are also
computed by means of Mutatith The diffusive uxes and the relative Jacobian
are the output of the function.

I1I) Computation of the gas chemistry source term
The input of this function is the number of the cell where to compute the chemical
source term. US3D is called to get the values of the cell mass fractions, density,
and temperatures, which are then used to set the gas state in MtitafAfter that,
Mutation™ is called to get the chemical source terms and the analytical Jacobian,
%—jt. The full Jacobian%ﬁ, is obtained by adding the ter%%. The rst
term, %, is the derivative of the source term with respect to the temperature and
is computed numerically. The second terg&, represents the derivative of the
temperature with respect to the conservative variables. It is computed analytically.
The expression of the Jacobian can be found in [90]. The output of the function is

the gas chemistry source term and the relative Jacobian.



92 CHAPTER4

IV) Gas surface interaction boundary condition
This function allows for solving both the SMB and the SEB BCs, as described in
Section 2.3. A loop over all the faces belonging to the speci ¢ BC is performed.
For each face, the distance between its center and the center of the cell next to it
is computed. Such a distance is passed, together with the molar fractions of the
cell, to Mutatiort* to compute the diffusive terms. In the only case of the SEB BC,
also the temperature of the cell is passed to Muté&tiom compute the conductive
heat ux in the energy balance. A tentative surface state is passed to Mdtatiion
solve the GSI system. After that, the surface state is obtained. Finally, the solution
is linearly extrapolated to the ghost cells, imposing zero pressure gradient in the
normal direction.

Once the simulation is concluded, the nalizing utility is called to destroy the
Mutation™ object.

We remark that the US3D-Mutatidtcoupling results in a higher computational
cost compared to US3D with its native modules. This increase is primarily due
to the solution of more expensive, but more accurate, physical models, such as
solving the Stefan-Maxwell system for computing diffusive velocities, as opposed
to employing the SCEBD.

4.4.2 \erication test-cases

A series of test cases were performed to verify the coupling between Mutation
and US3D. The simulation results were compared against several reference sources
depending on the speci c test case. These include US3D with its native library,
the stagnation-line code (which has been extensively used and validated coupled
to Mutation™), experimental data, and analytical formulations. A summary of the
performed test cases can be found in Table 4.1. The rst three cases veri ed single

Section Test Assessed Features

Al 0D Reactor Chemistry

A.2 1D Diffusion Problem Transport

A.3 1D Catalytic Diffusion Problem Diffusion and Catalysis
4.4.2 2D hypersonic ow over a cylinder Chemistry, Transport

A4 Axisymmetric ow over an ablator Chemistry, Transport, GSI

Table 4.1: Summary of the veri cation test cases.

features of the coupling, i.e. chemistry, transport properties, and the catalytic BC.
The last two test cases are more general: the rst one is a hypersonic ow over a
cylinder, and the second one is a subsonic nitrogen plasma ow over an ablative
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sample. The former test case is presented in the following, while the others can be
found in Appendix A.

Hypersonic air ow over an isothermal cylinder

Knight et al. [205] employed a hypersonic ow over a cylinder as test case to assess
the capabilities of various CFD solvers, comparing the numerical solutions to the
experimental data. We used the same test case to verify the coupling between
Mutation™ and US3D.

The mixture considered is a ve-species air mixture: S 3,[N,, NO, N, O].
Homogeneous FRC is modeled based on the reaction rates from Park et al. [79].
At the inlet, a supersonic in ow was prescribed, with free-stream values reported
in Table 4.2. The inlet mass fractions are those at LTE. On the cylinder, an inert
isothermal surface BC with,, = 300 K was applied.

My up [m/s] Ty [K] po [Pa] 1 [kg/md]
8.98 5956 901 476 1.54710 3

Table 4.2: Free-stream conditions for the 2D hypersonic ow over a probe.

Two US3D simulations were run. One made use of the US3D native thermo-
physical library (below indicated as "US3D native'). The second employed the
coupled Mutatioti* library (below indicated as "US3D+M ). For the native
US3D computation, diffusion velocities were computed according to the SCEBD
formulation, while transport properties using the Gupta-Yos mixture rule. For
the US3D+M™* computation, the Stefan-Maxwell formulation was employed to
compute diffusive velocities, while Chapman-Enskog expansion for the transport
properties. Both simulations used NASA-9 polynomials to calculate thermody-
namic properties under the assumption of thermal equilibrium.

The Mach number contours predicted using the two libraries are shown in
Figure 4.3. No appreciable differences are observed between the two solutions.
From the ow eld, we extracted the temperature and mass fractions pro le along
the stagnation line. The two solutions are illustrated in Figure 4.4. As one can see,
the post-shock thermo-chemical relaxation shows an excellent agreement. However,
slight discrepancies are observed in the BL, where the chemical relaxation exhibits a
different behavior. Upon different tests, it was noticed that such a difference emerges
only in the case of extremely re ned mesh, where the value of the temperature in the
rst cells drops belows00 K. In these cases, the oxygen recombination predicted
by the native library is lower than the one predicted by Mutdtiofrinally, the
pressure and the heat ux distributions along the cylinder were extracted. They are
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Figure 4.3: Mach eld: US3D+M™* solution on the top, US3D native solution on the
bottom. The two solutions well agree with each other.

(a) Temperature. (b) Mass Fractions

Figure 4.4: Comparison of the Qols along the stagnation line: US3D%Molution with
solid line and US3D native solution with dashed line. The post-shock relaxation shows an
excellent agreement, while slight discrepancies are observed in the BL.



MULTI-FIDELITY AND MULTI -LEVEL NUMERICAL SIMULATIONS 95

plotted in Figure 4.5 along with the experimental data. The pressure distribution
exhibits an excellent agreement between the two codes and with the experimental
data. On the other hand, differences in the prediction of the heat ux are present,
with the one obtained using the Mutatfdribrary being more in agreement with

the experimental data. Such a difference in the prediction is driven by the above-
mentioned difference in the chemistry. In fact, if we compute the chemistry with
the native library of US3D and the transport properties with Mutatigeferred

to as "US3D chem' in Figure 4.5(b)), we obtain an excellent agreement with the
solution provided by US3D with its own native library.

(a) Pressure. (b) Heat Flux

Figure 4.5: Comparison of the Qols around the surface: USBD¥ solution with solid
line and US3D native solution with dashed line. The experimental values are plotted with
blue squares. The two pressure distributions well agree with each other and with the
experimental data. The two heat ux distributions show some discrepancies. The
US3D+M ** Detter predict the experimental data.

4.5 Balancing numerical and epistemic uncertainties
in an atmospheric entry ow

The numerical simulation of hypersonic ows is a challenging problem, especially
when one aims to obtain reliable predictions of the thermal loads. In this context,
appropriate meshes are essential to achieve accurate results [19212D6-or ex-
ample, the computational grid must be aligned to the shock, preferably with highly
stretched cells in the shock region. This practice avoids the appearance of numerical
errors (mostly in the form of non-physical vortices), which, advected downstream,

The result of this section are included in the article:

» Capriati, M, Cortesi, A., Magin, T., Congedo,$agnation point heat ux characterization
under numerical error and boundary conditions uncertainty. European Journal of Mechanics
/ B Fluids, 2022.
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corrupts the correct evaluation of the Qols in the stagnation region. When a lim-
ited number of simulations are needed, a high-quality computational grid can be
obtained by monitoring the solution and manually adapting the grid [191, 213].

On the other hand, when performing UQ studies, one has to perform a large
number of simulations. It is common practice to optimize the mesh on the nominal
conditions and to use it to perform the required computations. While this approach
is usually robust in the absence of shock waves [214, 215], problems can arise when
dealing with hypersonic ows. In this case, each computation might be character-
ized by different BCs leading to different shock positions. For example, in Tryoen et
al. [55], a xed computational grid was used to perform all the simulations required
for training a surrogate model, yielding dif culties in its construction. In such a
scenario, each computation needs an aligned mesh. Manually adjusting the grids
is not feasible in UQ studies and it is preferable to resort to automatized tools to
align the grid and to avoid that numerical errors corrupt the surrogate model training.

Besides numerical errors associated with poor mesh-shock alignment, the nu-
merical solution is always depend on the mesh re nement. In deterministic sim-
ulations, a grid-independent solution is typically sought. However, this practice
might be not necessary in a UQ framework, where using a very ef cient numerical
representation would be advantageous to minimize the computational effort in train-
ing the surrogate model. One might employ a grid characterized by a numerical
uncertainty on a Qol which, rather than approaching zero, is only lower than the
propagated uncertainty on the same quantity. In fact, a grid characterized by a
vanishing numerical uncertainty may be a waste of computational budget when the
variability induced by the BCs uncertainties still dominate the prediction.

Following, we propose a methodology for balancing the numerical and the
epistemic uncertainties on the prediction of the surface pressure and heat ux of
a hypersonic vehicle. We systematically employed grid adaptation tools to auto-
matically prevent mesh-shock misalignment, guaranteeing the robustness of the
predictions without manual intervention. The bene ts of adopting this strategy are
investigated by comparing the grid-aligned results against those obtained on the
nominal mesh. Furthermore, we performed a rigorous grid convergence study to
evaluate the numerical uncertainty expected by using a given mesh. The uncertain-
ties in the BC were also propagated to estimate the variability of the Qols. The
latter was then compared to the numerical uncertainty to choose the most ef cient
mesh.
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4.5.1 EXPERT atmospheric entry

We selected the EXPERT vehicle [216, 217] entry ow as case study. The free-
stream nominal conditions, and associated uncertainties, were taken from the study
of Tryoen et al. [55], where dif culties were highlighted in the surrogate model
construction. The values are reported on Table 4.3. The surface is assumed to be
catalytic; the effective reaction ef ciency uncertainty is also given in the same table.

Variable Nominal value Distribution Minimum Maximum

1,kg=m® 2:88 10 “¢ Uniform 230 10 * 346 10 ¢

u; ,m=s 48686 Uniform 39858 58423
0:0015 Uniform 0:001 Q002

Table 4.3: Nominal conditions and associated uniform uncertainties for free-stream density,
1 , free-stream velocity, , and recombination probability, .

We described the gas as an air mixture of ve species, Sz @, NO, N, O],
whose homogeneous FRC is described by means of the Park rates [79]. Diffusive
uxes were computed according to the Stefan-Maxwell formulation, viscosity and
translation thermal conductivity by means of Chapman-Enskog expansion, and the
internal thermal conductivity with the Eucken correction. The catalytic surface is
modeled by solving a surface mass/energy balance through the Mtitdtimrary.
Inviscid uxes are approximated by the modi ed Steger-Warming scheme with
a MUSCL-limited reconstruction. The solution converged to steady-state with a
rst-order DPLR time integration. All the simulations residual dropped by 8 orders
of magnitude.
In the studied conditions (Mach number around 15), a strong bow shock develops in
front of the vehicle, as plotted in Figure 4.6. The consequent increase in temperature,
Figure 4.7, drives the dissociation of the molecules into atoms. These diffuse
through the BL and partially recombine because of the BL's temperature drop and
the catalytic activity of the vehicle surface.

4.5.2 Numerical uncertainty on deterministic simulations

We built four geometrically similar meshes to assess the spatial convergence and
error of the Qols. The starting nominal computational grid contains 39x41 nodes;
the other three ner grids were obtained by progressively doubling the cells in both
directions. The set of four nested grids is reported in Table 4.4. The normalized
characteristic lengthy; =h;, the wall-normal distance of the rst cell at the stag-
nation point, n, and the average time fér000Qiterations to be performed on 16
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Figure 4.6: Mach contour at nominal condition: strong bow shock develops in front of the
vehicle.

Figure 4.7: Temperature (left) and mass fractions (right) values along the stagnation line at
nominal conditions. The jump in temperature drives the dissociation of the molecules. The
resulting atoms diffuse through the BL and partially recombine because of the surface's

temperature drop and the catalytic activity.

cores are provided in the same table. The value of the sonic Reynolds number in
the stagnation-point cell is also reported; it is de ned as:
nc
Re: = ; (4.14)

w

wherec is the wall sonic velocity, and,, the viscosity. As a general rule of thumb,
hypersonic heat uxes are assumed to be well computed using a rst normal spacing
of 10 ®m; anyway it was shown that this value is affected, for example, by the
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surface temperature [212]. A better criterion of convergence is the sonic Reynolds
number, which should be kept below the unity [206, 207].

Mesh Nodes Cells hj=h; n, m Re. Time,s

[ 305x321 97280 1 12516 02 2490

I 153x161 24320 2 2501F 04 675
m 77x81 6080 4 5.00108 08 205
\Y 39x41 1520 8 1.0010° 16 90

Table 4.4: Numerical grids used in the study: tag of the mesh, number of nodes, number of
cells, normalized characteristic length;,=h1, wall-normal distance of the rst cell at the
stagnation point, n, sonic Reynolds number based on the rst physical cell, and time
required to perform 5.000 iterations on 16 cores.

The mesh Il and the mesh IV are shown, respectively, in Figure 4.8(a) and 4.8(b):
exploiting the axisymmetry of the ow, the 3D problem was reduced to a 2D con-
guration; further reduction of the computational cost was achieved by simulating
only the half part of the 2D domain.

As above mentioned, it is essential to align the mesh to the shock. For this
reason, we used US3D tailoring routine [11]: once the simulation is converged on
a nominal grid, the routine computes the position of the shock and the numerical
grid is aligned. The simulation is then converged on the new grid. As it can be
appreciated in Figure 4.8(e), the tailoring tool allows for capturing a much less
diffuse shock, improving the after-shock ow predictions. An example of tailored
mesh is shown in Figure 4.8(c).

The angular distribution of pressure and heat ux are, respectively, plotted in
Figure 4.9(a) and 4.9(b). One can see that most of the numerical error concentrates
around the stagnation point, where the Qols reach their maximum value. Their grid
dependency was investigated both as stagnation-point value and as integrated value
along the surface.

The numerical uncertainty for each grid in Table 4.4 was computed following
the procedure proposed by&[145], presented in Section 4.3, using the nominal
condition reported in Table 4.3. Equati¢h9) was used to compute the numerical
error relative to the stagnation and integrated pressure (force), as these values fall
in the monotonically convergent range. The normalized vald€®( j - . %) are
shown respectively in Figure 4.10(a) and 4.10(c): the numerical error decreases as
the mesh is re ned, with a slope proportional to the observed order of convergence,
whose values are given on Table 4.5. In this case, the grid adaptation tool improves
the orders of convergence, and, thus, the rate of reduction of the numerical error.
These values turned out to be lower than the theoretical value of 2, expected from
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(a) Mesh Il (b) Mesh IV. (c) Mesh IV adapted.

(d) Non adapted (e) Adapted

Figure 4.8: Top: Numerical grids used in the study. Bottom: zoom of the Mach contour on
the mesh IV.

the linear reconstruction. Two main reasons compete in the corruption of the order:

[) to prevent numerical oscillations from spreading, limiters are generally em-
ployed to decrease the order of the linear reconstruction when a discontinuity,
such as a shock, is detected. In this case, a mix of rst and second-order
spatial accuracy dominates the ow eld. This behavior was also observed by
Roy [218] who investigated the spatial convergence of the surface pressure in
a Mach 8 ow over a blunt body.

II) The GSI module of Mutatioft, used for solving the mass-energy balance BC,
is rst-order accurate, enforcing the rst-second order mix.

Unlike these properties, stagnation-point heat ux exhibits a non-monotonic con-
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(a) Pressure. (b) Heat ux.

Figure 4.9: Angular distribution of the Qols for the four meshes in Table 4.4 relative to the
nominal conditions reported in Table 4.3. The solution obtained using the adapted mesh is
plotted with dashed line, the one with a non-adapted mesh with solid line. The numerical
error concentrates around the stagnation point, where the Qols reach their maximum value.

po[Pa] F[N] QI[W]
NA|[ 074 034 160
A | 163 115 125

Table 4.5: Orders of convergence on non-adapted (NA) and adapted (A) grids for the
pressurepyw, the forceF , and the heat loadQ.

vergence and Equatiqd.9) cannot be applied. We employed the polynomial t

in Equation(4.12) Its use is also justi ed by the reasons mentioned above: the
error is a mix of rst and second-order errors. Similarly to the other two properties,
the tting is improved when the adaptation tool is used, as one can see from Fig-
ure 4.10(b). It is interesting to note that, by contrast, the surface integrated value of
the heat ux s in the monotonic convergence range, as one can see in Figure 4.10(d).

Equation(4.13)allows for evaluating the numerical uncertainty related to the
use of a given grid, as shown in Figure 4.11. It can be noticed that the methodology
is very conservative: the uncertainty bars of a coarser mesh contain the ones of
a ner one. The only exception is the heat ux uncertainty bar of the coarsest
mesh, which does not contain the other three due to the use of the polynomial t. A
second signi cant effect of adapting the mesh can also be noticed: the uncertainty
associated with each property decreases as a consequence of the better tting and
order of convergence.
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(a) Pressure. (b) Heat ux.

(c) Force. (d) Heat load.

Figure 4.10: Relative error on the Qols as a function of the degree of re nement. The
pressure, the force, and the heat load are in the monotonic convergence range. The observed
order of convergence increases by employing grid adaption tools for the pressure and the
force. The heat ux is outside the monotonic convergence range and the mesh adaptation
improves the t.

4.5.3 Surrogate model construction and forward propagation

We estimated the variability of the stagnation-point pressure and heat ux by
propagating the uncertainties on the free-stream density and velocity, and the re-
combination probability of the surface of the EXPERT vehicle. For simplicity, we
neglected the uncertainty on the atmospheric chemistry model considered in Tryoen
et al. [55]. Uniform uncertainties were chosen, namely @0%intervals around

the nominal values for the density and the velocity, and a [0.001; 0.002] interval
for the recombination probability. The complete list of uncertainties is provided in
Table 4.3.

We built a Kriging surrogate model by means of the UQLab software [189]. Specif-
ically, we generatedN; = 80 points with a Sobol technique [159] to train the
surrogate model, and, = 20 with a LHS strategy [158] for veri cation pur-
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(a) Pressure. (b) Heat ux.

(c) Force. (d) Heat load.

Figure 4.11: Qols and relative numerical uncertainty as a function of the degree of
re nement. The methodology is conservative: the uncertainty bars of a coarser grid
consistently contain the ner grid ones; the only exception is the heat ux due to the used
polynomial t. Adaptation tools systematically reduce the numerical uncertainty.

poses. We decided to pay the price of performing a CFD simulation for each
training/veri cation point on each mesh to assess the convergence of the statistical
moments (mean and standard deviation). The stagnation-point pressure and heat
ux were extracted from each solution and used to train the relative surrogate model
for each grid.

The projections of the surrogate models obtained with the adapted mesh I
are shown in Figure 4.12. By visual inspection, no non-physical predictions were
observed. Itis interesting to observe the surrogate model built using the not-adapted
mesh 11, shown in Figure 4.13(a). For the upper limit of free-stream density and
velocity, an overshoot in heat ux is evident: it is a consequence of the poor
alignment of the grid to the shock. In particular, in Figure 4.13(b), we can see how
grid adaptation improves the solution, leading to physically sound values.

Non-physical behaviors were thus not observed in the surrogate models ob-
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(a) Pressure. (b) Heat ux.

Figure 4.12: Projections of the surrogate models obtained for the adapted mesh II: no
non-physical values are observed.

(a) Projection of the surrogate model when(b) Angular distribution: comparison of

mesh is not adapted: non-physical increase ifehavior of adapted and non-adapted

the heat ux is predicted for high values of mesh for a free-stream velocity of

free-stream velocity and density. 5600 m=s. A non-physical increase in
the stagnation-point region is observed
when the mesh is not adapted.

Figure 4.13: Heat ux obtained using mesh II.

tained using adapted grids.

Furthermore, the values returned by the surrogate models were compared with
those obtained by the CFD on the veri cation points to assess the model quality. As
the QQplots illustrate in Figure 4.14, the surrogate models performs well, as also
con rmed by the veri cation errors, consistently beld® °.

Once veri ed, the surrogate models were used to compute mean (hereafter
indicated with &) and standard deviation ( )) of the Qols, propagating the uncer-
tainties in the BCs by means of a MC method. The mean and the standard deviation
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(a) Pressure. (b) Heat ux.

Figure 4.14: QQplot obtained for the adapted mesh II: the values returned by the surrogate
model are plotted against the ones obtain with CFD computations. The surrogate models
well predict the veri cation points.

obtained for the heat ux are shown in Figure 4.15(a) and 4.15(b), as a function of
the degree of the re nement of the mesh employed to perform the simulations to
train the surrogate model. As one can see, both mean and standard deviation follow
the same polynomial convergence behavior of the heat ux computed at nominal
conditions.

(a) Mean. (b) Standard deviation.

Figure 4.15: Statistical moments of the heat ux, obtained by propagating the uncertainties
on the BCs, as a function of the degree of re nement of the meshes. They follow the same
polynomial behavior observed in the nominal case.

At this point, it makes sense to compare the UQ-driven standard deviation
and the numerical uncertainties of each mesh. We de ne an average numerical
uncertainty, and a relative standard deviation, associated with eaclgpadd
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properties () as: p
Ug( ): t=1 rl:Q;t( ); (415)
Sp
Nt 2
Sg( )= t=1 (Uglgt) 1Ug;t( ) : (4.16)

whereUyg, is the numerical uncertainty associated to each simulatiosed to

train the surrogate model, performed on the numericalgritheir values, in the

case of non-adapted and adapted grids, divided by the UQ-driven standard deviation
of each grid(Ug( ) Sg( ))= (;hi=hy) 100 are shown in Figure 4.16: small
ratios indicate that the numerical uncertainty is negligible compared to the one
induced by the uncertainties in the BCs.

As one can see in Figure 4.16(a), the numerical uncertainty associated with
the pressure decreases with the degree of the re nement and it is systematically
lower when the mesh is adapted. Moreover, it can be seen that its magnitude is
reduced more by adapting the grid than by re ning it. Furthermore, in the chosen
uncertainty space, even the coarsest non-adapted grid has a numerical uncertainty
of at least one order of magnitude lower than the UQ-driven standard deviation,
which makes accurate the use of mesh |V for surface pressure estimate.

(a) Pressure. (b) Heat Flux.

Figure 4.16: Ratio between the average grid numerical uncertaigy, ), and the
UQ-driven standard deviation,( ; h i=h;), plotted with solid lines as a function of the
degree of re nement. The standard deviation of the grid numerical uncertainty,
(Sg( )= (;hi=hy)), divided by UQ-driven standard deviation is shown with opaque area.
The numerical uncertainty is systematically lower when the mesh is adapted.

Regarding the heat ux, Figure 4.16(b), the trend is not monotonic as for
the pressure, but the average numerical uncertainty, and the associated standard
deviation, is systematically lower in the case of the adapted grid. Remark that the
signi cant standard deviation for the non-adapted grid is biased by few simulations
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where the carbuncle effect is observed. In this case, as one can see in Figure 4.17,
the numerical uncertainty is driven high because of the bad scatter of the data.
Adaptation, preventing the carbuncle effect from spreading, reduces the numerical
uncertainty to acceptable values and is necessary for estimating the heat ux.

Figure 4.17: Numerical uncertainty as a function of the degree of re nement for a
free-stream velocity @600 mes. It is driven high when the carbuncle effect corrupts the
solution on non-adapted grids.

From what observed above, the ef cient mesh IV, together with grid adaption
tools, can be employed to train the surrogate model in a very ef cient way, as its
numerical uncertainty on the prediction is at least one order of magnitude lower
than the relative UQ-driven standard deviation.

4.6 Summary

In this chapter, we rst described how to discretize the governing equation accord-
ing to a FV formulation, highlighting the main numerical challenges. After that, we
presented the numerical solvers employed in this work: 1) the high- delity US3D
solver, II) the VKI stagnation-line code that solves the Navier-Stokes equations in
a quasi-1D fashion, and Ill) a code to compute the stagnation-point pressure and
heat ux experienced by a probe exposed to a supersonic jet. Then, we presented a
methodology to estimate the numerical error associated with the use of a given mesh.
It accounts for the scatter of data and is robust for practical applications. Next, the
coupling between the US3D solver and Mutatibhibrary was described. It allows

for using Mutatiod* for computing chemistry and transport properties, as well as to
solve the GSI balances. Several test cases were run for veri cation purposes. They
show excellent agreement with the reference solutions. Interestingly, we showed
that the heat ux on a cylinder exposed to a hypersonic ow obtained by US3D
agrees more with the experimental values when the chemistry is computed using
Mutation™.
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Finally, we illustrated a systematic quanti cation of the numerical error and the
uncertainty-induced variability for the simulation of hypersonic ows. Speci cally,
we showed that the use of grid alignment tools should always be adopted. In
fact, they guarantee a better trend of the numerical error and improve the order
of convergence. This behavior translates into having less numerical uncertainty
associated with the estimate of the Qols on a given mesh. Furthermore, they are
essential in a UQ context, where it is not possible to manually adjust the mesh for
each free-stream condition. In fact, non-physical peaks in the heat ux estimate
were observed for some training points when the nominal mesh was used and
the consequent surrogate model is not reliable. By contrast, grid adaptation tools
prevent carbuncle effects from possibly corrupting the solution in speci c training
points. In this case, a regular behavior of the Qols was observed with a resulting
good quality of the associated surrogate model.

We also performed a grid convergence study to evaluate the numerical uncertainty
expected by using a given mesh. It was compared to the UQ-driven standard de-
viation, allowing us to choose the most ef cient mesh to perform the simulations
required to train the surrogate model: the numerical uncertainty associated with the
coarsest, and most ef cient, grid turned out to be at least one order of magnitude less
than the UQ-driven standard deviation. An ef cient and robust surrogate model can
be built employing this mesh together with alignment tools. Lastly, it was noticed
that the magnitude of the numerical uncertainty was reduced more by adapting the
grid than by re ning it.



Holistic characterization of an
under-expanded high-enthalpy jet under
uncertainty

In this chapter, we present a methodology to ef ciently characterize an under-
expanded high-enthalpy jet obtained in the von Karman Institute's Plasmatron
facility, for which no robust rebuilding procedure existed to date. Given the high
computational cost of the high- delity simulations needed to describe the ow,
we built an adaptive/multi- delity surrogate model to approximate the solver. A
Bayesian inference method provided then rigorous estimates of the uncertainties of
the rebuilt quantities. We show that the reservoir pressure and temperature, and
the nitrogen catalytic recombination coef cient, can be accurately determined from
the available measurements. Contrarily, the test conditions did not allow us to
estimate the oxygen catalytic recombination coef cient. Finally, the characterized
uncertainties were propagated through the numerical solver yielding an uncertainty-
based high- delity representation of the hypersonic ow's structure variability.

The results of this chapter are included in the following publications:

» Capriati, M., Turchi, A., Congedo, P., Magin, Holistic characterisation of an under-
expanded high-enthalpy jet under uncertainty(under submission)

e Capriati, M., Turchi, A., Congedo, P., Magin, fleat ux characterization of an under-
expanded/supersonic plasma jet over a catalytic prohgEUCASS, 2022, Lille, France.
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5.1 Overview

As we saw in Section 2.4.1, high-enthalpy subsonic ows, which duplicate the
in- ight chemically reacting BL, can be obtained in the VKI Plasmatron facility. In

this context, coupled numerical-experimental approaches have been developed and
employed to deterministically extract the effective catalytic recombination coef -
cients [136] and the ablation reaction ef ciencies [3, 219] of the TPMs. Recently,
stochastic methodologies have been devised to improve the robustness of such a
characterization [51, 52, 663]. In these studies, the subsonic nature of the ow
allowed for reducing the dimension, and the cost, of the problem. In fact, it was
possible to reconstruct the Qols performing CFD simulations of the only stagnation
line, making the UQ studies very ef cient.

In Section 2.4.1, we presented a supersonic campaign that was recently con-
ducted in the VKI Plasmatron facility to obtain high magnitudes of the heat ux
over the TPMs. Supersonic ows involve various physical effects, including com-
pressible structures and non-equilibrium phenomena. While the latter are generally
con ned in the BL in subsonic ows, they embrace the whole eld in the super-
sonic testing. Because of these features, characterizing such ows is a challenging
task, especially when one is interested in assessing the uncertainty of the Qols.
In fact, multi-dimensional high- delity computations are needed to simulate all
the different features of the ow. For example, Diaz et al. [220] used high- delity
computations to build a polynomial regression and evaluate the nozzle in ow con-
ditions in an arc jet experiment as a function of the probe-measured heat ux and
pressure. Brune et al. [53] built a surrogate model on high- delity computations to
perform a sensitivity analysis on the impact4afuncertainty parameters on the
heat ux and pressure predicted on a probe exposed to a supersonic ow, also in
an arc jet experiment. In the latter ca$8p0high- delity CFD simulations were
needed to train and verify the surrogate model. Such a large number of high- delity
simulations might lead to a computationally expensive numerical campaign.

The rebuilding of supersonic ows requires a general and robust methodology,
mixing accurate measurements and multi-physics simulations while accounting
for several sources of uncertainty. Building on the development of stochastic
approaches, we propose a multi- delity-based Bayesian methodology to rebuild the
ow free-stream conditions and the catalytic ef ciency of the materials in supersonic
high-enthalpy experiments. Given the costly nature of the high- delity simulations
needed to accurately describe the ow, attention was focused on optimizing the
method. A surrogate model was built by means of an adaptive/multi- delity strategy
to improve the ef ciency while preserving the accuracy. The methodology allowed
us to characterize the high-enthalpy under-expanded jet described in Section 2.4.1,
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for which a standardized rebuilding procedure did not exist.

First, we present a detailed description of the ow based on a nominal high- delity
simulation. Then, we outline the results of the characterization of the uncertainties
on the nozzle's reservoir conditions, and on the catalytic ef ciency of the probe,
given the measurements at hand. Indeed, the heat ux at the wall is strongly
dependent on the atomic recombination at the surface, which can be described using
an effective catalytic ef ciency of the material. Another relevant result concerns
the assessment of the robustness of the high- delity prediction of the hypersonic
ow structure, obtained by propagating the reservoir uncertainties.

5.2 Deterministic simulations

In this section, we present the results obtained under nominal conditions with the
US3D solver. We simulated the ow from the exit of the plasma torch to the probe
location. It was assumed to be lamihand steady. Thus, we solved chemical
reacting Navier-Stokes equations of an air mixture of ve species, (N, NO,

N, O], in thermal equilibrium. The reaction rate coef cients were taken from Park
et al. [79]. Thermodynamics properties were obtained using the NASA polynomials.
Diffusive mass uxes were computed using the SCEBD model, while viscosity and
thermal conductivity according to the Gupta-Yos mixture rule supplied with the
Eucken correction for the internal modes

We employed the modi ed Steger-Warming scheme for the computation of the
numerical uxes with a MUSCL-limited reconstruction to obtain second-order
accuracy and the full matrix point relaxation [221] for the time integration.

The physical domain was discretized as shown in Figure 5.1(a); from the left,
in a clockwise direction, we can see |) the exit of the plasma torch/nozzle inlet, 11)
the sonic nozzle surface, Ill) the expansion chamber, and V) the catalytic probe.
Unlike the EXPERT application treated in the previous chapter, US3D cannot
directly connect the probe surface to the inlet and its tailoring utility cannot be used.
For this reason, attention was posed during the mesh generation to well capture
the shock, as shown in Figure 5.1(b). The straight walls of the chamber were cut
using a quarter of circumference to improve the alignment of the mesh to the shock.
We remark that such a cut is not expect to affect the solution, as this area is not
characterized by gradients in the ow quantities.

Four nested grids, listed in Table 5.1, were generated to assess the grid con-
vergence by systematically doubling the number of the nodes in bothahdy

1A RANS simulation was carried out to verify that the heat ux experienced by the probe is not
sensitive to turbulence. Itis an expected behavior given the high temperatures involved in the experiment.

2We computed the transport properties employing the native library of US3D. In fact, this simulation
showed convergence issues when using the coupling with MutéticFhis is probably due to the
computation of the diffusive uxes, where the face gradients were approximated with nite differences.
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(a) Numerical domain, from the left, in the clockwise direction: I) exit of plasma torch/nozzle inlet, I1)
sonic nozzle surface, Ill) expansion chamber, and V) probe.

(b) Zoom of the numerical domain in the shock region: grid aligned to the shock.

Figure 5.1: Details of Mesh Il of Table 5.1.

directions.

Regarding the simulation BCs, the total temperature and pressure were im-
posed at the nozzle inlet. Here, the chemical composition was assumed to be at
equilibrium. The nozzle surface was characterized by a non-reacting isothermal
condition (whose temperature was kept constad680 K for all the simulations).

The chamber surface was characterized by an inlet condition for numerical stability
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Index Cells n, m h; tcpy, min
[ 172224 5 10 7 1 1600
Il 43056 1 10°% 2 200
I 10764 2 108 4 30
\Y 2691 4 106 8 4

Table 5.1: Details of the meshes used: index, number of cells, length of the rst cell at the
stagnation point ( n), normalized characteristic mesh;§, and time to convergepy).

imposing a small horizontal velocityl fn=s), room temperature, and a chamber
pressure 0b:5 hPa (also these conditions were kept constant for all the simula-
tions). The probe was modeled as an isothermal/catalytic surface, solving a SMB
through Mutatiofi*. A temperature 0850 K was imposed. Finally, a supersonic
outlet condition was prescribed on the exit section; all the other surfaces were
characterized by a symmetry BC.

The values of the total temperature and pressure at the nozzle entrance, and of
the recombination probabilities on the catalytic probe were set according to the
training points, as it will be discussed in Section 5.3. In the following, we will
describe the results obtained under nominal conditidps=(7500 K, py = 16500
Pa, n=0:0736 and o =0:1170. The nominal catalytic ef ciencies were taken
from Bellas [99].

5.2.1 Flow structure

Two numerical representations of the experiment, based on the above-mentioned

nominal conditions, are given in Figure 5.2 to illustrate the ow features. The

undisturbed ow is shown on the top, while the probe-disturbed one at the bottom.
The ow structure is rather complex, particularly:

1. a Prandtl-Meyer expansion fan develops at the exit of the nozzle to expand
the ow to the chamber pressure;

2. ajet boundary separates the jet from the quiescent chamber gas;
3. a barrel shock deviates the streamlines to align them to the jet boundary;

4. a Mach disk, characteristic of highly under-expanded jet, is generated, when
the ow in undisturbed, because of the oblique shock singular re ection;

5. a re ected shock develops at the triple point (red circle) where the barrel
shock intersects the Mach disk;
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Figure 5.2: Numerical ow structure obtained with a total temperature of 7500 K and a total

pressure of 16500 Pa imposed at the entrance of the sonic nozzle. Density gradient contours.

Undisturbed ow on the top, probe-disturbed on the bottom. Structure: (a) Prandtl-Mayer

expansion fan, (b) Jet boundary, (c) Barrel shock, (d) Mach disk, (e) Re ected shock, and (f)
Detached shock. The triple point with a red circle.

6. a detached shock appears because of the inference of the intrusive probe.
Behind it, the ow expands because of the body's curvature. The detached
shock interacts with the barrel one. The transmitted detached shock is
re ected on the jet boundary, deviating it.

The temperature pro le along the stagnation line was extracted from the two
simulations; it is shown in Figure 5.3. As one can see in Figure 5.2 and 5.3, being
the ow supersonic, the disturbance does not travel upstream and the structure of
the ow in the undisturbed and disturbed case is nearly identical up to the edge of
shock. Thus, we can safely characterize the nozzle inlet conditions by intrusively
probing the ow.

The temperature and Mach contours are respectively shown at the top and the
bottom of Figure 5.4. The ow rst accelerates in the nozzle to the sonic condition,
then it continues the expansion in the chamber, reaching a peak Mach number of
around4:5, just before the detached shock. It re-accelerates behind it. Contrary, the
temperature drops during the expansion and sharply increases in the shock layer.
Both the BL developing along the nozzle wall and the jet boundary are characterized
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Figure 5.3: Distribution of temperature along the jet central line: pro le of the undisturbed
ow in solid black line, probe-disturbed one in dashed red lines. The ow is nearly identical
up to the edge of shock.

by an extended temperature gradient, which explains the thick density gradient in
these regions observed in Figure 5.2.

It is also worth analyzing the chemistry of the ow. Despite the temperature
drop, the ow appears to be chemically frozen through the whole expansion, as
shown in Figure 5.5, due to the pronounced velocity gradients. Strong diffusion is
visible across the jet boundary, where the dissociated gas meets the quiescent one,
mostly characterized by molecules at room temperature. The atomic nitrogen and
oxygen mass fractions pro les, as well as the temperature one, were extracted along
the central line and shown in Figure 5.6. As one can see, the atoms recombine in
the BL developing in front of the probe, mostly driven by surface catalysis. The
atomic nitrogen also partially recombines along the wall of the nozzle.

5.2.2 Numerical uncertainty

The same nominal conditions were imposed to characterize the numerical uncer-
tainty associated with each of the four meshes reported in Table 5.1, based on the
formulation presented in Section 4.3. The obtained order of convergence, asymp-
totic value, and numerical uncertainty of Mesh | are reported in Table 5.2 for the
stagnation-point pressure and heat ux, as well as for the nozzle mass ow rate.
The experimental uncertainty on these observables is also given in the same table.
The dependency of the results versus the grid re nement for the three ob-
servables is shown in Figure 5.7. The coarse solutions are characterized by high
numerical uncertainty, which reduces re ning the grid. Speci cally, as one can
see in Table 5.2, the Mesh | has a numerical uncertainty that is lower than the



116 GHAPTERS

Figure 5.4: Temperature (top) and Mach (bottom) contours. The ow expands reaching a
Mach number of around:5 before the shock. The temperature drops during the expansion
and increases at the shock layer.

Observable p 0 U, 2 exp
p, Pa 1.57 243690 38.57 50
g W=m? 1:57 448 10° 75 10* 448 10°
m, kg=s 055 58 10°% 1.1 104 3 104

Table 5.2: Results of the convergence study performed on the meshes in Table 5.1. For each
observable: order of convergenge,asymptotic value, o, numerical uncertainty of Mesh |,
U;, and experimental uncertaintyexp.

experimental one for all the observables, making it a very accurate representation of
the problem. As we will discuss in the next section, one may use many simulations
on the ef cient, but less accurate, Mesh IV to train a surrogate model, retaining
fewer simulations on Mesh | for accuracy purposes.
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Figure 5.5: Mass fractions contours: atomic oxygen (top) and atomic nitrogen (bottom). The
ow results chemically frozen through the whole expansion.

Figure 5.6: Temperature (left) and mass fractions (right) distribution along the jet center
line, from the nozzle inlet to the probe stagnation point. The ow partially recombines in the
BL, mostly driven by surface catalysis.

5.3 Uncertainty-based results

As stated at the beginning of the chapter, we are interested in characterizing the
experimental ow conditions. The total pressure, and the related experimental
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(a) Stagnation-point heat ux. (b) Stagnation-point pressure. (c) Nozzle mass ow rate.

Figure 5.7: Dependency of the results versus the grid re nement for the three observables.
Cross: CFD value; solid line: tlaw according to Equatioi.9); bars: numerical
uncertainty according to Equatio@.13)

uncertainties, can be easily measured at the wall upstream of the nozzle. On the
other hand, the total temperature is not directly accessible and has to be rebuilt by
means of auxiliary measurements. As we discussed in the previous section, the
undisturbed and probe-disturbed ows are identical up to the edge of the shock layer.
Thus, we can safely characterize the nozzle inlet conditions by intrusively probing
the ow. For example, downstream of the nozzle the experimental setups allow for
measuring the stagnation-point heat ux and pressure. The mass ow rate in the
nozzle, being controlled by a rotameter, is also known within its uncertainty. Once
the inlet conditions are characterized, one can compute, through CFD simulations,
the free-stream conditions at any point at which a sample would be exposed to the
plasma ow.

Bayesian inversion is a suitable framework to characterize the uncertainty of
the Qols, given the uncertainty on auxiliary observations. Based on the above
description, inputs to the UQ problem are:

X =[po;To; n; o]

where, besides the total pressure and temperature at the nozzle inlet, we have
introduced the catalytic ef ciencies of the probes for nitrogeg)(@nd oxygen (o)
recombination. In fact, these coef cients strongly affect the heat ux predictions,
and their values are not well-known. Interestingly, the proposed methodology does
also allow us to characterize the catalytic response of the material.

With the above-mentioned entrance, a mathematical model is needed to numerically
predict the experimental observations:

y = [qexp; pexp; mexp]:
Regarding the uncertainties, a Gaussian uncertainty, reported in Table 5.3, was

prescribed to these quantities that are measured. For those that are not experimen-
tally accessible and need to be characterized, an non-informative uniform prior
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uncertainty was chosen, as shown in Table 5.4. Note that we prescribed log-uniform
distributions to the recombination ef ciencies as their priors span several orders of
magnitude.

Quantity 2
p, Pa 25000 500
g, MW =m? 4:48 0448
mkg=s 60 10° 3 104
Po, Pa 16 5000 5000

Table 5.3: Informative Gaussian experimental uncertainty.

Quantity  min max
To,K  5600:0 84000

099 N 4 0.0

0919 o 4 0.0

Table 5.4: Non-informative uniform uncertainty.

Following, we rst introduce the construction of the surrogate model and the
results of the forward propagation. Then, we present the results of the characteriza-
tion of both the ow conditions and the catalytic properties of the probe obtained
by performing a Bayesian inversion. The calibrated in ow conditions were nally
propagated to characterize the variability of the ow structure. These results are
presented next.

5.3.1 Surrogate model construction and forward propagation

A surrogate model, which expressesas a function ok, was built to accelerate

both the forwards analysis and the Bayesian inverse problem. In previous works
from del Val [173] and Turchi et al. [51, 52], ef cient low- delity CFD solvers
were employed as a mathematical model to reconstruct a subsonic plasma ow.
However, the previously-discussed compressible features of the supersonic case
cannot be described using a low- delity model. Furthermore, it was pointed out in
Section 4.2.3 that the low- delity model that we derived to describe the experiment
predicts lower stagnation-point pressure and heat ux. For example, in the nominal
condition, the low- delity model predictg-™ = 2115:9 Pa. The error computed

with respect to the high- delity asymptotic value in Table 5.3%1Pg much higher

than the experimental uncertainty. For these reasons, high- delity simulations must
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be employed to fully capture the complex physics and to accurately compute the
experimental observations. This gain in accuracy comes at the expense of ef ciency,
which is not ideal when working in a UQ framework. It was restored by building the
surrogate model in an adaptive/multi- delity fashion, as discussed in Section 3.4.

Figure 5.8: Sketch of the adaptive/multi- delity surrogate model construction.

The surrogate model is constructed as sketched in Figure 5.8. The lowest-
delity model ( ) is computed according to the cheap representation of the problem
described in Section 4.2.3. The other three delity, , and , rely on US3D
computations on three differently re ned grids, namely Mesh 1V, Ill, and I, charac-
terized by a different numerical uncertainty, as discussed in Section 5.2.2.

First, an ordinary Kriging was built by means of théow- delity training points.
Then, a hierarchical Kriging was progressively trained for delity , and using

the correspondinty delity CFD training points and thé 1- delity surrogate
representations as trend.

The initial number of training points was sethkb = 160, N =20, N = 20,
andN =5; anotheN, =5 independent points on the delity were computed

for veri cation purposes. The training set was then adaptively re ned employing
the Kriging standard deviation of the heat ux model, using the method outlined in

Section 3.4.3. A normalized error was introduced as:
S

'J
(Ve 902 100

NRMSE = - ;
Ny maxYy; minYy;

(5.1)

to evaluate the accuracy of the surrogate motgl (ndicates the CFD estimate,
while ¥; the Kriging prediction). As one can see in Figure 5.9,8#RMSE on

the heat ux decreased from tHe874%to 0:4936%sampling a total 082 , 26 ,
and24 training points. This set of points was further enriched \8ith points to
getaNRMSE on the pressure and on the mass ow rate prediction respectively
of the 0:43196%and of the0:22846%
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Figure 5.9: lterativeNRM SE for the three observables.

It is worth noting that most of these points were added on the border of the
four-dimensional hypercube, as shown in Figure 5.10. This is expected by ex-
ploring techniques. In fact, the borders of the hypercube are characterized by the
highest uncertainty. Anyway, we remark that the majority of the added points were
obtained employing the cheapmodel, with a relatively null impact on the overall
computational cost.

Figure 5.10: Added points: the majority of the points were sampled on the border of the
hypercube.

The gain in accuracy obtained by employing lower- delity simulations in a
hierarchical fashion is highlighted in Figure 5.11, where the model predictions on
the heat ux are plotted against the CFD veri cation values. The multi- delity
values (in green) almost lie on the 45-degree line, whereas the model predictions
obtained using only high- delity (in red) points mispredict the response. Further
increase in accuracy, due to the adaptive sampling strategy, is evident on the same
plot: these predictions (in blue) perfectly lay on the 45-degree line.

We also remark that the initial number opoints could have been increased
with an almost null effect on the total CFD computational cost. Nevertheless, it
was observed that while ti¢RM SE associated with the lowest- delity model,



122 GHAPTERS

Figure 5.11: QQplot: CFD response VS Surrogate model response. Points from the
adaptive/multi- delity surrogate model on the 45-degree line.

computed orb0 validations points, consistently decreased with the number of
low- delity training points (shown in dashed line in Figure 5.12), tH&M SE
associated with the delity does not necessarily follow the same trend (solid lines

in Figure 5.12). In fact, th&lRMSE on the model rst decreases for all the
guantities when the surrogate model is constructed d60 points and used as
trend to build the model 0 points means that themodel is not included in

the construction of the model). Further re ning the model, leaving unchanged
the number of training points of the other levels, does not consistently improve
the high- delity predictions. Furthermore, a reduced number of training points
improves the computational cost associated with the surrogate model construction.
For these reasons, the number of initidtaining points was set tb60, re ning it
where needed.

Figure 5.12:NRMSE as a function of the number of low- delity points associated with
the surrogate model (solid line), and with themodel (dashed line). For the quantities:
heat ux (in black), pressure (in red), mass ow rate (in blue).

As we said previously, the tailoring tool of US3D cannot be used in such an
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application. Hence, the surrogate model was visually inspected to make sure that
spurious behaviors were not present. The projection of the heat ux on the total
pressure and total temperature space is plotted in Figure 5.13. As one can see,
the predictions are physically sound, and signs of carbuncle were not detected.
We remind that the peak Mach number in this application is arglBdmuch

lower than thel5 of the EXPERT case. This makes the solution less prone to the
appearance of numerical errors across the shock.

Figure 5.13: Projection of the heat ux surrogate model on Theand p, dimensions. No
carbuncle effect observed.

The veri ed surrogate model was then employed to propagate the uncertainties
onTy; nand o, in Table 5.4, and the one qx in Table 5.3. A number of0°
LHS points were propagated through the surrogate model. The obtained probability
densities of the observables are plotted in Figure 5.14 against the experimental ones.
As one can see, the former are larger and contain the latter. An inverse problem can
be then solved to reduce the uncertainties on the nozzle inlet conditions and on the
catalytic ef ciencies.

5.3.2 Characterization of the ow conditions and of the material
catalytic response

The same surrogate models were employed to perform the Bayesian inversion. A
total of 10 MCMC chains characterized By iterations were generated. The rst
20% of the points of each chain was neglected as Burn-In. The multivariate poten-
tial scale reduction factor, computed with Gelmen-Rubin diagnosti®,4s1 :0035
ensuring that the chain is well converged.

The posterior marginals relative to the four Qols are plotted in Figure 5.15. Speci -
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(a) Heat ux. (b) Pressure. (c) Mass ow rate.

Figure 5.14: Propagated uncertainties in red. Experimental uncertainties in black.

cally, the reservoir's total temperature probabilistic density present a well-de ned
peak at7000 K, with a standard deviation of arouB@0 K, leading to a coef cient

of variation CV = =j j 100 of the 4:28%. The reservoir's total pressure
probability density is Gaussian-shaped, with a mean of around 16730 Pa, and a
standard deviation df40 Pa(CV = 0:84%). Interestingly, we almost halved the
experimental uncertainty by using complementary measurements. The probe's
nitrogen catalytic ef ciency turned out to be also well-characterized, with a proba-
bility density peak value of arour®l15, and support ranging frofx01to 1. These
values are in agreement with those found by del Val et al. [62] in a study performed
on a subsonic test in the Plasmatron, where coppegr'and o were inferred

using the same variable. On the other hand, it was not possible to characterize the
ef ciency of the oxygen recombination. In fact, the atomic oxygen fraction is much
lower than the atomic nitrogen one, see Figure 5.6. Hence, also the associated
fraction of heat released during the recombination process is lower compared to
the fraction released by the nitrogen reaction. This makes it impossible to use the
heat ux measurement for its estimation. To better characterize this quantity, one
should perform an experiment at a lower temperature, in a range where oxygen is
dissociated, but nitrogen is mostly in molecular form. The joint distributionyof

and o is plotted in Figure 5.16. As one can see, the two Qols are correlated and a
characterization of the oxygen recombination coef cient would improve also the
characterization of the nitrogen one.

5.3.3 Flow structure variability

The prior and posterior distributions on the total pressure and temperature at the
entrance of the nozzled, To) were propagated to investigate the variability of the
ow structure. To this end, an algorithm was written to automatically detect the
compressible features in each simulation. It follows a series of steps:

1. from the solution eld, the stagnation line a2d vertical lines are extracted
inthe rangex =[0:16 0:27] m.



HIGH-FIDELITY UNCERTAINTY PROPAGATION 125

(a) Total temperature. (b) Total pressure.

(c) Nitrogen recombination probability. (d) Oxygen recombination probability.

Figure 5.15: Prior and posterior marginal distributions for the four Qols.

Figure 5.16: Joint distribution of o and .
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2. The points belonging to the jet boundary, the barrel shock, and the detached
shock are identi ed by detecting the relative maxima in the density gradient
lines. The reconstructed points are shown in Figure 5.17.

3. The reconstructed points are then tted for two reasons: 1) to reduce the noise
in the rebuilt features, and Il) to obtain the t coef cients, which are more
convenient to construct a surrogate model and to propagate the uncertainties.
Two different ts are performed to reconstruct the detached shock: the rstup
to the point in which it intersects the barrel shock, and from herexd) :27
m, as its shape changes at the intersection point. The jet boundary, the barrel
shock, and the second part of the detached shock were tted with a third-order
polynomial. The term X XgnhockWas added to the polynomial used to t
the rst part of the detached shock to enforce a vertical tangent at the shock
location.

4. The stand-off distance is computed as the difference betweendberdinate
of the relative maximum of the density gradient along the stagnation line,
before the increase in the BL, and the coordinate of the stagnation point.

5. The coordinates of the point in which the detached shock intersects the
barrel shock are computed as the point in which the t of the detached shock
intersects the one of the barrel shock.

Figure 5.17: Reconstructed points belonging to the jet boundary (plotted in yellow), the
barrel shock (in green), and the detached shock (in red).

A surrogate model was built for the coef cients of the ts of each compressible
feature, for the coordinates of the intersection point, and for the stand-off-distance.
We performed othet5 high- delity simulations to improve the quality of the
surrogate model. The simulation inlet conditions were randomly sampled from the
reduced posterior distribution.

Both the prior and the posterior distributions were then propagated through the
surrogate models. The propagated uncertainties on the ow structure are shown
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Figure 5.18: Prior and posterior uncertainty on the ow structure: jet boundary (in orange),
barrel shock (in green), and detached shock (in red). Prior: mean of the propagation plotted
with dashed line, bounded by dash-dotted lines indicating the 95% interval of con dence.
Posterior: the continuous line represents the mean, while the shadow areas represent the
uncertainty within the 95% of con dence.

in Figure 5.18. As one can see, the barrel shock exhibits the largest variability
with respect to the inlet conditions. This gets dramatically reduced when the
total pressure and temperature are characterized. The same holds true also for
the jet boundary and the detached shock, although the differences are much less
pronounced. We can better appreciate the improvement in the predictions of these
features by looking at Figure 5.19(a) and Figure 5.19(b), where the shock stand-off
distance and the intersection point variability are respectively shown. The most
likely distance of the shock from the stagnation point increases &8hmm to

2:95 mmwhen we characterize the inlet conditions, while the associated uncertainty
decreases from = 0:06 mMm(CV =2:08%) to =0:038mm(CV = 1:29%).
Likewise, the uncertainty in the intersection location is greatly reduced. Overall,
the characterization of the inlet conditions yield a much more robust prediction of
the ow structure.

5.4 Summary

We proposed a multi- delity Bayesian-based methodology to rebuild the free-stream
conditions and the probe catalytic ef ciencies in supersonic high-enthalpy exper-
iments. We applied it to the characterization of an experiment performed in the
VKI Plasmatron facility, for which no standardized rebuilding procedure existed.
Such a ow can be accurately described by means of high- delity simulations.
Considering the large number of calculations needed for UQ studies and their
associated computational cost, we built an adaptive/multi- delity surrogate model
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(a) Stand-off distance. (b) Intersection point.

Figure 5.19: Prior (in red) and posterior (in black) uncertainties in the ow features.

to mimic the high- delity CFD response. The initial set of training points was
further enriched by an exploring in Il strategy. Veri cation tests highlighted the
gain in accuracy obtained by constructing the Kriging surrogate model leveraging
lower- delity representations. The surrogate model was also visually inspected to
verify the absence of carbuncle effects. Once veri ed, the surrogate model was
employed to solve the inverse problem, allowing us to obtain rigorous estimates of
the uncertainties in the rebuilt quantities.

The Bayesian analysis revealed pronounced peaks for the probability density of
the total temperature and total pressure at the entrance of the sonic nozzle, yield-
ing a robust characterization of the test conditions with a coef cient of variation
below the4:3%. An important outcome of the study was the determination of the
nitridation catalytic ef ciency of the calorimeter probe used to measure the heat
ux. Nevertheless, given the relatively small amount of atomic oxygen versus
atomic nitrogen present in the ow, it was not possible to estimate the oxygen
recombination ef ciency.

Finally, the reservoir uncertainties were propagated to assess the robustness of
the prediction of the ow structure, identifying its variability. The barrel shock
exhibited the greatest variability with respect to the total pressure and temperature,
which gets largely reduced when these quantities are characterized. The same
holds true for the stand-off-distance and for the point in which the detached shock
intersects the barrel one.

We believe that the methodology developed is general and can be applied to
characterize those experimental campaigns requiring high- delity computations.



Bayesian calibration of a nite-rate
nitridation model from molecular beam
and plasma wind tunnel experiments

The modeling of gas-surface interaction phenomena is crucial for predicting the
heat ux and the mass loss experienced by hypersonic vehicles. Gas-surface inter-
actions refer to the phenomena occurring between the reacting gas and the material.
An important part of the modeling concerns the description of the surface chemical
reactions. In this regards, we propose to calibrate, in a Bayesian sense, the rates
of the elementary reactions between a nitrogen gas and a carbon surface. We rely
both on molecular beam and plasma wind tunnel observations. The former provides
detailed data on the chemical mechanisms, but are characterized by pressures non
representative of atmospheric entries. By contrast, plasma wind tunnel experiments
are conducted at representative pressures, but contains only macroscopic infor-
mation. The parameters' posterior distributions are then propagated through the
models representing the two experiments. The calibrated model turned out to be

The results of this chapter are included in the following publications:

» Capriati, M., del Val, A., Schwartzentruber, T., Minton, T., Congedo, P., MagiBayesian
calibration of a nite-rate nitridation model from molecular beam and plasma wind tunnel
experiments EUCASS-CEAS, 2023, Lausanne, France.

» Capriati, M., Prata, K., Schwartzentruber, T., Candler, G., Magibelelopment of a nitrida-
tion gas-surface boundary condition for high- delity hypersonic simulations, ECCOMAS,
2021, Virtual.
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able to explain both experiments.

6.1 Overview

One key aspect of the GSI modeling is the description of the chemical reactions
between the surface and the reacting gas. Among others, reactions involving atomic
nitrogen are important in entry applications, for example in Earth and in Titan
atmosphere. In fact, the nitridation reaction (N g!C CN) ablates the TPMs,
while the exothermic recombination reaction (N # NN;) increases the heat ux
experienced by the spacecratft.

Several experimental works addressed the characterization of the ef ciencies
of the two reactions. For instance, the nitridation ef ciency was estimated, over
a wide range of temperatures and pressures, by means of experiments in shock
tube [222], in furnace-heated quartz ow tube coupled to microwave discharge [27],
in ICP facilities [3, 107, 223225], and using a molecular beam-surface scattering
apparatus [142]. The studies [107, 142, 223] included also the determination of
the nitrogen recombination ef ciency. The values proposed in these works largely
differ from each other, suggesting a poor understanding of both the nitridation and
the recombination reactions.
It is important to remark that, in most of the above-mentioned studies, coupled
numerical simulations supported the experiments in determining those Qols that
were not experimentally accessible, adding an extra layer of modeling uncertainty.
For example, the concentration of the atomic nitrogen in ICP facilities, needed to
compute the reaction ef ciencies, was determined through numerical simulations
in [3, 224, 225]. In such computations, the surface recombination was neglected,
potentially biasing the determination of the gas concentrations. Furthermore, CFD
simulations contain assumptions also on the gas-phase modeling, for instance on the
rates of the homogeneous chemistry and on the transport proprieties. Consequently,
the assumptions contained in the modeling of these processes directly affect the
characterization of the surface reactions [67]. However, it is virtually impossible
to characterize all these sources of uncertainties, along with the surface reaction
probabilities, given the limited amount of observations that can be acquired in these
facilities. Contrary to ICP, in the molecular beam-surface scattering experiments,
the ablative sample is placed in a high-vacuum chamber and bombarded with a
beam of molecules or atoms. Thus, few gas collisions are expected to happen and
phenomena such as gas chemistry or transport are negligible. As a consequence,
simulating these experiments requires no assumptions in the modeling of the gas.
However, while these experiments manage to isolate GSI phenomenon, we cannot
fully trust that they are representative of hypersonic ight conditions because of the
very low pressures involved.
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From a modeling standpoint, phenomenological Arrhenius laws for the nitri-
dation reaction have been proposed by Suzuki et al. [224], and, later, by Helber
et al. [3]. Such Arrhenius laws capture the only temperature dependence of the
reaction and are expected to be valid at pressures close to the ones where they
have been calibrated. Recently, Prata et al. [1] derived the ACA model based both
on molecular beam and ICP experiments. To capture the different probabilities
observed at different temperatures and pressures, both these dependencies were
accounted for in the model. Furthermore, the model was calibrated to capture the
main trends of the reaction ef ciencies experimentally observed. Among these
reactions, the ones involving atomic nitrogen were calibrated on the molecular beam
experiments performed by Murray et al. [108], and the ICP ones from Lutz [107]
and Helber et al. [3]. Very recently, the activation energies proposed in the ACA
model have been compared with theoretical results by Nieman et al. [226]. In this
study, the reaction energies were computed based on the periodic density functional
theory, considering different reaction sites. Some of the theoretical energies well
compared with the ACA model, but further re nement was suggested to others.

Few UQ works addressed a robust characterization of the nitridation reaction.
Upadhyay et al. [60] employed a Bayesian method to infer the reaction probability
accounting for the experimental and modeling uncertainties in explaining the data
from Zhang et al. [27]. Four different models, differing in the underlying assump-
tions, were used for the calibration. The temperature dependence of the nitridation
reaction was captured, for each model, calibrating a power law. A Bayesian frame-
work was also used by del Val et al. [63] to infer the nitridation ef ciency from
the ICP data from Helber et al. [3]. First, a sensitivity analysis was performed,
highlighting little in uence of the BL edge conditions on the computation of the
experimental observations, being the nitridation reaction ef ciency the most sen-
sitive parameter. After that, the nitridation probabilities were rst individually
inferred from each surface-temperature-dependent measurement, then an Arrhenius
law was calibrated considering them jointly. No heterogeneous recombination
was considered. In a subsequent work by the same authors [64], this aspect was
tackled, along with other model-form uncertainties. Although the analysis did not
highlighted evidences of the recombination reaction, it showed that its uncertainty
broadens the posterior distribution of the nitridation probability.

All the above-mentioned inferences relied on experimental observations obtained in

a single facility, involving similar operative pressures. Hence, a phenomenological
model was adequate to describe the task at hand. To date, no stochastic calibration
has been performed attempting to capture the reaction pressure dependence by
informing an FRC model combining observations from very different experiments.
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As we will see in Section 6.2, we used the nitridation reactions of the ACA
model to numerically simulate the subsonic experimental campaign performed
by Helber et al. [3], described in Section 2.4.1. It turned out that some of the
observed features (e.g. the surface recession rates) were not fully in agreement
with the experimental values. This issue underlined the necessity of including the
experimental, as well as the parametric, uncertainties during the calibration of the
model parameters. In this context, it was shown that Bayesian methods offer a
robust framework for calibrating the phenomenological ef ciencies of the surface
reactions [27, 63, 64].

With respect to these works, we propose to calibrate the reactions of a more
complex FRC model, i.e. the elementary reactions involving nitrogen of the ACA
model [1]. The reaction rates, along with their uncertainties, are characterized
by means of two different sets of observations. The rst set comprises highly-
informative molecular beam data. As we cannot fully trust that these data are
representative of atmospheric entry conditions, we included in the study also the
Plasmatron data, obtained at pressures of interest. First, the Plasmatron data were
used to assess the predictive capability of the model calibrated only on molecular
beam data. Then, we employed them jointly during the inference. Unlike the
work from Prata et al. [1], we simulated the Plasmatron experiments with a CFD
solver, where the ablative BC is embedded to properly describe the BL developing
in front of the test sample. The molecular beam data were explained through the
same analytical model proposed by Prata et al. [1]. The parameters' posterior
distributions were obtained by constructing an MCMC. The posterior distributions
were then propagated through both the CFD and the OD model to obtain the posterior
predictions. These are compared to the experimental counterparts.

6.2 Deterministic simulations of a Plasmatron exper-
imental campaign

The subsonic Plasmatron experimental campaign described in Section 2.4.1 was
numerically simulated using both the stagnation-line code and the US3D solver.
The ow was assumed to be steady, laminar, and axisymmetric. The stagnation-line
code computations were performed using the Roe scheme and an implicit local time
step, while the US3D ones employed the modi ed Steger-Warming scheme and the
DPLR time integration. Both the codes relied on Mutatiofor the computation

of the chemical rates (with Arrhenius coef cients taken from Olynick et al. [80])
and of the transport properties. Mutatiéiwas also used to solve the GSI balances.

In fact, the ablative response of the surface was modeled using the ACA model
implemented in Mutatioft, see Section 2.3. For each of the test conditions (G4,
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G5, G6, and G7), a SMB was solved imposing the experimental surface temper-
atures reported in Table 2.2. The in ow conditions were those at the edge of the
BL rebuilt by Helber et al. [3]. These values are also provided in Table 2.2. US3D
simulations required also the speci cation of the chamber presd®@XP3 at the

outlet section.

For the four test conditions, the stagnation-point mass blowing natevas
extracted from the numerical solutions. These values are shown in Figure 6.1, along
with the experimental counterparts, against the surface temperature. As one can
see, the values predicted by the stagnation-line code and by US3D are in good
agreement. However, both of them predict a mass blowing rate lower than what
was experimentally observed. Furthermore, they lack in capturing the upward trend
of m with respect to the surface temperature.

Figure 6.1: Stagnation-point mass blowing rates obtained, for the four test conditions
described in Section 2.4.1, with the stagnation-line code (black circle), and with the US3D
solver (red cross). Experimental uncertainties indicated with black error bar. The two
numerical solutions are in good agreement. However, both of them predict lower values of
m than the experiments and lack in capturing the upward trena e¥ith respect to the
surface temperature.

We remind that the ACA model was calibrated also on these experimental
data. However, the model predictions were not directly compared to experimental
mass blowing rates, but with the values of the nitridation probabilities derived
by Helber et al. [3]. The latter were computed through a coupled numerical-
experimental methodology, assuming no surface recombination of the nitrogen
atoms. By contrast, the ACA model predicts a high recombination probability, see
Figure 6.2, in agreement with what was observed in the experiments performed
by Murray et al. [108] and Lutz [107]. Furthermore, the model used by Prata
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et al. [1] to reproduce the Plasmatron experiments made strong assumptions on
the modeling of the BL developing in front of the sample. In fact, the same 0D
approach used to model the molecular beam experiment was adopted. Such a model
does not account for the reduction of atomic nitrogen at the surface dependent on
the reactions. As a result, although the equivalent nitridation probabilities are in
fair agreement with the values proposed by Helber et al. [3], see Figure 6.2, the
high recombination probability reduces the atomic nitrogen available at the surface
for nitridation, hence the mass blowing rate (  cnnn).

Figure 6.2: Probabilities of the nitridation (black) and recombination (red) reactions for the
four test conditions described in Section 2.4.1, obtained with the stagnation-line code
(circle). Uncertainties from the numerical-experimental rebuilding by Helber et al. plotted
with error bars. High recombination probabilities are predicted. Nitridation probabilities in
fair agreement with the numerical-experimental values.

We nally remark that the differences in the predictions between the stagnation-
line code and the US3D solver are negligible compared to the experimental uncer-
tainty, see Figure 6.1. Thus, itis possible to perform the UQ studies employing the
ef cient 1D model without any loss of accuracy.

6.3 Stochastic inverse problem de nition

The results obtained in the previous section highlighted the necessity of I) directly
exploiting pure experimental observations to calibrate the model (for example,
the blowing mass rates), and Il) employing an accurate model to reproduce the
Plasmatron experiments. Furthermore, the ACA model was constructed determin-
istically, without accounting for experimental and parametric uncertainties. To
improve the robustness of the predictions, we employed a Bayesian formalism to
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compute the posterior distributions of the FRC reaction rates. Additionally, we
directly used the experimental mass blowing rates to infer the reactions and CFD
simulations to reconstruct the ow in the Plasmatron experiments. Following, we
present the quantities that we intend to calibrate, along with their prior uncertainties,
the observations used for the calibration, and the computational models.

Based on preliminary investigations, we chose to characterize four elementary
reaction ef cienciesX 3; X 4; X5; X), and the total active site densit J of the
ACA model; the subscript of the ef ciencies denotes the index of the reaction in Ta-
ble 2.1. Additionally, although it is common practice to consider uncertain only the
pre-exponential coef cients of the reaction rates when dealing with homogeneous
FRC [34, 55], we decided to infer also ve activation energiés;(Es; E4; Es; Eg)
as different values can be found in literature, see Table 6.1. Hence, the vector of
parameters that we intend to characterize is:

X = [E1;E3; E4;Es; E6; X3; X4; X5, X6; Bl

The prior distributions o are reported in Table 6.1: non-informative uniform
distributions over a wide range are chosen to encompass several values available in
the literature. Remark that we prescribed log-uniform distributions to the elementary
reaction ef ciencies and the total active site density because their priors span several
orders of magnitude.

Parameter min max Prata Nieman
Ei, K 0 3000 2500 02436 and4525
Es, K 0 15000 7000 10676
E4 K 0 15000 2000 0

Es, K 0 35000 21000 6150

Ee, K 15000 35000 20676 30286
10910(X 3) 4 2 0176 -

l0g10(X 4) 4 0 0:301 -
l0g;0(X5) 4 0 1 -
l0g;0(Xe) 5 12 8 -

109,(B) 7 3 5 -

Table 6.1: Non-informative uniform prior distributions on the parameters to calibrate, along
with the values proposed by Prata et al. and Nieman et al.
The three values correspond to three different adsorption sites.

The set of observations was divided into two groups. The rst one comprises
the ef ciencies estimated by Murray et al. [108] in the molecular beam-surface
scattering experiments:

yMB = ony noli =151l
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We further divided this group into two sub-groups. The rst one does not include
the data obtained faf,, < 1000 K (hereafter referred to as “set A). It is the same
subset used by Prata et al. [1] to construct the ACA model. The second subset
includes all the available points (hereafter referred to as “set B'). We assumed these
observations to be independent and the model error to be negligible with respect to
the experimental uncertainty;, on the measuremewt (i component of/). For

the set A, the likelihood reads:

2
MBAYMBIx) = N yMBiM MB(x);( MB)? (6.1)
i=5b
while, for the set B, itis:

2
MEB(yMBjx) = Y N yMEM YB(x); ( MB)? - (6.2)
i=1
The symboM MB(x) stands for a mathematical model which expregs¥8
as a function ok. The OD model described in Section 2.2Mr(carbon ablation
modelsubsection) was employed to explain the molecular beam data. Along with
the parameters, the surface temperature and the impinging nitrogen ux are inputs
of the model. No uncertainty was considered on these quantities.

The second group comprises the blowing mass rates observed in the Plasmatron
experiments:
yP=m i=1;54

In this case, the likelihood reads:

ICP(yICPjX) - Yl N inCPjM :CP(X); ( iICP)Z : (63)
i=1
The symboM °P(x) stands for a mathematical model which express€8 as
a function ofx. It consists of a surrogate model trained on stagnation-line CFD
computations. The settings of the simulations were discussed in Section 6.2. Along
with the ACA model rate coef cients, the surface temperature and the conditions at
the edge of the BL are inputs of the model.

A total of four different calibrations were performed. They are summarized in
Table 6.2, along with the likelihoods used to solve the Bayesian inverse problem. In
the rst two tests, we used only molecular beam-surface scatter data to calibrate the
model. The Plasmatron data were employed to assess the predictive capability of the
model at high pressure. In the third test, we calibrated the model only on Plasmatron
data to verify that such data can be explained through the ACA model. Finally, in
the last test, the calibration was performed imposing both sets of observations.
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Test Molecular beam Plasmatron  Likelihood

A Calibration Assessment MB.A
B Calibration Assessment MB.B
C - Calibration Icp
D Calibration Calibration MBB ICP

Table 6.2: Matrix of the performed tests.

The quantities to calibrate turned out to be highly correlated in a high-dimensional
space. For this reason, the posterior distributions were obtained by constructing
an MCMC using the AIES algorithm [169]. The UQLAB software [189] was
employed both to construct the MCMC chains and to train the surrogate model.

Surrogate model construction

A Kriging model was constructed to accelerate the evaluation of the mass blowing
rate as a function of both the ACA model and the experimental conditions. First, we
attempted to create a global surrogate model able to approximate the CFD response
for the four experiments. Thus, on the top of tdimensionak input, the model

was constructed also on the surface temperalyreand on the temperaturé,

the velocity,ue and the pressur@e, at the edge of the BL. The resulting model:

M iICP(X) M K lCP(X s Twis Tei s Uei s Pei )

has a total input dimension &#. The training space was chosen large enough to
accommodate both the prior anand the four experimental conditions in Table 2.2,
along with the relative uncertainties. Such a space was normalized to simplify the
construction of the surrogate model. Its accuracy was evaluated by computing a
normalized error based dib0LHS validation points. Such an error reads:

Y
Fixlv (Yui Qi)z

NRMSE =
NV Yv2;i

100, (6.4)

i=0

where¥; = M K1CP(x; Ty ; Tei i Ui ; Pei ) is the Kriging model evaluation at the
validation pointi, while Y, is the respective CFD response. The large input dimen-
sion, along with the large priors prescribed, deteriorates the rate of convergence of
the model. In fact, as one can see in Figure 6.3, the error drops from around 7%,
when200LHS training points are employed, to around #h&% with 6200LHS
points. Such a surrogate model was not very ef cient to be used coupled to the
sequential AIES algorithm.

For this reason, we employed it to perform a Sobol analysis, aiming at identify-
ing the most sensitive variables and reducing the input dimension. The resulting



BAYESIAN CALIBRATION OF A FINITE-RATE NITRIDATION MODEL FROM MOLECULAR
138 BEAM AND PLASMA WIND TUNNEL EXPERIMENTS

Figure 6.3: NRMSE of the global surrogate model builtidhdimensions with dashed red
line. NRMSE of thé-dimensions G6 surrogate model with solid black line.

total Sobol indices are shown in Figure 6.4. The quantities at the edge of the BL
show poor in uence on the blowing mass rate. Similarly, the surface temperature
exhibits a small in uence. It is important to note that such an index was computed
on the entire experimental range 600 K), while the experimental uncertainty

on each test is only arourfD K. Hence, the in uence of the uncertainty on the
surface temperature for each single experiment can be considered negligible. A
similar behavior was also observed by del Val et al. [63].

Figure 6.4: Total Sobol indices for the mass blowing rates. The parameters at the BL edge
and the surface temperature show poor in uence on the mass blowing rate.

Based on this analysis, we decided to build a surrogate model for each test,
neglecting the uncertainties on the surface temperature and on the parameters at
the edge of the BL. This reduced the input dimensiohGoFurther reduction in
dimension was achieved by performing a change of variables. In fact, the reaction
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rates are in the form:

ki/ Xiexp Ei ; (6.5)
Tw
allowing us to introduce the variable:
P; = Xi exp E ) (6.6)
Tw

asT, is considered constant in each surrogate model. The resulting surrogate
model:
MIP(x) M [I°P(Py; Py; P3; Pg; E1;B)

has only an input dimension éf The convergence of the model built on the G6
experiment was assessed by meanks®fLHS points. It is shown in Figure 6.3:
the error drops from arourteo when200LHS points are used, to aroudd?%

with 5200LHS points. For ef ciency reasons, we decided to use the surrogate
model built on3000points with aNRMSE = 1:6%.

6.4 Results of the calibration

In this section, we describe the results obtained by calibrating the model employing
the four sets of observations presented in Table 6.2. For all the conditiods,
MCMC chains were constructed with an AIES algorithm. For each of them,
we sampled enough points to have, after the burn-in process, a low multivariate
potential scale reduction factor from the Gelmen-Rubin diagnoBtic £ 1:1,

Rg = 1:1, Rc = 2:5, Rp = 1:2). For the case C, which shows a slightly high
value ofR, we assessed the chain convergence by visually inspecting the posterior
distributions. In the following, we rst present the marginal distributions of the
calibrated parameters, then the posterior predictions of the model.

6.4.1 Posterior marginal distributions

The marginal distributions of the calibrated parameters for the two nitridation reac-
tions are plotted in Figures 6.5(a), 6.5(b), 6.6(a), and 6.6(b), while in Figures 6.5(c),
and 6.6(c) the two joint distributions relating the reaction ef ciency and the activa-
tion energy of the selected reactions are given. The values reported by Prata et al. [1]
and by Nieman et al. [226] are also shown in the same gures. When the model is
calibrated on the molecular beam data, both the nitridation reactions turned out to
be well characterized, especially when using set B, as it contains information also
at low temperatures. On the other hand, when the model is calibrated using only
the Plasmatron data (set C), poor characterization of the parameters is observed.
However, when the Plasmatron data are combined with the molecular beam ones
(set D) an improved characterization is achieved. This is especially true with regard
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to reaction 3, whose parameters present more pronounced peaks. It makes sense
as reaction 3 was included in the model to capture the ablative behavior at high
pressure.

When the model is calibrated by means of set A, the posterior distribution in-
cludes both the values proposed by Prata et al. and by Nieman et al., which makes
them consistent with the data employed in the calibration. However, when low-
temperature experimental ef ciencies are included (set B), all the distributions shift
towards lower values. As we will discuss later, this allows the model to predict
the non-decreasing trend of the nitridation ef ciency observed at low temperatures
in the molecular beam experiments, see Figures 6.10 and 6.11. In this case, the
distribution of the calibrated activation energies departs from the values proposed
by Prata et al. and by Nieman et al., suggesting some incompatibility of the latter in
explaining the molecular beam nitridation ef ciencies at low temperatures through
the proposed model. The same holds true when the model is calibrated with set D.

(a) Probability density oK 3. (b) Probability density oE 3.

(c) Joint density oKX 3; E 3.

Figure 6.5: Probability densities of the ef ciency and the activation energy of rea&tion
Blue histogramsrefer to the parameters posterior using setofgck histogramsusing set B,
gray histogramsusing set Cpurple histogramausing set Dyed linesindicate the prior
distributions,green linesthe values obtained by Prata et al., and the values by
Nieman et al.
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(a) Probability density oK 6. (b) Probability density oEg.

(c) Joint density oX 6; E¢.

Figure 6.6: Probability densities of the ef ciency and the activation energy of reaétion
Blue histogramsrefer to the parameters posterior using setofgck histogramausing set B,
gray histogramausing set Cpurple histogramausing set Dred linesindicate the prior
distributions,green linesthe values obtained by Prata et al., and the values by
Nieman et al.

The marginal distributions of the calibrated parameters for the two recombi-
nation reactions are shown in Figures 6.7(a), 6.7(b), 6.8(a), and 6.8(b), while in
Figures 6.7(c), and 6.8(c) the two joint distributions for the reaction ef ciency and
the activation energy are given. The LH mechanism (reaction3,INy! N, +
2s) appears to be the dominant recombination mechanism, in agreement with what
was observed by Murray et al. [142]. In fact, the ER reaction (reaction 4,\!

N, + s) appears to be poorly characterized with the molecular beam experiments
considered. The distribution for the activation energy of the LH mechanism has
a peak very close to the value proposed by Prata et al. when set A is used. Such
peak shifts toward a lower value employing set B, closer to the value computed by
Nieman et al. Also in this case, the parameters show a poor characterization when
using set C. When the set D is employed, the reaction 4 is predicted to be unlikely.
In fact, the joint distribution moves toward low values of the ef ciency and high
values of the activation energy.



BAYESIAN CALIBRATION OF A FINITE-RATE NITRIDATION MODEL FROM MOLECULAR
142 BEAM AND PLASMA WIND TUNNEL EXPERIMENTS

(a) Probability density oK 4. (b) Probability density oE 4.

(c) Joint density oKX 4;E 4.

Figure 6.7: Probability densities of the ef ciency and the activation energy of readtion
Blue histogramsrefer to the parameters posterior using setofgck histogramausing set B,
gray histogramausing set Cpurple histogramausing set Dred linesindicate the prior
distributions,green linesthe values obtained by Prata et al., and the values by
Nieman et al.

The activation energy of the absorption reaction, see Figure 6.9(a), is also well
characterized, with a distribution tending towards small values, close to the lowest
value proposed by Nieman et al. Interestingly, the more the model is re ned the
more this value approaches zero. Such a low value of activation energy allows the
model to predict the very high values of recombination ef ciencies experimentally
observed in the molecular beam experiments.

Finally, the total active site density, see Figure 6.9(b), has a broad distribution with

a peak close to the value employed by Prata when employing the set A. It moves
towards small values using sets B and D, while is poorly characterized with set C,
although tending to high values.
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(a) Probability density oK 5. (b) Probability density oEs.

(c) Joint density oKX 5; Es.

Figure 6.8: Probability densities of the ef ciency and the activation energy of reaétion
Blue histogramsrefer to the parameters posterior using setofgck histogramausing set B,
gray histogramausing set Cpurple histogramausing set Dred linesindicate the prior
distributions,green linesthe values obtained by Prata et al., and the values by
Nieman et al.

6.4.2 Model posterior predictions
From molecular beam data

The posterior distributions obtained by calibrating the model using set A and set B
were propagated through the OD model to obtain the ef ciencies posterior predic-
tions both at low and high pressure.

The model posterior predictions from set A are plotted in Figures 6.10(a) and 6.10(b).
The molecular beam experimental uncertainties [142], and the marginals on the
nitridation reaction obtained by del Val et al. [63] are shown in the gures. The
latter were obtained by directly calibrating these ef ciencies employing the same
Plasmatron experiments. The predictions of the calibrated model are in perfect
agreement with the molecular beam points used for the calibration. Large model
uncertainties are encountered in the predictions at high pressure as no high-pressure
calibration point was used. This suggests the necessity for higher-pressure experi-
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(a) Probability density of E1. (b) Probability density of B.

Figure 6.9: Probability densities of the activation energy of reactiaand total active site
density.Blue histogramgrefer to the parameters posterior using setfgck histograms
using set Bgray histogramausing set Cpurple histogramausing set Dyed linesindicate

the prior distributionsgreen linesthe values obtained by Prata et al., and the
values by Nieman et al. (the three different lines corresponding to three distinct adsorption
sites).

mental points to reduce this uncertainty. The same can be achieved, as we will see
next, by using experimental points characterized by a surface covesiag@r to
the one at high pressure.

(a) Uncertainty at low pressure, 95% ClI (b) Uncertainty at high pressure, 95% CI

Figure 6.10: Predictions of the model calibrated with set A. The red and blue color indicates,
respectively, the recombination and the nitridation ef ciencies. The solid lines represent the
mean of the prediction at molecular beam pressiré24 Pa), while the dashed lines at the
Plasmatron pressurel600 Pa). The shadow areas correspond to the prediction uncertainty
(95% Con dence Interval (Cl)), at low pressure on the left, and, on the right, at high
pressure. The error bars with square as mean represent the molecular beam from Murray et
al., while the error bars with circle as mean are the marginals obtained by del Val et al.

1The surface coverage is de ned as the ratio between the number of adsorbed atoms/molecules on a
surface and the total number of active sites.
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In fact, the uncertainty on the nitridation reaction at high pressure, shown in
Figure 6.11(b), is drastically reduced when the model is calibrated with set B.
Furthermore, the nitridation ef ciencies at such high pressure exhibit excellent
agreement with the marginals from del Val et al., suggesting that the two experi-
ments can be accurately described through the use of the same calibrated model.

(a) Uncertainty at low pressure, 95% ClI. (b) Uncertainty at high pressure, 95% CI

Figure 6.11: Predictions of the model calibrated with set B. The red and blue color indicates,
respectively, the recombination and the nitridation ef ciencies. The solid lines represent the
mean of the prediction at molecular beam pressr&Z4 Pa), while the dashed lines at the
Plasmatron pressurel600 Pa). The shadow areas correspond to the prediction uncertainty
(95% Con dence Interval (Cl)), at low pressure on the left, and, on the right, at high
pressure. The error bars with square as mean represent the molecular beam from Murray et
al., while the error bars with circle as mean are the marginals obtained by del Val et al.

This improved characterization can be explained by looking at Figure 6.12,

where the surface coverage at the two different pressures is plotted as a function
of the surface temperature. As one can see, the value of the surface coverage at
low-pressure/low-temperature is close to the almost at value predicted at high
pressure. Furthermore, the experimental uncertainty on the nitridation reaction
ef ciency at low temperatures is small. Thus, the low-temperature points contain
information on the model behavior at high surface coverage.
On the other hand, the recombination ef ciency at high pressure is still character-
ized by large variation as the relative experimental uncertainty at low-pressure/low-
temperatures is high. The inclusion in the calibration of more accurate measure-
ments at low temperatures would certainly help in decreasing the model uncertainty
at high pressure.

Regarding the main trends, a sharp increase in the recombination ef ciency is
predicted at low pressure, in agreement with the assumptions of Murray et al. [142].
After a plateau, it decreases arol22b0 K because the surface coverage sharply
decreases at this temperature, as shown in Figure 6.12. The nitridation ef ciency
follows also the experimental trend: rst, it increases, mostly driven by reaction 3 of
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Table 2.1. After a brief downward trend due to reactBptthe nitridation ef ciency

shows a steeper upward slope for higher surface temperatures, driven by reaction 6.
For high temperatures, nitridation reaction ef ciencies show a downward trend due
to the decreasing surface coverage. At higher pressure, an almost at trend in the
nitridation probability is predicted, due to the nearly constant surface coverage.

Figure 6.12: Model predictions of the surface coverage using the set B for the calibration.

Solid line refers to the mean predictions at molecular beam pressure and the dashed line at

Plasmatron pressure. The uncertainty corresponding to the 95% Cl is shown, for both the
pressure, with shadow area.

The parameters' posteriors were also propagated through the surrogate models
to obtain the uncertainties on the stagnation-point mass blowing rate for the cases
G4, G5, G6, and G7. Their values, along with the experimental uncertainties,
are shown in Figures 6.13(a) and 6.13(b). It can be seen that the propagated

(a) Calibration using set A. (b) Calibration using set B.

Figure 6.13: Mass blowing rate distributions. The continuous lines refer to the experimental
uncertainty while the histograms show the propagated distributions. Blue, gray, red, and
green colors indicate, respectively, the G4, G5, G6, and G7 case.

uncertainties are large when the model is calibrated using set A. They dramatically
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decrease when the calibration is performed by means of the set B. Furthermore,
such distributions share much of the support with their experimental counterparts,
which is interesting as no Plasmatron data was used in the inference. However,
the calibrated model appears to be less sensitive to the surface temperature (which
increases from G4 to G7) than what was experimentally observed.

From Plasmatron data

Although Plasmatron data poorly inform the parameters, such an analysis allowed
us to assess whether the model is able to correctly capture the experimental data.
The posterior distribution of the model parameters calibrated with set C was propa-
gated through the four surrogate models to obtain the posterior predictions of the
stagnation-point mass blowing rate for the cases G4, G5, G6, and G7. These are
shown in Figure 6.14, along with the experimental uncertainties. Overall, the prop-
agated uncertainties are in good agreement with their experimental counterparts,
and the upward trend with respect to the surface temperature (which increases from
G4 to G7) is respected. Only for the G5 case, the mean prediction is slightly higher
than the experimental one. This analysis veri ed that the model is capable of well
explaining the Plasmatron experimental data.

Figure 6.14: Mass blowing rate distributions obtained propagating the parameters
posteriors calibrated with set C. The continuous lines refer to the experimental uncertainty
while the histograms show the propagated distributions. Blue, gray, red, and green colors

indicate, respectively, the G4, G5, G6, and G7 case.

From molecular beam and Plasmatron data

The parameters posteriors obtained calibrating the model with set D were propa-
gated through the OD model. The posterior predictions are shown in Figure 6.15.
While the main behavior of the model is similar to the one obtained when the
calibration was performed with set B, the uncertainty at low pressures is slightly
reduced at low and high temperatures. The uncertainties in both the nitridation and
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the recombination reactions at high pressure exhibit a larger reduction, as a natural
consequence of the inclusion of the high-pressure Plasmatron data.

(a) Uncertainty at low pressure, 95% CI. (b) Uncertainty at high pressure, 95% CI

Figure 6.15: Predictions of the model calibrated with set D. The red and blue color indicates,
respectively, the recombination and the nitridation ef ciencies. The solid lines represent the
mean of the prediction at molecular beam pressr®Z4 Pa), while the dashed lines at the
Plasmatron pressurel00 Pa). The shadow areas correspond to the prediction uncertainty
(95% Con dence Interval (Cl)), at low pressure on the left, and, on the right, at high
pressure. The error bars with square as mean represent the molecular beam from Murray et
al., while the error bars with circle as mean are the marginals obtained by del Val et al.

The parameters' posterior was also propagated through the four surrogate
models representing the case G4, G5, G6, and G7. The results are shown in
Figure 6.15. As one can see, the posterior predictions of the stagnation-point mass
blowing rate are contained in the relative experimental uncertainties. However, the
predicted upward trend with respect to the surface temperature (which increases
from G4 to G7) is negligible. Since the model cannot predict such a behavior jointly
to the molecular beam data, the posterior predictions are shrunk in a reduced part of
the experimental uncertainty, where all four measurements agree with each other.

Joint distributions of the reaction probabilities

Finally, 200 points were sampled from the posterior distributions relative to the
calibrations performed using set B, C, and D. They were propagated directly through
the CFD model, for the conditions G4, G5, G6, and G7. The numerical results
were post-processed, using the Equation 2.81 and 2.82, to obtain the equivalent
probability of the nitridation and the recombination reactions. The posterior joint
distributions (cn, n2) for the three different calibrations and for the four different
cases are shown in Figure 6.17. On the same plots, the joint distributions obtained
by del Val et al. [64] are shown. These were obtained by performing the calibration
directly on these ef ciencies.

First of all, we can notice the excellent agreement between the joint distributions
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Figure 6.16: Mass blowing rate distributions obtained propagating the parameters
posteriors calibrated with set D. The continuous lines refer to the experimental uncertainty
while the histograms show the propagated distributions. Blue, gray, red, and green colors

indicate, respectively, the G4, G5, G6, and G7 case.

from del Val et al. and the ones corresponding to the calibration using the set C. It
makes sense because, although the two calibrated models are different, they attempt
to predict the same behavior on the same calibration points. The joint distributions
from the calibration on set B share part of the support with the distribution from
del Val et al. It is an expected result, from what was discussed about the posterior
predictions on the mass blowing rates, that turned out to be almost in agreement
with the experimental values. Lastly, the joint distributions from the calibration on
set D are included in the joint distribution from del Val et al.

Interestingly, as a result of calibrating the model using jointly the Plasmatron and
the molecular beam data, we were able to reduce the posterior uncertainties on the
two ef ciencies with respect to the results by del Val et al. The largest reduction
was observed with respect to the recombination reaction, whose value is predicted
to not exceed:1.

6.5 Summary

In this chapter, we presented the results of the calibration of an FRC model for
carbon ablation. Speci cally, we considered the reactions involving atomic nitrogen
of the state-of-the-art ACA model.

First, we performed deterministic numerical simulations of a Plasmatron experi-
ment. The ablative behavior of the sample was described by means of the ACA
model, which turned out to predict lower stagnation-point mass blowing rates than
what was experimentally observed.

For this reason, we calibrated the model using a Bayesian framework. Based on
preliminary investigations, we decided to characterize the pre-exponential factors
and the activation energies of selected reactions, and the total active site density.
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(a) G4 (b) G5
(c) G6 (d) G7

Figure 6.17: Joint distribution of the reaction probabilities.

Four different calibrations were performed. The rst two employed the molecular
beam data for the inference and the Plasmatron data to assess the model predictive
capability at high pressure. The third inference relied only on the Plasmatron data,
while the last on all the observations jointly. Regarding the numerical models, we
used the OD reactor proposed by Prata et al. [1] to explain the molecular beam
data, while a surrogate model, built on CFD simulations equipped with the spe-
ci ¢ ablative BC, was employed to describe the Plasmatron experiment. Since the
deterministic simulations highlighted negligible numerical error associated with
the dimension reduction contained in the stagnation-line code, we decided to train
the surrogate model based on stagnation-line simulations. To further increase the
ef ciency of the method, the surrogate model was built for each experimental point
individually, after having performed an appropriate dimension reduction of the
input space.

Overall, molecular beam data were found to be highly informative for calibrating
the FRC model. Contrary, Plasmatron data appeared to be inadequate to infer
such a complex model. However, the inclusion of these data in the calibration
process was important to provide information at pressures typical of the targeted
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applications. Speci cally, both the nitridation reactions turned out to be well char-
acterized with the data at hand, especially when exploiting together information
from molecular beam and Plasmatron experiments. Regarding the recombination
reactions, the LH mechanism appeared to be the dominant mechanism, especially
when the Plasmatron data were combined with the molecular beam ones. In fact,
the analysis suggested the ER mechanism to be unlikely. Also the activation energy
of the adsorption process was found to be well characterized. Its distribution moved
towards the lowest value suggested by Nieman et al. [226] as the observation data
set is enriched. Finally, the probability of the total number of active sites also
tended towards low values, especially when including low-temperature points from
the molecular beam experiments.

The parameters posteriors obtained for each set of calibration were then propagated
through both the OD model and the surrogates models representing the four con-
ditions in the Plasmatron experiment. Interestingly, when the model is calibrated
using all the molecular beam points, the propagated mass blowing rates share much
of the support with their experimental counterparts. This improved calibration was
explained by the fact that high-pressure and low-pressure/low-temperature condi-
tions are characterized by a very similar surface coverage. Thus, the molecular
beam points at low pressure and low temperature are highly informative for the
high-pressure behavior. When the model was calibrated only on Plasmatron data,
the propagated uncertainty on the mass blowing rates compared almost perfectly
with the experimental uncertainties. This suggested that the FRC can well explain
the Plasmatron data. When the model was calibrated using both molecular beam
and Plasmatron data a good agreement was found with all the measurements used
for the calibration. However, the upward trend of the mass blowing rate with respect
to the surface temperature appeared to be much less pronounced than what was
experimentally observed.

Finally, we compared the joint distributions of the post-processed phenomenologi-
cal ef ciencies with the values obtained by del Val et al. [64]. Excellent agreement
was found when the model was calibrated only on Plasmatron data. When using
all the measurements, the joint distributions are a subset of the ones obtained by
del Val et al. [64]. Interestingly, the use of a higher- delity ablation model and the
consequent possibility to calibrate it on different experiments, allowed us to reduce
the posterior uncertainties obtained by del Val et al. at high pressures.

The calibrated model, and the relative uncertainties, presented in this chapter
can be used in the future for predicting the ablative behavior of a carbon surface
exposed to a nitrogen ow, for example in Titan atmospheric entry applications.
We remind that in the last analysis, we used all the data to infer the model, leaving
no experimental point for validation. Future perspectives include the assessment of
the calibrated model including new Plasmatron data obtained at different pressures.
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Another interesting direction would be to calibrate the whole ACA model, including
those reactions involving atomic oxygen.



Conclusions

This thesis focused on the prediction and calibration of atmospheric entry ows.
Their description is rather complex. In fact, they might include strong shocks,
high-temperature effects, homogeneous and heterogeneous nite-rate chemistry,
etc. Hence, accurate predictions can be achieved by employing high- delity CFD
solvers. The physical models embedded within, and their parameters, are generally
affected by severe uncertainties. For this reason, a rigorous quanti cation of the
uncertainties is necessary. Thus, we proposed to develop tools and methodologies
to obtain accurate predictions of atmospheric entry conditions using high- delity
simulations and state-of-the-art experimental data.

Following, we summarize the main contributions of this thesis and we provide some
potential perspectives.

The rst objective wago produce high- delity reference solutions. More
precisely, we targeted both in- ight and on-ground applications, ranging from
hypersonic to subsonic regimes, where the ow could have been assumed as steady,
laminar, and axisymmetric. In this regard, the following accomplishments were
achieved:

Al: Accurate numerical representations were obtainedrbgloying the US3D
solver, which is a three-dimensional FV code, speci cally designed for hy-
personic applications. Thus, it is expected to describe complex ow features,
such as shock structures, in a robust manner. Additionally, it is equipped with
a tailoring routine to automatically align the mesh to the shock, improving
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the accuracy of those solutions characterized by strong shocks.

We coupled US3D with the Mutation** library , which provides state-of-
the-art closures for homogeneous chemistry and transport properties. Several
test cases have been presented for verifying the coupling. Particularly, it
was shown that such a coupling led to an improved agreement between the
numerical and experimental heat ux predicted on the surface of a cylinder
exposed to a hypersonic ow. However, we also noticed applications, such as
the one described in Chapter 5, where the use of the coupling with Mutation
led to convergence issues. This is probably due to the computation of the
diffusive uxes. In fact, the molar fraction gradient at the interface, needed
to compute the diffusive uxes, was approximated using nite-difference,
instead of more accurate Green-Gauss or weighted least square approaches.
In all the applications targeted in this thesis, we described catalytic or ab-
lative materials exposed to reacting ows. For this reasesjntroduced

in US3D speci ¢ BCsto enable thesolution of surface mass and energy
balancesthrough Mutatiofi*. Furthermorewe included in the library

a state-of-the-art FRC mode] which captures both the temperature and
pressure dependency of the ablative reactions. Also in this case, we presented
several veri cation test cases to assess the goodness of the implementation of
the BCs in US3D and of the FRC model in MutatiénThe latter was also
validated against experimental data.

We consistently used the US3D solutions to assess the accuracy of those
predictions obtained by means of lower- delity approximations and decide
whether they were suf ciently accurate to perform UQ studies.

The secondobjective wasto investigate the bene ts and the challenges

associated with the systematic use of a high- delity solver in a UQ framework
Based on the applications targeted, we reached the following accomplishments:

A2 In Chapter 4, we presented a methodoltg¥palance the numerical error

associated with the use of a given mesh and the problem-related uncer-
tainties to produce an optimal representation for a given computational
budget We applied it to characterize the surface pressure and heat ux
experienced by the EXPERT vehicle in a trajectory point of its atmospheric
entry. The ow was described by means of two-dimensional axisymmetric
high- delity computations coupled to a SEB catalytic BC.

It was shown that gelatively coarse mesh can be employed to accurately
estimate all the Qols In fact, the associated numerical uncertainty was at
least one order of magnitude lower than the variability induced by the uncer-
tainties in the BCs. It was also highlighted the importancawbmatically
aligning the mesho the shockat each training point to prevent that numer-
ical errors, arising across it, corrupt the estimation of the stagnation-point
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A3:

heat ux, resulting in an inaccurate surrogate model.

In this case, resorting to two-dimensional axisymmetric solutions allowed for
computing off-stagnation-point values of the heat ux and of the pres-

sure. They can be potentially employed in an inverse problem by comparing
them to the measurements provided by off-stagnation-point sensors, as in
Cortesi et al. [57].

We remark that in this study we decided to run a simulation for each training
point and each mesh and that we constructed each surrogate model indepen-
dently. A much more ef cient methodology would have been to fuse the
information coming from the different mesh levels to reduce the number of
computations required on the most re ned grids.

As shown in Chapter Sye devised an adaptive/multi- delity strategyto
reduce the computational cost associated with the construction of a surrogate
model from high- delity simulations. We employed it ttescribe an under-
expanded high-enthalpy jetobtained in the Plasmatron facility.

We rst constructed dow- delity model to compute the pressure and heat
ux at the stagnation point of a probe exposed to such a jet. However, it
predicted signi cantly lower values compared to the high- delity US3D
reference solution. HencelS3D high- delity computations were neces-
sary to accurately perform the UQ analysis. Furthermore, the mesh required
to correctly compute all the Qols was too expensive to be directly used
to build a surrogate model. We leveraged the low- delity representation
and the solutions from coarser meshes to limit the number of high- delity
computations to those required for accuracy reasons. Particularly, we have
shown thafusing this information by means of a hierarchical Kriging
strategy dramatically improves the quality of the surrogate modelwith
respect to a Kriging trained only on high- delity points, with little increase

in the computational burden. Further improvement in the model accuracy
was achieved by employing aaptive sampling strategy

We have also highlighted that the high- delity solution permits to resolve the
compressible featuref the under-expanded jet (jet boundary, barrel shock,
and detached shock).

Thethird objective was taise the experimental data to reduce the uncer-
tainty on the prediction of targeted Qols. In this regard:

A4:

Also in Chapter 5,we characterized the conditions at the inlet of the sonic
nozzle, and the catalytic ef ciencies of the probesof the under-expanded
high-enthalpy jet by means of the measurements of the stagnation-point
pressure and heat ux, and of the mass ow in the nozzle. A Bayesian
framework, coupled with the previously-mentioned adaptive/multi- delity
surrogate model, was used to solve the inverse problem.
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Ab:

We have shown that we obtain@donounced peaks forthe probability
density of thetotal pressure and temperatureat the inlet of the nozzle,
and for theef ciency of the nitrogen recombination reaction. However,
given the limited amount of atomic oxygen in the ow, we were not able to
determine its recombination reaction.

Another important contribution concerned resessment of the variability

of the main features of the under-expanded jetvith respect to the posterior
uncertainties on the reservoir conditions, yielding a robust characterization
of the ow.

In Chapter 6, wenferred the rates of the elementary reactions of a de-
tailed ablation model from Plasmatron and molecular beam experiments

In this case, the low- delity stagnation-line code was found to be accurate
to simulate the Plasmatron experiments. Additionally, a 0D approach was
suf cient to describe the molecular beam experiments. For this reason, such
ef cient computations were usedn the UQ analysis

On the other hand, high- delity ablation model was needed to jointly
describe both the experimentsit is characterized by a high number of input
parameters. We built a surrogate model to approximate the stagnation-line
computations. Given the high dimension of the input space, its construction
required a large number of training points. To reduce this number, and have
a more ef cient surrogate model, we resorted teemsitivity analysis to
reduce the input dimension

The surrogate model and the 0D solver were used to perform a Bayesian
analysis based both on Plasmatron and molecular beam data. Overall, we
found that combining these information led toaturate characterization

of most of the model parameters Furthermore, the so-calibrated model was
capable of describing both the experimental observationdHowever, we
highlighted that the model predictioas high pressure were less sensitive

to the surface temperaturethan what was experimentally observed.

Perspectives and future developments

In this section, we outline some perspectives and future developments that naturally
emerge from the achievements and the limitations of the tools and methodologies
developed in this thesis.

The multi- delity strategy developed in Chapter 5 might be employed to character-
ize ows requiring high- delity simulations. Furthermore, the lessons learned from
the performed analysis might drive future characterizations in including additional
ow features for calibration and validation purposes. In this regard:
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P1: A current effort is being performed to characterize an experimental cam-
paign conducted in the Plasmatron facility in which a supersonic jet was
obtained by means of a convergent-divergent nozzle. The setup of the ex-
perimental campaign allowed for the measurement of the stagnation-point
heat ux and pressure, the mass ow rate, the pressure along the nozzle, and
of the shock-stand-off distance. These measurements will be used in the
inference/validation process.

P2: The totality of the past studies concerning the characterization of the ef-
ciencies of the ablative reactions from Plasmatron data were performed
employing solely stagnation-point measurements, justifying the use of ef-
cient low- delity stagnation-line computations. Very recently, Fagnani et
al. [132] developed an experimental methodology for obtaining the surface
mapping of the recession rate and of the temperature. These data can be
exploited, along with the methodologies developed in this thesis, to further
enrich the inverse problem.

Future works might also be devoted to improving the methodology. In fact,
we focused the attention on applications where the ow could have been assumed
assteadylaminar, andaxisymmetric Obviously, we were far from covering the
whole spectrum of regimes that might been encountered in hypersonic ows. A
broader and more general future perspective includes the characterization of more
complex ows, for instance, turbulent and unsteady, for whiayher resolutionis
required, introducing new challenges. For example:

P3: One can characterize the ow in Longshot experiments. Although such a ow
does not present several high-temperature physical features encountered in
the applications treated in this manuscript, such as gas chemistry and GSl, it
is expected to be turbulent and in thermal non-equilibrium. Furthermore, the
reservoir conditions sharply decrease during the ow expansion and such an
unsteady feature should be accounted for. All in all, a robust characterization
should be performed accounting for turbulent, thermal non-equilibrium, and
unsteady effects. The major challenges foreseen in this application regard
the correct modeling of the physics. In a previous deterministic investigation
by Geratz et al. [227], we analyzed the sensitivity of the results to real gas
and RANS models. None of the models employed was able to correctly
reproduce the experimentally observed Mach number at the end of the nozzle.
Such a discrepancy might be driven by an over-simpli cation contained in the
RANS model or by unsteady effects, i.e. the decay of the reservoir pressure.
This highlighted the necessity of a higher delity in the CFD computations
coupled to a UQ strategy. Concerning this point, an improved methodology
should be employed for the construction of the surrogate model, which should
be designed to also capture the time dependency of the response.
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Regarding the characterization of the FRC ablation model treated in Chapter 6,
we saw that all the experimental data were used to calibrate the model, leaving no
information for its validation.

P4: Recently, a new experimental campaign was conducted in the Plasmatron
facility to assess the pressure dependence of the nitridation reaction [228].
These new experimental observations can be analyzed and employed to
validate the previously calibrated FRC model.

We also saw in Chapter 6 that the calibrated FRC model was not able to capture
the upward trend of the stagnation-point mass blowing rate with respect to the
surface temperature. This might be due to the fact that we are modeling two distinct
carbon surfaces with the same model, potentially introducing a model inadequacy.

P5: The Bayesian analysis can be enriched by explicitly accounting for the model
inadequacy in the calibration of the FRC model. In this regard, Leoni [229]
has shown that aFull Maximum A Posteriotiapproximation is able to
accurately estimate the model discrepancy. Future works might be oriented
at including such a methodology in the calibration procedure.

Finally, we focused only on the calibration of the reactions of the ACA model
involving atomic nitrogen. However, the full model consists also of reactions
involving atomic oxygen.

P6: Future works can be devoted to the characterization of the full model. Al-
though it might seem a trivial extension of the current work, we expect that
new challenges will arise. In fact, the total dimension of the parameters to
calibrate will more than double, as well as the experimental points for the
Bayesian analysis. The construction of the resulting MCMC is foreseen to
evolve extremely slowly, and more ef cient tools might be necessary to solve
the inverse problem.



US3D-Mutatiori™ Coupling
Veri cation Test Cases

In Section 4.4, we described the coupling that we have performed between the US3D
solver and the Mutatidfi library. A series of veri cation test cases, summarized

in Table 4.1, were performed to assess the goodness of the coupling. Tabtest
hypersonic ow over a probevas presented in Section 4.4. In this section, we
revise the results associated with those other test cases that were not shown in
Section 4.4.

A.1 0D Reactor

This rst test case veri ed that the chemical source term was correctly computed.
To this end, we considered an air mixture composed of ve species, $;= [N
0., NO, N, Q], in an adiabatic box. Starting from the chemical non-equilibrium
initialization provided in Table A.1, the system was left free to time-march towards
the equilibrium condition according to the chemical rates by Park [5]. The solution
provided by the US3D solver with its native library, referred to as "US3D native',
was compared to the one obtained with US3D coupled to Mutétjoaferred to as
"US3D+M*™* ".The code-to-code comparison, shown in Figure A.1, shows excellent
agreement, verifying the implementation.
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kg T,K u,m/s Y(N2) Y(0O,)
0:.01 7000 00 0767 Q233

Table A.1: Initial conditions for the 0D reactor case.

Figure A.1: Evolution in time of the mass fractions in an air mixture composed of ve
species in the 0D reactor case. The code-to-code comparison shows excellent agreement.

A.2 1D Diffusion Problem

The second test case veri ed the coupling for the transport properties. The simula-
tion consisted of a 1D tube with isothermal end walls at different temperatures. The
boundary and initial conditions are provided in Table A.2. The tul3nsn long.

Also in this case, the solution obtained with the coupling (viscosity and thermal
conductivity were computed with the Chapman-Enskog expansion and the Eucken
correction, while diffusive velocities by means of the Stefan-Maxwell formulation)

is compared to the one produced by US3D with its native library (viscosity and ther-
mal conductivity were computed using the Gupta-Yos mixture rule and the Eucken
correction, while diffusive velocities using the SCEBD formulation). We remark
that, although the transport models employed in the two simulations are different,
they are expected to provide results in reasonable agreement at the temperatures
considered{max = 4800 K).

) kg/lTﬁ T,K  Te, K Trightu K u,m/s Y(Nz) Y(Oz)
0:02 1000 800 4800 0 0:767 Q233

Table A.2: Boundary and initial conditions for the 1D diffusion case.



US3D-MUTATION** COUPLING VERIFICATION TEST CASES 161

In this test case, the temperature gradient leads to chemical reactions, which, in
turn, drive the mass diffusion. Temperature and mass fractions distributions along
the tube are shown in Figure A.2. As one can see, also in this case the agreement
between the two codes is excellent, verifying the coupling for transport properties.

Figure A.2: Comparison of the temperature (left) and mass fractions (right) along the tube
for the 1D diffusion case. The solutions of the two codes perfectly agree with each other.

A.3 1D Catalytic Diffusion Problem

This test case veri ed the implementation of the catalytic BC for a simplg [N

N] binary mixture along a 1M:2 m long tube. The simulation BCs are given in
Table A.3. One side of the tube is characterized by a reservoir condition, while the
other by a catalytic isothermal BC. Nitrogen recombination reactions were imposed
through a phenomenological approach. Four different probabilities, reported in
Table A.3, were used.

p,Pa T,K Tpa, K u,m/s Y(Nz) Y(N) N
100 3000 3000 0.0 0.0 1.0 [0.001,0.01,0.1,1.0]

Table A.3: BCs for the 1D catalytic diffusion case.

The results obtained by US3D coupled to Mutatiowere compared to the
analytical solution proposed by Bariselli et al. [230]. They are shown in Figure A.3.
Also in this case, the agreement is excellent.

A.4 Nitrogen ow over an ablative surface

This last test case was performed to verify the GSI coupling with respect to the
ablative reactions. To this end, the G5 subsonic Plasmatron experiment, detailed
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Figure A.3: N, mass fractions for different recombination coef cientfor the 1D catalytic
diffusion problem. The code solution perfectly agrees with its analytical counterpart.

in Section 2.4.1, was simulated both with US3D coupled with Mutati¢gbelow
indicated as "US3D+Nt ') and with the stagnation-line code (below indicated as
“stagline’).

The simulation consists of an ionized nitrogen ow over an isothermal reactive
surface. Speci cally, we modeled the nitridation surface reaction (N + CCN

) using a phenomenologic approach, whose reaction probability was taken from

Helber et al. [3]:
5663

en=7:91 10 %exp (A1)

w

The test free stream conditions were imposed at the inlet and the experimental
chamber pressure at the outlet. On the sample surface, a SMB was solved. A
symmetry BC was applied to all the other faces. The experimental conditions
are reported in Section 2.4.1. The results from US3D were extracted along the
stagnation line and compared to the ones returned by the stagnation-line code. As
one can see in Figure A.4 the two solutions agree well both for the temperature and
the mass fractions pro le in the BL. The mass blowing rate at the stagnation point
is 0:003 410 kgm?=s for the US3D computation ar@003 414 kgm?=s for the
stagnation-line code, resulting in an almost null error.



US3D-MUTATION** COUPLING VERIFICATION TEST CASES 163

(a) Temperature. (b) Mass Fraction.

Figure A.4: Comparison of the Qols along the stagnation line obtained with the
stagnation-line code (dashed line) and the US3D solver (solid line). The two solutions agree
well both for the temperature and the mass fractions pro le in the BL.






Transport matrices

In Chapter 2 we described the modeling of the transport uxes in the Naiver-Stokes

equations. Following we provide the expressions of the transport matrices. Their
components are:

XiX; Lo
Gi\j/ = DI L@a+ ) isj (B.1)
i
X XiX; Te 2 XX
Gy = L1+ )+ 2 1+ e); (B.2)
is: Di T D
j2H
(2:2)
XiX; 1 6Q; .
I ! nDj m; + m; 5Qi(jl§1) s (B-3)
X xix; 1 6m Q2 X 2
G; = i 7ﬂQI(Jl'1) +2 o+ 20 (B.4)
i6i nDij mi+mj 5m; Qijy i
j 2H
T T 1 Xin m;m;
G =G, =
U I 25kg nDj; (m; + mj)2 |
2:2) 12 (1:3) : (B.5)
Qj SQp T 4Qy L ian
16 iy +12 m 55 ; 6]

ij Qij ;
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!
o1 X o m? o myom 5Q8? 4Ql P m QF?
G; = oK 30— +25— 12— T +16— @D
B jei j mi mi Qi M Qi
j2H
Xin m; m; 4 Xizmi
+ .
nDij (mi + mj)2 15kg i
(B.6)

Symbols j and ;e are correction functions, whose description can be found
in [89, 90], andH stands for the set of index of the heavy species.
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Résumé:La caractérisation de l'interaction en
un vaisseau spatial entrant dans une atmosg
planétaire et le gaz environnant est une té
difficile, nécessitant des expériences précise
des simulations haufeélité. Les prédictions
numériques dépenddiortement des incertitude
de modélisation et expérimentales ¢«
s'accumulent pendant le processus d'infére
Les méthodes de quantification de l'incertitt
offrent une structure puissante pour tenir corr
de plusieurs sources d'incertitude. esl
prédictions hautéidélité pour les application
aérospatiales combinent des modéles physi
suffisamment complets pour prendre en corr
des caractéristiques d'écoulement complexe
une quantification rigoureuse de l'incertitude.
raison du grath nombre de simulations requis
pour mener des études de quantification
l'incertitude, des représentations efficaces
basse fidélité sont attrayantes. Cependant,
simplifications contenues dans ces mode
peuvent conduire a une précision rédu
détériorant potentiellement le résultat d
probléme d'inférence. Dans cette these, n
objectif est de développer des outils et |
méthodologies pour effectuer des prédictic
précises a l'aide de solveurs hafitglité et de
données expérimentales e d pointe. Cette
approche implique l'utilisation du solveur CF
US3D et dune structure globale UQ pc
résoudre des problemes d'inférence, ce
permet d'inclure I'erreur de maillage et d'utili
des stratégies mulfidélité. La premiére
contribution de cette thése concerne
production de solutions hautielélité avec le
solveur US3D pour chaque phénomene d'int
Ce dernier a été couplé a Mutation++, que n
avons étendue pour incorporer un mod
innovant d'ablation. La deuxieme contributi
concene une étude sur l'influence de l'erreur
maillage sur la convergence des simulati
hautefidélité sous incertitude. Nous avol
construit un modéle de substitution efficace
équilibrant les erreurs

numériques associées au maillage et

incertitudes liées au probleme. Nous aw
appliqué cette méthodologie a la propagation
incertitudes du modele pour caractériser
pression et le flux de chaleur subis par
véhicule de rentrée. Des résultatéqis ont été
obtenus avec un maillage  gross
automatiquement aligné avec le choc p
chaque point d'entrainement. La troisié
contribution concerne le développement d'
formulation multifidélité pour alléger le codt d
calcul associé a la constrigt du modéle de
substitution du solveur haufelélité et & son
utilisation dans un probléme d'inférence. Nc
avons défini une méthodologie pour caractér
un jet hypersonigue obtenu dans le moyen d'e
Plasmatron, pour laquelle aucune procéc
stardard de reconstruction des conditions
amont n'existait a ce jour. L'analyse nous
permis de caractériser les conditic
d'écoulement a l'entrée de la tuyere et
coefficient de recombinaison catalytique

l'azote de la sonde utilisée pour mesurdiur
de chaleur et la pression. Les incertitur
caractérisées ont ensuite été propagées a tr.
le solveur numérique, fournissant u
représentation  haufaélité  basée su
l'incertitude de la variabilité de la structure
I'écoulement supersonique.abBs la derniére
application, nous avons élaboré u
méthodologie pour I'étalonnage et I'évaluat
d'un modéle chimique d'interaction gaarface a
WDX[ GH UpDFWLRQ ILQLY
précisément, nous avons déduit les taux
coefficients des r&iions élémentaires <
produisant entre une surface de carbone et ur
d'azote a partir d'expériences de faisc
moléculairesurface de diffusion, ainsi qL
Plasmatron. L'analyse a montré que les d
ensembles de données expérimentales

compatibleavec le méme modéle étalonné.
conclusion, nous avons proposé des ol
stochastigues puissants pour déduire

conditions d'écoulement libre hypersonique e
paramétres de modeles chimiques hétéroger
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Abstract: The characterization of th
interaction between a spacecraft entering
planetary atmosphere at hypersonic speeds
its surrounding gas is a challenging ta
requiring accurate experiments and higlelity
simulations. Numerical predictions stronc
depend on modeling and experimen
uncertainties, as well as numerical errors, wkr
accumulate during the inference process. In
context, uncertainty quantification metho
offer a powerful framework to account fi
several sources of unceri. Highfidelity
predictions for aerospace applications comb
i) physical models sufficiently complete
account for complex flow features, leading

expensive and hatd-perform numerical
simulations, i) rigorous uncertaint
quantification  permitng the use ol

experimental data to improve the prediction
quantities of interest. Because of the la
number of simulations requested to cond
uncertainty quantification studies, efficient lo
fidelity representations are appealing to red
the canputational effort. However, th
simplifications contained in the loWidelity
models can lead to reduced accuracy, potent
deteriorating the outcome of an inferer
problem. In this thesis, our objective is
develop tools and methodologies to paric
accurate predictions using hidildelity solvers
and stateof-the-art experimental data. Th
approach involves the use of the US3D C
solver and an overall UQ framework to sol
inference problems, which permits to inclu
mesh error and to employ midfidelity
strategies. The first contribution of this the
concerns the production of hididelity
solutions for each phenomenon of interest v
the US3D solver. We coupled US3D to t
opensource  Mutation++ physicochemic
library, which we expandedb incorporate &
stateof-the-art ablation model. The secor
contribution concerns a study about 1
influence of the mesh error on the converge
of highfidelity simulations under uncertaint
We constructed an efficient surrogate model
balancing theJULGYV QXPHULFD
problemrelated uncertainties. We applied tt
methodology to the propagation of moc
uncertainties to characterize the pressure
heat flux experienced by a-emtry vehicle.

- description

Accurate results were obtained with a cos
mesh automatically aligned to the shock for e
training point. The third contribution concer!
the development of a muttidelity formulation
to alleviate the computational cost associe
with the constructin of the surrogate model fc
the highfidelity solver and its use in a
inference problem. In particular, we definec
methodology to characterize an unéepanded
high-enthalpy jet obtained in the von Karm.
Institute Plasmatron facility, for which n
standardized rebuilding procedure for the fre
stream conditions existed to date. T
of such a flow require
axisymmetric simulations. The analysis allow
us to characterize the flow conditions at 1
entrance of the nozzle and the nitrogetalyéic
recombination coefficient of the probe used
measure the heat flux and pressure at
stagnation point. The characterized uncertain
were then propagated through the numer
solver vyielding an uncertaindyased high
fidelity representatiorof the supersonic flow
structure variability. In the last application, v
devised a methodology for the calibration &
assessment of a finiate chemistry gasurface
interaction model for ablation. Specifically, v
inferred the rates coefficients ofetlelementary
reactions occurring between a carbon surf
and a nitrogen gas from both molecular be:
surface scattering and Plasmatron experime
The analysis highlighted that both experimer
data sets are compatible with the same calibr
model. In conclusion, we proposed powerf
stochastic tools, encompassing one or
fidelity levels, to infer hypersonic flow free
stream conditions and heterogeneous chen
model parameters.
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