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Abstract

The dynamic response of a rigid inclusion-reinforced foundation represents a complex Soil-
Structure Interaction (SSI) problem. Considering the limited existing studies, there is a
clear necessity to explore the SSI phenomena involved in the response of such foundations
under seismic conditions and to enhance the corresponding design methodologies.

Building upon insights gained from a limited number of dynamic experimental and
numerical studies, this research focuses on the dynamic SSI phenomena of foundations
reinforced by rigid inclusions. The study aims to provide a better understanding of the
seismic behaviour of such foundations using several complementary approaches, including
various numerical models, resolution strategies, and analytical analyses. The effects
of inertial and kinematic interaction phenomena on the response of both the overall
foundation and individual elements within the system (e.g., rigid inclusions, load transfer
platform, etc.) are examined in detail.

The seismic bearing capacity of foundations reinforced by rigid inclusions is further
investigated, using the kinematic exterior approach within the framework of yield design
theory. A multi-subsystem analytical approach based on the kinematic exterior approach
is introduced and validated through FEM analyses. The evolution of the reduction factors
associated with load eccentricity, load inclination, and soil inertia is also explored for
several configurations of the reinforcement in terms of coverage area ratio.

A novel macro-element for rigid inclusion-reinforced foundations under seismic loading
is developed and numerically validated. It allows the modelling of both the linear and
non-linear response of the foundation, including uplift, sliding and loss of bearing capacity
mechanisms. The validated macro-element model is used to perform a parametric study
using a lumped mass model and the Incremental Dynamic Analysis (IDA) of a 22-storey
building, demonstrating the effectiveness and usefulness of the proposed approach in a
performance-based design approach.

This research is conducted within the framework of the French National Project ASIRI+
and French National Research (ANR) Project ASIRIplus_SDS.

Key words: Macro-element, Foundation, Rigid inclusion, Dynamic soil-structure interac-
tion, Bearing capacity, Seismic loading, ASIRI+
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Résumé

La réponse dynamique d’une fondation renforcée par inclusions rigides représente un
problème complexe d’Interaction Sol-Structure (ISS). Cependant, le nombre d’études
s’intéressant à ce type de fondations reste encore limité, et il est nécessaire d’explorer
davantage les phénomènes d’ISS impliqués dans leur réponse sous l’action des séismes et
d’améliorer les méthodes d’analyse correspondantes.

Sur la base des connaissances acquises à partir des études expérimentaux et numériques
disponibles à ce jour, ce travail de recherche s’intéresse aux phénomènes d’ISS dynamique
des fondations renforcées par inclusions rigides. L’étude vise à fournir une meilleure
compréhension du comportement sismique de ce type de fondation en utilisant plusieurs
approches complémentaires comprenant divers modèles numériques, stratégies de ré-
solution et approches analytiques. Les effets des phénomènes d’interaction inertiel et
cinématique à la fois sur la réponse globale de la fondation et sur la réponse des différents
éléments du système (i.e., inclusions rigides, matelas de répartition, etc.) sont examinés
en détail.

La capacité portante sismique des fondations renforcées par inclusions rigides est étudiée
en utilisant l’approche cinématique par l’extérieur dans le cadre de la théorie du calcul
à la rupture. Une approche analytique permettant d’explorer plusieurs mécanismes de
rupture de la fondation est proposée et validée par des analyses numériques en éléments
finis. L’évolution des facteurs de réduction associés à l’excentrement et l’inclinaison de la
charge ainsi qu’à l’inertie du sol est également explorée pour plusieurs configurations de
renforcement en termes du taux de substitution.

Un nouveau macro-élément pour les fondations renforcées par inclusions rigides sous
chargement sismique est développé et validé numériquement. Il permet la modélisation de
la réponse linéaire et non-linéaire de la fondation, incluant les mécanismes de décollement,
de glissement et de perte de la capacité portante. Ce modèle est ensuite utilisé pour
conduire une étude paramétrique à l’aide d’un modèle de structure simplifiée et l’analyse
dynamique incrémentale d’une tour R+22, démontrant l’efficacité et l’utilité de l’approche
proposée dans une démarche de conception parasismique basée sur la performance.

Cette recherche est menée dans le cadre du Projet National français ASIRI+ et du projet
ANR ASIRIplus_SDS.

Mots clés: Macro-élément, Fondation, Inclusions rigides, Interaction dynamique soil-
structure, Capacité portante, Chargement sismique, ASIRI+
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Background and motivation

General context

Earthquakes are typically associated with faults, which are areas of reduced mechani-
cal strength capable of accommodating the deformations resulting from the movement
of tectonic plates. The majority of seismic activity occurs along the boundaries of
major tectonic plates, where the relative movements between these plates are most
significant (IRSN, 2012). Figure 1 provides an intuitive visualisation of seismic activity,
illustrating epicentre locations and magnitudes worldwide. Seismic activity is notably con-
centrated around the Circum-Pacific seismic zone and Alpine-Himalayan seismic zone.

Fig. 1. Earthquake map showing about 69 000 earthquakes between 1904 and 2019 (International
Seismological Centre, 2023)

Earthquakes constitute a formidable natural disaster due to their suddenness and destruc-
tive potential. While most earthquakes result in structural damage, exceptionally rare
seismic events have led to catastrophic building collapses and human casualties. Therefore,
ensuring the seismic safety of building structures is of paramount importance.

The design objectives in current building codes address life safety, control damage in
minor and moderate earthquakes, and prevent collapse in a major earthquake (Ghobarah,
2001). For minor earthquakes, the goal is to minimise structural damage, and engineers
typically rely on equivalent linear elasticity models without extensively exploring local
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non-linear behaviours. This approach is particularly applicable in regions with low to
moderate seismic risks, where the focus is on characterising structural responses within
the elastic framework. Conversely, with major earthquakes, it becomes essential to employ
methods that can account for non-linear phenomena, as these can have a substantial
impact on structural responses and performance.

Employing rigid inclusions for soil reinforcement stands as a practical, cost-effective,
and time-efficient technique, enabling the use of shallow foundations on compressible
soils. Since 1990, the use of vertical rigid inclusions for soil reinforcement has experi-
enced remarkable growth and evolution, making significant contributions to various civil
engineering structures.

This innovative technique necessitates the formulation of dedicated guidelines and codes
to ensure its safe and efficient implementation. Addressing this demand, the French
Government sponsored the ASIRI (Amélioration des Sols par Inclusions RIgides) national
project, conducting substantial research from 2005 to 2011.

The outcomes of the project were comprehensively documented in a publication entitled
"Recommendations for the Design, Construction, and Control of Rigid Inclusion Ground
Improvements". The provided recommendations offer valuable insights into the behaviour
of foundations reinforced with rigid inclusions. They delve into the diverse interaction
mechanisms that occur between the soil, inclusions and load transfer platform (LTP),
drawing from both experimental and numerical research.

Continuing the endeavours initiated by the ASIRI National Project, a subsequent project
named ASIRI+ was initiated in 2019. This project seeks to explore uncharted areas that
were previously untouched. These unexplored topics encompass geosynthetic reinforce-
ment, traffic loads, and dynamic and seismic loads.

In seismic design, accounting for the impacts of Soil-Structure Interaction (SSI) or Soil-
Foundation-Structure Interaction (SFSI) is essential. While extensive research has explored
soil reinforcement by rigid inclusions under vertical static loading in the past two decades
(ASIRI, 2012), their behaviour during dynamic and seismic loading has not yet received
the same attention. Consequently, the understanding of the mechanisms controlling
foundation response and performance under seismic loads remains limited. Further
research is therefore needed to refine design practices and accelerate the use of rigid
inclusion soil improvement within seismic conditions.

Motivation and problem statement

The adoption of rigid inclusions for soil reinforcement has gained interest owing to their
potential to enhance the foundation’s bearing capacity, reduce settlement, and strengthen
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overall stability. Grasping the SSI phenomena governing such foundations under seismic
loading is pivotal to ensuring their secure and reliable performance in earthquake-prone
areas.

In practice, the seismic design of rigid inclusion-reinforced foundations has predominantly
rested upon the pseudo-static approaches introduced by the ASIRI national project (ASIRI,
2012). However, the viability of these widely employed calculation methods in seismic
contexts remains uncertain. Consequently, it becomes imperative to investigate the
difference between the results derived from a simplified pseudo-static model and a
sophisticated dynamic model. This exploration also extends to scrutinising the potential
for improving the proposed pseudo-static calculation approach.

The increase of bearing capacity by rigid inclusion improvement necessitates quantification,
yet a practical method is absent. Additionally, the consideration of soil inertia becomes
crucial in seismic scenarios. In the context of rigid inclusion ground improvement, the
quantification of reinforcement effects using yield design theory (Salençon, 1983) serves
as a pivotal motivation for this research.

Furthermore, the dynamic response of structures founded on the rigid inclusion improved
foundation presents a complex SSI issue that requires the use of adapted computational
methods. Within the performance design framework, contemporary design codes like Eu-
rocode 8 (AFNOR, 2007) acknowledge the SSI influence and non-linear energy dissipation
during intense earthquakes (Pérez-Herreros, 2020).

The most direct approach, known as the global approach, involves modelling the soil,
foundation elements, and superstructure to consider the non-linear behaviour of the
foundation system. However, this method is computationally demanding. To reduce
complexity and computational costs, the concept of a macro-element, initially introduced
by Nova and Montrasio (1991) and later effectively applied to both shallow foundations
and deep foundations, allows for the consolidation of linear and non-linear SSI effects
within a multi-directional non-linear element. The macro-element incorporates a non-
linear constitutive law defined in terms of generalised forces and displacements, operating
within the framework of plasticity or hypo-plasticity theory, capable of coupling linear and
non-linear dynamic behaviours (Pérez-Herreros, 2020).

Within this context, the primary objective of this doctoral work is to explore both linear and
non-linear aspects of soil-structure interaction in rigid inclusion-reinforced foundations
under seismic loading. Ultimately, the goal is to create a macro-element model capable of
representing these behaviours.

Therefore, the research intends to address the following fundamental aspects:

• Review of existing experimental and numerical studies
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A comprehensive review of existing experimental and numerical studies in the
literature offers valuable insights into the behaviour of rigid inclusion-reinforced
foundations under various loading conditions. Several studies have already been
conducted in the existing literature, and in some cases, insights from studies related
to other foundation systems can be extrapolated and applied to the rigid inclusions.
Nonetheless, an important gap persists between research-oriented investigations
and their practical application in engineering applications.

• Linear SSI behaviour

This study focuses on investigating the SSI behaviour of rigid inclusion-reinforced
foundations within the linear domain. The study explores the effects of inertial and
kinematic interaction, aiming to understand the dynamic response of the system
when subjected to seismic loading. This analysis is expected to provide valuable
insights into the linear behaviour of such foundations and their response to ground
motion induced by earthquakes.

• Seismic bearing stability

The exploration into the non-linear domain begins with an evaluation of seismic
bearing stability through the implementation of the yield design theory. Specifically,
the kinematic exterior approach (or kinematic external approach) of the yield
design theory will be employed to establish a stability domain. The objective of this
approach is to provide a comprehensive understanding of the failure mechanism
that foundations on rigid inclusions may experience under seismic loads and the
associated bearing capacity.

• Macro-element development and validation

The primary emphasis is placed on the development of a macro-element model
that precisely portrays the behaviour of rigid inclusion-reinforced foundations and
encompasses the SSI effects identified through linear analysis and yield design. This
macro-element is expected to offer an efficient tool for analysing the response of
such foundation systems under seismic loading. The research also encompasses
the incorporation of numerical modelling to validate the proposed macro-element
approach. Parametric studies can be conducted using the macro-element model to
gain a comprehensive understanding of the SSI effects on such foundations.

Thesis outline

This dissertation is structured into four distinct parts.
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Part I focuses on the literature review, constituting a vital cornerstone for the work. It
furnishes an overview of rigid inclusion ground improvement and the dynamic SSI problem
concerning this foundation type. A thorough examination of existing literature concerning
rigid inclusion-reinforced foundations is undertaken. This review encompasses both
experimental and numerical studies, highlighting the advances made in comprehending
the behaviour of these foundations under seismic load. Furthermore, various calculation
approaches commonly employed in this context are introduced and evaluated, with their
respective strengths and weaknesses. Additionally, the significance of the yield design
theory is emphasised in this review.

Part II of the dissertation delves into the linear exploration of SSI, with a specific emphasis
on inertial and kinematic effects within the linear domain. It begins with a study on
ground motion modification resulting from kinematic interaction effects. Subsequently,
kinematic forces within rigid inclusions are investigated, followed by an analysis of dy-
namic impedance functions for foundations on rigid inclusions through a comparative
study. The exploration of inertial interaction effects is further pursued by examining the
inertial forces within rigid inclusions. Additionally, cross-calculations are performed be-
tween direct dynamic analyses employing a complete model and conventional engineering
approaches, serving to validate the conventional methodologies and to explore avenues
for their improvement.

Part III explores the application of yield design theory to evaluate the seismic bearing
capacity of the reinforced foundations. The potential failure mechanisms are proposed.
The results of the analytical approach are validated with the numerical studies. Some
numerical applications of the kinematic exterior approach are realised to explore the
bearing capacity problem for the rigid inclusion-reinforced foundation.

Part IV of the dissertation shifts its focus to the non-linear SSI behaviour. The development
of a macro-element, encompassing linear and non-linear aspects of the SSI, is elaborated.
Furthermore, a numerical validation process is undertaken. The comprehensive parametric
studies using macro-element are realised. This part of the dissertation provides valuable
insights into the non-linear dynamic behaviour characterising these foundations and
effectively validates the proposed macro-element methodology.

Concluding the dissertation, a general conclusion encapsulates the pivotal discoveries
and contributions of the study. It further contemplates their implications for engineering
practice. This section also aspires to stimulate future research aimed at advancing the
understanding and analysis of SSI under seismic conditions for rigid inclusion-reinforced
foundations.
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Part I

Literature review





Introduction

Rigid inclusion ground reinforcement has gained considerable attention over time. Existing
literature has primarily focused on the vertical behaviour of foundations on rigid inclusion-
improved soil, as demonstrated in the ASIRI French national project (ASIRI, 2012).
Limited attention has been given to the response of such foundations with inclusions
under seismic loading. In the following three chapters, the existing work is presented
regarding three main axes: basic concepts, experimental observations and numerical
analyses.

Chapter 1 offers an overview of the key interaction mechanisms within a ground improve-
ment system reinforced with rigid inclusions. It also highlights significant applications of
rigid inclusions in real engineering cases, including the Rio–Antirrio Bridge. Additionally,
this chapter introduces significant dynamic SSI effects and analyses them in the context of
rigid inclusion-reinforced foundations.

Chapter 2 explores the experimental studies conducted on foundations positioned on
soil reinforced with rigid inclusions. Dynamic SSI has been studied through a range
of experimental methods, including shaking table tests, centrifuge tests, and in-situ
tests. These experiments have been conducted in various configurations, both with and
without the presence of a superstructure. The main experimental test observations are
summarised.

Lastly, Chapter 3 examines several numerical methods reported in the literature that
can be used to investigate dynamic SSI, with a special emphasis on the macro-element
approach, which serves as the primary objective of this study. This chapter also highlights
the importance of yield design theory as an effective approach for studying the seismic
stability of foundations on soil reinforced with rigid inclusions.
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Rigid inclusion reinforcement
and dynamic soil-structure
interaction

1

1.1 Rigid inclusion ground improvement

1.1.1 General concept

In engineering practice, shallow foundations are typically preferred if they can satisfac-
torily meet both stability and settlement criteria. If either one or both of these criteria
cannot be met, a possible approach is to opt for pile foundations, where piles are designed
to carry the entire load and provide stiffness to the foundation.

The concept of a foundation with rigid inclusions involves a shallow foundation reinforced
by vertical rigid elements, known as inclusions, which reduce the foundation settlement
while enhancing its vertical bearing capacity. The materials used for inclusions, such as
concrete and steel, are significantly stiffer than the surrounding soil. This is the main
reason why they are named "rigid" inclusions. Various foundation types are depicted in
Figure 1.1.

Fig. 1.1. Illustration of the load transfer mechanism in various foundation types

It is important to note that there is no direct connection between the shallow foundation
and the inclusions. Instead, a gravel layer is introduced as a load transfer platform (LTP)
within the inclusion-reinforced foundation system. This load transfer platform, commonly
known as "mattress" or "cushion", is a crucial component of this reinforced foundation
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system. This layer of gravel, placed between the shallow foundation and the inclusions,
must be well-compacted to achieve a high modulus. A minimum thickness is always
necessary to ensure effective load transfer between the inclusions and the soil, while
also reducing the stresses of the superstructure (ASIRI, 2012). Additionally, when a
gravel platform is present, the non-linear mechanism at the interface is usually governed
by a sliding mechanism. This sliding mode has the potential to improve the seismic
performance of the structure by acting as a filter for the seismic loads that are effectively
transmitted to the structure.

Inclusions are particularly suitable for structures with a large footprint that impose
distributed loads on the soil (ASIRI, 2012). This technique finds application in various
scenarios, including:

• Foundations of industrial and commercial buildings;

• Storage reservoirs, treatment plant basins and facilities;

• Highway embankments or railway embankments designed for high-speed trains.

In the literature, several research studies can be found that apply the same concept as
inclusion ground improvement but under different names, such as "cushioned pile raft
foundation", "disconnected pile raft foundation", "insulated pile foundation", "unattached
pile foundation", "rigid pile composite foundation", "pile-reinforced composite foundation"
and so on. The aforementioned studies are presented in Chapters 2 and 3.

1.1.2 Principal interaction mechanisms

The response of foundation on soil reinforced by rigid inclusions encompasses a series of
intricate mechanisms that extend from the supported structure to the underlying substrate.
These mechanisms include the interaction between the structure, the foundation, the LTP,
and the inclusion. The two primary mechanisms of foundation on rigid inclusions are
outlined in the following.

Mechanisms developed at the granular transfer platform

The inclusion-reinforced foundation system incorporates a granular layer positioned
between the soft soil and the foundation, as depicted in Figure 1.2. This granular
layer exhibits significantly higher stiffness and resistance compared to surrounding soil,
resulting in reduced settlement and increased bearing capacity. Importantly, during an
earthquake, this layer serves as an energy fuse (Pecker, 2023b). When the shear force in
the layer exceeds a specific value due to friction, controlled sliding occurs, as shown in
Figure 1.3. This mechanism prevents the foundation from overturning due to a loss of
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bearing capacity and instead allows for controlled displacement within the well-designed
granular layers.

Fig. 1.2. Scheme of a foundation on rigid inclusions under seismic loading

The sliding behaviour observed in the inclusion-reinforced foundation system effectively
limits the seismic load transmitted to the superstructure while filtering the inertial load
transmitted to the rigid inclusions with the effect of fuse (Pecker, 2023b).

Fig. 1.3. Sliding behaviour of a rigid inclusion-reinforced foundation

The thickness of the LTP and the embedment of the inclusion head within the LTP
significantly influence the performance of the reinforced foundation, particularly in
facilitating the transfer of horizontal forces through the LTP. Han et al. (2016) has shown
that the thickness of LTP is a crucial factor in seismic attenuation, with a thicker LTP
exhibiting a more effective seismic absorption effect.
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Interaction at the interface between the soft soil and the inclusions

The main role of the inclusions is to transfer the gravitational load from the structure to
the bearing stratum, thereby reducing settlement and improving bearing capacity. Unlike
conventional pile foundations, where the load is not primarily transferred through the
head of inclusions but also using the skin friction generated between the inclusion and
the surrounding soil due to differential settlement, as shown in Figure 1.4.

The soft soil can be divided into two distinct zones based on their shaft friction (ASIRI,
2012). In the upper zone, there is a phenomenon known as negative friction, where the
soil experiences greater settlement compared to the inclusions. In contrast, the lower zone
of the soft soil exhibits a different shaft friction. Here, the inclusions settle more than the
surrounding soil, causing a positive friction. Between these two zones, a neutral point can
be identified (Frank et al., 2021). This neutral point represents a location within the soil
where there is no relative movement between the inclusions and the surrounding soil.

Fig. 1.4. Schema of positive and negative friction

Negative skin friction has an adverse effect on pile foundations as it reduces their load-
carrying capacity. Conversely, negative friction for rigid inclusions is not considered a
harmful force because it helps to alleviate stress levels within the compressible soil.

The lateral behaviour of a rigid inclusion is similar to that of a pile, with the key distinction
being the lack of a connection at the head of the rigid inclusion. This absence of connection
prevents a significant concentration of force at the head of the rigid inclusion.
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1.1.3 Remarkable applications of rigid inclusions to real projects

The application of this ground improvement technique has experienced significant growth
in recent years. The literature showcases several notable applications of rigid inclusions
in real projects with complicated geotechnical environments, such as the Rio-Antirrio
Bridge (Garnier and Pecker, 1999; Pecker, 2004, 2006; Pecker and Teyssandier, 2009;
Pecker, 2023b), the Izmit Bay Bridge (Steenfelt et al., 2015), the ICEDA project (Mattsson
et al., 2013), and the 1915 Çanakkale Bridge (Giannakou et al., 2019; Arıoğlu, 2021;
Kroon et al., 2021). These projects serve as successful examples of the foundation on
rigid inclusions, highlighting its effectiveness as a viable solution even in challenging
engineering contexts characterised by favourable soil properties, substantial water depths,
and significant seismic activity.

Rio-Antirrio Bridge

The famous Rio-Antirrio Bridge successfully employed this reinforcement technique. The
bridge is situated near Patras, approximately 250 km west of Athens in Greece (Garnier
and Pecker, 1999). The construction commenced in 1998 and was completed in the
summer of 2004.

The Rio-Antirrio Bridge is a cable-stayed bridge consisting of three spans, with a total
length of 2 290 m. The three central spans are 560 m in length each and are extended
by two adjacent spans (Pecker, 2023b). The bridge pier foundations are located at a
significant water depth of approximately 65 m. The soil in the area primarily comprises
alluvial deposits. The local seismic design motion is characterised by a high peak ground
acceleration of 0.48 g at the seabed level (Garnier and Pecker, 1999).

The bridge foundation comprises a gravity caisson with a diameter of 90 m at the seabed
level. The height of each pylon reaches approximately 220 m, with 65 m of it submerged
beneath the water.

The permanent load borne by a single pier amounts to approximately 800 MN. Further-
more, the occurrence of an earthquake generates a horizontal shear force of 600 MN and
an overturning moment of 20 000 MN.m on the bridge (Pecker, 2004).

The structural performance criteria permit the foundation to sustain permanent displace-
ments following a seismic event, as long as these displacements are controlled and do not
hinder the bridge’s future functionality (Pecker, 2023b). Given this context, a shallow
foundation becomes a feasible option. To address the challenges posed by the weak soil
conditions, soil reinforcement utilising inclusions was implemented. A total of 270 steel
tubes with a diameter of 2 m and a thickness of 20 mm were driven to depths of either 25
m or 30 m, following a square pattern with dimensions of 7 m × 7 m (ASIRI, 2012).
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It is worth noting that the rigid inclusions are not directly connected to the bridge
foundation. Instead, a free-draining gravel bed layer is placed between the top of
the inclusions and the pier footing, as depicted in Figure 1.5. This layer allows for
uplift and sliding of the footing during earthquakes. The foundation’s excellent seismic
performance has been demonstrated at full scale during a real earthquake with a moment
magnitude MW = 6.5 that occurred in Greece. Through the analysis of the data and
comprehensive inspections after the seismic event, the bridge’s behaviour remained well
within the serviceability limit states, with no permanent damages observed (Papanikolas
et al., 2010).

Fig. 1.5. Foundation of a bridge pile (Pecker and Teyssandier, 2009)

Nuclear waste storage facility project: ICEDA

The ICEDA (Installation de Conditionnement et d’Entreposage de Déchets Activés) nuclear
waste storage facility was constructed at the Bugey nuclear power station site in France.
The site is located in a seismic area with 0.24 g as the design earthquake peak ground
acceleration (Pecker, 2023b).

This facility was designed to accommodate the conditioning and storage of radioactive
waste from 9 decommissioned reactors. Its overall dimensions are 130 m in length and 60
m in width. To enhance the soil’s strength, a total of 300 reinforced concrete inclusions
with a diameter of 1 m were installed in a rectangular pattern with spacing ranging from
3 m to 6 m (Mattsson et al., 2013). These inclusions, ranging from 35 m to 55 m long,
traverse a compressible clay layer and are extended down to the substratum. Figure 1.6
illustrates the cross-section of the structure and the inclusion-reinforced soil. Notably,
this project marks the first application of the rigid inclusion reinforcement technique in a
nuclear installation in France (Mattsson et al., 2013).

As part of the installation project, two full-scale experimental tests were conducted
to verify the design and gain insights into the static and dynamic behaviour of rigid
inclusions. In the static experimental tests, a 10 m embankment was constructed on a
concrete foundation slab supported by 9 inclusions (Mattsson et al., 2013). The dynamic
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tests involved forced vibration tests conducted on two concrete slabs (Okyay et al., 2012).
Further details on the dynamic in-situ tests can be found in Section 2.4.

Fig. 1.6. ICEDA buildings on reinforced soil by rigid inclusions (Mattsson et al., 2013)

1915 Çanakkale bridge

The 1915 Çanakkale Bridge, which crosses the Çanakkale strait, is situated approximately
200 km southwest of Istanbul. This remarkable structure holds today the distinction of
being the longest suspension bridge in the world. With a total bridge length of 3 563 m,
it comprises a main span measuring 2 023 m and two side spans of 770 m. The bridge
features two primary towers known as the European and Anatolian towers (Giannakou
et al., 2019).

The foundations of the towers consist of gravity caissons, measuring approximately 83 m
by 74 m supported by soil reinforced with steel pipe inclusions 2.5 m in diameter, as
shown in Figure 1.7. At the European tower location, a total of 203 inclusions with
lengths up to 46 m were driven, while at the Anatolian tower location, 165 inclusions
with lengths of 21 m were installed (Kroon et al., 2021).

The use of inclusion improvement results in a significant reduction of settlement for the
European tower, with an estimated reduction of about 80 % compared to the case without
rigid inclusions, while the embedment of rigid inclusions in the gravel LTP also enhances
the lateral resistance of the foundation against ship impacts and seismic events (Kroon
et al., 2021). The gravel bed positioned beneath the caisson acts as a "plastic hinge",
facilitating the development of inelastic deformation and energy dissipation (Pecker,
2004).
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Fig. 1.7. Ground improvement by inclusions for tower foundations (Kroon et al., 2021)

1.2 Dynamic soil-structure interaction

Dynamic SSI phenomena encompass the interaction effects between the surrounding
soil and the structure, rendering them an inseparable entity. Consequently, the dynamic
behaviour of the structure is influenced by the rigidity of the soil, leading to a distinct
response from that of a fixed-base solution. The soil movements during dynamic excitation
also undergo a modification due to the presence of the structure and foundation element,
deviating from the response observed in a free field.

The interaction effect can be classified into two categories based on its origin: kinematic
interaction and inertial interaction. Another significant phenomenon in dynamic SSI
is energy dissipation. During dynamic excitation, energy is dissipated within the soil-
structure system due to various mechanisms.

1.2.1 Kinematic interaction effect

The kinematic interaction phenomenon is a significant mechanism of SSI that arises
from the difference in rigidity between the soil and the foundation elements. This effect
becomes apparent when comparing the free field ground motion and the ground motion
with foundation elements. It is observed that the ground motion modification occurs not
only at the ground surface but also at various depths within the soil.

In the case of reinforcement by rigid inclusions, the presence of the rigidity contrast can
be of a nature to:
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• Affect the propagation of seismic waves and alter the incident seismic action on the
supported structure (amplitude and frequency content);

• Induce additional solicitation (bending moment, shear force) in the rigid inclusions,
in addition to those related to the natural vibration of the supported structure.

1.2.2 Inertial interaction effect

During seismic loading, the mass of the superstructure generates inertial forces, making it
the source of vibrations that are transmitted to the soil and foundation elements. This
phenomenon, resulting from the presence of the structural mass, is referred to as inertial
interaction. The generated inertial forces can vary in magnitude and direction depending
on the characteristics of the earthquake and the structural response of the building.

As another consequence of the inertial interaction phenomenon, the soil-foundation
system cannot be treated as a fixed base, but rather as a flexible base, as depicted in Figure
1.8. The stiffness and damping characteristic of the foundation under inertial loading
exhibit a significant frequency dependence, and a novel mechanism of energy radiation
dissipation also emerges.

Fig. 1.8. Dynamic impedances of a shallow foundation

In the case of rigid inclusions, the effects generated by inertial interaction can be sum-
marised as follows:

• A change in the support conditions of the structure, resulting in variations in dynamic
impedances as a function of load frequency;

• Additional stresses within the inclusions, generating bending and shear forces, which
often become decisive from a design point of view.

Compared with pile foundations, in most cases of reinforcement using rigid inclusions, the
presence of LTP, allows the disconnection between the footing and the inclusions, which
has an impact on the dynamic impedances and the inertial force transfer mechanism.
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1.2.3 Energy dissipation

In a SSI analysis, it is commonly assumed that the soil behaviour at a distance from the
superstructure and foundation can be approximated as linear elastic or equivalent linear
elastic. Nonlinear effects, if present, typically occur in the zone near the structure and at
the soil-foundation interface. The energy dissipation within the soil-foundation system
under seismic loads can be classified into three main categories based on their underlying
mechanisms, as illustrated in Figure 1.9.

• Viscous material damping of soil, represented by mechanism (I) in Figure 1.9;

• Hysteretic damping due to irreversible behaviour, represented by mechanism (II) in
Figure 1.9;

• Radiation damping, represented by mechanism (III) in Figure 1.9.

Fig. 1.9. Different energy dissipation mechanisms

Viscous damping is an inherent characteristic of soil and is dependent on the level of strain.
Due to the curved stress-strain behaviour exhibited by most soils, the damping factor can
be quantified by the area enclosed within the hysteresis loop of the soil stress-strain curve
(Seed and Idriss, 1970). To approximate this hysteretic stress-strain relationship, a visco-
elastic behaviour is commonly employed, utilising a secant modulus and an equivalent
linear damping ratio (Gazetas, 1991b).

Hysteretic damping, as a type of material damping, is not influenced by frequency and is
related to energy dissipation resulting from the plasticity of the soil and the interaction
between the foundation and the surrounding soil. It should be noted that if the foundation-
soil system remains within the linear elastic range, the contribution of hysteretic damping
tends to diminish. For the rigid inclusion-reinforced foundation, the sliding mechanism
between the foundation and the LTP can be a source of energy dissipation.
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Radiation damping, a form of geometric damping, is associated with the transmission of
seismic waves from the structure to the soil at an infinite distance. It is influenced by vari-
ous factors, including the geometry of the foundation-soil-contact area, the characteristics
of the structure, and the properties of the underlying soil deposits (Celebi, 2000).

1.3 Summary

This chapter provided an overview of the principal interaction mechanisms within a
rigid inclusion-reinforced foundation. In contrast to pile foundations, negative friction
in the context of inclusion-reinforced foundations is not a harmful phenomenon. The
incorporation of the LTP enables a controlled displacement sliding mechanism. Moreover,
this chapter presented notable applications of this technique, highlighting the potential
and advantages of employing the rigid inclusion soil improvement technique.

Furthermore, the chapter summarised the dynamic phenomena SSI within inclusion-
reinforced foundations. These phenomena include kinematic interaction, inertial interac-
tion, and energy dissipation.
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Literature review: Experimental
dynamic SSI studies

2

2.1 Interest of experimental studies

Numerous experimental studies have been conducted to investigate the static interaction
phenomena of inclusion-reinforced foundations through small-scale tests and full-scale
tests (Low et al., 1994; van Eekelen et al., 2003; Jenck, 2005; Briançon and Andromeda,
2008; Briançon et al., 2010; Okyay, 2010).

The number of dynamic and seismic studies is relatively limited due to several reasons.
Firstly, experimental studies with dynamic and seismic excitation are associated with high
costs. The required equipment, materials, and testing procedures contribute to the overall
expense. Secondly, considerable preparation time is necessary to properly set up the
experiments, which can further hinder the execution of a large number of studies. Finally,
the complexity of the tests themselves poses challenges, making it difficult to conduct
many experimental investigations.

However, experimental studies on dynamic SSI offer numerous invaluable advantages
and substantially contribute to our comprehension of this complex phenomenon in the
context of rigid inclusion-reinforced foundation. In contrast to numerical investigations,
experimental studies provide a more realistic representation of the behaviour and response
of soil-foundation-structure systems under dynamic loading conditions. Furthermore, the
comparison between experimental and numerical results facilitates the evaluation of the
accuracy and dependability of numerical models.

In the experimental research, it becomes evident that several studies employ the same
concept of inclusion ground improvement but use different names to describe it. These
names include "cushioned pile raft foundation", "disconnected pile raft foundation",
"insulated pile foundation", "unattached pile foundation", "rigid pile composite foundation",
"pile-reinforced composite foundation" and so on.

Among these configurations, some incorporate a designed LTP, often referred to as a
cushion or simply a gravel layer. In certain cases, the foundations are directly positioned
on the top of the piles (inclusions). However, in other studied configurations, there exists
a gap between the heads of piles (inclusions) and the foundation. Within this gap, the
same type of soil is present as in the surroundings of the piles (inclusions).
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2.2 Shaking table tests

Shaking table tests are widely recognised as one of the primary techniques for evaluating
the seismic performance of structures. Several studies concerning the rigid inclusion
seismic behaviour have been conducted with the help of shaking table devices.

Azizkandi et al. (2018) have conducted shaking table tests to investigate the dynamic
behaviour of both disconnected and connected pile rafts. The models are filled with dry
Firoozkuh siliceous sand, which has a relative density of 60 %. In the connected pile
raft model, a square aluminium raft is rigidly connected to four hollow aluminium piles.
Conversely, in the disconnected pile raft model, a granular LTP is placed between the raft
and the heads of the piles.

The results of the tests reveal that the connected pile raft exhibits smaller displacements
during the lateral cyclic loading, and ultimately, the residual displacement is also reduced
compared to the disconnected pile raft foundation. In the case of a disconnected pile raft,
the piles experience significantly smaller moments and lateral shear forces compared to
the connected configuration.

Furthermore, in the connected pile raft, the piles contribute much more effectively to the
lateral bearing mechanism, accounting for approximately 50 % of the lateral cyclic loading.
Conversely, in the disconnected pile raft foundation, the disconnected piles primarily bear
less than 15 % of the lateral loading during the cyclic loading. Both connected and
disconnected pile foundations effectively mitigate the ground settlement compared to the
free ground during the excitation.

In the study conducted by Nakagawa et al. (2018), the seismic behaviour of a building
with an insulated pile foundation, which is equivalent to a foundation reinforced by rigid
inclusions, is examined. In contrast to the rigid inclusion-reinforced foundation, the
investigated insulated pile foundation is installed in the sand without a designed LTP layer,
even when the foundation is not directly positioned on the piles.

Two scaled models are installed within the shear box. One model represents a pile
foundation where 16 piles are connected to the slab while the other model consists of 16
insulated piles, as depicted in Figure 2.1. The piles are simulated using aluminium tubes.
The shaking table is utilised to provide lateral in-plane input motion, which corresponds
to the design response spectrum defined in the Building Standard Code in Japan. The
peak amplitudes of the input motion are varied between 25 % and 200 % (six amplitude
levels).

The investigation reveals that the building response and the stresses near the pile heads
are reduced due to the pile insulation. In cases where the amplitude of the input motion
is large, the rocking motion plays a significant role in the response of the insulated pile
foundation system, as illustrated in Figure 2.2. Additionally, it is observed that the forces
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exerted on piles at different positions are similar during small-intensity earthquakes.
However, distinct differences in the forces between piles at different positioned piles in
the insulated pile raft foundation are observed during strong earthquakes due to the more
pronounced inertial force (Nakagawa et al., 2020).

Fig. 2.1. Experimental models scheme (Nakagawa et al., 2018)

Fig. 2.2. Estimated ratio of sway, rocking and elastic deformation to the total motion for: (a) pile
foundation and (b) disconnected pile foundation (Nakagawa et al., 2018)

The study conducted by Kashiwa et al. (2020) aims to investigate the bearing mechanisms
of insulated existing pile foundations. The motivation behind this study is to reuse the
existing underground piles in the design of a new building. Shaking table tests have
been conducted on various foundation configurations. The existing piles (representing
inclusions) are modelled using 16 aluminium piles embedded in dry sandy soil.

The input motion for the shaking table tests is a sinusoidal wave with varying frequencies
of from 4 Hz to 20 Hz, changing every 2 Hz. The natural frequency of the superstructure
is 12 Hz. The motion amplitudes are set at 1.0, 2.0, 4.0 and 6.0 m/s2. The detailed
specimen is illustrated in Figure 2.3. Accelerometers have been installed on the mass and
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the base foundation to measure horizontal and vertical acceleration. Displacement gauges
are used to capture the story drift, as well as horizontal and vertical displacement of the
mass and the base foundation.

Several interesting conclusions are drawn from the shaking table tests. It is found that
the residual rotation of the foundation with existing piles is significantly smaller than the
model without piles, particularly during tests with large input amplitudes. The decline in
the overturning moment occurs significantly earlier than the skeleton curve representing
rigid body overturning, indicating that the local non-linearity surrounding the insulated
pile foundation notably influences the dynamic response of the superstructure.

Fig. 2.3. Shaking table test layout: (a) Existing piles model and (b) Plan view of rigid rank
(Kashiwa et al., 2020)

Lin et al. (2022) have conducted a shaking table test to study the seismic behaviour of
a composite foundation consisting of rigid and sub-rigid piles. This type of foundation,
commonly known as a CM pile composition foundation, has been applied to many practical
engineering scenarios. It is composed of C piles (rigid), M piles (sub-rigid), and the LTP
layer.

The term "C pile" primarily refers to rigid, long piles such as concrete piles. "M pile"
denotes semi-rigid piles, including cement mixing piles or cement mortar mixing piles.
The underlying design principle aims to enhance bearing capacity and reduce foundation
settlement by capitalising on both C and M piles. The C piles not only serve to increase
the bearing capacity but also transfer loads to the deep foundation through its pile body,
consequently reducing deformation within the compressed layer. The primary role of M
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piles is to improve the bearing capacity through shaft friction, reinforce the soil between
piles, and increase the frictional resistance of the C pile body.

The pile group is arranged in a 4 × 4 pattern, as shown in Figure 2.4. The results of
the shaking table test reveal that the acceleration response strength at the pile heads
surpasses that at the pile tips. Furthermore, as the excitation peak value increases, the
peak strain of the piles also rises. The distribution of peak strain along the length of rigid
piles is altered with changes in excitation amplitude. Conversely, the distribution of peak
strain in sub-rigid piles displays relatively less variation.

The test configuration is particularly noteworthy due to the utilisation of a mixture of
two families of varying lengths in reinforcement. Typically, in reinforcement practices,
inclusions of the same length are commonly employed. However, in these tests, the
innovative approach using inclusions from two different length families is adopted.

Fig. 2.4. Layout of test model: (a) plan view and (b) sectional view, in mm (Lin et al., 2022)

Yang et al. (2023) have conducted a series of scaled 1-g shaking table tests to investigate
the seismic response of a nuclear power station supported by disconnected pile raft
foundations in clay soil. The research involves analysing the non-linearity of the soil, the
isolation effect of the LTP, as well as the displacement of the structure and the bending
moments of inclusions. The objective of the study is to explore the influence of different
types of gravel LTP type on the response of the reinforced foundation system under
earthquake excitation.

The structural model is scaled down to 1/10 of the Chinese III generation nuclear power
station and supported by a group of 4 × 3 aluminium tube piles. The clay used in the tests
was obtained from the Nanjing sampling site. Three types of 0.5 m thick LTP are selected
for investigation. The first type, referred to as cushion A, consists of a well-graded gravel
LTP with a D50 particle size of 3.5 mm and a size range of 2 mm to 10 mm. LTP B is a
mixture of two types of gravel particles in a 3:1 ratio, with the larger proportion ranging
from 2 mm to 5 mm, and the smaller proportion ranging from 5 mm to 10 mm. The final
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type, LTP C, exclusively comprises gravel particles ranging from 2 mm to 5 mm. During
the test, the system is subjected to a white noise excitation with a magnitude of 0.05 g,
as well as three earthquake excitations, including two natural and one artificial ground
motion, each with varying intensities.

The conclusions drawn from the study emphasise the importance of considering not
only the characteristics of the inclusions but also the properties of the LTP material.
The fundamental frequency determined through white noise excitation indicates that
LTP A and LTP B, which include a mixture of small and large particle sizes, exhibit
superior isolation efficiency compared to LTP C. It is noteworthy that the measured peak
acceleration and absolute displacement consistently exhibit the highest values in the case
involving LTP C. Additionally, the maximum bending moment occurs at the midpoint of
the piles, it is independent of the location of the piles. This study highlights the impact
of the granular composition of the LTP, with well-graded and gap-graded gravel LTP
performing better than the single small-size gravel.

2.3 Centrifuge tests

The behaviour of soils is contingent upon their load history and the level of stress to
which they are exposed. Reproducing the same state of stress is, therefore, an essential
requirement for simulating the real behaviour of a full-scale structure, referred to as
the "prototype", at the reduced scale model level. Centrifuge modelling achieves this by
amplifying the body forces applied to the small-scale model.

Geotechnical centrifuge modelling stands out as a reliable and effective technique for
investigating the seismic effects on structures with a reduced-scale model. It has been
extensively employed to investigate the seismic behaviour of both shallow foundations
and pile foundations (Chatzigogos et al., 2005; Li, 2014; Pérez-Herreros, 2020).

In recent years, numerous tests involving rigid inclusions have also been conducted.
Garnier and Pecker (1999) have conducted centrifuge tests at Gustave Eiffel University
(UGE) in Nantes to validate an innovative foundation concept for the Rio-Antirrio Bridge.
The primary objectives of these centrifuge tests are to estimate the ultimate bearing
capacity of the foundation under a combination of monotonically increasing horizontal
force and overturning moment and to assess the behaviour of the foundation under
various cyclic loads. Additionally, the study aims to identify the failure mechanism of the
foundation under these combined loads.

Three tests are conducted at 100 g using a 1/100 scaled model. The prototype model
features a circular footing with a 30 m radius supported by rigid inclusions measuring
8.5 m in length and 0.67 m in diameter. Clay samples are collected from the area
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around the bridge pier. On top of the clay layer, a 1.2 m thick ballast LTP layer made of
Fontainebleau sand is placed.

Various parameters are measured during the tests, including pore pressure at different
locations below the foundation, soil settlement, water table level, applied loads, and
bending moment in the inclusions. The vertical load V is kept constant through the tests.
A cyclic horizontal force T is applied at a constant height above the footing, generating
an overturning moment T.h. A cyclic additional overturning moment M is produced by a
movable mass. At the end of the tests, the model is subjected to monotonically increasing
shear force until failure, with a constant M/V ratio (Pecker, 2003).

These centrifuge tests reveal that the ultimate bearing capacity is not degraded, even
when the cyclic amplitude arrives at 75 % of the failure load. The displacement does
not increase with the number of cycles. An equivalent damping ratio of 20 % is detected
during the tests (Garnier and Pecker, 1999).

At the same time, five centrifuge preliminary tests have been conducted in the CEA-CESTA
centrifuge laboratory in Bordeaux with different configurations in terms of number of
inclusions, soil strength and vertical load. The sample is monotonically loaded with any
prior cyclic loads until a significant geometric change occurs, and the failure loads are
underestimated (Garnier and Pecker, 1999) The results of the centrifuge test confirm the
theoretical predictions in terms of failure load. Figure 2.5 showed the correspondence of
the three test results in Nantes and five tests performed in Bordeaux.

Fig. 2.5. Comparison of predicted and measured failure loads (Pecker, 2003)

A rocking foundation can be considered as a type of seismic isolation system that allows a
foundation to rock during an earthquake. The benefits of a rocking foundation include the
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reduction of structural damage and the improvement of structure seismic performance.
The rocking behaviour of unattached pile foundations was investigated by Allmond and
Kutter (2014). The studied configuration involves a footing directly positioned on the
piles, which are not connected to the footing. Unlike the conventional configuration
for a rigid inclusion-improved foundation, there is no sand or granular layer between
the piles and the raft. Unattached pile raft foundations offer the advantage of reducing
residual rotations and settlements while still benefiting from the advantages of a rocking
foundation. The study concludes that a shear key connection is essential for unattached
pile rocking foundations. Without a shear key, the large sliding displacement appears
unexpectedly and results in the movement of the piles.

To benefit from the advantages of a rocking foundation while reducing the settlements,
Loli et al. (2015) have conducted a study on the rocking behaviour of shallow foundations
on unconnected piles. Different to the configuration studied by Allmond and Kutter
(2014), a uniform intermediate sandy layer is introduced between the pile and the raft in
this study. Three dynamic centrifuge tests have been performed using a 1/50 scaled bridge
pier, as depicted in Figure 2.6. The seismic sequence considered in the study involves a
strong earthquake followed by several lower-magnitude motions aftershocks, such as the
Rinaldi motion (1994 Northridge earthquake). Based on the recorded time-history data,
it is observed that the maximum acceleration of the rocking-isolated pier on unconnected
piles is lower compared to conventional design approaches. This hybrid foundation design
results in reduced permanent rotation and settlement.

Park et al. (2017) have examined the dynamic SSI behaviour of a storage tank with three
different types of foundations: a shallow foundation, a pile foundation, and a disconnected
pile foundation. The investigations have been carried out through centrifuge model tests
using poorly graded clean silica sandy soil. For the model of the slab with disconnected
piles, the slab is directly placed on the top of the piles without any distance between the
pile heads and the slab. The primary focus of the study is placed on the analysis and
comparison of the response exhibited by the structure with different types of foundations.
It can be observed that the peak acceleration is more significantly amplified in the case
where a shallow foundation is employed, while it is less amplified in the case of a slab
with connected piles. The response of the tank on the slab with disconnected piles fails
between the response of these two configurations.

Influenced by the concept of rocking foundations, the study conducted by Ha et al. (2019)
aims to investigate the behaviour of unconnected pile foundations under various condi-
tions. The research focuses on understanding the influence of different factors, including
the pile tip and head conditions, the rigidity of the LTP and the shaking level. All pile
foundations are installed in dry sand in a 3 × 3 pattern with a centre-to-centre distance of
3.5 times the pile diameter. Three earthquake records are utilised as input motion. The
findings reveal that the disconnected pile foundation effectively reduces the seismic load
on the structure. Moreover, the rotational damping of the disconnected pile foundation
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Fig. 2.6. Three foundation solutions for a bridge pier (Loli et al., 2015)

is found to be comparable to that of a shallow foundation. The study also examines the
rotational stiffness, which is found to depend on the fixation condition of the pile tip and
head. Additionally, the stiffness is observed to degrade as the rotation angle increases due
to the uplift mechanism.

In the study conducted by Ko et al. (2019), the seismic behaviour of disconnected pile
raft foundations is analysed through dynamic centrifuge tests, with a specific focus on
modelling bridge piers and comparing them to connected piled rafts. Two types of piles
made of different materials, including aluminium and steel, are employed to assess the
influence of pile material on the system response. The centrifugal acceleration used in the
tests is set at 50 g.

The model ground consists of dry silica sand, which is poured into a shear beam box.
The structural model adopts a SDOF configuration, comprising a lumped mass at the
top connected to a thin supporting plate through two thin steel plates. Aluminium and
steel piles are employed to simulate pre-stressed high-strength concrete and steel pipe
piles, respectively. Two natural earthquakes, the Ofunato and Hachinohe earthquakes, are
selected as input motions. The Ofunato earthquake represents a short-period-dominated
signal, while the Hachinohe earthquake represents a long-period-dominated signal.

The findings indicate that the seismic response of the disconnected piled foundation
decreases as the peak ground acceleration at the LTP increases, primarily due to the sliding
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behaviour between the raft and the transfer platform. Furthermore, when compared to
connected pile foundations, the disconnected pile foundations exhibit larger permanent
settlements and foundation rotations. Additionally, the bending moments of the piles are
also reduced as a result of the disconnection of the piles.

Fig. 2.7. Comparison of predicted and measured failure loads (Ko et al., 2019)

Liang et al. (2021) have conducted dynamic centrifuge tests to assess the non-linear
behaviour of a cushioned pile raft foundation, which shares the same concepts as a
foundation reinforced by rigid inclusions. In the case of the cushioned pile raft, the raft
remains unconnected to the piles. Gravels are placed above the piles and are meticulously
compacted to establish the LTP layer, referred to as the cushion in their study. They have
also examined the isolation effect of a granular LTP. The model consists of a superstructure
and a foundation comprising a 3 × 3 pile group embedded in soft clay. The tests are
conducted under different earthquake motions with various intensities. To measure
the response of the system, multiple sensors are deployed, including those to measure
the acceleration and residual displacement of the superstructure as well as the bending
moments in the superstructure columns and inclusions. A comparison is made between
the foundation on rigid inclusions and the pile foundation. The results reveal that the
foundation on rigid inclusions achieves a significant reduction in bending moment in the
superstructure compared to the pile foundation. Furthermore, the presence of the LTP
facilitates effectively dissipating earthquake energy and reduces the seismic excitation
transmitted to the superstructure, particularly during high-intensity earthquakes.

Yang et al. (2022) have conducted a series of sixteen dynamic centrifuge tests using a
50 g centrifuge test model to investigate the seismic response of nuclear power stations
supported by disconnected pile raft foundation, which follows the same concept as
foundation reinforced by rigid inclusions. The study specifically focuses on exploring the
effect of gravel LTP thickness on the system’s response.

The tests are conducted within a laminar shear model box. Shanxi kaolin clay and Fujian
standard sand are used as the soil materials in the experiments. The foundation system
consists of twelve aluminium piles with a diameter of 0.7 m, arranged in a 4 × 3 pattern
and spaced at 2.45 m intervals. It is worth noting that the configuration examined in this
research corresponds to a form of floating inclusion reinforcement, where the tips of the
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piles are not embedded in a support layer. A well-graded gravel LTP layer is incorporated
between the piles and the raft. Two different LTP thicknesses are tested: Case A (0.7
m) and Case B (1.4 m). During the dynamic centrifuge tests, the system is subjected to
white noise excitation, as well as two natural ground motions and one artificial ground
motion.

The study’s finding confirms the effectiveness of the gravel LTP in providing seismic
isolation effect. Specifically, Case A demonstrates a better performance compared to Case
B. Consequently, the article recommends using an LTP thickness equal to the diameter of
the inclusions. Additionally, the results reveal that the bending moments experienced by
the corner and edge piles are significantly higher compared to the inner piles.

2.4 In-situ tests and instrumented foundation

The in-situ tests aim to obtain the actual seismic response records of the instrumented
structure through the global seismic monitoring network and a large number of sensors
placed on the structure. In some cases, the in-situ tests also involve steady-state forced
vibration or the controlled detonation of pre-embedded explosives to simulate earthquake
excitation.

As part of the ICEDA project, EDF (Electricité de France) has conducted a series of forced
vibration tests on two experimental plots to investigate the vertical and horizontal dynamic
response of inclusion-reinforced foundations. The objective of these tests is to assess the
practical methods under real-site conditions and validate the adopted methodology for
the numerical calculations (Okyay et al., 2012).

The in-situ tests included 14 cone penetration tests and 3 pressiometer tests to gather
information about the soil properties. In addition, oedometer and triaxial tests are
conducted in the laboratory. The shear modulus of the soil layers is determined using
cross-hole tests, and the concrete modulus is determined from compression tests on
concrete specimens.

Two slabs measuring 11 m × 11 m × 1.2 m are subjected to testing. One slab is placed on
non-reinforced soil, while the other is on soil reinforced with nine inclusions. A machine
equipped with a rotating unbalance is installed at the centre of each slab. Excitation is
applied in both the horizontal and vertical directions, ranging from 2 Hz to 20 Hz. The
vertical and horizontal dynamic responses of the reinforced foundation are measured and
compared with numerical calculations (EDF, 2008b; Okyay, 2010; Vandeputte et al., 2010;
Okyay et al., 2012). The experimental transfer functions recorded on both slabs indicate
that the inclusion reinforcement has no impact on the horizontal direction, whereas the
rigid inclusions do reduce the vertical displacement at the centre of the slab.
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Fig. 2.8. Configuration of inclusion-reinforced slab (EDF, 2008a)

Sekiguchi et al. (2015) have conducted a study on the potential reuse of existing concrete
piles as foundations for new buildings, referred to as insulated pile foundations. The
foundation concept is similar to foundations reinforced by rigid inclusions. Three types of
foundations, namely pile foundation, shallow foundation, and insulated pile foundation,
are installed on the actual ground. Their behaviour is monitored during 56 earthquakes
that occurred between June 18, 2013, and February 28, 2015, including 8 earthquakes
with a peak ground acceleration exceeding 0.1 m/s2 at the free field.

The piles used in the study are steel pipes with a diameter of 101.6 mm while reinforced
concrete blocks serve as the superstructure. In the insulated pile foundation, a thin
layer of sand is placed between the concrete blocks and the top of the insulated piles.
Additionally, a geotextile is installed on the top of the insulated piles. To measure the
system responses during earthquakes, three-component accelerometers are placed at the
top of the superstructure, at the free field, and at a depth of -10 m below the ground
level. Strain gauges are also installed at the pile heads to measure the stresses. The
experimental foundation models and sensor placements can be seen in Figure 2.9.

Seismic observations reveal that the peak response accelerations of the insulated pile
foundation are lower than those of the other two foundations, both in the horizontal
and vertical directions. The stress at the pile heads is significantly reduced due to the
insulation of the piles compared to the pile foundation.

From the time histories of bending moment and axial force at the pile heads, it is evident
that the bending moment and axial force of the pile foundation fluctuate in response
to seismic ground motion. However, in the case of the insulated pile foundation, the
variations in bending moment and axial force are less pronounced. Additionally, it is
noteworthy that the stress resulting from the inertia force of the superstructure is less
concentrated at the pile heads of the insulated pile foundation compared to the pile
foundation.
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Fig. 2.9. Experimental model scheme (Sekiguchi et al., 2015)

2.5 Key observations from experimental studies

The primary objective of this review is to comprehensively evaluate the behaviour and
performance of these foundations under dynamic or seismic loading conditions. The aim
is to offer valuable insights into their performance.

From the experimental research, several key observations can be drawn:

• Permanent settlement and rotation of foundations

Rigid inclusion ground improvement is a technique for reinforcing the foundation,
known for its capacity to reduce settlement under static loads. From cited ex-
perimental studies, it has been observed that the presence of rigid inclusions can
effectively mitigate both settlement and permanent rotation of foundations during
seismic excitation when compared to cases without reinforcement (Allmond and
Kutter, 2014; Loli et al., 2015). The shaking table tests conducted by Azizkandi
et al. (2018) further demonstrate that the foundation on rigid inclusions exhibits a
smaller settlement compared to the free ground during the excitation.

However, it should be noted that foundations reinforced by rigid inclusions ex-
hibit larger permanent settlements and foundation rotations when compared to
conventional pile foundations (Ko et al., 2019).

• Forces at heads of inclusions
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Clearly, due to the insulation of rigid inclusions with foundations, the forces acting
on the heads of the inclusions are supposed to be considerably diminished. In the
case of foundations on rigid inclusions, these inclusions experience significantly
reduced bending moments and lateral shear forces at the heads (Sekiguchi et al.,
2015; Azizkandi et al., 2018; Nakagawa et al., 2018; Ko et al., 2019).

Moreover, it should be noted that the concentration of inertial forces resulting from
the mass of the superstructure is less pronounced at the heads of rigid inclusions
when compared to pile foundations (Sekiguchi et al., 2015).

• Stiffness of foundations

The stiffness of the inclusion-reinforced foundation is also assessed through experi-
mental research. The in-situ experiments conducted within the framework of the
ICEDA project indicate that inclusion reinforcement does not affect the horizontal
direction, but enhances vertical stiffness (EDF, 2008a).

Additionally, it is observed that the rotational stiffness degrades as the rotation angle
increases, due to the uplift mechanism and non-linearity near the foundation (Park
et al., 2017; Nakagawa et al., 2018).

• Isolation effect and characteristic of LTP

A significant phenomenon observed is the isolation effect of such a foundation during
seismic excitation. The disconnection between rigid inclusions and the foundation
leads to a substantial reduction in the seismic response of the superstructure, as
evident in studies by Allmond and Kutter (2014), Loli et al. (2015), and Nakagawa
et al. (2018).

Moreover, the presence of LTP introduces a sliding behaviour of the foundation, as
observed in the study conducted by Ko et al. (2019). Liang et al. (2021) demon-
strates that the gravel LTP can achieve a notable reduction in bending moments
within the superstructure, particularly during high-intensity earthquakes. These
studies collectively confirm that the presence of LTP effectively facilitates the dissi-
pation of earthquake energy and reduces the seismic excitation transmitted to the
superstructure.

The effectiveness of the isolation effect depends on the characteristics of LTP. In
the studies carried out by Yang et al. (2022, 2023), it is recommended that the
thickness of LTP matches the diameter of rigid inclusions and a well-graded granular
composition of LTP is deemed necessary to ensure a favourable isolation effect.
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2.6 Summary

This chapter presents a literature review dedicated to the experimental investigation of
rigid inclusion-reinforced foundations. Encouragingly, many experimental studies have
been conducted in this field in recent years (within the past ten years). The findings from
these studies represented crucial contributions to our understanding of the behaviour and
performance of inclusion-reinforced foundations subjected to seismic loading conditions.
However, there remains a significant gap in current research compared to studies on
shallow foundations and pile foundations.

These studies have typically focused on comparing the performance of pile foundations
and inclusion-reinforced foundations. Some studies highlighted the effects of the raft-
inclusion discontinuity on reducing the seismic response of the structural and foundation
elements and examined the isolation effect resulting from the presence of gravel LTP.

However, most of the studies have investigated the behaviour of the structure-foundation-
soil system, which involves a combination of inertial and kinematic interactions.
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Literature review: Numerical
dynamic SSI studies

3

3.1 Interest of numerical studies

The high cost associated with experimental approaches often restricts their application
in the study of dynamic SSI problems. Consequently, numerical methods are frequently
preferred alternatives.

Classical numerical modelling methodologies, which are commonly used to study the
dynamic SSI problem for different superstructures and foundations, can also be utilised
for structures founded on rigid inclusion reinforced soil.

Multiple approaches do not provide global information but instead focus on addressing
specific problems, such as bearing capacity and the response of rigid inclusions. These
approaches, along with their variations and adaptations for the study of foundations on
rigid inclusions, are also interesting.

In practical applications, these methodologies are implemented using a variety of nu-
merical modelling techniques, including the finite element method, the finite difference
method, the hybrid method combining the finite element method and boundary integral
equation, among others.

3.2 General dynamic SSI numerical approach

3.2.1 Direct approach

Modelling the structure, the foundation and the volume of surrounding soil may be the
most intuitive approach to analysing the dynamic SSI problem. This approach, known as
the global approach or direct approach, involves solving the dynamic equation coupling
the soil, the foundation and the superstructure in either the time or frequency domain. It
allows for simultaneous determination of the response of both the soil and the structure
(Brûlé and Cuira, 2018). Furthermore, it enables the consideration of radiation effect and
energy dissipation effects in the soil volume, which is explicitly modelled (Pérez-Herreros,
2020). To achieve this, it is necessary to accurately model the boundaries of the model
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and to use suitable constitutive laws. Numerical approaches like the spectral element
method, boundary element method, finite element method, and finite volume method can
be employed to model seismic wave propagation in the soil (Semblat, 2011).

When using the global approach in the time domain, the analysis can incorporate the
non-linear behaviour of the structure, uplift and sliding of the foundation, as well as the
inelastic phenomena and the heterogeneity of the soil. Typically, the resolution technique
relies on commonly used numerical modelling approaches such as the finite element
method, including classical algorithms like the time integration Newmark method (Pecker,
2023a).

The global approach has several drawbacks. One challenge in solving dynamic SSI problem
is the treatment of boundary conditions (Pecker, 2023a). To account for the semi-infinite
nature of the soil deposit and prevent the reflection of waves, absorbing boundaries need
to be introduced into the model. Additionally, boundary elements can significantly reduce
soil volume that needs to be modelled. However, they should be placed at a sufficient
distance away from any structural element to avoid interference (Romo-Organista et al.,
1980).

Another challenge is to simulate the non-linear behaviour, which increases the complexity
of the models. Configuring the non-linear constitutive laws requires extensive calibration
and validation work.

There are certain limitations on the mesh size of the numerical model. The maximum
mesh size should satisfy a criterion that depends on the maximum frequency of interest
and the characteristics of the soil being modelled. To accurately simulate the transmission
of high-frequency waves, the maximum size of the mesh elements should not exceed 1/5
or even 1/8 of the wavelength. Furthermore, due to the time-consuming nature of direct
approach analyses, they are not suitable for performing exhaustive parametric studies.

When conducting numerical studies, the analysis of the dynamic SSI response for structures
supported by shallow foundations on reinforced soil by rigid inclusions poses a complex
problem. It necessitates the utilisation of appropriate numerical modelling techniques,
including finite element method (Rangel-Núñez et al., 2008; Okyay et al., 2012; Han et al.,
2016; Messioud et al., 2016; Saadatinezhad et al., 2021), finite difference method (Mánica
Malcom et al., 2016; López Jiménez et al., 2019), and the hybrid method combining the
finite element method and boundary integral equation (Shen et al., 2021, 2022a,b,c).

3.2.2 Sub-structuring approach

The sub-structuring approach, which utilises the superposition theorem, is commonly
employed in the analysis of SSI due to its simplicity and efficiency. This approach involves
decomposing the global model into sub-systems.
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In this approach, the Kausel superposition theorem (Kausel et al., 1978) is one of the
most widespread and commonly applied, allowing for the step-by-step analysis of the SSI
problem, assuming linearity. The sub-structuring approach based on this superposition
theorem involves three successive steps, as depicted in Figure 3.1.

1. Calculation of kinematic interaction to determine the seismic action exerted at the
base of the structure;

2. Calculation of dynamic impedance functions;

3. Calculation of structural responses, considering dynamic impedance functions and
seismic action exerted at the base of the structure.

Fig. 3.1. Sub-structuring approach in three steps (Kausel et al., 1978)

The initial two steps of the sub-structuring approach can be executed in the frequency
domain, while the calculation of structural responses, incorporating SSI effects, can be
carried out in the frequency domain or in the time domain to account for the non-linear
behaviour of the superstructure.

However, the substructuring approach does have some limitations. The superposition
theorem assumes that the entire system remains in a linear elastic state, which means
that the local inelastic behaviour cannot be simulated. Non-linear behaviour in the
soil is approximated using equivalent linear visco-elastic constitutive laws. The soil
characteristics are determined through iterative interactions based on stiffness degradation
curves and damping curves to ensure compatibility with the mean shear strain level
resulting from the applied dynamic excitation intensity.

Additionally, similar to the global approach, the mesh size in the sub-structuring approach
needs to adhere to certain criteria based on the maximum frequency of calculation and
the characteristics of the soil.
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3.2.3 Macro-element approach

This hybrid approach integrates both the global approach and the substructuring ap-
proach to leverage the respective strengths of each method, as depicted in Figure 3.2.
In this approach, a macro-element is positioned at the foundation base to consider the
non-linearity within the soil-foundation system. The primary objective of this study is to
develop a macro-element for foundation reinforced by rigid inclusions. To gain a compre-
hensive understanding of a macro-element, it is important to delve into the specifics of
macro-elements for different types of foundations.

Fig. 3.2. Macro-element approach based on the substructuring approach

This hybrid approach aims to partition the SSI effect into two distinct mechanisms: linear
interaction in the far field sub-domain and non-linear interaction in the near field sub-
domain, as depicted in Figure 3.3. This approach supposes that the far field, located at a
significant distance from the foundation and superstructure, exhibits only linear elastic
behaviour governed by dynamic impedances. All potential non-linearities are concentrated
in the near field under the assumption of this approach, which encompasses interface
non-linear behaviour and soil plasticity near the foundation.

Fig. 3.3. Macro element concept: near field and far field
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In reality, the stiffness of the foundation is much greater than that of the soil deposit,
allowing a rigid movement for the entire foundation. Under this assumption, the non-
linear constitutive laws can be defined in terms of generalised forces (forces and moments)
and displacements (translations and rotations). The constitutive laws employed in the
macro-element are usually formulated within the framework of classical theories of elasto-
plasticity, either with or without a hardening law. Hypoplastic constitutive laws are
also considered as an alternative option in several proposed macro-elements (Pedretti,
1998).

However, there are still limitations in the practical application of macro-element models.
The flexibility of the foundation cannot be taken into account. The definition of the
boundaries for these sub-domains lacks clarity, and it is challenging to precisely determine
the evolving geometry of the near field over time (di Prisco and Pisanò, 2011). The
calibration of the nonlinear constitutive laws used in these models typically necessitates
experimental data or numerical simulations. Additionally, the soil inertia is usually
neglected in the macro-element model without a direct simulation. However, this effect
can be taken into account using a constitutive law involving the inertial effects in the
underlying soil.

Macro-elements are initially employed to simulate the behaviour of joints in structural
elements, such as beam-column joints or the beam-plate joints (Ganga Rao and Farran,
1986; Petrolito and Golley, 1989; Arbabi and Li, 1990). In the geotechnical domain,
the early works on macro-elements primarily focus on shallow foundations (Nova and
Montrasio, 1991). Over time, this concept has been extended to pile foundations and other
types of foundations. Although there have been some applications of macro-elements for
foundations on rigid inclusions, their utilisation in such cases remains relatively limited.

The macro-elements for foundations can be categorised differently. From the modelling
scale, some macro-elements aim to simulate the global behaviour of foundations while in
some macro-element approaches, a combination of several macro-elements for different
parts of foundations is needed to simulate the global behaviour of the foundation. The
macro-element can also be classified based on its non-linear framework, whether it is
founded on elasto-plastic theory or hypoplastic theory.

In this section, the macro-element is introduced according to the type of foundation:
shallow foundations, pile foundations, and inclusion-reinforced foundations.

Macro-element for shallow foundations

The initial application of macro-elements for shallow foundations is pioneered by Nova
and Montrasio (1991). This work focuses on investigating the static bearing capacity of a
rigid shallow foundation on sand subjected 2D monotonic eccentric static load. In this
macro-element model, non-linearity is incorporated based on classical plasticity theory,
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where the yield surface is enveloped by a failure surface. The evolution of the yield surface
is governed by a non-associated flow rule and an isotropic hardening law.

The macro-element model developed by Martin (1994) is designed to predict the load-
displacement response of shallow foundations for offshore structures situated on cohesive
soil. To address the 2D problem, the combined load yield surface suggested by test data is
described in the (V,H,M) space, where V represents vertical load, H represents horizontal
load, and M represents bending moment. Non-linearity in this model is incorporated
using plasticity theory with a suitable flow rule.

Houlsby and Cassidy (2002) proposed a hardening plasticity model with an appropriate
flow rule to simulate the behaviour of rigid circular shallow foundations on loose sand.
This model incorporates the resultant forces (V,H,M) and the corresponding displace-
ments (uz, uh, θ) of the foundation, allowing for the prediction of responses under various
load or displacement combinations. Cassidy et al. (2002) made modifications to the
existing model proposed by Houlsby and Cassidy (2002), calibrating it using a series of
tests and verifying its suitability through retrospective simulation of experimental data.
However, these models are limited to solving 2D problems only.

Cassidy et al. (2004) investigated six degrees of freedom macro-element formulation based
on plasticity theory with a hardening law. This formulation considers load-displacement
behaviour in horizontal, vertical, rotational and torsional directions. The developed
formulation can be integrated into 3D structural calculation programs and is applicable to
both sandy and clay soils. It should be noted that these proposed macro-element models
have been developed based on monotonic tests and may not be suitable for simulating
cyclic behaviour.

The concept of macro-element is further extended through a small-scale footing test con-
ducted by Wuttke et al. (2013). This development is built upon the previous formulation
of Nova and Montrasio (1991). The novel macro-element model incorporates a parabolic
failure surface, as depicted in Figure 3.4, and a yield surface with a similar shape based
on the theory of elasto-plasticity. Numerical tests utilising this enhanced macro-element
model on unsaturated sand demonstrate a good agreement with experimental results.
However, it should be noted that the application of the proposed macro-element formu-
lation is currently limited due to the calibration of model parameters being conducted
solely based on experimental studies involving a single type of unsaturated soil. Further
research and validation are necessary to explore its applicability to a broader range of soil
types.

To address stability concerns related to historical towers, Marchi (2008) proposed a
novel two-dimensional (2D) formulation for modelling the foundation and predicting the
load-displacement behaviour of the structures. In this work, the hardening law is derived
from a vertical stiffness curve obtained through oedometer tests. Although the specific
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Fig. 3.4. 3D failure envelope proposed by Wuttke et al. (2013)

term "macro-element" is not mentioned in the work, the concept employed in this work
aligns with the general idea of macro-elements.

Macro-element models offer significant computational advantages by effectively capturing
soil-foundation interaction using only a few degrees of freedom. However, a common
limitation shared by existing macro-element formulations is their inability to account
for changes in geometry, loading, and boundary conditions. To address this limitation,
Pisanò et al. (2016) proposed a new 2D macro-element framework to study non-linear soil-
foundation interaction problems. In this innovative approach, the framework considers the
influence of configuration features, such as geometry, loading and boundary conditions,
on both the elastic and non-linear behaviour of shallow foundations on frictional soil. The
objective of this work is to accurately model the drained load-displacement response of a
shallow foundation.

With the evolution of engineering requirements, macro-element models have undergone
significant development to address cyclic loading problem. In this regard, Cremer et al.
(2001) presented a 2D cyclic SSI macro-element model for shallow foundations on
cohesive soil. This model incorporated the non-linearities at the soil-foundation interface
and is controlled by a yield surface and an isotropic-kinematic mixed hardening law. In
order to identify the macro-element parameters, experimental tests are typically necessary.
However, Cremer et al. (2001) also provided empirical relationships for these parameters,
simplifying the parameter identification process and enabling the construction of a simple
macro-element model for preliminary studies. The results obtained using the macro-
element approach exhibit good agreement with those from finite element modelling.

The macro-element model for shallow foundations on sands, developed by Salciarini and
Tamagnini (2009), incorporates the theory of hypoplasticity as an alternative to classical
elasto-plasticity theory. The theory of hypoplasticity, initially developed in Karlsruhe and
Grenoble, provides a suitable framework for describing the non-linear and irreversible
behaviour of materials. This study demonstrates the applicability of hypoplasticity theory
in developing a macro-element model capable of simulating the behaviour of shallow
foundations under both monotonic and cyclic complex loading conditions.
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Fig. 3.5. Global macro-element model structure proposed by Cremer et al. (2001)

Kafle and Wuttke (2013) extended the application of macro-element models to predict
the settlement of foundations on unsaturated soil. A series of displacement-controlled
tests are conducted with three different soil conditions: dry, saturated and unsaturated
with a suction of 2.1 kPa. In the proposed 2D macro-element formulation, a suction-
dependent parameter is incorporated. The macro-element model employs a failure surface
with a plastic potential inspired by the work of Wuttke et al. (2013). This proposed
macro-element model demonstrates the capacity to simulate the accumulation of plastic
settlement in foundations on multi-phase granular soil with varying suctions under cyclic
loading.

In the study conducted by Khebizi et al. (2018), a novel macro-element is developed
to provide a simplified modelling approach for soil-foundation systems, as depicted in
Figure 3.6. This macro-element combines the concepts of the macro-element and the
Winkler model, enabling it to simulate the load-displacement behaviour of the system
while considering soil plasticity and interface non-linearity, including uplift. To validate
the macro-element formulation, five previously published studies are utilised. The results
obtained from the macro-element approach are compared with those obtained from other
numerical modelling, under both monotonic and cyclic quasi-static loading conditions.
The comparison reveals a favourable agreement, demonstrating that the macro-element
approach effectively captures the non-linear behaviour of the soil-foundation system.
However, it should be noted that the proposed model is limited to addressing 2D problems
and may not be suitable for resolving 3D complexities.

The application of macro-element models is extended to address seismic problems as well.
Under seismic conditions, particularly crucial is to consider the response of the foundation
both to eccentric and inclined loads, associated with the inertial horizontal forces in the
superstructure.

Cremer et al. (2002) extended the 2D macro-element model, originally developed for
cyclic loading, to include seismic loading. The failure criterion, loading surface, hardening
law, and plastic potential remain the same as in their previous work (Cremer et al.,
2001). To demonstrate the simplicity and efficiency of dynamic analysis using the macro-
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Fig. 3.6. Numerical model of the foundation with three macro-elements (Khebizi et al., 2018)

element approach, as well as its capacity for extensive parameter studies, a bridge pier is
selected as an application example. The application shows the effectiveness of the macro-
element approach in handling dynamic analyses and its ability to perform comprehensive
parameter studies.

In the doctoral dissertation of Chatzigogos (2007), a macro-element is developed to
accurately simulate the behaviour of a circular foundation on cohesive soil, specifically
considering its uplift behaviour under seismic loading. The bearing capacity of the
circular foundation is studied using the kinematic approach of the yield design theory and
validated through centrifuge tests. The macro-element consists of two main components:
a linear behaviour part and a non-linear part. The linear behaviour of the foundation can
be represented by dynamic impedances, which capture its response under dynamic loading
conditions. The non-linear part comprises a hypoplastic soil behaviour (non-reversible)
and a fully reversible uplift behaviour. The hypoplastic soil behaviour is described using
a bounding surface model with an associated law, which can accurately represent the
non-linear and irreversible response of the soil. The uplift behaviour is non-dissipative and
is described using a non-linear elastic model. An engineering application demonstrates the
practical use of the macro-element tool in the design phase of the structures, particularly
when considering the nonlinear SSI.

The macro-element developed by Grange (2008) focuses on evaluating the seismic be-
haviour of shallow foundations, including rectangular, circular and strip foundations. It
incorporated the consideration of soil plasticity and uplift behaviour within the framework
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Fig. 3.7. Macro-element model structure proposed by Chatzigogos (2007)

of classical plasticity theory. The 3D SSI macro-element is described in detail, including
the consideration of the plasticity and uplift, adaptation to a 3D model. The algorithm and
process to resolve the non-linear numerical problem are also given. Good performance of
the macro-element approach is verified by the comparison with experimental results of
the foundation under monotonic loading, cyclic and dynamic loading.

Abboud (2017) developed a 3D macro-element specifically designed to analyse the be-
haviour of shallow foundations subjected to seismic loading. The formulation of the
macro-element is based on the elasto-plastic approach using the classical plasticity the-
ory. The macro-element incorporates three potential failure mechanisms that can occur
in shallow foundations: sliding, loss of bearing capacity, and uplift behaviour. It also
accounts for the effects of foundation embedding on elastic stiffness, bearing capacity,
and sliding resistance. To consider the effects of loading velocity, appropriate hardening
parameters are included in the macro-element formulation. The developed macro-element
is implemented in the finite element software CESAR LCPC, and three different modelling
strategies are proposed, as illustrated in Figure 3.8. These strategies provide alternative
ways to represent the behaviour of the shallow foundation macro-element. The perfor-
mance of the macro-element is assessed by subjecting it to different loading paths, and
a comparison is made among the three modelling strategies. Furthermore, extensive
parametric studies are conducted to define seismic damage indicators, allowing for a
comprehensive analysis.

A 3D macro-element for shallow foundation was proposed by Shen (2019) to analyse
non-linear SSI problems under dynamic and seismic actions. The macro-element is
formulated within the framework of elasto-plasticity theory, considering a hardening law.
The elastic behaviour of the foundation is described by the dynamic impedances of a
shallow foundation, which can be derived from the empirical formulations or calculated
dynamic impedance functions. The non-linear behaviour of the macro-element includes
uplift, sliding, and loss of bearing capacity. The uplift of a shallow foundation is described
using a non-linear elastic behaviour, while a Mohr-Coulomb sliding criterion is employed
to simulate sliding behaviour. The formulations inspired by Eurocode 7 and 8 are chosen
to simulate the loss of bearing capacity of shallow foundations. The macro-element also
accounts for the effects of neighbouring buildings. Applications of this macro-element
include studying a bridge pier and a seismic-isolated building to assess the advantages of
this approach. The macro-element has already been successfully utilised in some industrial
and nuclear structures to verify their global seismic bearing capacity.
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Fig. 3.8. Three modelling strategies with macro-element: (a) single macro-element model, (b)
distributed macro-element model, and (c) hybrid macro-element model (Abboud, 2017)

A summary of the recent research on the dynamic SSI macro-element for shallow founda-
tions can be found in Table 3.1.

Macro-element for pile foundations

The development of macro-element models for shallow foundations has indeed shown
significant success and efficiency in engineering applications. However, the extension of
this concept to pile foundations is a relatively recent advance. Similar to macro-element
models for shallow foundations, the macro-element models for pile foundations typically
incorporate both elastic and plastic responses within the framework of classical elasto-
plastic theory or hypoplasticity theory. Macro-element models for pile foundations offer a
simplified yet effective approach to analysing the dynamic or seismic behaviour of pile
foundations.

Correia et al. (2012) introduced a 2D macro-element for single piles and applied it to
analyse the seismic response of a single pile-supported bridge pier. The model consists of
several components allowing to capture different aspects of pile behaviour: initial elastic
impedances, the small-strain elastic response of the pile, and a gap evolution model to
describe gaps that may develop between the pile and surrounding soil. Additionally, a
failure mechanism is included to account for the large-strain behaviour of the surrounding
soil.
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Tab. 3.1. Summary of dynamic SSI macro-element for shallow foundations

Reference Configuration Sliding Loss of bearing
capacity

Uplift

Cremer et al.
(2001)

Strip footing
on cohesive
soil

Not considered Based on the work of
Salençon and Pecker
(1995b)
(elasto-plasticity with
hardening)

Based on FEM model
(elasto-plasticity with
hardening)

Grange
(2008)

Circular or
rectangular
footing on
cohesive soil

Not considered Based on the work of
Cremer et al. (2001)
(elasto-plasticity with
hardening)

Based on the work of
Cremer et al. (2001)
(elasto-plasticity with
hardening)

Chatzigogos
et al. (2009)

Circular
footing on
cohesive soil

Not considered Simplified ellipsoid
surface
(hypo-plasticity)

Approximation
relationship from
numerical results
(non-linear elasticity)

Abboud
(2017)

Circular or
rectangular
footing

Coulomb friction
(visco-plasticity
with hardening )

Eurocode 7
(visco-plasticity with
hardening)

Effective surface of
foundation verification
(visco-plasticity with
hardening )

Shen (2019) Circular or
rectangular
footing

Coulomb friction
(elasto-
plasticity)

Eurocode 7 and 8
(elasto-plasticity)

Reduction of stiffness
on rotation proposed
by Brûlé and Cuira
(2018)
(non-linear elasticity)

To smoothly translate between small-strain and large-strain behaviour, a bounding surface
plasticity model is employed. The initial elastic impedances can be determined using
analytical formulas. The behaviour of the gap is described by an elastic non-linear model
using a tangent flexibility matrix that combines the initial elastic stiffness matrix with the
variable stiffness matrix related to the gap depth. The failure surface and mechanism for
the pile under lateral load are derived using a kinematic approach of the yield design
theory. The shape of the failure surface follows a super-ellipse form. In this macro-element
model for the laterally loaded pile, the axial behaviour is not studied. The proposed
macro-element model is validated by comparing the results with those obtained from
FEM simulations. Incremental dynamic analyses are also performed to assess the capacity
of the macro-element to reproduce the response of the foundation at different loading
intensity levels. The results demonstrate that the pile foundation macro-element provides
stable and cost-efficient analysis capabilities.

Li (2014) proposed a 2D macro-element model based on hypo-plasticity framework for a
single pile and pile group foundations in sand under seismic loading. The macro-element
model considers a failure surface, which is described by analytical equations for both
single-pile and two-pile group foundations. The mathematical formulation of the failure
surface is calibrated using the results obtained from numerical swipe tests and radial
displacement tests conducted within FEM analyses. An associated plastic flow rule is
adopted in the constitutive behaviour of the macro-element, which is a commonly used
approach in macro-element modelling. The loading surface is assumed to expand in
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an isotropic manner as the stress path develops. The effect of pile group behaviour is
incorporated by introducing a factor which represents the pile group effect. To validate
the proposed macro-element model, experimental centrifuge results are employed. The
comparison between the macro-element predictions and the experimental results serves
as a validation of the macro-element model’s accuracy and reliability.

Li et al. (2016) presented two calibration strategies for the pile macro-element model. The
first strategy involves calibration based on 3D finite element simulations and experimental
results, which is considered the ideal strategy but can be expensive. Alternatively, the
authors proposed an empirical correlations calibration approach that is more cost-effective.
The validation tests demonstrate that the macro-element calibrated using the simplified
empirical procedures exhibits satisfactory performance. Furthermore, the study extends
the applicability of the pile macro-element from homogeneous soil profiles to layered
soil profiles. Building upon the previous work, Li et al. (2018) explored the behaviour of
single batter piles in sand using the pile macro-element model. Various aspects of the
behaviour, such as pull-out capacity, bearing capacity, lateral resistance, and rotational
resistance, are studied using a 3D finite element model. The failure surface used in the
macro-element model, as developed in Li et al. (2016), is modified to account for the
inclination and loading directions associated with single batter piles.

In the study conducted by Pérez-Herreros (2020), the central focus is to develop a macro-
element model specifically designed for analysing the behaviour of pile groups under
various loading conditions. Dynamic centrifuge tests are conducted using a multilayered
soil profile. The tests explore various configurations of pile groups subjected to seismic
excitation. Additionally, the author also performed a numerical investigation using non-
linear finite element analysis, and the results are compared with respect to the findings
from the centrifuge experiments.

A three-level modular macro-element concept is proposed, as depicted in Figure 3.9. This
concept aims to incorporate the static behaviour of individual piles, static group effects,
and dynamic effects, including frequency effects and radiation damping. The formulation
of the static single pile macro-element is based on the theory of hypo-plasticity, while the
static interaction representing the group effects is simulated using analytical formulas.
Additionally, a modified lumped parameter model is introduced in the macro-element to
replicate the dynamic behaviour of the pile group. By comparing the results obtained from
the macro-element model with those obtained from non-linear finite element analysis,
the author demonstrated that the macro-element is capable of accurately capturing the
response of the pile group under both static and seismic loading.

A summary of the recent research on the dynamic SSI macro-element for pile foundations
can be found in Table 3.2.
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Fig. 3.9. Modular macro-element concept for a pile group (Pérez-Herreros, 2020)

Tab. 3.2. Summary of dynamic SSI macro-element for pile foundations

Reference Configuration Description

Correia et al. (2012) Single pile Composed of initial elastic
impedances, small strain
elastic response, gap
evolution model and failure
mechanism of surrounding
soil

Li (2014) and Li et al.
(2016, 2018)

Vertical and inclined Single
pile and two-pile group

Failure surface obtained by
numerical swipe test,
adaptation for layered soil
profiles and pile inclination

Pérez-Herreros
(2020)

Vertical single pile and pile
group

Proposition of three-level
modular macro-element
concept incorporating the
static behaviour of
individual piles, static group
effects, and dynamic effects

Macro-element for foundation reinforced by rigid inclusions

The Rio-Antirrio bridge, already presented in Section 1.1.3, is the earliest application
where the macro-element concept is used for foundations reinforced by rigid inclusions
under seismic load.

In this application, the Performance Based Design criteria are employed to provide a more
realistic approach that reflects the physics of the non-linear interactions, including geo-
metrical and material non-linearities. Regarding this concept, a macro-element approach
based on a rheological model combining a finite number of springs and Coulomb sliders is
used in the calculation, as depicted in Figure 3.10.

The parameters of the model are derived from the static finite element analysis results.
The macro-element model is validated by the results from the centrifuge tests, presented
in Section 2.3, and from cyclic finite element analyses (Pecker, 2004).
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Fig. 3.10. Rheological model for soil-foundation system (Pecker, 2004)

3.3 Focused analysis approach for soil reinforcement

In the previous section, strategies for investigating the global dynamic behaviour of
the structure-foundation-soil system were explored. However, it is equally important to
introduce some analysis approach focusing on the behaviour of the reinforced system.
These approaches include the homogenisation method, yield design theory, and more.

The yield design theory, which has been previously employed to address the bearing
capacity problem of foundations, has the potential to analyse the bearing capacity of
foundations when rigid inclusions are present. Drawing inspiration from pile foundation
analysis, a Winkler-type model can also simulate the behaviour of rigid inclusions. The
homogenisation method enables the study of the overall behaviour of reinforced soil,
providing valuable insights into its stiffness and strength characteristics. A practical
engineering approach, based on the same homogenisation concept, employs a fictive
monolith and is commonly used in design offices due to its simplicity.

Each of these approaches offers a unique perspective on the behaviour of reinforced
foundations at different scales, as shown in Table 3.3. In practice, it can be chosen based
on the specific objectives of the analysis.

Tab. 3.3. Focused analysis approaches with different research scale

Scale Approach Research target

Global system Yield design theory Limit resistance of
foundations and no
displacement information

Foundation element Winkler-type model,
simplified approaches with
fictive monolith

Displacement and force of
rigid inclusion elements

Continuous medium Multi-phase model Strain and stress of
homogenised reinforced soil
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3.3.1 Yield design theory

The yield design theory, known as théorie de calcul à la rupture in French, was introduced
by Salençon (1983). This theory was developed within the framework of the original
"equilibrium/resistance" approach (Salençon, 2013). It provides a comprehensive method-
ology for designing structures based on the concept of ultimate limit state design. In
more recent times, this concept has been adopted by several construction codes, including
Eurocodes.

The yield design theory enables a direct investigation of limit loads in a more intuitive
manner by starting with their initial characterisation. The limit loads are independent of
the initial state of self-stress, elastic characteristics of the material and the loading path
(Salençon, 2002). This theory relies exclusively on three system information, namely
geometrical data, the loading mode of the system, and the resistance of the constituent
material. However, to definitively determine the system’s stability, additional knowledge
regarding other aspects of the system is necessary, such as the constitutive law and loading
history (Salençon, 1983).

The general theory was initially developed for the 3D continuum model and subsequently
extended to both the 1D and 2D continuum models to address various problems. This the-
ory offers a systematic approach to assess the resistance of the structures and foundations
while considering the effects of seismic forces. The yield design theory solves dynamic
problems as pseudo-static problems. The soil inertia can be considered as a pseudo-static
body force. However, the wave propagation and frequency effect cannot be modelled in
this approach.

This theory has been successfully applied to study the seismic stability of nailed soil
(Schlosser and Unterreiner, 1990; de Buhan et al., 1992; de Buhan, 2004) and foundations
reinforced by rigid inclusions (Pecker et al., 1998; Salencon and Pecker, 1999; Pecker,
2023b).

Potentially safe load domain

In the yield design theory, the potentially safe load domain denoted K, is an important
notion. This domain refers to all the loads that are considered potentially safe for the
structure. The term "potentially" signifies that there is no guarantee that the extreme load
determined by the yield design theory has been reached (de Buhan, 2007).

Knowing only the strength criteria of a material does not guarantee the stability of a
structure under a given load. However, if the linear elastic and perfectly plastic behaviour
with an associated plastic flow rule is assumed, it is possible to establish the existence
and uniqueness of a solution for quasi-static elasto-plastic problems (Chatzigogos, 2007).
This implies that the domain K encompasses all the loads that the structure is capable of
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effectively supporting. Any loads that fall outside the domain K will not be supported by
the system.

Static interior approach and kinematic exterior approach

The static interior approach aims to establish an approximate boundary for the potentially
safe load domain K by inside, as depicted in Figure 3.11 (a). This approach involves
constructing a stress field, represented by σ, that is in equilibrium with the external
loads Q while ensuring that it does not exceed the resistance of the material at any
point within the system. However, the challenge arises when attempting to construct
stress fields that satisfy the resistance condition, which implements the interior approach
complex (Salençon et al., 2009). The analytical or semi-analytical implementation of
the static interior approach can be quite challenging, particularly when dealing with
highly heterogeneous configurations such as reinforced soils. It is often necessary to
employ numerical methods, such as the finite element method, in conjunction with convex
optimisation procedures, as indicated by de Buhan (2023).

The kinematic exterior approach provides an alternative approach to approximate the
domain K. It is important to note that the exterior approach approximates the boundary
of the domain K "from the outside", as depicted in Figure 3.11 (b). This approximation is
obtained through the mathematical dualisation of the equilibrium-resistance compatibility
condition. The external approach is based on the principle of virtual powers. The
maximum resisting power Prm can be determined for a given virtual velocity field with
knowledge of the strength of the materials. If the external virtual power Pe of the
external loads with the given virtual field exceeds the maximum resisting power Prm, it
indicates that the system cannot withstand the assumed external load. An approximation
of the domain K can be obtained by testing several virtual velocity fields. The kinematic
exterior approach can be easily implemented, either analytically using conventional failure
surfaces, or numerically through a finite element discretisation of the explored velocity
fields (de Buhan, 2023).

Fig. 3.11. Yield design approach: (a) static interior approach and (b) kinematic exterior approach
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3.3.2 Winkler-type model

Winkler-type models offer a practical approach for analysing SSI, particularly in cases
involving rigid inclusion soil improvement. These models adopt a "Beams on Nonlinear
Winkler Foundation" representation of the foundation, where the interactions between
the inclusion and the soil are captured using a series of linear or non-linear soil springs,
as depicted in Figure 3.12. The simplicity of Winkler-type models makes them widely
utilised in geotechnical engineering.

Within the soil-inclusion systems, Winkler-type approaches utilise the springs with p-y
laws to represent lateral soil-pile interaction. They also incorporate springs with t-z laws
and q-z laws to characterise vertical soil-inclusion shaft and end-bearing interactions,
respectively. Additionally, advanced rheological laws can be incorporated into the springs
in certain cases (Nogami and Kongai, 1988). An important advantage of Winkler-type
models is their versatility, as they can be applied to both static and dynamic analyses.

Fig. 3.12. Winkler-type model accounting for the axial and transverse interaction between the
soil and the rigid inclusion

It is essential to acknowledge that Winkler-type models, which represent individual
inclusions using beam segments and springs, do not inherently consider group effects. To
overcome this limitation, a group effect factor can be introduced in static and dynamic
analyses to account for the collective behaviour of the inclusion group.

3.3.3 Simplified approaches with fictive monolith

The ASIRI (2012) recommendations present various simplified approaches for the design
of foundations on reinforced soil by rigid inclusions. The selected approaches enable
engineers to evaluate force distribution between the soil and the inclusions, as well as
assess settlement, and horizontal displacement in inclusion design. The MV3 model is

58 Chapter 3 Literature review: Numerical dynamic SSI studies



employed when considering purely vertical loading of the footing, while the MH3 model
is used for purely horizontal loading. These models were initially introduced by Simon
(2010) and have proven to be valuable design tools.

The proposed methodology comprises five sequential steps with a focus on achieving
equilibrium either for the reinforced soil cylinder, known as the "monolith", with the same
perimeter as the foundation, or for a single inclusion subjected to the same prescribed
vertical or lateral displacement field, as depicted in Figure 3.13.

Fig. 3.13. Monolith approach MV3 and MH3 (Simon, 2010) with step 1: determination of
equivalent modulus of the monolith with an elementary model, step 2: determination
of vertical displacement in the monolith, step 3: application of the vertical displacement
to the elementary model, step 4: application of horizontal and moment to the monolith,
and step 5: application of the horizontal displacement to the elementary model

In the first step, the equivalent modulus of the monolith is determined by analysing an
elementary cell under vertical loading conditions. The second step involves studying the
equivalent monolith with exterior soil-soil friction as a fictive pile. This analysis aims to
determine the vertical displacement field within the monolith. Moving to the third step,
the vertical displacement field obtained from the previous analysis is applied to the single
inclusion model. This step enables the assessment of the vertical response, including
settlement and force distribution.

Continuing with the analysis of the horizontal response, the fourth and fifth steps are
employed. In the fourth step, a horizontal load is applied to the monolith, treating it as
a single pile. This load induces a horizontal displacement profile within the monolith.
Finally, in the fifth step, the obtained displacement profile is applied to the single inclusion
model. This step allows for the assessment of the horizontal response, including the
horizontal displacement and the interior forces within the inclusion.

These steps can be addressed using various numerical modelling, including the typical
Winkler-type model or other numerical techniques such as the finite element method. The
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more details can be found in the work of Simon (2010), Cuira and Simon (2013), and
Alzate et al. (2022).

3.3.4 Multi-phase model

The theory of the multi-phase model is based on the homogenisation approach (de Buhan,
2005). This approach entails viewing the composite reinforced soil as a homogeneous
medium with anisotropy resulting from the orientation of the implemented inclusions.
The multi-phase model characterised the global behaviour of inclusion-reinforced soil at a
macroscopic scale as the homogenisation approach. Different from the homogenisation
approach, it achieves this by separately homogenising the soil and the inclusions. The
model combines multiple media, referred to as "phase", each representing either the soil
or a family of inclusions in a specific direction. The interaction between different phases is
established through the interaction efforts (Hassen, 2006). The multi-phase model offers
the advantage of the homogenisation approach in terms of computational efficiency while
explicitly considering the effects of shear and flexion stiffness of inclusions, addressing
the limitation of the homogenisation approach.

A soil reinforced with a single family of vertical inclusions can be characterised using a
two-phase model based on the concept of the multi-phase model. This model involves two
distinct phases: the "matrix phase" representing the soil and the "reinforcement phase"
representing the inclusions. In the reinforcement phase, the beam-type characteristics
are described using three degrees of freedom for translation ξr and an additional three
degrees of freedom for rotations ωr, forming a micropolar continuum (de Buhan et al.,
1998). These distinctions are illustrated in Figure 3.14. The interaction forces between the
two phases are determined by the constitutive relation between the interaction stiffness
and the difference in deformation between the two phases. When the interaction is not
considered, this term is zero.

Fig. 3.14. A two-phase model for a soil reinforced by vertical inclusions (Hassen, 2006)

The multi-phase model has been utilised in various studies (de Buhan, 2005; Hassen,
2006; Son, 2009; Guéguin, 2014) to address different reinforced soil problems.

The homogenisation method was employed by Guéguin (2014) to assess the overall
behaviour of reinforced soil structures, considering both stiffness properties and strength
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properties. The study introduces upper-bound and lower-bound expressions to evaluate
the longitudinal shear modulus of soil reinforced with circular cylindrical inclusions, as
described in Equations 3.1 and 3.2. Additionally, the research evaluates the reinforcement
effect for different modules, as depicted in Figure 3.15.

Gupper
V = Gs

(
1 + 2η(Gr −Gs)

Gr +Gs − (4η/π)(Gr −Gs)
)

(3.1)

Glower
V = Gs

(
1 − 2η(Gr −Gs)

Gr +Gs + (4η/π)(Gr −Gs)
)−1 (3.2)

Fig. 3.15. Modulus ratios for column reinforcement (Guéguin, 2014)

Nguyen (2015) made significant progress by extending the multi-phase model to tackle
the dynamic problems. The model successfully represents the reinforced soil masses under
the assumption of elastic linearity, considering multiple phases to account for the presence
of inclusion reinforcement. The extended model incorporates the longitudinal interaction
between the soil and inclusions, as well as the bending and shear effects of the inclusions.
It is demonstrated that the multi-phase model simplifies numerical implementation,
substantially reduces computation time, and minimises computer memory usage compared
to the direct approach. The model’s accuracy and reliability are confirmed through
comparisons with extensive parametric studies conducted with the hybrid finite element-
boundary element analysis.

Nevertheless, in common practice, homogenisation and multi-phase models are not
frequently employed.

3.4 Computer-based numerical technique

Various numerical resolution methods are available, each tailored and sometimes spe-
cialised for addressing diverse challenges such as pseudo-static response, transient re-
sponse, stability domain calculation, and more. The choice of modelling technique
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depends on the specific problem at hand, with certain methods being more advantageous
for particular conditions. Gaining a clear understanding of these distinctions is essential
for selecting the most suitable method to achieve the intended objectives. This section
aims to briefly explain the different numerical techniques.

3.4.1 Finite element and finite difference analysis

The advancements in computing power and commercial calculation software have greatly
facilitated the use of sophisticated numerical analyses in engineering, including geotech-
nical engineering problems. The finite element method or the finite difference method is
widely employed in geotechnical engineering analysis software packages such as PLAXIS
(Bentley, 2022b), ABAQUS (Dassault Systemes, 2023), and FLAC (Itasca Consulting Group,
2023), which are based on these numerical techniques.

The utilisation of these numerical methods enables comprehensive modelling within the
direct approach framework. The main benefit of employing these numerical methods lies
in their capacity to depict the complex behaviour of soils and structural elements under
different loading conditions. Through these numerical techniques, the response of both
structures and soils can be simulated more realistically by solving a system of equations
derived from the discrete domain.

Nevertheless, it is important to note that employing these numerical methods presents
certain challenges, as discussed in Section 3.2.1. One notable challenge is the compu-
tational cost involved in conducting these analyses. Performing large-scale numerical
modelling necessitates significant computational resources and time. Additionally, the
accuracy and appropriateness of input data, material models, and boundary conditions
are critical factors in the reliability of the numerical models. In some particular modelling,
the mesh quality can also play an important role. Careful post-treatment and validation of
the numerical results are always indispensable.

3.4.2 Finite element limit analysis

Finite Element Limit Analysis (FELA) is a modelling technique that has garnered increasing
attention in recent years (Sloan, 2013). This technique has the potential to overcome
many of the shortcomings of both the finite element method and limit analysis approaches.
FELA enables rapid computation of rigorous upper and lower bound plasticity solutions,
significantly faster than traditional finite element modelling techniques.

Different from the traditional limit analysis, which involves determining a statically
admissible stress field and a kinematically admissible velocity field, FELA offers a numerical
alternative approach for obtaining lower and upper bound limit solutions without the
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need to define the form of the stress and velocity fields. One of the advantages of FELA is
its ability and flexibility to handle complex systems with non-homogeneous soil conditions
and complex geometry, as it does not require any prior assumptions. However, FELA, as a
pseudo-static analysis, considers the problem within the context of pseudo-static loading,
neglecting wave propagation in the model.

To further enhance the accuracy and efficiency of the FELA solution and minimise numeri-
cal errors and computational costs, an adaptive mesh refinement (AMR) technique can be
used to dynamically adjust the mesh by increasing the number of elements in regions that
require more precision and reducing the mesh density in not essential areas.

The software OPTUM G2 (Optum Computational Engineering, 2021) is a robust and pow-
erful tool designed for solving 2D static or pseudo-static geotechnical stability problems
using the FELA approach.

A wide range of available soil constitutive laws have been implemented in the software
which allows for the modelling of beam elements, pile elements, and interface elements.
OPTUM G2 incorporates the AMR technique to improve the solution quality and accu-
racy.

3.4.3 Hybrid finite element method - boundary integral equation
analysis

In cases where the problem lies within the elastic or equivalent elastic domain (shear
deformation smaller than 0.1 %), the superposition theorem can be applied by dividing
the problem into a series of simpler sub-problems. Each sub-problem can be solved
independently, and their results are combined in the final step of the analysis to obtain
the complete solution.

The sub-structuring approach addressing to dynamic SSI problem can be classified into
four categories based on how the interaction at the soil-structure interface is treated.
These categories include rigid boundary, flexible boundary, flexible volume method and
substructure subtraction method (Ostadan and Deng, 2011), as depicted in Figure 3.16.

Fig. 3.16. Different sub-structuring methods

In the flexible volume method, it is assumed that the free-field site and the excavated soil
volume interact both at the boundary of the excavated soil volume as well as within its
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volume (Lysmer et al., 1981). One example of calculation software using this resolution
technique is SASSI (System for Analysis of Soil-Structure Interaction). SASSI utilises
the flexible volume method of the sub-structuring approach to address a wide range
of 2D and 3D dynamic SSI problems. This method allows for an accurate treatment of
wave propagation in the soil and accounts for the dynamic interaction between structural
elements and soil.

In a typical model based on the sub-structuring method in SASSI, the total soil-structure
system is partitioned into three sub-structures, as illustrated in Figure 3.17.

Fig. 3.17. Sub-structuring in the flexible volume method

The first sub-structure, known as the free field site, consists of semi-infinite visco-elastic
horizontal layers on semi-infinite visco-elastic half-space, where Green’s function is em-
ployed to calculate an impedance matrix for the degrees-of-freedoms at the so-called
interaction nodes (Lysmer et al., 1981). The second and third sub-structures are mod-
elled using the finite elements method. Consequently, the SASSI calculation program is
regarded as a hybrid model, combining both the boundary integral equation (BIE) and
finite element methods (FEM).

3.5 Summary

This chapter provides a summary of the numerical approaches.

An introduction of the general modelling strategies for dynamic SSI analyses has been pre-
sented, covering the direct approach, substructuring approach and hybrid macro-element
model, along with their respective applications. The advantages and disadvantages of each
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approach are discussed, highlighting the benefits of the macro-element models, which
combine the advantages of both approaches and demonstrate promising engineering
potential. A detailed bibliography focusing on the macro-element is provided. With this
overview of its applications, it is worth noting that the practical engineering application
of the macro-element approach is still limited. Its utilisation is primarily concerned with
academic examples with few specific engineering cases.

Additionally, the chapter presented typical numerical approaches that have already been
applied to investigate dynamic SSI problems in the context of rigid inclusion-reinforced
foundation. The Winkler-type model, due to its simplicity, is also widely applied in
engineering. The yield design theory can be considered as a good tool and already
solved several problems. These promising approaches have shown great potential in their
application. However, some improvement or validation is still needed to adapt them to
treat the dynamic problem. The numerical techniques employed for numerical modelling
are also described.

It is important to emphasise that while numerical modelling is a powerful and useful tool,
careful post-treatment is always necessary to accurately interpret the numerical results.
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Conclusion

This part of the dissertation delved into the dynamic behaviour of inclusion-reinforced
soil in geotechnical engineering, with a specific focus on seismic loading conditions.

The literature review in this part began by introducing the concept of the rigid inclusion-
reinforced foundations. The main interaction mechanisms of foundations on rigid in-
clusions were presented representing the advantages of this improvement technique.
The disconnection between the inclusion and the foundation can mitigate the stress
concentration at the heads. The presence of the gravel LTP contributes to dissipating the
energy with controlled mechanisms in LTP. Furthermore, the notions related to dynamic
SSI are presented and particularly analysed in the context of rigid inclusion-reinforced
foundation.

The comprehensive presentation of experimental research conducted in this part shed
light on the dynamic SSI behaviour of inclusion reinforced soil, considering both with and
without the presence of a superstructure. The observation obtained in the experimental
research confirmed the supposed interaction mechanisms in the inclusion-reinforced
foundation. Some other factors which may play a role in such foundation were also
investigated, such as the thickness of the LTP, the gravel grade of the LTP and so on. This
review of existing studies revealed a scarcity of research on the dynamic response of foun-
dations supported by rigid inclusion-reinforced soil. Consequently, further investigation is
deemed essential to enhance our understanding of the key phenomena influencing the
linear and non-linear dynamic response of such a system.

Moreover, the literature review on the numerical modelling methodology and theory was
also discussed. The general SSI modelling strategies can be employed, with a particular
emphasis on the SSI macro-element approach. Macro-element modelling was proven to be
an effective tool for analysing dynamic SSI problems. Some typical theories and modelling
approach which are assigned specially to study the inclusion-reinforced soil have shown
their potential. However, exploration is still needed to make the typical modelling more
adaptive to solve the dynamic SSI problem for inclusion reinforcement.

In this part, the existing numerical and experimental research has already provided
valuable insights, primarily within the research domain. However, transitioning towards
research focused that emphasises engineering application is essential to bridge the gap
and facilitate practical utilisation. Additionally, there is a need for more systematic studies
on the kinematic and inertial interaction effects of such foundations, as addressed in the
next part of this dissertation.
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Part II

Linear elastic SSI study





Introduction

In the case where inclusions play a vital role in ensuring the stability and bearing capacity
of the structure, it becomes imperative to ensure that this is no compromise in the
functionality of inclusions during an earthquake event. It is commonly recommended
that these inclusions and the surrounding soil should maintain their behaviour within the
elastic domain. Consequently, it is essential to study the linear elastic behaviour of the
rigid inclusion-reinforced foundation. Moreover, under the assumption of the linear elastic
behaviour, Kausel’s decomposition (Kausel et al., 1978) can be applied. This approach
enables the separate investigation of the kinematic et inertial interaction effects.

As highlighted in Chapter 1, the influence of kinematic interaction leads to modifications
in ground motion owing to the contrast in rigidity between the foundation elements and
the soil. This modification also encompasses soil deformation caused by wave propagation,
resulting in additional stresses.

The inertial interaction is characterised by dynamic impedance functions that fluctuate
based on the frequency of excitation. The inertial force stemming from the mass of the
superstructure is imposed upon the foundation system, giving rise to supplementary forces
acting on the foundation elements.

Therefore, this part of the dissertation focuses on investigating the dynamic SSI behaviour
of the soil and foundation reinforced with inclusions within the linear elastic domain. It
primarily addresses four key questions:

• How does the presence of foundation elements, including rigid inclusions and LTP,
modify ground motion?

• How do the dynamic impedance functions change with frequency?

• What are the inertial forces that arise within rigid inclusions?

• What are the kinematic forces induced in rigid inclusions by wave propagation?

The first two phenomena are attributed to the kinematic interaction effect, while the last
two subjects are associated with the inertial interaction effect.

Chapter 4 aims to investigate the ground motion modification attributed to kinematic
interaction effects. The study first focuses on the ground motion modification of shallow
foundations, pile foundations, and foundations reinforced by rigid inclusions subjected
to harmonic loading. Furthermore, various configurations of foundations reinforced by
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rigid inclusions are examined to establish a comprehensive rule regarding ground motion
modifications induced by foundation elements. Multiple seismic excitations, consistent
with regulatory spectra, are also utilised to validate the responses of distinct foundation
systems.

Advancing in the exploration, Chapter 5 redirects its focal point towards dynamic
impedances - an essential determinant influencing the dynamic behaviour of SSI within
the system. A comprehensive comparative study ensues, aiming to illuminate both the
similarities and differences inherent in diverse foundation systems, including shallow
foundations, pile foundations, and inclusion-reinforced foundations. The comparison is
also conducted between the different configurations of foundation on inclusion reinforced
soil.

Within Chapter 6, the scope of investigation broadens to encompass inertial forces within
the inclusions. A series of linear pseudo-static numerical models, inspired by real projects
and employing a direct modelling approach, is undertaken. These models are employed
to thoroughly explore the inertial interaction effects of foundations on rigid inclusions. In
addition, design charts are included to enhance comprehension of these effects, facilitating
their integration into the preliminary design phase of projects.

Chapter 7 delves comprehensively into analysing kinematic forces generated by wave prop-
agation. Seismic excitation is applied to the foundation reinforced by rigid inclusions, and
the resultant bending moment within these inclusions is assessed. The study encompasses
diverse soil profiles to study the influence of soil variations on bending moment. Within
this analysis, the bending moment profile derived from the pseudo-static approach is
compared against the outcome of the dynamic analysis approach with complete modelling.
The comparison is executed to validate the practicality of the pseudo-static approach.
Furthermore, the group effect is explored by comparing the bending moment profiles of
differently positioned inclusions.
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Ground motion modification by
rigid inclusion reinforcement

4

4.1 Ground motion modified by foundation elements

The presence of foundation elements introduces a rigidity contrast in the soil and modifies
the wave propagation. Consequently, the signals reaching the base of the superstructure
differ from those in cases where no foundation elements are present. This phenomenon,
resulting from the kinematic interaction effect, has been extensively explored for both
shallow and pile foundations (Gazetas, 1984; Kaynia and Novak, 1992; Gazetas et al.,
1993; de Sanctis et al., 2015).

To quantitatively assess this modification in ground motion, Gazetas (1984) employed a
displacement kinematic interaction factor for pile foundations under upward SH-waves.
Building upon this foundational concept, a comparable displacement kinematic interaction
factor Iu can be introduced to quantify this modification.

Iu = uF

u0
(4.1)

where uF represents the horizontal displacement at the ground surface of a foundation,
while u0 signifies the free field surface displacement, as illustrated in Figure 4.1.

Fig. 4.1. Ground motion for a free field and for a foundation reinforced by rigid inclusions

Ground motion modification does not occur in the case of a shallow foundation without
embedment under upward SH-wave excitation. Consequently, for a non-embedded
shallow foundation, the displacement kinematic interaction factor retains a value of unity.
Conversely, in the case of a pile foundation, the alteration of ground motion due to the
kinematic effect exhibits a substantial reliance on parameters such as the frequency of
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excitation, the stiffness ratio between the soil and pile, the slenderness of the pile, and
other parameters.

Drawing inspiration from these prior investigations conducted on pile foundations, this
chapter delves into the study of ground motion modification under upward SH-waves
within the specific context of foundations reinforced by rigid inclusions. The parametric
study in this chapter is conducted as follows:

• Comparative analysis under harmonic excitation for various foundation types.

• Investigation of the impact of different characteristics in reinforced foundations.

• Comparative study under seismic excitation for various foundation types.

4.2 Response of different foundation systems under
harmonic excitation

4.2.1 Studied configurations

The reference configuration used in this study is illustrated in Figure 4.2. It encompasses
a 10 m × 10 m rigid shallow foundation positioned on a 0.5 m-thick LTP, extending
beyond the edges of the shallow foundation by 0.5 m. Detailed soil profile parameters are
presented in Table 4.1.

Fig. 4.2. Reference configuration of rigid inclusion-reinforced foundation used in the study of
ground motion modification

The rigid inclusions, with a length of 10 m, are embedded 0.5 m into the hard soil layer.
In the reference configuration, the inclusions have a diameter of 0.42 m, a dimension
commonly used in France. A centre-to-centre spacing of 2 m is applied.
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Tab. 4.1. Mechanical properties of soil and foundation

Soft
soil

Hard
soil Bedrock LTP

Rigid
inclusions

Shear modulus G (MPa) 45 320 2 500 125 12 500
Young’s modulus E (MPa) 130.5 928 7 250 362.5 30 000
Shear wave velocity Vs (m/s) 150 400 1 000 250 2 236
Poisson’s ratio ν (-) 0.45 0.45 0.45 0.35 0.2
Mass density ρ (t/m3) 2.0 2.0 2.5 2.0 2.5
Material damping ratio ξ (-) 0.05 0.05 0.05 0.05 0

In the context of a pile foundation, the concept of transfer length l0 is significant for
quantifying the relative stiffness between the pile and the soil. If the total length of a
pile exceeds three times the transfer length l0, it can be considered flexible in terms of its
transverse response. Given the characteristics of rigid inclusions, their transfer lengths
can be estimated using Equation 4.2. It is worth noting that in the studied configurations,
all these rigid inclusions are considered flexible in terms of their transverse response.

l0 = 4

√
4EpIp

Es
(4.2)

where Ep represents the Young’s modulus of pile, Ip signifies the quadratic moment of
section area of rigid inclusions, and Es stands for the linear lateral reaction modulus. The
value of Es under seismic loading can be approximated using the soil shear modulus, as
described by Equation 4.3 proposed by Gazetas et al. (1993).

Es = 2.4(1 + ν)G (4.3)

This section presents a comparison of ground modification across various foundation
systems. The assessed foundation configurations are depicted in Figure 4.3. The primary
characteristics of these configurations are outlined in Table 4.2.

Tab. 4.2. Main characteristics of studied configurations

Case
Number of
inclusions

Length of
inclusions Spacing

Diameter of
inclusions

(-) (m) (m) (m)

(a) Free field - - - -
(b) Shallow foundation - - - -
(c) Shallow foundation with LTP - - - -
(d) Pile foundation 25 10 2 0.42
(e) Pile foundation with LTP 25 10 2 0.42
(f) Foundation on rigid inclusions 25 10 2 0.42
∗piles in case of pile foundation and rigid inclusions in case of inclusion-reinforced foundation
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Fig. 4.3. Layout of different foundation systems

4.2.2 Model description

As previously mentioned, the objective of this chapter is to investigate the alteration of
ground motion resulting from the kinematic interaction effect. The investigation employs
a hybrid BIE - FEM model, which is constructed within the framework of SASSI2010
program (Ostadan and Deng, 2011). This hybrid approach, presented in Section 3.4.3,
provides a comprehensive approach to address the problem in the frequency domain. It
facilitates the accurate consideration of wave propagation within the soil and appropriately
accounts for the dynamic interaction between inclusions and soil.

A visualisation of the numerical modelling for a foundation reinforced with rigid inclu-
sions is presented in Figure 4.4(a). The illustration highlights the foundation, the rigid
inclusions, and the granular LTP. In this model, the soil is represented by horizontal layers
with visco-elastic behaviour atop a half-space, simulated through interaction nodes, as
depicted in Figure 4.4(b).

The foundation is simulated by a weightless three-dimensional rigid beam grid, as exem-
plified in Figure 4.4(c). The explicit modelling of the LTP is demonstrated in Figure 4.4(d).
Inclusions are modelled using beam elements, disconnected from the shallow foundation,
as illustrated in Figure 4.4(e). Utilising beam elements for modelling rigid inclusions can
significantly increase calculation efficiency without compromising the results. Mánica
Malcom et al. (2016) have demonstrated that the beam element can reproduce the same
axial and bending stiffness and can adequately interact with the surrounding soil.

The LTP is explicitly represented through 8-node hexahedral volume elements. To ensure
accurate propagation of dynamic waves across the relevant frequency range, a sufficiently
fine mesh is employed, ensuring that the largest dimension remains less than 1/8 of
the shortest wavelength. The model is subjected to upward SH-wave excitation without
inclination.
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Fig. 4.4. Modelling of rigid inclusion reinforced foundation in SASSI: (a) global layout of model,
(b) interaction nodes, (c) shallow foundation, (d) LTP, (e) rigid inclusions

4.2.3 Response under harmonic excitation

A harmonic excitation is first applied to the foundation systems. Figure 4.5 shows the
kinematic interaction factor concerning a foundation reinforced by rigid inclusions, in
addition to two different shallow foundation configurations. These two shallow foundation
configurations are proposed to examine the impact of rigid inclusions and the LTP on
ground motion modification.

The variation of the kinematic interaction factor is depicted with the dimensionless
frequency a0, as defined in Equation 4.4.

a0 = πfB

Vs
= ωB

2Vs
(4.4)

where B stands for the foundation width, f represents the loading frequency, ω represents
the circular frequency, and Vs indicates shear wave velocity.

As anticipated, the kinematic interaction factor Iu for the shallow foundation remains
equal to unity within the selected frequency range. Furthermore, the addition of an LTP
in the shallow foundation leads to a minor reduction in the kinematic interaction factor
Iu, primarily noticeable for dimensionless frequency a0 exceeding 4. However, in contrast,
a more pronounced variation is observed for the rigid inclusion-reinforced foundation,
characterised by a mitigation of approximately 10 % at a frequency of 17.5 Hz, due to the
presence of rigid inclusions.
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Fig. 4.5. Evolution of kinematic interaction factor for a rigid inclusion-reinforced foundation and
comparison to other shallow foundation systems

The calculated kinematic interaction factor Iu, applied to the foundation reinforced by
rigid inclusion as well as two pile foundation configurations, showcases a frequency-
dependent feature, as depicted in Figure 4.6. The objective of this comparison is to study
the impact of the connection between the piles and the raft foundation on the ground
motion. All three analyses exhibit a similar trend. Significantly, the surface displacement
is more adversely affected in the context of pile foundations. This phenomenon can be
attributed to the specific connection between the piles and the raft foundation.
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Fig. 4.6. Evolution of kinematic interaction factor for a rigid inclusion-reinforced foundation and
comparison to other deep foundation systems
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4.3 Influence of different characteristics of soil
improvement under harmonic excitation

4.3.1 Studied configurations

A parametric investigation is conducted, building upon the reference configuration il-
lustrated in Figure 4.2. The study involves the manipulation of parameters such as the
stiffness of the soft soil, the diameter of inclusions, and their centre-to-centre distance.

Key attributes of the configurations used in this study are outlined in Table 4.3. The main
characteristics of different groups are listed as follows:

• Group A: reference configuration (α = 3.46 %);

• Group B: shear wave velocity Vs, 100 m/s for B01 and 200 m/s for B02;

• Group C: coverage area ratio α, α = 2.01 % for C01, α = 5.31 % for C02 and α =
7.54 % for C03 ;

• Group D: centre-to-centre spacing, 1.5 m for D01 and 2.5 m for D02.

It should be noted that the change of the centre-to-centre spacing leads to an increase in
the number of inclusions in Case D01.

The parameter α, referred to as the "coverage area ratio", quantifies the surface area of
its cross-section to that of the reinforcement grid, as described in Equation 4.5. This
parameter is an essential factor for reinforcement efficiency.

α = πd2

4s2 (4.5)

Fig. 4.7. Layouts of the rigid inclusions with different spacings

The displacement kinematic interaction factor Iu, as presented in Equation 4.1, is also
used here to study the influence of different characteristics of rigid inclusion ground
improvement.

4.3 Influence of different characteristics of soil improvement under
harmonic excitation
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Tab. 4.3. Main characteristics of studied configurations

Group Case
Fundamental

frequency fs (Hz) L/d Ep/Es s/d α (%)
Vs of

soft soil

A 01 3.50 23.8 230 4.76 3.46 150
B 01 2.42 23.8 517 4.76 3.46 100

02 4.43 " 129 4.76 " 200
C 01 3.50 31.3 230 6.25 2.01 150

02 " 19.2 " 3.85 5.31 "
03 " 16.1 " 3.23 7.54 "

D 01 3.50 23.8 230 3.57 6.15 150
02 " " " 5.95 2.22 "

4.3.2 Influence of soil stiffness

Group B is designed to explore the influence of soil stiffness on the kinematic interaction
effect. Kinematic interaction factors Iu of different cases are illustrated in Figure 4.8. The
reduction in kinematic interaction factor Iu is notable when the dimensionless frequency
a0 exceeds 2.
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Fig. 4.8. Evolution of kinematic interaction factor for rigid inclusion-reinforced foundations with
different soft soil stiffness

In Case B01, where the shear wave propagation velocity Vs of the soft soil is 100 m/s, the
variation of the kinematic interaction factor Iu is more pronounced than in the other two
cases. When the shear wave propagation velocity of the soft soil is increased to 200 m/s,
the reduction becomes less prominent.

4.3.3 Influence of coverage area ratio

Figure 4.9 showcases the impact of coverage area ratio α on the modification of ground
motion. The reduction in ground motion is not evident for dimensionless frequencies a0

below 3. Notably, larger diameters, representing a large coverage area ratio α, exert a
more pronounced influence on ground motion.
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Fig. 4.9. Evolution of kinematic interaction factor for rigid inclusion-reinforced foundations with
coverage area ratios of inclusions

In Case C03, where the coverage area ratio α is 7.54 %, the ground motion attenuation
reaches 25 %. However, in contrast, for Case C01 with a coverage area ratio α of 2.01 %,
the ground motion reduction is up to 5 %.

4.3.4 Global effects of different soil improvement configurations

Similar filtering effects as observed in pile groups are evident. These comprehensive
parametric studies reaffirm that ground motion modifications are seldom observed at low
frequencies. The impact becomes relatively pronounced solely at higher frequencies. By
definition, the kinematic interaction is notably influenced by the rigidity contrast between
the soil and foundation elements. In scenarios featuring softer soil and a larger coverage
area ratio, the effects of kinematic interaction become more pronounced.

After conducting these extensive case studies, it is important to find a general pattern
that can explain how ground motion changes based on configuration parameters such as
soil stiffness and coverage area ratio. To achieve this, the kinematic interaction factor Iu

is depicted against a dimensionless frequency F , inspired by the approach proposed by
Gazetas (1984) for pile groups:

F = f

fs

(
L

d

)−0.35 (Ep

Es

)0.5 (s
d

)0.2
(4.6)

Where f represents the excitation frequency, fs is the natural frequency of the soil column,
Ep ⁄ Es stands for the ratio of inclusion elastic modulus to soil elastic modulus, L ⁄ d
signifies the ratio of the length of inclusions to their diameter, representing the slenderness
of inclusions, s ⁄ d is the ratio of the centre-to-centre distance between inclusions to the
diameter of inclusions.

4.3 Influence of different characteristics of soil improvement under
harmonic excitation
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The outcomes are presented in Figure 4.10, which includes a trend curve to illustrate
the main pattern. This observation confirms the impact of rigid inclusions at the high-
frequency response, influencing the signal reaching the base of the structure. This
phenomenon implies a potentially advantageous impact on the response of the structure,
which is also in accordance with those already reported in the literature for pile groups
(Kaynia, 1982).

Two distinct ranges can be roughly distinguished at F = 25. The first range indicates
an absence of kinematic interaction effects, while the second range signifies kinematic
interaction effects that are substantial. For instance, in the case of configuration C02,
with an inclusion diameter d of 0.52m, and subjected to a 4 Hz excitation, no significant
modification is observed. However, under a higher-frequency harmonic load of 18 Hz, a
notable 20 % reduction in the signal at the base becomes apparent.

Fig. 4.10. Kinematic interaction factor as a function of the dimensionless frequency F

4.4 Response of different foundation systems under
seismic excitation

4.4.1 Seismic excitation

After the investigation of the responses of the foundation under harmonic excitation,
the study subsequently shifts to seismic excitation. The seismic input motion employed
is derived from the elastic design response spectrum specified in Eurocode 8 (AFNOR,
2007). Five artificial accelerograms in accordance with the design spectrum have been
formulated using the approach proposed by Gasparini and Vanmarcke (1976). This
method establishes a correlation between the response spectrum and the spectral density
function. A strong phase duration of 20 seconds is adopted.

Figure 4.11 illustrates the response spectra at 5% damping for each of the calculated
accelerograms (depicted by dashed curves), the average spectrum derived from the
five accelerograms (depicted by the red curve), and the target spectrum (represented
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by the black curve). These five accelerograms serve as the input excitation sources,
and the subsequent results showcase the averaged system response under five different
accelerograms.

Fig. 4.11. Comparison of the average spectrum of artificial accelerograms and the target spectrum

Fig. 4.12. Time history of artificial accelerograms

4.4.2 Response under seismic excitation

This section explores the modification of signal at the base of the structure arising from
seismic excitation, owing to the presence of rigid inclusions. The analysis centres on
comparing the kinematic responses of three foundation types: a foundation reinforced by
rigid inclusions, a shallow foundation with LTP, and a pile foundation. Each configuration’s
kinematic response is characterised by the acceleration time history, which is subsequently
transformed into pseudo-acceleration response spectra.

The pseudo-acceleration spectra for the three foundation configurations, under both
accelerogram 1 and accelerogram 2, are depicted in Figure 4.13. The pseudo-acceleration
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is represented as a function of frequency, normalised by the horizontal fundamental
frequency of the soil column fs, which in this case is 3.5 Hz. Upon observation, it
becomes apparent that there are negligible differences at low frequencies among the three
foundation configurations. At higher frequencies, the pseudo-acceleration of the shallow
foundation closely resembles the free field response. Conversely, the pile foundation can
filter out high-frequency components, thereby reducing the pseudo-acceleration. The
inclusion-reinforced foundation also demonstrates a capacity for attenuating the system’s
responses. However, this reduction is comparatively less significant than that observed
with the pile foundation.
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Shallow foundation with LTP
Pile foundation
Free field

Fig. 4.13. Pseudo-acceleration PSA at the centre of the foundation with accelerogram 1

To facilitate a more precise quantification of the response in comparison to a free field, the
presented response spectra are normalised based on those obtained at the surface of the
soil column in the free field. This normalisation approach allows for the establishment of a
pseudo-acceleration kinematic interaction factor (IP SA), which can be defined according
to Equation 4.7.

IP SA = PSAri

PSA0
(4.7)

where PSAri is the spectral pseudo-acceleration for the ground motion with the founda-
tion on rigid inclusions and PSA0 is the free field spectral pseudo-acceleration.

In Figure 4.14, the solid curves represent the average response derived from the five
artificial accelerograms. These curves are enveloped by the range of maximum and
minimum responses.

For a shallow foundation with LTP (blue curve), the response spectrum closely mirrors
that of the free field, rendering it acceptable to disregard kinematic interaction effects.
Regarding a pile foundation (green curve), the presence of piles leads to a notable
attenuation of the response spectrum (up to -25% at higher frequencies), distinct from
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Fig. 4.14. Comparison of pseudo-acceleration kinematic interaction factors between several types
of foundations

the free field response. In contrast, for a foundation reinforced by rigid inclusions (black
curve), the alteration of the response spectrum is minimal (less than 10 %) and becomes
evident only for SSI frequencies exceeding three times the fundamental frequency of the
soil column fs. Therefore, it can be concluded that in most scenarios, neglecting the
effects of kinematic interaction on the input motion may be deemed acceptable.

4.5 Summary

This study explores the kinematic interaction effect for foundations reinforced by rigid
inclusions under harmonic and seismic excitation. The numerical analyses address a
significant aspect of SSI stemming from kinematic interaction: the modification of the
signal at the base of the structure due to the presence of the foundation elements.

Concerning the modification of input motion at the base of the structure, kinematic
interaction factors Iu are calculated. The results reveal an attenuation of high-frequency
signal amplitude, attributed to the presence of inclusions and the LTP. This reduction can
be as significant as 20 %.

A set of five artificial accelerograms is employed to explore the modification of ground
motion. While a similar trend to that observed for pile foundations is evident, the
amplitude of the ground motion modification evaluated by pseudo-acceleration kinematic
interaction factor IP SA is notably smaller in the case of foundations on rigid inclusions.

Furthermore, the observations outlined in the different soil improvement configuration
studies emphasise that the presence of inclusions has the potential to modify the seismic
motion reaching the base of a structure. This modification is particularly pronounced for
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high values of the dimensionless frequency, which is associated with a high-frequency
loading, a high coverage area ratio, utilisation of large diameter inclusions, or the presence
of softer soil.

While engineering practice often focuses on vertically propagating SH-waves, it remains
interesting to study the impact of inclined SH-waves, SV-waves and Rayleigh waves in
future work.
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Dynamic impedances for a rigid
inclusion-reinforced foundation

5
5.1 Concept of foundation dynamic impedances

An essential step in the current approach to dynamic analysis of SSI systems under
seismic or machine-induced inertial loading is the estimation of the dynamic impedance
functions, using analytical or numerical methods. Incorporating the dynamic impedances
of a foundation into the dynamic SSI analysis allows for the accurate modelling of SSI,
enabling a comprehensive assessment of the dynamic behaviour of the soil-foundation-
structure system. The chapter is dedicated to the study of dynamic impedances for
foundations reinforced by rigid inclusions.

To understand the concept of the dynamic impedances of a foundation, drawing a close
analogy with a single-degree-of-freedom (SDOF) damped oscillator is insightful. The
harmonic response of a SDOF damped oscillator, represented as Ueiωt, can be deduced
by calculating the corresponding harmonic excitation, denoted as Feiωt, as shown in
Equation 5.1.

U = F

(k −mω2) + iωc
(5.1)

The expression for complex stiffness for the SDOF system is provided by Equation 5.2.

Z = (k −mω2) + iωc = k

[
1 −

(
ω

ωn

)2
+ 2iξ ω

ωn

]
(5.2)

In Equation 5.2, ωn denotes the angular frequency of the system, and ξ signifies the
damping ratio. This equation illustrates that the complex stiffness is the result of the static
stiffness k and the dynamic component

[
1 − ( ω

ωn
)2 + 2iξ ω

ωn

]
. The dynamic component

comprises a real part 1−
(

ω
ωn

)2
, which can turn negative when subjected to high-frequency

harmonic excitation, and an imaginary part 2iξ ω
ωn

.

The amplitude of the steady-static harmonic responses for this SDOF system can be given
in Equation as follows:
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ρ = F

k

[
(1 − ( ω

ωn
)2)2 + (2ξ ω

ωn
)2
]−1/2

(5.3)

Naturally, the ratio of the resultant harmonic response amplitude to the static displacement
which would be produced by the force F can be called the dynamic magnification factor D,
as defined in Equation 5.4.

D = ρ

F/k
=
[
(1 − ( ω

ωn
)2)2 + (2ξ ω

ωn
)2
]−1/2

(5.4)

When dealing with a weightless foundation, the complex stiffness, so-called dynamic
impedances, can also be defined as the ratio between the harmonic force (or moment)
F and the resultant harmonic steady-state displacement (or rotation) U at the centre of
the foundation (Gazetas, 1991a). However, due to the presence of radiation and material
damping within the soil-foundation system, there is always a phase shift between the
resulting displacement U and the applied force F . Similar to Equation 5.2, the dynamic
impedance function Z can thus be expressed as Equation 5.5, which contains also a real
component, and an imaginary component.

Z = F

U
= ℜ(Z(ω)) + ℑ(Z(ω)) (5.5)

with

ℜ(Z(ω)) = K(ω) (5.6)

and

ℑ(Z(ω)) = iωC(ω) (5.7)

The real component K, referred to as "dynamic stiffness", reflects the stiffness of the
soil-foundation system. The imaginary component ωC, is the product of the excitation
circular frequency ω and the "dash-pot matrix" C, as described in Equation 5.7. The
"dash-pot matrix" C reflects the radiation and material damping generated in the system
due to energy carried by waves spreading away from the foundation and energy dissipated
in the soil through hysteretic action.

Additionally, the damping ratio for different degrees of freedom can be calculated using
Equation 5.8.

ξi(ω) = ωCi(ω)
2Ki(ω) (5.8)
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The same dynamic magnification factor D for the foundation for each direction can be
also defined in Equation 5.9 as the same for the SDOF damped oscillator.

Di(ω) = Ui(ω)
Ui(ω = 0) (5.9)

This factor is an important index describing the amplification and attenuation of the
steady-state response of the foundation system varied with the frequency compared with
the static response.

Numerous research studies have delved into the dynamic impedances in both shallow
foundations and pile foundations. For shallow foundations, extensive work has been
conducted by researchers such as Kausel (1974) and Gazetas (1984, 1991a,b). For a
shallow foundation without embedment, Deleuze (1967) have contributed valuable design
charts to facilitate the estimation of dynamic impedances with respect to frequencies.
Similarly, investigations concerning pile foundations have been undertaken by researchers
including Novak (1974), Kaynia (1982), Novak (1991), and Gazetas et al. (1993).

However, in the context of inclusion-reinforced foundations, there is a need for a system-
atic exploration of dynamic impedances. The impedance functions, compassing dynamic
stiffness and damping, are influenced by a multitude of parameters, including soil charac-
teristics, foundation dimensions, inclusion configuration encompassing quantity, diameter,
and the spacing of inclusions.

5.2 Model description

The investigation of dynamic impedances for foundations predominantly occurs within the
elastic or visco-elastic framework. The hybrid BIE-FEM numerical model employed for the
exploration of kinematic interaction in Chapters 4 and 7 can be also used in the dynamic
impedance study. In this model, the foundation is represented as a weightless three-
dimensional rigid beam grid, which is a conventional assumption in the calculation of
dynamic impedances (Gazetas, 1991a). Elaboration on the numerical modelling principles
is furnished in Section 4.2.2, accompanied by an illustrative depiction of the adopted
model, as presented in Figure 5.1.

The analysis is executed within the frequency domain, encompassing a defined frequency
range. Specifically, the frequency interval chosen for the calculations spans from 0.1 to 20
Hz, utilising increments of 0.5 Hz. This frequency width is sufficiently small to adequately
capture the frequency-dependent behaviour of the dynamic impedances across the chosen
frequency range.
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Fig. 5.1. Calculation modelling for dynamic impedance functions

The outcome of the calculation yields a 6×6 compliance matrix S(ω) at the centre of the
foundation. This compliance matrix establishes the connection between the applied forces
F (ω) and the corresponding displacements U(ω) at the same point on the foundation.

U(ω) = S(ω)F (ω) (5.10)

where:

S(ω) =



Sxx(ω) Sxy(ω) Sxz(ω) Sxrx(ω) Sxry(ω) Sxrz(ω)
Syx(ω) Syy(ω) Syz(ω) Syrx(ω) Syry(ω) Syrz(ω)
Szx(ω) Szy(ω) Szz(ω) Szrx(ω) Szry(ω) Szrz(ω)
Srxx(ω) Srxy(ω) Srxz(ω) Srxrx(ω) Srxry(ω) Srxrz(ω)
Sryx(ω) Sryy(ω) Sryz(ω) Sryrx(ω) Sryry(ω) Sryrz(ω)
Srzx(ω) Srzy(ω) Srzz(ω) Srzrx(ω) Srzry(ω) Srzrz(ω)


(5.11)

The impedance matrix is derived by inverting the compliance matrix S(ω). As a result, the
dynamic impedances are expressed within a 6×6 complex impedance matrix Z(ω) that
varies with frequency ω, defined as follows:

Z(ω) = [S(ω)]−1

=



Zxx(ω) Zxy(ω) Zxz(ω) Zxrx(ω) Zxry(ω) Zxrz(ω)
Zyx(ω) Zyy(ω) Zyz(ω) Zyrx(ω) Zyry(ω) Zyrz(ω)
Zzx(ω) Zzy(ω) Zzz(ω) Zzrx(ω) Zzry(ω) Zzrz(ω)
Zrxx(ω) Zrxy(ω) Zrxz(ω) Zrxrx(ω) Zrxry(ω) Zrxrz(ω)
Zryx(ω) Zryy(ω) Zryz(ω) Zryrx(ω) Zryry(ω) Zryrz(ω)
Zrzx(ω) Zrzy(ω) Zrzz(ω) Zrzrx(ω) Zrzry(ω) Zrzrz(ω)


(5.12)

As discussed in Section 5.1, each term Zi(ω) within the complex impedance matrix Z(ω)
is associated with a stiffness parameter Ki(ω) and a damping ratio ξi(ω), accounting for
both material and radiation damping effects. The curves for stiffness and damping ratio
are determined using the following relationships:
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This chapter primarily focuses on the dynamic stiffness Ki(ω) and the damping ratio
ξi(ω). Additionally, it delves into the dynamic magnification factor D of the foundation
system.

5.3 Comparison between different foundation systems

5.3.1 Studied configurations

Given the characteristics of rigid inclusion-reinforced foundation configuration, which falls
somewhere between a shallow foundation and a pile foundation, one might be tempted
to assume a response similar to what is observed in the case of those types of foundations.
Therefore, the investigation of dynamic impedances for inclusion-reinforced foundations
begins with a comparative analysis involving shallow foundations and pile foundations,
aiming to assess their differences and similarities. The same reference configuration as
depicted in Figure 4.2 in Chapter 4 is used with the characteristics detailed in Table 5.1.

Tab. 5.1. Mechanical properties of the soil and the foundations

Soft
soil

Hard
soil Bedrock LTP

Rigid
inclusions

Shear modulus G (MPa) 20/45/80 320 2 500 125 12 500
Shear wave velocity Vs (m/s) 100/150/200 400 1 000 250 2 236
Poisson’s ratio ν (-) 0.45 0.45 0.45 0.35 0.2
Mass density ρ (t/m3) 2.0 2.0 2.5 2.0 2.5
Material damping ratio ξ (-) 0.05 0.05 0.05 0.05 0

The principal characteristics of the configurations adopted in this study are provided
in Table 5.2. Several groups of configurations are proposed. In each group, only one
parameter is changed based on the reference configuration A01. The main characteristics
of different groups are listed as follows:

• Group A: reference configuration (α = 3.46 %);

• Group B: shear wave velocity Vs, 100 m/s for B01 and 200 m/s for B02;

• Group C: coverage area ratio α, α = 2.01 % for C01, α = 5.31 % for C02 and α =
7.54 % for C03 ;

• Group D: centre-to-centre spacing s, 1.5 m for D01 and 2.5 m for D02.

• Group E: foundation dimension B, 3 m for E01 and 20 m for E02.
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The arrangement of rigid inclusions with different centre-to-centre spacing s can be
observed in Figure 4.7. Similarly, the arrangement of rigid inclusions with diverse
foundation sizes can be seen in Figure 5.2

Given the symmetry of the examined configuration, the horizontal responses along the
x-axis and the y-axis are identical. Likewise, the rotation responses about the horizontal
axes are equivalent. Consequently, the dynamic impedances are denoted by terms such as
KH , KV , and KM , representing horizontal, vertical, and rotational dynamic stiffnesses,
respectively, while ξH , ξV , and ξM correspond to the horizontal, vertical, and rotational
damping ratios, as depicted in Figure 5.3.

Fig. 5.2. Layout of different foundation dimensions

Tab. 5.2. Main characteristics of the studied configurations

Group Case Vs,soft soil B/L L/d Ep/Es s/d α (%) fs* (Hz) fc** (Hz)

A 01 150 1 23.8 230 4.76 3.46 3.50 6.89
B 01 100 1 23.8 517 4.76 3.46 2.42 4.76

02 200 " " 129 " " 4.43 8.72
C 01 150 1 31.3 230 6.25 2.01 3.50 6.89

02 150 " 19.2 " 3.85 5.31 " "
D 01 150 1 23.8 230 3.57 6.16 3.50 6.89

02 150 " " " 5.95 2.22 " "
E 01 150 0.33 23.8 230 4.76 3.46 3.50 6.89

02 150 2 " " " " " "

* fs is the horizontal fundamental frequency of the soil column
** fc is the vertical fundamental frequency of the soil column
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Fig. 5.3. Analogue model of a foundation on rigid inclusions under inertial interaction effects

5.3.2 Dynamic impedances of different foundation systems

In this section, the dynamic impedance functions of various foundation systems are
compared. Detailed comparisons are presented between the rigid inclusion-reinforced
foundation (A01) and other foundation systems are done. For a more comprehensive
overview, the comparisons with other reinforced foundation configurations can be found
in Appendix C.

Comparison with shallow foundations

The first study constitutes to comparison with the shallow foundations with and without
LTP, as depicted in Figure 5.4.

Fig. 5.4. Layout of reinforced foundation and different shallow foundations

Figure 5.5 illustrates a comparison between rigid inclusion-reinforced foundations and
shallow foundations. The comparison includes two configurations of shallow foundations:
one without LTP and another with LTP. To facilitate this comparison, the dynamic stiffness
of these three foundation systems is normalised using the "static stiffness" (f = 0.1 Hz) of
the shallow foundation with LTP, denoted as KSF +m

f=0 . The dynamic impedance functions
are given as a function of the dimensionless frequency a0.

The comparison starts with the dynamic stiffness in the horizontal direction. The dynamic
stiffness of the inclusion-reinforced foundation closely resembles that of the shallow
foundation with LTP in the horizontal direction, as depicted in Figure 5.5 (a). The slightly
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horizontal stiffness reduction of 10 % at a0 = 0 observed in the shallow foundation
without LTP can be attributed to the presence of a more rigid granular LTP.

The increase in vertical stiffness due to the presence of rigid inclusions is further observed
in Figure 5.5 (b). The vertical dynamic stiffness for a rigid inclusion-reinforced foundation
surpasses that for both shallow foundation configurations, with or without LTP, across all
the studied frequency ranges. The static stiffness of the reinforced foundation is nearly
60 % higher compared to the other two shallow foundations.
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Fig. 5.5. Dynamic stiffness, damping ratio and dynamic magnification factor for reinforced foun-
dation (A01) and shallow foundations with and without LTP

The investigation of energy dissipation centres around the analysis of damping ratios. As
a reminder, an initial material damping of 5 % is assigned. In the low-frequency range,
a consistent material damping ratio is observed across the three examined foundation
systems. It is also noted that radiation damping is not mobilised at the low-frequency
range for all studied directions. Instead, it is only excited in the high-frequency range.

The horizontal damping ratio for the three foundation systems is depicted in Figure 5.5 (d).
The damping ratio curve for the foundation on rigid inclusion closely aligns with that
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of the shallow foundation with LTP. This observation confirms that the presence of rigid
inclusions does not impact the damping characteristic of the reinforced system in the
horizontal direction.

The vertical and rotational damping ratio curves for the three analysed foundation
systems are illustrated in Figures 5.5 (e) and (f), respectively. It is evident that the
damping characteristics of shallow foundations with and without LTP are truly similar.
Comparatively, the damping ratio of the inclusion-reinforced foundation is lower than
that of the other two foundations. The fact that the inclusions work at the tips increases
the vertical stiffness of the soil-foundation system. As a result, the vertical fundamental
frequency of the system shifts to a higher frequency, leading to the delayed appearance of
radiation damping.

Figure 5.5 (g) reveals that the inclusion-reinforced foundation and the shallow foundation
with and without LTP exhibit the same variations in the horizontal direction. The frequency
of maximum amplification corresponds to the horizontal frequency of the soil profile
column, denoted as fs.

In the vertical direction, a significant difference is evident in the evolution of the dynamic
magnification factor between the shallow foundations and the foundation on rigid inclu-
sions, as depicted in Figure 5.5 (h). For the two shallow foundations, the frequency of
the maximum amplification coincides with the frequency of the first vertical mode of the
soil column, denoted as fc. In contrast, the frequency of maximum amplification for the
foundation on rigid inclusions is approximately 1.2 fc. Additionally, the vertical dynamic
amplification for the foundation on rigid inclusions is lower than that observed for the
shallow foundations.

The rotational dynamic amplification characteristics for the three studied foundation
systems are presented in Figure 5.5 (i). The frequency of maximum amplification for the
foundation on rigid inclusions is similar to that of the shallow foundations. However, the
maximum dynamic amplification for the reinforced foundation is smaller than that of the
non-reinforced shallow foundations.

Comparison with pile foundations

The first study constitutes to comparison with the shallow foundations with and without
LTP, as depicted in Figure 5.6. It is important to emphasise that in the pile foundation
without LTP modelling, solely the piles are connected to the soil. The foundation supported
by the pile group remains detached from the soil as illustrated in Figure 5.7.

The comparison with pile foundations is depicted in Figure 5.8. The dynamic stiffness
of these three foundation systems is normalised by the "static stiffness" (f = 0) of a pile
foundation with LTP, denoted as KP G

f=0.
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Fig. 5.6. Layout of reinforced foundation and different pile foundations

Fig. 5.7. Hypothesis of the pile foundation modelling

The comparison of horizontal dynamic stiffness is presented in Figure 5.8 (a). It can
be observed that the pile group with LTP closely resembles the inclusion-reinforced
foundation with LTP. Similar to the observations made in the comparison with the shallow
foundation, both pile foundation and inclusion-reinforced foundation exhibit negligible
influence on the dynamic stiffness of the foundation. It is important to note that this
observation is reserved for the tested configurations with small pile diameters. This same
conclusion is also applicable to the horizontal damping ratio, as shown in Figure 5.8 (d).
Thus, it is evident that the horizontal response, encompassing both stiffness and damping,
is predominantly governed by the presence of LTP.

Figures 5.8 (b) and (c) illustrate the vertical and rotational dynamic stiffnesses of the
three examined foundations. Both pile groups (with or without LTP) demonstrate higher
dynamic vertical stiffnesses when compared with the rigid inclusion-reinforced founda-
tion.

Regarding the damping of foundation systems depicted in Figure 5.8 (d), (e), and (f),
the damping characteristic of the foundation on rigid inclusions is similar to the pile
foundation with LTP. It is also observed that for low frequencies (small a0), the damping
within the system is entirely attributed to material damping. Conversely, for higher
frequencies, the damping ratio of the foundations with LTP generally exhibits greater
significance compared to the pile group foundation without LTP. It is interesting to note
that the damping ratio value increases rapidly and exceeds 30 % once the radiation
damping starts to increase.
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Fig. 5.8. Dynamic stiffness, damping ratio and dynamic magnification factor for reinforced foun-
dation (A01) and pile foundations with and without LTP

From Figure 5.8 (g), (h), and (i), the dynamic magnification factors for the foundation
on rigid inclusions and the pile group foundation with LTP are very similar in terms of
their variation and magnitude. Both the piles and rigid inclusion can increase the vertical
stiffness of the foundation. The frequencies of the maximum amplification for the three
studied foundation systems are greater than the vertical frequency of the soil profile fc, as
depicted in Figure 5.8 (h).

5.4 Influence of different parameters of soil
improvement

The previous comparisons have highlighted that the rigid inclusions have a negligible
impact on horizontal stiffness and significant effects primarily on vertical and rotational
stiffness. In the following, the interest is focused on the impact that the variation of
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significant parameters describing the rigid inclusion-reinforced foundation may have on
its response. Therefore, a sensitivity study is conducted to analyse the impact of:

• Coverage area ratio α;

• Length of rigid inclusions;

• Embedment of rigid inclusions in LTP.

5.4.1 Influence of coverage area ratio

To investigate the effects of varying the coverage area ratio, different diameters of the rigid
inclusions vary across 0.32 m, 0.42 m, 0.52 m, and 0.62 m are employed, corresponding
to the coverage area ratio α of 2.01 %, 3.46 %, 5.31 %, and 7.55 %. The results are
presented in Figure 5.9, illustrating dynamic stiffness, damping ratio, and dynamic
magnification factor for rigid inclusion-reinforced foundations with different coverage
area ratios. The dynamic stiffness has been normalised against the "static stiffness" of the
shallow foundation with LTP, denoted as KSF +m

f=0 .

Figure 5.9 (a) substantiates the findings outlined in the preceding section. The horizontal
dynamic stiffness curves for reinforced foundations with four different diameters remain
consistent. In contrast, the comparison of vertical and rotational dynamic stiffness, as
depicted in Figures 5.9 (b) and (c), highlights that dynamic stiffness amplifies with the
diameter of rigid inclusions.

Regarding the damping ratio, it is apparent that up to frequencies below the fundamental
frequency of soil column fs and fc, the system predominantly exhibits material damping.
This behaviour is depicted in Figure 5.9 (d) for the horizontal damping curves across
different studied cases. The resemblance in horizontal damping ratios is evident. Further-
more, the trends observed in the vertical and rotational damping ratio curves are similar,
as illustrated in Figures 5.9 (e) and (f). The development of radiation damping occurs at
a later stage for configurations with higher coverage area ratios.

The dynamic magnification factors D for the reinforced foundation with different diam-
eters of the rigid inclusions exhibit significant similarities in terms of their variation for
the three studied directions. In the horizontal direction, the amplifications for the four
studied reinforced foundations are the same for a0 smaller than 3.5. In the vertical and
rotational directions, the maximum amplification for the reinforced foundation with a
smaller coverage area ratio is greater than that for the reinforced foundation with a larger
coverage area ratio.
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Fig. 5.9. Dynamic stiffness and damping ratio for reinforced foundations with different coverage
area ratio

5.4.2 Influence of length of rigid inclusions

The rigid inclusions for soil improvement are typically end-bearing inclusions. These
inclusions’ tips are located at a stable load-bearing substratum, such as rock or a compact
layer of soil. Unless the inclusions are properly embedded within a resistant layer of soil,
the reinforcement mechanism will not function as intended.

Three different lengths of rigid inclusions have been selected, ranging from 10 m, 5 m,
to 2 m. These configurations of rigid inclusions with varying lengths are illustrated in
Figure 5.10.

Only the 10-m inclusions are capable of engaging with the resistance at their tips. In
contrast, the shorter rigid inclusions (2 m and 5 m) in the other two cases remain unem-
bedded in hard soil and function more like floating inclusions. The dynamic impedances
corresponding to the different lengths of rigid inclusions are displayed in Figure 5.11.
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Fig. 5.10. Layouts of the rigid inclusions with different lengths

Regarding vertical and rotational stiffness, configurations with floating inclusions demon-
strate similarities to the case without any inclusions (L/B=0) for dimensionless fre-
quencies lower than 3.5. This comparison confirms that the response in the case of soil
reinforced by floating rigid inclusions is governed by the stiffness of the soil surrounding
the reinforced area. The dynamic response in terms of dynamic stiffness and damping
ratio closely resembles that of the non-reinforced foundation with LTP.

The study also examines the dynamic magnification factors D for these foundations. It is
observed that the foundation reinforced by floating inclusions exhibits similar dynamic
amplification or attenuation characteristics to the shallow foundation in all directions.
On the other hand, the foundation on end-bearing inclusions shows a smaller maximum
amplification compared to the configurations with floating inclusions.

5.4.3 Influence of embedment of rigid inclusions in the LTP

Following recommendations from (AFPS and CFMS, 2012), the recommended configura-
tion involves embedding rigid inclusions within LTP to ensure favourable performance
in transferring horizontal forces. In this paragraph, the objective is to examine whether
this embedment may influence dynamic impedances. Two cases are studied with an
embedment depth of 0.2 m and of 0.5 m. A configuration without embedding is also
studied for comparison purposes. These configurations are illustrated in Figure 5.12.

The dynamic impedances are displayed in Figure 5.13. The horizontal stiffness remains
unaffected by the embedment depth. The vertical and rotational dynamic stiffness is
slightly impacted by the embedment of rigid inclusions in LTP. In terms of damping ratio,
as presented in Figures 5.13 (d), (e), and (f), the influence of embedment remains limited.
Concerning the dynamic magnification factor D, there is no difference between the
configurations with the embedment of the rigid inclusions in the LTP and the configuration
with no embedment.
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Fig. 5.11. Dynamic stiffness and damping ratio for reinforced foundations with different lengths
of rigid inclusions

5.5 Evaluation of dynamic impedances with equivalent
profiles

In the context of ground reinforcement by rigid inclusions, it is necessary to establish an
equivalent or representative soil profile. This profile integrates the properties of the actual
soil and the reinforcement into a simplified, homogeneous model that can be analysed
more easily, proving advantageous as it omits explicit modelling of inclusions and LTP,
thereby resulting in reduced computational resources and time.

The arrangement of inclusions introduces mechanical anisotropy within the reinforced
soil, necessitating separate analyses for horizontal, vertical, and rotational behaviours.
Therefore, this section aims to establish an equivalent profile for estimating dynamic
impedances in both horizontal and vertical, as well as rotational directions.

5.5 Evaluation of dynamic impedances with equivalent profiles 101



Fig. 5.12. Embedment of rigid inclusions in LTP: (a) without embedment, (b) with an embedment
as 0.2 m, (c) with an embedment as 0.5 m

5.5.1 Equivalent profile for horizontal response

Based on the observations from the previous sections, within the range of common
coverage area ratios, inclusions exert minimal influence on the shear stiffness of the
reinforced soil. As a result, it is reasonable to estimate horizontal dynamic impedances by
neglecting the contribution of inclusions.

The horizontal stiffness of a foundation system with rigid inclusions, denoted as KRI
H ,

is then compared with the stiffness obtained for the same configuration without rigid
inclusions, denoted as KSF +m

H . Both foundation systems are illustrated in Figure 5.14.

The findings are presented in the form of stiffness ratios between KRI
H and KSF +m

H , as
illustrated in Figure 5.15 with two types of frequency normalisation to cover as many
cases as possible. The ratios for various configurations closely approximate unity. For
frequencies below 2.5 times the fundamental horizontal frequency of soil column fs, the
difference in stiffness between the foundation with rigid inclusions and the one without
rigid inclusions remains under 10 %. It can be observed that in cases where a0 is smaller
than 1, there is no difference in stiffness between the foundation with rigid inclusions and
the one without rigid inclusions.

Fig. 5.14. Equivalent profile for horizontal behaviour: (a) complete modelling, (b) shallow
foundation with LTP
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Fig. 5.13. Dynamic stiffness and damping ratio for reinforced foundations with the different
embedments of the rigid inclusions into the LTP

Fig. 5.15. Ratio between horizontal stiffness of complete model and equivalent profile

The comparison between CRI
H and CSF +m

H of the two systems highlights that the damping
of the inclusion-reinforced foundation can be reasonably approximated using a shallow
foundation modelling, with an error margin below 10 %, as depicted in Figure 5.16.
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Fig. 5.16. Ratio between horizontal damping of complete model and equivalent profile

5.5.2 Equivalent profile for vertical and rotational responses

In the reinforcement system, rigid inclusions are employed to reduce the settlement, which
implies an increase in vertical stiffness. Consequently, the presence of rigid inclusions
should be considered in the equivalent profile.

Like the equivalent profile proposed for the horizontal direction, an equivalent profile can
be defined for the vertical direction. The vertical equivalent profile is characterised by an
equivalent elastic modulus E∗, a Poisson’s ratio ν∗, and a mass density ρ∗, as depicted in
Figure 5.17 (b).

In studies related to the inclusion reinforcement under static conditions (Cuira and Simon,
2009, 2013; Alzate and Cuira, 2022), the equivalent elastic modulus E∗ can be determined
using an elementary cell model, as illustrated in Figure 5.18. Equation 5.13 is used to
determine this equivalent elastic modulus E∗.

Eeq = ∆σ
∆s/H (5.13)

where ∆σ represents the stress applied to the elementary cell, ∆s is the settlement
between the base of the foundation and the base of the inclusions, and H corresponds to
the total height of the homogenised soil.

Similarly, for dynamic conditions, the equivalent elastic modulus E∗ can be also obtained
using the same model with the dynamic properties of the soil and inclusions. For the
configurations outlined in Table 5.2, the parameters of the homogenised equivalent profile
are listed in Table 5.3.

The dynamic impedances are computed using a shallow foundation model implemented
on the equivalent profile illustrated in Figure 5.17 (b) and then compared with the
dynamic impedances calculated with the complete model illustrated in Figure 5.17 (a).
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Fig. 5.17. Equivalent profile for vertical and rotational behaviour

Fig. 5.18. Two-phase soil-inclusion elementary cell model

The ratio between the vertical dynamic stiffness of the two models, Khomo
V / KRI

V , as a
function of frequency normalised by fc, is illustrated in Figure 5.19. The depicted ratio
generally falls within the range of 0.8 to 1.2 for the frequencies below fc. This comparison
underscores that the vertical dynamic stiffness of an inclusion-reinforced foundation can
be reasonably approximated using a shallow foundation model on an equivalent profile
for frequencies smaller than the fundamental frequency of soil column fc, with notable
accuracy.

Fig. 5.19. Ratio between vertical stiffness of complete modelling and equivalent profile modelling
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Tab. 5.3. Mechanical properties of equivalent profiles for different cases

Group Case Vs,soft soil (m/s) E∗ (MPa) ν∗ (-) ρ∗ (t/m3) V ∗
s (m/s)

A 01 150 230.7 0.45 2.0 199.4
B 01 100 149.6 0.45 2.0 160.6

02 200 331.1 0.45 2.0 239.0
C 01 150 202.1 0.45 2.0 186.6

02 150 263.6 0.45 2.0 213.2
D 01 150 300.6 0.45 2.0 227.6

02 150 197.7 0.45 2.0 184.6
E 01 150 230.7 0.45 2.0 199.4

02 150 230.7 0.45 2.0 199.4

Similarly, the ratio between the damping calculated by the two systems, Chomo
V / CRI

V , is
calculated and presented in Figure 5.20. The divergence in damping between the two
models generally remains within a margin of 20 %.

Fig. 5.20. Ratio between vertical damping of complete modelling and equivalent profile modelling

An identical investigation is conducted for the rotational dynamic stiffness KM and
rotational damping CM . The rotational stiffness and damping comparisons between
the complete modelling and the homogenised equivalent modelling are presented in
Figures 5.21 and 5.22.

As depicted in Figure 5.21 (a), the ratio of rotational stiffness consistently falls within the
range of 0.8 to 1.2 for frequencies below fc. This outcome underscores that the estimation
of rotational stiffness using a homogenised equivalent profile remains acceptable and
accurate within the frequency range smaller than fc.
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Fig. 5.21. Ratio between rotational stiffness of complete modelling and equivalent profile mod-
elling

The exploration of rotational damping is also undertaken. The ratio of rotational damping
is showcased in Figure 5.22. It becomes apparent that the equivalent profile modelling
predominantly overestimates the rotational damping by up to 40 %. When estimating
the damping of a rigid inclusion-reinforced foundation using a shallow foundation on
the equivalent profile, it is important to consider a correction for the rotational damping
ratio.

Fig. 5.22. Ratio between rotational damping of complete modelling and equivalent profile mod-
elling

5.6 Coupling terms of dynamic impedances

In most cases, coupling effects can be disregarded when dealing with shallow foundations.
The non-diagonal values, which pertain to the coupling between translation, rocking,
and torsional motions, are neglected and omitted in the structural analysis. In the case
of reinforcement by rigid inclusions, which share a similarity with the pile foundation
system, it is important to note that coupling terms could arise. To verify the coupling
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effects, the comparisons of the dynamic impedance functions with and without coupling
terms for the examined configurations are illustrated in Figures 5.23 and 5.24.
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Fig. 5.23. Comparison of Dynamic stiffness and damping ratio with or without coupling terms
for Configurations A01 (reference), B01 (Vs,soft soil = 100m/s), B02 (Vs,soft soil =
200m/s), C01 (d = 0.32m), and C02 (d = 0.52m)

The dynamic stiffness is normalised by the static stiffness for all studied configurations.
The obtained results exhibit that the dynamic impedance functions with the coupling effect
and without the coupling effect overlap each other, which means that the coupling effect
is minimal. Consequently, in practical terms, it is reasonable to disregard the coupling
effect when dealing with foundations reinforced by rigid inclusions.
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Fig. 5.24. Comparison of Dynamic stiffness and damping ratio with or without coupling terms for
Configurations A01 (reference), D01 (s = 1.5m), D02 (s = 2.5m), E01 (d = 3m), and
E02 (B = 20m)
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5.7 Summary

The comparative analysis reveals the emergence of anisotropic behaviour in dynamic
responses, which affects both dynamic stiffness and damping characteristics. Notably, the
dynamic stiffness and damping behaviour in the horizontal direction for foundations on
rigid inclusions closely resemble those observed in shallow foundations with LTP. It has
been shown that the presence of rigid inclusion exerts negligible influence on the dynamic
stiffness and damping behaviour of the foundation system in the horizontal direction.

The dynamic stiffness behaviour in both vertical and rotational modes of a foundation
reinforced by rigid inclusions inherently lies between the stiffness values observed in
shallow foundations and pile foundations. When compared to shallow foundations,
the incorporation of rigid inclusions introduces an increase in vertical and rotational
stiffness properties. On the other hand, the vertical and rotational dynamic stiffness
values for pile foundations typically surpass those exhibited by foundations reinforced
with rigid inclusions. This difference can be attributed to the absence of a direct structural
connection between the foundation and rigid inclusions.

A comprehensive investigation has also been conducted to study how the parameters of a
rigid inclusion-reinforced foundation system impact its dynamic impedances: coverage
area ratio, length, and embedment of rigid inclusions in LTP. The vertical and rotational
behaviour is affected by the coverage area ratio α. The reinforced foundation with a
greater coverage area ratio α is much stiffer. There is a significant difference between
the reinforcement by end-bearing inclusions and the floating inclusions. The vertical and
rotational stiffness increase is only observed for the end-bearing inclusion configuration.
These findings underline the importance of these parameters in shaping the vertical and
rotational responses of the reinforced foundations.

In engineering practice, homogenised equivalent profiles are commonly employed to
simplify the modelling. Such homogenised equivalent profiles negate the necessity for
explicit modelling of rigid inclusions. The findings highlight that the calculation using
an equivalent profile offers accurate estimations for frequencies below horizontal and
vertical fundamental frequencies of soil column fs and fc or the dimensionless frequency
smaller than a0.
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Inertial forces within rigid
inclusions

6
6.1 Additional inertial forces

Apart from the static vertical loads stemming from dead loading and vertical acceleration,
rigid inclusions must also bear bending moments and shear forces atop due to the
horizontal inertial forces transmitted to the reinforced soil at the base of the structure, as
illustrated in Figure 6.1.

The distribution of inertial loads at the base of the structure to the soft soil and the rigid
inclusions is facilitated by the LTP. Consequently, the properties of LTP can have an impact
on the response of this type of foundation.

Hence, there is a clear need to enhance the understanding of the force transfer mechanism
and the inertial bending moment through an extensive parametric study. The objective is
to generate design charts that can guide the engineering practice.

Fig. 6.1. Inertial interaction forces transferred to rigid inclusions via LTP

6.2 Forces transmitted onto the head of the inclusions

6.2.1 Force concentration at the head of the inclusions

This study examines the inertial load resulting from the mass of the superstructure in a
pseudo-static mode. When a pseudo-static load is imposed on a reinforced foundation,
only a portion of the load is carried by the rigid inclusions. It is of interest to investigate
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the proportion of the load that is taken by the rigid inclusions versus the portion carried
by the surrounding soil.

To investigate the concentration of vertical and horizontal forces at the head of the rigid
inclusions, the vertical and the horizontal force concentration ratios, denoted EV and EH ,
are introduced. These ratios serve to measure the load transfer efficiency and are defined
by Equations 6.1 and 6.2, respectively.

EV =
∑
VRI,i

V
(6.1)

EH =
∑
HRI,i

H
(6.2)

where V and H denote the vertical and horizontal pseudo-static forces applied to the
foundation, while VRI,i and HRI,i represent the forces distributed at the head of the
inclusions, as illustrated in Figure 6.2.

Fig. 6.2. Vertical force V and horizontal force H applied at the foundation and transmitted to the
head of the inclusions

These efficiency parameters provide insights into how effectively the rigid inclusions
contribute to the distribution and transfer of vertical and horizontal loads within the
foundation system.

6.2.2 Studied configurations

In this study, the profile consists of a layer of soft soil with a thickness Hsoil of 10 m and
a subsequent layer of more compact soil that is 5 m thick. This profile arrangement is
visually represented in Figure 6.3(a).

Two different dimensions are selected for the small square footing foundations, denoted
as B, measuring 3 m and 5 m. The configuration involving the 3 m footing foundation
comprises four inclusions arranged in a 2 × 2 grid pattern, as depicted in Figure 6.3(b).

112 Chapter 6 Inertial forces within rigid inclusions



Fig. 6.3. Small footing configurations: (a) soil profile, (b) configuration with 4 (2×2) rigid
inclusions and (c) configuration with 9 (3×3) rigid inclusions

The configuration featuring the 5 m footing foundation includes a total of nine inclusions
arranged in a 3×3 grid pattern, as shown in Figure 6.3(c).

A large square footing is also selected, corresponding to the configuration D01 studied in
Chapter 5. The square footing foundation has dimensions of 10 m. This configuration
includes 49 inclusions arranged in a 7 × 7 grid pattern, as depicted in Figure 6.4.

Fig. 6.4. Large footing 7 × 7 configuration: (a) plan view and (b) section view

The study investigates rigid inclusion-reinforced foundations with varying inclusion diam-
eters of 0.32 m, 0.42 m, and 0.52 m. The LTP is characterised by the ratio of its shear
wave propagation velocity Vs, LTP to that of the soft soil, denoted Vs,LT P ⁄ Vs,soil. The
shear wave velocity of LTP varies from the velocity of the soft soil (representing the case
without an LTP) to the velocity of concrete (representing a configuration with a concrete
LTP). The mechanical properties employed in the model are detailed in Table 6.1.

Tab. 6.1. Mechanical properties of the soil and the foundation

Soft soil Hard soil Bedrock LTP Inclusions

Shear modulus G (MPa) 45 320 2 500 45 to 12 500 12 500
Shear wave velocity Vs (m/s) 150 400 1 000 100 to 2 500 2 236
Poisson’s ratio ν (-) 0.45 0.45 0.45 0.35 0.2
Mass density ρ (t/m3) 2.0 2.0 2.5 2.0 2.5
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6.2.3 Model description

A finite-element model of the rigid inclusion-reinforced foundation is created using PLAXIS
3D software (Bentley, 2022b). The entire footing foundation, including the inclusions, is
represented in the model. The components are characterised using linear elastic behaviour.
For the foundation, weightless plate elements with six nodes are employed, and a very
high elastic modulus is assigned to mimic a rigid behaviour. The LTP and the soil are
explicitly modelled using ten-node tetrahedral elements. Similarly, the inclusions are also
modelled as volume elements. To capture the internal forces within the inclusions, such
as axial force, shear force, and bending moment, a weightless fictive beam is introduced
at the centre of the inclusion’s volume. This fictive beam has a stiffness 1 000 times lower
than that of the real cylinder concrete inclusions.

The model dimensions are set at 50 m × 50 m, ensuring that the edges are at a distance
greater than 10 times the foundation dimension to prevent edge effects. A visualisation of
the model is presented in Figure 6.5.

Fig. 6.5. Finite element model of a foundation on rigid inclusions

6.2.4 Vertical load transfer efficiency

The investigation begins with an analysis of a pseudo-static vertical load that is applied at
the centre of the foundation. The efficiency of vertical load transfer is depicted in Figures
6.6 and 6.7, using the ratio between the vertical force concentration ratio EV and the
coverage area ratio α. These figures provide insights into the efficiency of vertical load
transfer for the 2 × 2 and the 3 × 3 configurations.

The observed vertical efficiency spans from 44 % to 64 % across the studied configurations,
ranging from 3 to 17 times the coverage area ratio α. The efficiency, denoted by EV ,
increases as the contrast of Vs between the LTP and the soft soil becomes more pronounced.
In other words, when the soil is softer in comparison to the LTP, a higher vertical force
concentration is experienced. This also implies that enhancing the stiffness of the LTP can
increase the efficacy of the soil improvement.
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As an example, in the case of the 2×2 rigid inclusion configuration with a diameter of 0.42
m, the ratio EV /α nearly reaches 4, resulting in a vertical efficiency EV of approximately
24.8 % assuming that Vs for the soft soil and the LTP are equal. If the shear wave
velocity Vs,LT P increases by three times, the ratio EV /α can reach 7.5, resulting a vertical
efficiency EV of 46.5 %.
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Fig. 6.6. Vertical load transfer efficiency EV with respect to the ratio of Vs of the LTP and the soft
soil for the 2 × 2 configuration with different coverage area ratios α
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Fig. 6.7. Vertical load transfer efficiency EV with respect to the ratio of Vs of the LTP and the soft
soil for the 3 × 3 configuration with different coverage area ratios α

However, once the stiffness reaches a critical value, the efficiency plateaus and further
increase becomes limited. As depicted in Figures 6.6 and 6.7, the vertical efficiency EV

stabilises around 60 % for inclusions with a diameter of 0.52 m and approximately 44 %
for a diameter of 0.32 m in the context of the 2×2 inclusion configuration. The vertical
transfer efficiency EV increases with the coverage area ratio α. A similar trend is observed
for the 3×3 configurations. The maximum efficiency of the reinforced foundation system
is attained for ratios of Vs,LT P ⁄ Vs,soil higher than 10. This implies that a further increase
in the stiffness of LTP will not result in a higher vertical transfer efficiency EV .
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The same observations applicable to the small footing with few inclusions are also valid
for the large footing configuration under study. The vertical load transfer efficiency for
the 7 × 7 configuration is illustrated in Figure 6.8. The vertical load transfer efficiency
ranges from 65 % to 77 %, covering a range from 3 to 17 times the coverage area ratio α.
Comparatively, the vertical load transfer efficiency of the large square footing is slightly
higher than that of the small square footing foundations.
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Fig. 6.8. Vertical load transfer efficiency EV with respect to the ratio of Vs of the LTP and the soft
soil for the 7 × 7 configuration with different coverage area ratios α

The study conducted in this section reveals that vertical load transfer efficiency is influ-
enced by both the LTP-soft soil stiffness ratio and the coverage area ratio. An increase
in both of these factors leads to improved vertical load transfer efficiency. However, it is
important to note that increasing the LTP-soft soil stiffness ratio has a more significant
impact on the vertical efficiency at low stiffness ratio. In general, beyond an LTP-soft soil
stiffness ratio of 10, vertical load efficiency tends to a plateau.

6.2.5 Horizontal load transfer efficiency

The study proceeds to examine the horizontal stress concentration ratioEH by simulating a
horizontal load that could correspond for example to the inertia force of the superstructure
mass applied at the centre of the foundation. The results are depicted in Figures 6.9 and
6.10, for the 2 × 2 and the 3 × 3 configurations, respectively.

Low values of the EH / α ratio indicate that the horizontal forces are predominantly
transmitted to the underlying soil. The highest value observed for EH is approximately
20 %. The ratio EH / α remains considerably small in comparison to the EV / α ratio
presented in Figures 6.6 and 6.7. This observation suggests that the improvement by rigid
inclusions is more prominent in the vertical direction than in the horizontal direction.

116 Chapter 6 Inertial forces within rigid inclusions



1 3 5 7 9 11 13 15
Vs, LTP/Vs, soil

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

E H
/

2x2 with d = 0.32m
2x2 with d = 0.42m
2x2 with d = 0.52m

EH = 10%, = 3.6%

EH = 15%, = 6.2%

EH = 20%, = 9.4%

Fig. 6.9. Horizontal load transfer efficiency EH with respect to the ratio of Vs of the LTP and the
soft soil for the 2 × 2 configuration with different coverage area ratios α
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Fig. 6.10. Horizontal load transfer efficiency EH with respect to the ratio of Vs of the LTP and the
soft soil for the 3 × 3 configuration with different coverage area ratios α

The EH / α ratio also increases as the stiffness contrast between the LTP and the soft soil
increases. The same trend is observed in all the studied configurations.

The results from both studied configurations reveal an interesting observation: the EH

/ α ratios for various diameters, reflecting different coverage area ratios α, display the
same order of magnitude when the shear wave propagation velocity ratio Vs,LT P ⁄ Vs,soil

remains below 3.

The horizontal load transfer efficiency for the 7 × 7 configuration is illustrated in Figure
6.11. The conclusions drawn from the 2 × 2 and 3 × 3 configurations remain applicable
to this configuration.

In summary, the horizontal load transfer efficiency rises with both the LTP-soft soil stiffness
ratio and the coverage area ratio α. Unlike the vertical load transfer efficiency, there
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Fig. 6.11. Horizontal load transfer efficiency EH with respect to the ratio of Vs of the LTP and the
soft soil for the 7 × 7 configuration with different coverage area ratios α

is no plateau for the horizontal load transfer efficiency. The limited horizontal load
transfer efficiency aligns with the observations from the dynamic impedance study in
Chapter 5, indicating that the presence of rigid inclusions does not significantly enhance
the horizontal dynamic stiffness.

6.2.6 Ratio between vertical and horizontal load transfer
efficiencies

For a given configuration, the vertical and horizontal efficiencies can be compared in
terms of the Vs,LT P ⁄ Vs,soil ratio such as presented in Figures 6.12, 6.13, and 6.14.

It is evident from the results that the vertical efficiency EV consistently surpasses the
horizontal efficiency EH , across all examined cases. The EV / EH ratios are systematically
higher than unity. The horizontal efficiency EH is roughly 3 to 7 times lower than the
vertical transfer efficiency EV . This finding substantiates the notion that the transfer of
vertical loads through rigid inclusions is more effective than the transfer of horizontal
loads.

The EV / EH ratio increases rapidly up to values of Vs,LT P ⁄ Vs,soil around 3, after which
it gradually decreases as the same ratio increases. The same pattern is observed across all
tested configurations. Significantly larger differences between EV and EH manifest in
configuration characterised by small α values (the configuration with a diameter of 0.32
m in this study). This trend is noticeable in the 2 × 2, 3 × 3, and 7 × 7 rigid inclusion
configurations.

118 Chapter 6 Inertial forces within rigid inclusions



1 3 5 7 9 11 13 15
Vs, LTP/Vs, soil

2

3

4

5

6

7

8

E V
/E

H

2x2 with d = 0.32m ( = 3.6%)
2x2 with d = 0.42m ( = 6.2%)
2x2 with d = 0.52m ( = 9.4%)

Fig. 6.12. Ratio between vertical and horizontal load transfer efficiency EV / EH with respect to
the ratio of Vs of the LTP and the soft soil for the 2 × 2 configuration with different
coverage area ratios α
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Fig. 6.13. Ratio between vertical and horizontal load transfer efficiency EV / EH for the 3 × 3
configuration with different coverage area ratios α
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Fig. 6.14. Ratio between vertical and horizontal load transfer efficiency EV / EH with respect to
the ratio of Vs of the LTP and the soft soil for the 7 × 7 configuration with different
coverage area ratios α
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The examination of the ratio between vertical and horizontal load transfer efficiencies
reveals that horizontal forces are predominantly transmitted through the surrounding soil.
When subjected to horizontal loading, the horizontal load transfer efficiency is 2 to 7 times
lower than the vertical load transfer efficiency, and this difference is more pronounced
for the configurations with higher coverage area ratios. Based on this observation, it
can be concluded that the surrounding soil experiences a more inclined load when rigid
inclusions are present compared to a non-reinforced foundation.

6.3 Inertial bending moment

In the previous section, the forces transmitted at the head of the inclusions are studied.
However, it is important to note that forces, including bending moments, can also be
generated within the rigid inclusions themselves, not only just at their heads. These
inertial-induced bending moments can reach significant magnitudes. This section is dedi-
cated to the study of the inertial-induced bending moments within the rigid inclusions.

6.3.1 Studied configurations

To investigate the bending moment experienced by inclusions within an inclusion-reinforced
foundation, the study considers the same soil profile as that examined in the preceding
section with a variable thickness Hsoil for the soft soil layer, ranging between 5 m, 10 m
and 15 m. This configuration is depicted in Figure 6.3 (a). Several values of the shear
wave velocity Vs of the soft soil varying from 100 m/s to 300 m/s in increments of 50 m/s
are used. Furthermore, the ratio of shear wave velocities between LTP and the soft soil, is
fixed to be equal to 1, 1.5, and 2. The mechanical properties of the model are outlined in
Table 6.2.

Two different sizes of the foundation are studied, 3 m and 5 m, including respectively 4
(2 × 2) and 9 (3 × 3) inclusions. The diameters of the rigid inclusions vary between 0.32
m, 0.42 m, and 0.52 m.

Tab. 6.2. Mechanical properties of the soil and the foundation for inertial bending moment study

Soft soil Hard soil Bedrock Inclusions

Shear modulus G (MPa) 20 / 45 / 80 / 125 / 180 320 2 500 12 500
Shear wave velocity Vs (m/s) 100 / 150 / 200 / 250 / 300 400 1 000 2 236
Poisson’s ratio ν (-) 0.45 0.45 0.45 0.2
Mass density ρ (t/m3) 2.0 2.0 2.5 2.5
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6.3.2 Inertial bending moment within rigid inclusions

For a single pile, Brûlé and Cuira (2018) have proposed Equation 6.3 to assess the
maximum bending moment of a hinge pile (free rotation at head) within the elastic domain
in the case of a homogeneous soil, or at least for situation where the thickness of the
surface layer is greater than 3 times the effective length l0, as depicted in Figure 6.15 (a).
The proposed equation takes into account three key parameters: the effective length l0
mentioned in Equation 4.2, the applied horizontal force at the pile head H, and a constant
coefficient β.

Mmax = βHl0 with β = 0.32 (6.3)

This study endeavours to approximate the maximum bending moment for the rigid
inclusions under a horizontal force applied at the foundation, as shown in Figure 6.15 (b).
To adapt the formulation for the hinge pile, a simplified model with a single inclusion is
depicted in Figure 6.15 (c). In this model, the force applied to the base of the foundation
(not at the head of the inclusions) is assumed to be equal to the total horizontal force
divided by the number of rigid inclusions, denoted as NRI .

Fig. 6.15. Scheme of horizontal force applied at: (a) a single hinge pile, (b) a foundation on rigid
inclusions, and (c) a single rigid inclusion

By replacing the horizontal force H in Equation 6.3 with H/NRI , a similar formulation
can be derived as Equation 6.4, which is employed to estimate the maximum bending
moment for the rigid inclusions. In this context, a coefficient for rigid inclusions denoted
as βRI in Equation 6.4 is used instead of β as used in Equation 6.3.

Mmax = βRIHl0/NRI (6.4)

A comprehensive numerical parametric study is carried out, encompassing various config-
urations. The coefficient βRI , which governs the maximum bending moment, is depicted
graphically in Figures 6.16 and 6.17, featuring dimensionless factors derived from config-
uration parameters.
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From the results of the studied configurations, the magnitude of the coefficient βRI

remains consistent, spanning the range from 0.01 to 0.07. The results demonstrate
that the maximum bending moment sustained by a rigid inclusion of the rigid inclusion-
reinforced foundation is significantly below that encountered by a hinge pile, with a ratio
of 1/5 to 1/20.
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Fig. 6.16. Maximum bending moment coefficient βRI in the rigid inclusions with respect to the
ratio of the effective length and the thickness of the soil for the 2×2 configuration with
different Hsoil/B and Vs,LT P /Vs,soil ratios
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Fig. 6.17. Maximum bending moment coefficient βRI in the rigid inclusions with respect to the
ratio of the effective length and the thickness of the soil for the 3×3 configuration with
different Hsoil/B and Vs,LT P /Vs,soil ratios

The coefficient βRI increases with the ratio of effective length l0 to the thickness Hsoil for
the same configuration with Hsoil/B held constant. It is also noteworthy that the stiffness
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contrast between the LTP and the soft soil, represented by the ratio Vs,LT P /Vs,soil, exerts
negligible influence on the maximum bending moment.

6.4 Summary

Within this chapter, the study has been executed using a finite element model. The primary
objective of the numerical investigation was to scrutinise the effects of inertial loads upon
rigid inclusions in terms of load transfer efficiency and maximum bending moments.

Unlike conventional pile foundations, where the entire applied load is considered trans-
mitted directly to the piles, the load transfer mechanism in foundations reinforced by rigid
inclusions becomes inherently more intricate due to the presence of LTP. It is apparent
that the load transfer mechanism, both horizontally and vertically, is influenced by the
stiffness contrast between the LTP and the soft soil, evaluated through the shear wave
propagation velocities Vs,LT P /Vs,soil. The findings highlight a noteworthy difference: the
efficiency of the horizontal load transfer mechanism is lower compared to the vertical
load.

The examination shifts towards the investigation of the maximum bending moment
experienced by the rigid inclusions. The maximum bending moment sustained by a
rigid inclusion of the rigid inclusion-reinforced foundation is significantly below that
encountered by a hinge pile. These figures have the potential to serve as design charts,
offering a tool for estimation of the maximum bending moment during a preliminary
design phase.

In further studies, exploring the importance of different parameters on the load transfer
mechanism and the maximum bending moment through a broader range of configurations
via additional sensitivity analysis would be of considerable interest.
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Kinematic bending moment
within rigid inclusions

7

7.1 Additional kinematic forces

In addition to ground motion modification, the kinematic interaction also gives rise to
additional kinematic forces, including shear forces and bending moments. These forces
emerge due to the stiffness contrast between the soil and the foundation elements, as
illustrated in Figure 7.1.

Fig. 7.1. Kinematic bending moment generated by wave propagation

In this study, the focus is on investigating the phenomenon of kinematic bending moments
in rigid inclusions using a hybrid FEM-BIE modelling. Two main objectives are outlined:

• The investigation of the physical phenomenon of kinematic bending moments in
rigid inclusions during earthquake excitation using dynamic calculation;

• A comparison between the complete dynamic model and the conventional pseudo-
static approach to assess the validity of the latter.

The analysis is carried out on three distinct soil profile families characterised by varying
soil stiffness contrasts at multiple interfaces between soil layers. These selected soil
profiles are designed to closely replicate real projects.
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7.2 Studied configurations

The soil improvement by rigid inclusions is commonly employed to increase the bearing
capacity and to mitigate settlements under static loads. Typically, these foundation
configurations are applied in situations categorised as class D or E, according to Eurocode
8 (AFNOR, 2007).

The soil profiles examined in this study aim to emulate various configurations that closely
resemble those encountered in real projects. The considered profiles encompass the
following configurations:

• Profile I: Comprises a 10 m thick layer of soft soil 1;

• Profile II: Built upon Profile I, with the initial 3 m of the soft soil layer replaced by
soft soil 2, which is stiffer than soft soil 1;

• Profile III: Built upon Profile I, with an additional 2 m layer of soft soil 3 added
within the soft soil layer, which is stiffer than soft soil 1.

All examined profiles involve a 5-m thick hard soil layer atop a semi-infinite dynamic sub-
stratum. The schematic illustration of the different soil profiles is provided in Figure 7.2,
and the mechanical properties are summarised in Table 7.1.

Fig. 7.2. Schemes of proposed soil profiles

Other geometric details of the proposed profiles are given in Table 7.2 along with the
corresponding fundamental frequency fs of the soil column. The shear wave velocity of
the soft soil 1 varies among 100 m/s, 150 m/s and 200 m/s, respectively.

A ratio of the shear wave velocity contrast at an interface can be defined as Equation 7.1.
A higher value of the ratio η indicates a greater stiffness contrast.

η = Vs,hard

Vs,soft
(7.1)
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Tab. 7.1. Mechanical properties of soil and foundation used in the analyses

Soft soil 1
(a/b/c)

Soft
soil 2

Soft
soil 3

Hard
soil Bedrock LTP

Shear modulus G (MPa) 20/45/80 80 180 320 2 500 125
Young’s modulus E (MPa) 58/130.5/232 232 522 928 7 250 362.5
Shear wave velocity Vs (m/s) 100/150 /200 200 300 400 1 000 250
Poisson’s ratio ν (-) 0.45 0.45 0.45 0.45 0.45 0.35
Mass density ρ (t/m3) 2.0 2.0 2.0 2.0 2.5 2.0
Material damping ratio ξ (-) 0.05 0.05 0.05 0.05 0.05 0.05

Tab. 7.2. Soil profile geometry and characteristic

Profile Configuration
Shear wave velocity
of soft soil 1 (m/s) h1 (m) h2 (m) h3 (m)

Fundamental
frequency fs (Hz)

I Ia 100 10 - - 2.42
Ib 150 " - - 3.50
Ic 200 " - - 4.43

II IIa 100 3 7 - 2.46
IIb 150 " " - 3.52
IIc 200 " " - 4.43

III IIIa 100 4 2 4 2.64
IIIb 150 " " " 3.73
IIIc 200 " " " 4.61

The foundation system is subjected to a set of five artificial accelerograms in Section 4.2.1
that align with the design spectrum, ensuring the relevance and practicality of the findings
for engineering applications.

The study encompasses three soil profiles each featuring soft soil, with three distinct
shear wave velocities Vs. This comprehensive parametric study encompasses a total of 45
calculations (3 soil profiles × 3 different Vs of soil soil 1 × 5 accelerograms).

7.3 Model description

In this chapter, a hybrid numerical model combining FEM-BIE is employed to investigate
the kinematic bending moment within the inclusions of a reinforced foundation system.

The same numerical modelling principles outlined in Section 4.2.2 are applied here. The
soil is represented through interaction nodes where Green’s function is employed to
calculate the dynamic impedances of the soil. The shallow foundation is modelled using a
weightless rigid beam grid. The inclusions are modelled with beam elements to accurately
capture their forces. The LTP is explicitly modelled with 8-node hexahedral elements.
Vertically propagating SH-waves are employed as the excitation in the model. They are
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defined at a point located a distance away from the modelled foundation at the ground
surface level.

7.4 Kinematic bending moments calculated by
dynamic approach

The physical phenomenon of kinematic bending moments in rigid inclusions during
earthquake excitation is initially examined. An interesting aspect of the study is the
investigation of the evolution of the kinematic bending moments at different time points,
depths within the rigid inclusions, and positions of the rigid inclusions.

7.4.1 Bending moment time history

This section presents the time history of kinematic bending moments within the rigid
inclusions. To keep the presentation concise, only the kinematic bending moment of the
central inclusion is shown. The variations of kinematic bending moments within various
soil profiles over time are illustrated in Figures 7.3, 7.4, and 7.5. For clarity, the bending
moments have been normalised by the maximum bending moment value.

Figure 7.3 illustrates the distribution of bending moments at different depths during the
excitation. In configuration Ia, where a stiffness contrast exists at the interface between
soft soil and hard soil at a depth of -10 m, the temporal record of kinematic bending
moments reaffirms that the most substantial bending moment occurs at the level of
the interface between the soft and hard soil layers. Significant bending moments are
observed within the time interval spanning from 2 seconds to 25 seconds, coinciding with
significant duration. However, it is worth noting that the maximum bending moment
does not coincide with either the instant of peak acceleration or the instant of maximum
displacement at the surface.

The same observation found in configuration Ia is also applicable to configuration IIa, as
depicted in Figure 7.4. High bending moments are located around the two interfaces,
which are found at depths of -3 m and -10 m, respectively. This result confirms that the
stiffness contrast at the layer interfaces is the cause of high kinematic bending moments.

In Profile III, there are three interfaces due to a stiff soil layer placed at the middle depth.
As a result, three zones with high bending moments are observed in Figure 7.5, located
at depths of -4 m, -6 m, and -10 m. Interestingly, it is also observed that the maximum
response of bending moment at different interfaces does not occur simultaneously.
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Fig. 7.3. Time evolution of kinematic bending moment for configuration Ia with accelerogram 3

Fig. 7.4. Time evolution of kinematic bending moment for configuration IIa with accelerogram 2

7.4.2 Bending moment at soil layer interface

From the kinematic bending moment time history, it has been found that the maximum
kinematic bending moment is consistently situated at the interfaces in each profile,
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Fig. 7.5. Time evolution of the bending moment for configuration IIIa with accelerogram 4

resulting from the contrast in stiffness. The maximum kinematic bending moments for
different configurations are studied in this section with a shear wave velocity contrast
ratio η, defined in Equation 7.1.

The investigation into the amplitude of the kinematic bending moment involves varying
cases using different Vs values for the soft soil, as depicted in Figures 7.6, 7.7, and 7.8.

The maximum kinematic bendings for Profile I at the interface are depicted in Figure
7.6. At the interface with η = 2.0, the kinematic bending moment is relatively small with
a maximum bending moment of approximately 0.6-0.7 MN.m. There is no significant
difference in the maximum bending moment value across different accelerograms. The
most pronounced amplitude of maximum bending moment is observed with η = 4.0.
The relationship between the stiffness contrast ratio and the amplitude of the maximum
bending moment is evident, with the maximum bending moment increasing as the contrast
of the stiffness between the stiff soil and soft soil grows.

Figure 7.7 depicts the maximum moments at two distinct interfaces of rigid inclusions
within Profile II, varying in stiffness contrast ratio η. This observation echoes the findings
in Profile I, wherein a higher stiffness contrast corresponds to an increased bending
moment amplitude.

Profile III features three distinct soil interfaces. Figure 7.8 illustrates the amplitudes of
kinematic bending moments at these interfaces. Notably, the same observations from
Profiles I and II hold true for Profile III as well.
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Fig. 7.6. Maximum bending moment at the different soil layer interfaces in Profile I

Fig. 7.7. Maximum bending moment at the different soil layer interfaces in Profile II: (a) upper
interface and (b) lower interface

7.4.3 Bending moments of inclusions at different positions

The study investigates the evolution of kinematic bending moments during seismic excita-
tion and examines the amplitudes and locations of the maximum bending moments. For
these analyses, the central inclusion is selected. However, it raises the question of whether
the central inclusion serves as a representative model for all other inclusions. Therefore,
this section includes a comparison of bending moments among inclusions positioned at
different locations. The comparison of kinematic bending moments of different rigid
inclusions aims to investigate the significance of group effects.
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Fig. 7.8. Maximum bending moment at the different soil layer interfaces in Profile III: (a) upper
interface, (b) middle interface, and (b) lower interface

Figure 7.9 showcases a comparison of kinematic bending moment envelopes for inclusions
positioned at different locations within the three distinct soil deposits. The analysis
focuses on inclusions situated at the centre, edge and corner, denoted as A, B, and C,
respectively. Additionally, three varying shear wave velocities of soft soil 1 are considered.
The kinematic bending moments are normalised using Equation 7.2.

M̄ = Ml0
2

EpIpdmax
(7.2)

where l0 represents the pile’s transfer length, which can be calculated using Equation 4.2,
and dmax denotes the amplitude of displacement at the ground surface.

The investigation reveals that the dynamic responses of inclusions in terms of bending
moment at various positions under seismic loading are remarkably identical. Consequently,
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Fig. 7.9. Normalised kinematic bending moments of three profiles: comparison for inclusions at
different positions

it can be inferred that the group effect has a small influence on the maximum kinematic
bending moment.

The examination of kinematic forces experienced by a group of rigid inclusions can be
effectively conducted by modelling only a single inclusion. It is not necessary to verify
all inclusions. In the following analysis, the results of the centre inclusion are presented
since it is representative enough for all inclusions.

7.5 Kinematic bending moments calculated by
pseudo-static calculation

The engineering conventional examination approach of kinematic forces typically involves
pseudo-static approaches based on the p-y type Winkler model, as explained in Section
3.3.2. The approach relies on various assumptions, which lack verification and validation
with comprehensive models. The following comparison investigates the applicability of
the conventional pseudo-static approach.

7.5.1 Pseudo-static approach based on Winkler-type model

A valuable comparison lies in assessing the kinematic bending moments within rigid
inclusions through two different approaches: a pseudo-static approach involving a Win-
kler model (p-y type model), and a dynamic approach employing a complete model as
described in Section 7.3.
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The pseudo-static approach introduces the kinematic soil deformation as a free-field
displacement, denoted g(z), which is applied to the free end of the springs simulating
inclusion-soil interaction, rather than being directly imposed on the inclusion itself (Cuira,
2012; Hoang et al., 2020).

The soil displacement profile is employed in a Winkler-type model with linear elastic p-y
springs, as depicted in Figure 7.10. The lateral stiffness, denoted as Es, can be estimated
using the formula presented in Equation 4.3, as proposed by Gazetas et al. (1993).

+

Fig. 7.10. Pseudo-static approach using p-y model

The equilibrium of the pile is described by a differential equation, as shown in Equation 7.3.

EpIp
d4y(z)
dz4 + Es[y(z) − g(z)] = 0 (7.3)

An analogue modelling of the dynamic response of a soil column can be used to deter-
mine the displacement profiles g(z). The analogue modelling is described in Appendix
B. The displacement profiles g(z) for the three selected soil profiles are illustrated in
Figure 7.11.

7.5.2 Comparison with dynamic approach results

Bending moment diagram comparison

The kinematic bending moment diagrams for the three profile families and nine con-
figurations are depicted in Figures 7.12, 7.13, and 7.14, respectively. The shear wave
velocity Vs of soft soil 1 is also indicated in the figures for each case. The moment profiles
obtained from dynamic calculations using different accelerograms are represented by
dashed curves. The black curve represents the average moment profile from five dynamic
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Fig. 7.11. Normalised fundamental eigenmode for three profiles

calculations. Additionally, the moment profile obtained through pseudo-static calculation
is shown in red.

Figure 7.12 presents the maximum bending moment diagrams for Profile I obtained
through dynamic calculations using five different accelerograms. In cases (b) and (c), the
shear wave velocity Vs of soft soil 1 is 150 m/s and 200 m/s, respectively. In these cases,
the stiffness contrast at the interface is not significant. The general trends observed in the
average of the dynamic calculations and the pseudo-static solution are similar. The black
curve representing the average of the dynamic calculations is generally bounded by the
pseudo-static solution (red curve).

On the other hand, the comparison in case (a) shows that the result of the pseudo-static
analysis is similar to the dynamic calculation at all depths. When compared with the
dynamic calculation, the maximum bending moment obtained from the pseudo-static
analysis is underestimated by approximately 15 %.

The results of the kinematic bending moment for Profile II are displayed in Figure 7.13.
The local maximum bending moments are observed at the soil interfaces. Similar to
Profile I, the maximum bending moment occurs at the soil interface (at a depth of -10
m). It is noticeable that the pseudo-static calculation generally envelops the dynamic
solution in cases (b) and (c), where the shear wave velocity Vs is 150 m/s and 200 m/s,
respectively. However, in case (a), where the shear velocity is 100 m/s, the kinematic
bending moment diagram from dynamic calculation exhibits similarity with the results
obtained through the pseudo-static approach, in terms of both the trend and the order of
magnitude.
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Fig. 7.12. Comparison between dynamic approach and pseudo-static approach for Profile I with
different Vs of soft soil 1: (a) 100 m/s, (b) 150 m/s, (c) 200 m/s

The kinematic bending moment diagram is depicted in Figure 7.14. This soil profile
features three soil interfaces where local maximum bending moments are observed. In
contrast to Profiles I and II, the maximum amplitude of the bending moment in Profile III
is located at the second soil interface at a depth of -6 m.

For cases (b) and (c), the results from dynamic calculation are generally enveloped by
those obtained through pseudo-static analysis. For case (a), the pseudo-static approach
gives a satisfactory result with a slight underestimation when compared to the average of
dynamic calculation.

Based on these observations, it can be concluded that the pseudo-static approach is capable
of capturing the general trend of kinematic bending moments in rigid inclusions. Both
the pseudo-static and dynamic approaches confirm that the maximum bending moment
occurs at the interfaces between layers. For cases with a small interface stiffness contrast,
such as cases (b) and (c), the pseudo-static approach tends to overestimate the kinematic
bending moment. However, in cases where a significant interface stiffness contrast is
present, like case (a), the pseudo-static approach fails to provide an enveloping result.

Moment profile envelope and relative error between the approaches

The moment diagrams obtained by the conventional pseudo-static approach are examined
and compared with the maximum moment diagram derived from dynamic calculations.
However, it is worth noting that the moment diagram which can give the maximum
moment at the interface does not necessarily reflect the maximum value at other depths.
Therefore, an interesting point of comparison is to match the moment diagram from the
pseudo-static approach with the envelope of the moment diagram resulting from the
dynamic calculations. This comparative analysis is illustrated in Figure 7.15.
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Fig. 7.13. Comparison between dynamic approach and pseudo-static approach for Profile II with
different Vs of soft soil 1: (a) 100 m/s, (b) 150 m/s, (c) 200 m/s

Fig. 7.14. Comparison between dynamic approach and pseudo-static approach for Profile III with
different Vs of soft soil 1: (a) 100 m/s, (b) 150 m/s, (c) 200 m/s

Both approaches exhibit similar trends in the moment variation with depth. The com-
parison highlights the pseudo-static approach’s capability to identify the location of the
interface where the maximum kinematic bending moment occurs. In the case of small
stiffness contrast profiles (Vs = 150 m/s or 200 m/s), the pseudo-static approach can
provide a satisfactory envelope, except for some local underestimation.

Following the comparison of kinematic bending moment envelopes, an examination of the
differences in maximum moments calculated using the two approaches at the soil layer
interfaces becomes of interest. The relative error between kinematic bending moments
calculated using both approaches at each interface is presented in Figure 7.16 for various
values of the contrast between the hard and soft soil, evaluated by η, as defined in
Equation 7.1. A positive error indicates that the kinematic bending moment calculated
using the dynamic approach is greater than that from the pseudo-static approach. It is
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observed that the pseudo-static approach tends to be conservative only at interfaces with
a small rigidity contrast (shear wave velocity ratio smaller than 3).

Fig. 7.15. Comparison of kinematic bending moment profiles of three soil profiles obtained with
different calculation approaches

Fig. 7.16. Relative errors between the kinematic bending moments calculated using the two
approaches at the soil interfaces for the three soil profiles

7.6 Summary

The passage of seismic waves through the soil surrounding the rigid inclusions results in
lateral displacements and curvatures of the pile, leading to the generation of kinematic
bending moments. These kinematic bending moments, which can be significant and
should be carefully considered in the design of inclusions, are examined in this chapter.

Similar to the study for the piles (Nikolaou et al., 2001), the maximum bending moment is
situated at the interface between soil layers. Comparing the maximum bending moments
at various soil layer interfaces highlights the significant influence of stiffness contrasts at
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these interfaces on the amplitude of bending moments. The time history of kinematic
bending moments reveals that their peak values may not align with the peak values of
maximum acceleration or surface displacement. Additionally, a noteworthy observation
emerges from comparing bending moment envelopes across differently positioned vertical
inclusions: the same responses are found in the inclusions in different positions.

The examination of kinematic bending moment diagrams highlights that the pseudo-static
approach typically captures the overall response trend. However, it tends to underestimate
the maximum bending moment amplitudes at soil interfaces with significant stiffness
contrasts while overestimating them in the case of minor stiffness contrasts. Considering
these findings, the dynamic approach is recommended, particularly for cases featuring
complex stratigraphy and substantial contrasts in soil rigidity (indicated by a shear wave
velocity ratio, η exceeding 3).
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Conclusion

In this part, a comprehensive investigation is undertaken to examine the fundamental
dynamic SSI effects within a foundation reinforced by rigid inclusions. This study ad-
heres to the framework of Kausel’s decomposition (Kausel et al., 1978). The exploration
encompasses separate analyses of both kinematic and inertial interaction phenomena.
Chapters 4 and 7 delve into the examination of kinematic SSI effects. Chapters 5 and 6
focus on the study of inertial SSI effects. This systematic study not only enhances the
comprehension of the dynamic behaviour of foundations reinforced by rigid inclusions but
also contributes to investigating the applicability of several approaches employed under
pseudo-static conditions within dynamic scenarios.

In Chapter 4, an exploration of ground motion modification due to kinematic interaction
effects is undertaken. Through harmonic and seismic excitation, diverse foundation types
are scrutinised, including shallow foundations, pile foundations, and foundations rein-
forced by rigid inclusions. Different reinforced foundation configurations, encompassing
soil characteristics and coverage area ratio, are also tested. Kinematic interaction factors
Iu under harmonic excitation and pseudo-acceleration interaction factor IP SA are used
to assess the signal modification at the base of the structure, revealing a high-frequency
signal attenuation, attributed to the presence of rigid inclusions.

Chapter 5 shifts its focus to dynamic impedances. A comparative study illuminates
similarities and differences between inclusion-reinforced foundations and conventional
foundation types, including shallow foundations and pile foundations in terms of dynamic
stiffness, damping ratio, and dynamic magnification ratio. It reveals an anisotropic be-
haviour in foundations reinforced by rigid inclusions. In the horizontal direction, the
dynamic stiffness, the damping, and the dynamic magnification ratio of foundations on
rigid inclusions are akin to those of shallow foundations with LTP. Conversely, the vertical
and rotational dynamic stiffness of foundations on rigid inclusions falls between the values
observed in shallow foundations and pile foundations, while the damping ratio and the
dynamic magnification ratio of the former align closely with pile foundations. The para-
metric study on the inclusion length indicates that end-bearing inclusion reinforcement
increases the vertical and rotational stiffness of the foundation, whereas foundations
reinforced by floating inclusions do not achieve the stiffness of the hard support layer.
Additionally, the research explores a homogenised equivalent profile approach for dynamic
impedance calculation. This approach enables the assessment of dynamic impedances in
the low-frequency range with a certain level of precision. Lastly, the study scrutinises the
coupling effects and finds no coupling effect within the studied configurations.
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Chapter 6 explores inertial loading, examining load transfer efficiency and the bending
moment within rigid inclusions. The findings reveal that Under horizontal loading, the
stress concentration rate is 3 to 7 times lower than that observed under vertical loading.
Moreover, the analysis reveals that the bending moment generated within the rigid
inclusions by the applied foundation force is relatively smaller than that in a hinge pile
foundation.

Chapter 7 encompasses an exploration of kinematic forces in terms of kinematic bend-
ing moment induced by seismic wave propagation. As observed in pile foundations,
the maximum bending moments are situated at the interfaces between soil layers, and
the magnitude of the maximum bending moment is influenced by the stiffness contrast.
No group effects are not detected in the examined configurations. A comparison be-
tween pseudo-static and dynamic approaches illustrates that the pseudo-static approach
can effectively capture general trends and provide a bending moment envelope, albeit
underestimating the bending moment for interfaces with significant stiffness contrast.

The analyses in the part of the dissertation contribute to a deeper understanding of
dynamic SSI effects of foundations reinforced by rigid inclusions, shedding light on the
potential phenomena governing their behaviour in pseudo-static or dynamic conditions.

142 Chapter 7 Kinematic bending moment within rigid inclusions



Part III

Seismic bearing capacity





Introduction

The issue of foundation bearing capacity is perpetually significant within the field of
geotechnical engineering. In the literature, researchers employ both experimental and nu-
merical methods to address this crucial matter. Among the various numerical approaches,
the yield design theory, presented in Section 3.3.1, stands out as a proven and efficient
tool. It has been successfully utilised to investigate the bearing capacity of non-reinforced
shallow foundations and the stability of nailed slopes subjected to static and seismic
loads.

Drawing inspiration from these studies, this part of the dissertation delves into the issue
of assessing the bearing capacity of rigid inclusion-reinforced foundations under both
static and seismic loads. The analysis is conducted using the kinematic exterior approach
in the framework of the yield design theory.

The kinematic exterior approach offers a comprehensive upper-bound solution, allowing
not only to determine the ultimate bearing capacity under vertical loads but also to assess
the ultimate bearing capacity under diverse load conditions, taking into account the load
inclination, load eccentricity, and soil inertia. By combining several ultimate bearing
capacity values, the interaction diagrams can be derived, delineating all the possible load
combinations applied to the foundation for which the foundation fails and for which it
remains stable.

In Chapter 8, an analytical approach is established within the framework of the kinematic
exterior approach to address the bearing capacity problem in inclusion-reinforced foun-
dations. This approach involves identifying potential failure mechanisms within a rigid
inclusion-reinforced foundation system. To tackle this complex challenge, the system is
partitioned into sub-systems based on the identification of potential failure mechanisms.
Within these sub-systems, a particularly challenging aspect is how to appropriately account
for the contribution of rigid inclusions. Taking inspiration from the multicriterion ap-
proach used for nails, a novel multicriterion approach for rigid inclusions is introduced to
aid in determining the forces provided by these rigid inclusions. The interaction diagram
can be obtained by superimposing the results from different sub-systems.

Chapter 9 is dedicated to the numerical validation. This chapter is focused on validating
the proposed analytical approach. The numerical FEM modelling analyses are used to
accomplish both qualitative validation of the studied failure mechanisms and quantitative
validation of the interaction curves and the ultimate vertical bearing capacity for such
foundations.
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Chapter 10 utilises the validated analytical approach to investigate the significant influence
of load eccentricity, load inclination, and soil inertia on the bearing capacity of foundations
reinforced by rigid inclusions. Furthermore, the study introduces essential reduction
factors, such as ie, iδ, and ig for various coverage area ratios. The effect of embedding the
rigid inclusions in the LTP is also investigated.
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Seismic bearing capacity:
Theoretical framework

8
8.1 Kinematic exterior approach

The bearing capacity constitutes an important problem in foundation design. To de-
scribe the bearing capacity of foundations under different load conditions, interaction
curves within the (V,H,M) space are employed, enabling a convenient evaluation of
foundation performance under seismic conditions. These curves can be derived using
various approaches, including physical experiments like swipe tests (Butterfield, 1979),
and numerical simulations. Additionally, in the literature, the analyses in the framework
of the yield design theory are also employed to investigate the seismic bearing capacity of
foundations under both static and seismic load conditions.

Within the framework of yield design theory, the kinematic exterior approach, also
known as the kinematic external approach, serves as an upper-bound analysis method, as
depicted in Figure 8.1. This approach involves evaluating kinematically admissible failure
mechanisms Û and verifying whether the virtual power of external loads applied to the
system, denoted as Pe, is less than or equal to the maximum resisting power of the soil,
denoted as Prm.

Fig. 8.1. Scheme of kinematic exterior approach

An upper-boundK encompasses within the space delineated by Inequation (8.1) (Salençon,
1983).

K ⊂ {Prm(Û) ≥ Pe(Û)} (8.1)
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From a practical perspective, the kinematic exterior approach primarily roots in Inequation
8.1, regardless any supplementary assumptions. A thorough examination of admissible
kinematic velocity fields ∥Û∥ will be conducted. Employing the kinematic exterior ap-
proach to establish the stability domain K offers a well-balanced approach, considering
the simplicity of the methods used, available computational resources, time constraints,
and the quality of the obtained results (Salençon, 2002).

The maximum resisting power Prm is equal to:

Prm =
∫

Ω
π(d̂)dΩ +

∫
Σ
π(∥Û∥)dΣ (8.2)

where π(.) represents the density of virtual power related to the strain rate d̂ within the
volume Ω and the virtual velocity ∥Û∥ at the discontinuity surface Σ. These quantities are
derived from strength criteria. The explicit formulation of the function π(.) is available for
various criteria applicable to both continuous materials and interfaces and can be found
in the works of Salençon (1983, 2002), provided in Appendix D.

The virtual power of all external forces Pe applied to the system encompasses the power
of the loads exerted on the foundation in terms of forces and moments (V,H,M), as well
as the body forces (fx, fy) originating from soil inertia.

In the case of a foundation reinforced by rigid inclusions, the formulation of Pe remains
unchanged when compared to the case without reinforcement. Nonetheless, the deter-
mination of Prm must account for the contribution of reinforcement by rigid inclusions,
represented by PRI , as outlined in Equation 8.3.

K ⊂ {Prm(Û) + PRI(Û) ≥ Pe(Û)} (8.3)

8.2 Seismic bearing capacity analysis by kinematic
exterior approach

8.2.1 Non-reinforced foundation

Due to its capabilities, the kinematic exterior approach has been used to examine the
bearing capacity of strip foundations located on uniform cohesive and frictional soils under
seismic loading (Pecker and Salencon, 1991; Salençon and Pecker, 1995a,b; Paolucci and
Pecker, 1997a,b; Soubra, 1999).
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Problem description

The primary aim of this study is to examine the seismic bearing capacity of foundations
reinforced by rigid inclusions. Nevertheless, it is insightful to start the investigation with
a study focused on the non-reinforced foundations.

The problem explored in this section involves a non-reinforced strip footing. The founda-
tion is situated on a half-space composed of cohesive soil without tensile strength, defined
by a cohesion c, or a frictional soil characterised by a friction angle φ. This arrangement
is depicted in Figure 8.2.

Fig. 8.2. Two-dimensional problem of the bearing capacity of a strip footing subjected to seismic
loading

To simulate seismic loading on the foundation, the force couple F (V,H) is employed
to represent the inertial forces transmitted through the structure. The moment M is
calculated by multiplying the vertical force V by the eccentricity e. Inertial effects
within the soil are also taken into account employing body forces caused by seismic and
gravitational loads. These are denoted as fx = ρax and fy = ρ(g ± ay), respectively.

It is worth noting that assuming constant inertial forces fx is acceptable when the failure
mechanism is confined to a region near the ground surface. To account for the spatial
variation of acceleration within the soil, various approaches have been proposed, including
the use of fundamental mode-shaped acceleration profiles. In practice, for shallow failure
mechanisms, this assumption is usually valid and does not result in significant errors
(Pecker and Salencon, 1991; Chatzigogos, 2007).

Foundation on cohesive soil

Salençon and Pecker (1995a) investigated the bearing capacity problem of a shallow strip
foundation by assuming the soil to be purely cohesive and following Tresca’s strength
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criterion. This study is conducted within the framework of 2D plane strain yield design
theory (Salençon, 1983, 2002).

In a related paper (Salençon and Pecker, 1995b), the authors introduced a tension cut-off
condition to the soil strength criterion, specifically describing a purely cohesive medium
with no tensile strength. Both the static interior approach and the kinematic exterior
approach are employed. The findings of the study confirm that the bearing capacity of
foundations on purely cohesive soil does not depend on the soil unit weight. The soil unit
weight acts as a stabilising factor for the upper bound estimation of foundations on purely
cohesive soil without tensile strength.

The rotation-translation kinematic admissible failure mechanisms Û are illustrated in
Figure 8.3. The mechanism presented in Figure 8.3 (a) shows a velocity field without
uplift, characterised by a rotation at angular velocity ω of the assembly comprising the
foundation A′A and the soil volume IJA, about the rotation centre Ω. Within the circular
sector A′AJ and the triangle ALK, a purely tangential velocity field is present, and both
of these blocks are deformable.

The mechanism depicted in Figure 8.3 (b) is similar to the previous one, involving a
rotation at angular velocity ω of the assembly comprising the foundation A′A and the soil
volume IJA. This mechanism includes an uplift of the foundation from the soil along A′I,
a purely tangential velocity field within the circular sector AJK and the triangle ALK.

Fig. 8.3. Rotation-translation velocity fields for a rigid strip foundation on cohesive soil: (a)
without uplift and (b) with uplift (Pecker and Salencon, 1991)

Several mechanisms involving only a rigid block in rotation are also proposed, as depicted
in Figure 8.4. The mechanism shown in Figure 8.4 (a) involves a rotation of the foundation
A′A and the volume of soil aA, at angular velocity ω, forming a rigid block. This
mechanism includes an uplift of the foundation along A′a. The rotation mechanism
without uplift is similar to the one with uplift, as illustrated in Figure 8.4 (b).

An uplift velocity jump mechanism has also been tested, involving a velocity discontinuity
along the interface A′A as depicted in Figure 8.5. This mechanism involves sliding along
the interface A′A with the velocity Û and the foundation has an uplift velocity jump at
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the interface, assuming that the velocity jump takes place within the soil immediately
below the interface A′A.

Fig. 8.4. Rotation velocity fields for a rigid strip foundation on cohesive soil: (a) with uplift and
(b) without uplift (Pecker and Salencon, 1991)

Fig. 8.5. Uplift velocity jump for a rigid strip foundation on cohesive soil (Salençon and Pecker,
1995b)

A summary of the results obtained using the kinematic exterior approach is depicted in
Figure 8.7 (a), illustrating various load eccentricities e/B ranging from 0.1, 0.2, 0.3, and
0.4 and the case without eccentricity. These curves establish the optimal upper bounds for
the bearing capacity, derived from distinct mechanisms, as shown in Figures 8.3, 8.4, and
8.5. The outcomes are normalised by the theoretical bearing capacity Vmax = (π + 2)B, a
value can also be acquired through the kinematic exterior approach applied in the present
work. Comparing the interaction curves with varying load eccentricities reveals that the
bearing capacity is sensitive to the load eccentricity.

The H-V interaction curves, considering both cases with and without soil inertia, are
showcased in Figure 8.7 (b). In situations where foundations are well-designed with a
safety factor exceeding 2 (V/Vmax ≤ 0.5) and experiencing ground motion with accelera-
tion below c/Bρ, the reduction in bearing capacity resulting from the soil seismic inertia
can be disregarded. Conversely, for foundations designed with a lower safety factor, the
influence of soil seismic inertia becomes pronounced and leads to an important reduction
in the bearing capacity.

All failure mechanisms examined by Salençon and Pecker (1995b), as depicted in Figure
8.3, 8.4, and 8.5 are investigated within the scope of this study. An algorithm is proposed
in this study, allowing for a systematic exploration of all possible ranges of geometric
parameters within the studied failure mechanism families. This algorithm can iterate
through all possible combinations of these geometric parameters. For each combination
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of geometric parameters, it computes a set of corresponding external forces Q by solving
Prm(Û) = Pe(Q, Û). The minimum external force value represents the best estimation of
the upper-bound solution, as depicted in Figure 8.6.

Fig. 8.6. Algorithm to find the best upper-bound solution

In the seismic stability problem of a foundation, the external force Q can encompass
various components, including vertical force V , horizontal force H, rocking moment M
or eccentricity e, and soil inertia fx and fy. In each calculation, the algorithm seeks one
minimum target external force component term while keeping the other components
fixed. This algorithm can be applied in both non-reinforced foundations and reinforced
foundations.

The findings depicted in Figures 8.7 (a) and (b) with blue curves demonstrate a strong
agreement with those described in the aforementioned references, validating the precision
of the implemented algorithm.

Fig. 8.7. Comparisons with the reference results for a strip foundation on cohesive soil: (a) H-V
interaction curves under eccentric loading (Salençon and Pecker, 1995b) and (b) H-V
interaction curves with soil inertia (Pecker, 1997)
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Foundation on frictional soil

Several virtual failure velocity fields have been proposed to define the interaction diagrams
for strip foundations on frictional soil in the studies by (Dormieux and Pecker, 1995;
Paolucci and Pecker, 1997a).

The kinematic mechanism depicted in Figure 8.8, as outlined in the work of Dormieux
and Pecker (1995), follows the Prandtl-type mechanism. The blocks AJA′ and AKL are
rigid triangular entities, while the block AJK is deformable and enclosed by a logarithmic
spiral JK with a rotation centre at point A.

The second set of kinematic mechanisms presented in Figure 8.9 shares similarities. These
mechanisms comprise a rigid block AJA′ bordered by the foundation on the upper side
and a logarithmic spiral JK centred at point Ω on the lower side. Additionally, they
involve a deformable block AJK defined by a logarithmic spiral centred in point A, and
of a deformable triangular block AKL.

Fig. 8.8. Translation velocity fields for a rigid strip foundation on frictional soil (Paolucci and
Pecker, 1997a)

Fig. 8.9. Rotation-translation velocity fields for a rigid strip foundation on frictional soil (a)
without uplift and (b) with uplift (Paolucci and Pecker, 1997a)

The investigation of the load eccentricity effect is illustrated in Figure 8.10 (a). Load
eccentricity has a detrimental impact on the bearing capacity, causing a reduction in the
stability domain enclosed by the interaction curve. Regarding the effects of soil inertia,
the analysis indicates a relatively small reduction in bearing capacity, not exceeding 15 to
20 %, as shown in Figure 8.10 (b).
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Fig. 8.10. Comparisons with the reference results for a strip foundation on frictional soil: (a)
H-V interaction curves under eccentric load (Paolucci and Pecker, 1997a) and (b) H-V
interaction curves with soil inertia (Paolucci and Pecker, 1997a)

8.2.2 Rigid inclusion-reinforced foundation

The seismic bearing capacity of rigid inclusion-reinforced foundations has not received
sufficient attention. This is partly due to the inherent complexity introduced by the
presence of three distinct components: the soft soil, the granular LTP, and the rigid
inclusions. This intricate composition adds difficulty to determining the failure mechanism
Û .

Pecker et al. (1998) evaluated the seismic bearing capacity of a shallow foundation on
cohesive soil reinforced by rigid inclusions. This assessment is accomplished using a
kinematic exterior approach within the framework of yield design theory. The findings
are then compared with the results of five centrifuge tests carried out on a scaled model,
which are associated with the Rio-Antirrio bridge project as detailed in Section 1.1.3. The
associated centrifuge tests are introduced in Section 2.3.

What is particularly noteworthy in this study is the incorporation of rigid inclusions within
the kinematic exterior approach. The focal point of interest lies in accounting for the
presence of rigid inclusions. The resistance criterion for such inclusions is expressed by
Equation 8.4, as proposed by Anthoine (1987).

f(n, v,m) =
(
n

nl

)2
+
(
v

vl

)2
+
∣∣∣∣mml

∣∣∣∣− 1 ≤ 0 (8.4)

where nl, vl, and ml represent the ultimate values of axial force n, shear force v, and
bending moment m, respectively.

The maximum resisting power of a rigid inclusion, calculated using the criterion provided
by Equation 8.4, is expressed as:
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π = Sup
[
n(s)dU(s)

ds
.en +m(s)dΩ(s)

ds
; f(n, v,m) ≤ 0

]
(8.5)

In Equation 8.5, the contributions of inclusion rotation, axial deformation of the inclusion,
and shaft friction along the inclusion are taken into account.

A total of nine kinematic mechanisms are studied. The failure mechanisms observed in
the centrifuge tests closely resemble two out of nine kinematic mechanisms considered in
the calculations, resulting in the most accurate estimations of bearing capacity. These two
kinematic mechanisms are illustrated in Figures 8.11 and 8.12.

The velocity field depicted in Figure 8.11 is characterised by the presence of a rigid body
A′CA and the foundation undergoing rotation with an angular velocity ω around point Ω.
Notably, the projection of the rotation centre Ω onto the surface lies to the left of point
A′. This mechanism exhibits a shear zone ACD delineated by a circle arc CD centred at
point A, as well as a triangular shear zone ADE. Within the shear band enclosed by two
parallel curves A′CDE and B′C ′D′E′, of thickness δ, the velocity remains continuous
across the upper boundary A′CDE, gradually decreasing linearly to zero at the lower
boundary B′C ′D′E′. This mechanism can be perceived as a combination of a shear band
and a mechanism resembling the behaviour of a non-reinforced shallow foundation, as
illustrated in Figure 8.3 (a).

Fig. 8.11. Rotation-translation velocity fields for a strip foundation reinforced by rigid inclusion
on cohesive soil without uplift (Pecker et al., 1998)

Another kinematic failure mechanism illustrated in Figure 8.12 exhibits similarities to
the preceding velocity field. The velocity fields associated with the blocks A′CA, ACD,
and ADE remain consistent with those observed in the previous mechanism. However,
the distinguishing factor lies in the uplift behaviour of the foundation. In this case, the
resisting power accounts for the contribution from the uplift interface. To complete this
mechanism, a circle arc B′B′′ is introduced, centred at point Ω′ and aligned vertically
from point Ω. The volume of soil A′B′B′′ experiences shear deformation within this
mechanism. This mechanism can also be interpreted as a variation of a kinematic failure
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mechanism observed in non-reinforced shallow foundations, as depicted in Figure 8.3 (b),
albeit with the presence of a shear band.

It is important to note that the rigid inclusions studied in the selected failure mechanisms
are not connected to the foundation. However, the LTP is not considered in the calculations
using the kinematic exterior approach. Instead, a failure criterion representing the sliding
failure between the LTP and the foundation is introduced and superimposed onto the
results obtained through the kinematic exterior approach.

Fig. 8.12. Rotation-translation velocity fields for a strip foundation reinforced by rigid inclusion
on cohesive soil with uplift (Pecker et al., 1998)

The seismic bearing capacity is depicted through an interaction curve within the H-M
plane, illustrated in Figure 8.13. The kinematic exterior approach curve corresponds
to the interaction curve derived from the mechanism featuring uplift. It is discernible
that the presence of rigid inclusions can lead to an increase in the bearing capacity. The
enhancement is demonstrated by the shift of the interaction curve from the black dashed
line to the red dashed line. In the presence of a granular LTP layer, a sliding failure may
ensue, which is represented by the blue line in Figure 8.13.

Fig. 8.13. H-M interaction curves obtained by kinematic exterior approach and compared with
the results of FEM analyses (Pecker, 2023b)
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8.3 Failure modes of rigid inclusions

In the existing literature, the application of ground improvement techniques involving
nails or inclusions has been explored using the kinematic exterior approach in a variety of
geotechnical engineering contexts.

The nailed slopes using the kinematic exterior approach are investigated by de Buhan
et al. (1992). The study employed kinematic mechanisms based on a triangular block and
a logarithmic spiral to analyse the stability of nailed slopes. Several geotechnical design
software tools, including TALREN (Terrasol, 2023), PROSPER (de Sauvage and Rajot,
2018), and STARS (Anthoine, 1990), have been also developed utilising a straightforward
logarithmic spiral. These software tools also offer options for controlling the contribution
of nail reinforcement by employing the multicriterion based on various failure mecha-
nisms associated with the nails. Notably, accurately assessing the force provided by the
reinforcement is a critical aspect of these analyses in the context of reinforced geotechnical
structures.

Building upon prior research, the present study assumes that the contribution of inclusions
is incorporated by considering their forces at the intersection with the failure surface. At
the intersection, the forces are decomposed into an axial force Tn, a shear force Tc and a
bending moment Mc, as shown in Figure 8.14. Nevertheless, these forces are subjected to
various limiting criteria :

• Material intrinsic strength;

• Vertical soil-inclusion interaction resistance;

• Lateral soil-inclusion interaction resistance: plastification of the soil;

• Lateral soil-inclusion interaction resistance: plastification of the inclusion.

Fig. 8.14. Scheme of rigid inclusion with failure mechanism: (a) interior length Lint and exterior
length Lext and (b) inclusion forces at the intersection with failure mechanism
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8.3.1 Material intrinsic strength resistance

This criterion corresponds to the failure of the inclusion due to breakage (Schlosser and
Unterreiner, 1990). The combination of Tn, Tc and Mc occurring at the intersection of the
inclusions and the velocity discontinuity surface can be succinctly represented by Equation
(8.6), proposed by Anthoine (1987).

(
Tn

Tn,0

)2

+
(
Tc

Tc,0

)2

+
∣∣∣∣∣ Mc

Mc,0

∣∣∣∣∣ ≤ 1 (8.6)

Where Tn,0, Tc,0, and Mc,0 represent the intrinsic strength limits of the material. The
expression of this criterion forms an ellipse in the Tn-Tc plan. This same expression has
also been employed in the study of nail-reinforced slopes to assess the inherent material
resistance (Schlosser and Unterreiner, 1990; de Buhan et al., 1992; de Buhan, 2004).

For an inclusion consisting of a cylinder with a diameter d, and a material with a maximum
stress of σc, the value of Tn,0, Tc,0, and Mc,0 are as follows:

Tn,0 = πd2σc/4 (8.7)

Tc,0 = Tn,0/2 (8.8)

Mc,0 = σcd
3/6 (8.9)

8.3.2 Axial soil-inclusion interaction resistance

The maximum axial force Tnl that rigid inclusions can provide is also governed by param-
eters such as skin friction, forces at the head and tip of the inclusion, and the internal
"pullout" failure mechanism, as depicted in Figure 8.15. This can be described by Equation
8.10.

Tnl = min(F0 + qsLintπd, FL + qsLextπd) (8.10)

where F0 represents the maximal force controlled by a Prandtl failure mechanism in the
granular material (LTP), FL represents the maximal force at the inclusion tip, which is
typically of significant magnitude. Additionally, qs denotes the characteristic value of the
inclusion shaft friction.

The calculation of the maximal force F0 is based on the Prandlt failure mechanism, which
is applicable in situations involving large deformations within a compacted material
(ASIRI, 2012), as depicted in Figure 8.16.
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Fig. 8.15. Vertical failure mechanism of inclusion using a limit equilibrium model

Fig. 8.16. Prandtl’s failure mechanism at the head of inclusion in the load transfer platform

For vertical loading, the maximum force F0 that can be transmitted by the LTP to the head
of the inclusion is expressed as follows:

F0(δRI = 0) = αNq

1 + α(Nq − 1)Fcell (8.11)

where δRI represents the inclination of the load at the head of inclusion, α represents the
coverage area ratio, Nq is the bearing factor dependent on the friction angle φ of the LTP,
and Fcell denotes the total load on the elementary mesh being considered. The values of
the factor Nq are 85.4 for φ = 42◦ and 48.9 for φ = 38◦. In scenarios involving an LTP of
small thickness, the Prandtl’s mechanism may not be viable. In such cases, a solution as
proposed by Mandel and Salençon (1972) for foundations placed on a soil layer of limited
thickness, situated atop of a rigid layer, can be employed to estimate the force F0 at the
heads of the inclusions.

When the loading is inclined at an angle δ concerning the vertical, the mobilisable force at
the head of the inclusion F0 can also be assumed to incline δRI with respect to the vertical
direction. F0 considering an inclination δRI can be estimated using Equation 8.12.
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F0(δRI) =
[(

1 − 2δRI

π

)2
− 2δRI

π

(
2 − 6δRI

π

)]
F0(δRI = 0) (8.12)

When considering the presence of rigid inclusions embedded at a depth De within the
LTP, the expression for the maximal axial force Tnl needs to account for the section within
the LTP, as illustrated in Equation 8.13.

Tnl = min(F0 + qs(lint −De)πd+ qs,LT PDeπd, FL + qslextπd) (8.13)

8.3.3 Lateral soil-inclusion interaction resistance

This criterion corresponds to the resistance of lateral soil-inclusion interaction behaviour.
The pressure within the interior length Lint or the exterior length Lext of the inclusion is
restricted by the limit pressure p∗

l in the soil.

The lateral interaction of the inclusion is analysed through the limit equilibrium model,
often referred to as modèle d’équilibre limit (MEL) in French. The comprehensive and
innovative limit equilibrium models are proposed in this work and their lateral pressure
distributions for various lengths of Lint and Lext are depicted in Figures 8.17 and 8.18.

The first limit equilibrium model(MEL I) in Figure 8.17 exhibits three distinct phases based
on its lateral pressure distribution. When the interior length Lint is less than a quarter of
the total length L, an equilibrium can be achieved considering the entire length of the
inclusions. However, as the interior length Lint exceeds a quarter of the total length L, a
reduction factor denoted as β is applied to decrease the pressure acting on the interior
length Lint to establish equilibrium along the inclusion.

Fig. 8.17. Distribution of lateral pressure for limit equilibrium model (MEL I)

A different limit equilibrium model (MEL II) consisting of five phases is proposed. The
first two phases are identical to the first limit equilibrium model. In contrast to MEL I,
equilibrium is achieved with a negative pressure equal to p∗

l at the upper part of the
inclusion.
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Fig. 8.18. Distribution of lateral pressure for limit equilibrium model (MEL II)

Inclusions can also experience failure at locations where the maximum bending moment
exceeds the material strength. In such cases, a simplified version of the expression in
Equation 8.6 is given by Equation 8.14. Figures 8.19 and 8.20 depict the normalised
values of Tc, Mc, and Mmax for varying ratios between the interior length Lint and the
total length L of a rigid inclusion.

Mmax ≤ Mc,0[1 − ( Tn

Tn,0
)2] (8.14)
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Fig. 8.19. Evaluation of Tc, Mc and Mmax for different Lint/L ratios for limit equilibrium model
(MEL I)

When considering the embedding of rigid inclusions in LTP with an embedment depth
De, the limit equilibrium model is modified to account for a higher limit pressure p∗

l ,LT P

in the LTP, and which surpasses the p∗
l of the soft soil. The limit equilibrium model, as

depicted in Figure 8.21, also incorporates a similar reduction factor denoted as β. In
this model, for a small interior length Lint, the reduction factor β should be employed
to reduce the limit pressure in the LTP and the soft soil. This reduction is necessary to
maintain equilibrium along the inclusion.
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Fig. 8.20. Evaluation of Tcl, Mcl and Mmax for different Lint/L ratios for limit equilibrium model
(MEL II)

Fig. 8.21. Distribution of lateral pressure for a limit equilibrium model in the case with embedment
of inclusions in LTP

Considering a configuration in which a 10 m long inclusion is embedded to a depth of
0.5 m in the LTP, with the LTP characterised by p∗

l m = 1 MPa and the soft soil characterised
by p∗

l = 200 kPa, and an embedment De of 0.5 m is used. The resulting normalised values
of Tc, Mc and Mmax for this particular case are depicted in Figure 8.22.
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Fig. 8.22. Tc, Mc and Mmax for different Lint/L ratio in the case with embedment of inclusions
in LTP
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8.3.4 Multicriterion for rigid inclusions failure modes

The combination of the four criteria mentioned above in the (Tn, Tc) plane defines a
useful stability domain, known as the multicriterion (Schlosser and Unterreiner, 1990).
This domain establishes limits on the potential forces provided by rigid inclusions and it
can be visualised as an envelope formed by the four criteria. Forces within the inclusion
can be located at any point within this domain, as illustrated in Figure 8.23.

When failure occurs, the forces must lie on the boundary of the useful domain, and its
position is determined by the principle of maximum work (Schlosser, 1978). This principle
indicates that the forces on the boundary are chosen in a way that maximises the power of
inclusions within a given failure mechanism. Once the virtual velocity at the intersection
of the inclusion with the failure surface is specified, the virtual power of an inclusion can
be calculated.

Fig. 8.23. Multicriterion combining several failure criteria in the Tn-Tc plane

8.4 Seismic bearing capacity for reinforced
foundations

8.4.1 Problem description

The investigated problem in this study focuses on the seismic bearing capacity for a strip
foundation reinforced by rigid inclusions. A strip foundation with width B is placed on
a half-space consisting of an LTP of thickness hLT P and with a friction angle φ (purely
cohesionless behaviour), as well as a cohesive soft soil layer with a cohesion value c and
no tensile strength. The soft soil layer is reinforced with rigid inclusions, as illustrated in
Figure 8.24. The inclusions with diameter d are assumed to be regularly spaced under the
foundation with a spacing s.

The seismic excitation is assumed to be applied in a pseudo-static manner. The force
transmitted to the footing is denoted as F , and the moment M is calculated by multiplying
the vertical force V by the eccentricity e.
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Fig. 8.24. Two-dimensional problem of the bearing capacity of a strip foundation reinforced by
rigid inclusions and subjected to seismic loading

Additionally, inertial effects in the soil are considered through body forces due to seismic
and gravity loading, denoted as fx = ρax and fy = ρ(g ± ay), respectively.

8.4.2 Simplified sub-systems

In contrast to the previous cases where the foundation is directly placed on an infinite
homogeneous half-space, the configuration with reinforcements involves a cohesive soil
reinforced by rigid inclusions and an LTP between the foundation and the reinforced soil.
Consequently, the reinforcement and the presence of an LTP layer introduce variations in
the failure mechanisms for rigid inclusion-reinforced foundations compared to those for
foundations without reinforcement.

To address these characteristics, three simplified sub-systems, illustrated in Figure 8.25,
are proposed, corresponding to the different potential failure mechanisms. The analysis is
performed, involving three distinct cases:

• Case I: This case considers homogeneous frictional soil, with failure primarily
concentrated in the LTP, resulting in a failure depth lower than hLT P ;

• Case II: This case focuses on sliding and uplift at the interface between the LTP and
the reinforced soft soil;

• Case III: Homogeneous cohesive soil is considered, taking into account reinforce-
ment by rigid inclusions. The failure depth in this case exceeds hLT P and intersects
the rigid inclusions.

164 Chapter 8 Seismic bearing capacity: Theoretical framework



Fig. 8.25. Simplified sub-systems for a foundation reinforced by rigid inclusions

The upper-bound solutions for three cases are denoted Kup,I , Kup,II , and Kup,II . The
results from these analyses are then combined to determine the stability domain Kup of a
foundation reinforced by rigid inclusions, as described in Equation 8.15.

Kup = Kup,I ∩Kup,II ∩Kup,II (8.15)

Case I is particularly relevant for understanding the failure mechanisms within the LTP,
aiming to replicate similar failure modes observed in shallow foundations on frictional soil,
as depicted in Figure 8.25 (a). Case III concentrates on potential failure modes occurring
in the soft soil reinforced by rigid inclusions. It encompasses the same failure modes as
cohesive soil, as indicated in Figure 8.25 (c).

Case II serves as a transitional mode situated between shallow failure mechanisms (Case I)
and deep failure mechanisms (Case III). This mechanism draws inspiration from the work
of Salençon and Pecker (1995b), as depicted in Figure 8.5. It can be roughly described as
a quadrilateral block in translation, with a horizontal velocity discontinuity line passing
just above the inclusion heads, thereby avoiding the mobilisation of the strength properties
of the rigid inclusions. This same failure mechanism is also observed in a rigid inclusion-
reinforced embankment subjected to lateral seismic loading (Hassen et al., 2021). It is
important to note that for configurations with rigid inclusions embedded in LTP, Case II is
not applicable.

Cases I and II are relatively straightforward to analyse. Case I has already been studied
in a situation with purely cohesionless soil, as described in Section 8.2.1. Case II can
be simplified as the velocity jump mechanism presented in Figure 8.5. In this case, the
inclusions do not significantly affect the calculation of resistance power and external force
power.

The details of Case III are presented in Figure 8.26. The chosen failure mechanism for
this case is inspired by the mechanisms for foundations on non-reinforced cohesive soil
described in Section 8.2.1, which are tested. The selected failure mechanism family for
Case III combines rotation and translation blocks with uplift behaviour and includes three
geometric parameters: α, µ, and λ, as depicted in Figure 8.3 (b).
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Fig. 8.26. Detailed description for Case III: (a) multi-block failure mechanism, (b) simplified
configuration and (c) forces at the intersection of inclusion with failure interaction

The presence of the LTP is not considered in the calculation of the resisting power of the
soil Prm to simplify the analytical calculations, as shown in Figure 8.26 (b). Typically, the
LTP is composed of compacted gravel material and has better resistance characteristics
than the soft soil that needs reinforcement. The omission of the LTP in these calculations
remains a conservative simplification. However, the LTP is taken into account in the
calculation of the force at the intersection provided by the rigid inclusions, as indicated in
Equations 8.10 and 8.13, consequently, in the contribution of rigid inclusions, as depicted
in Figure 8.26 (c). For a system with n active inclusions, the resisting power representing
the contribution of rigid inclusions can be described by Equation 8.16.

PRI(Û) =
n∑
i

[
Tn,i Ûn,i + Tc,i Ûc,i +Mc,i Ûm,i

]
(8.16)

where Tn,i, Tc,i, and Mc,i represent the axial force, shear force, and bending moment
provided by active inclusion i, respectively. Additionally, Ûn,i, Ûc,i, and Ûm,i represent the
velocities at the intersection between the active inclusion i and the velocity discontinuity
surface.

8.4.3 Superposition of three sub-systems

The problem is partitioned into three sub-systems and it is assumed that the interaction
diagram can be constructed by superimposing the interaction diagrams for these three
sub-systems. An illustration of this superimposition process is presented in this section.

In this example, a typical foundation configuration with rigid inclusion reinforcement is
considered. It consists of a 10 m wide strip foundation, resting on a 0.5 m thick LTP layer
with a friction angle of 38◦. The soft soil is treated as cohesive and has an undrained shear
strength c of 25 kPa (qs = 25 kPa and p∗

l = 200 kPa). Throughout the depth of the soft
soil, there are concrete rigid inclusions with a diameter of 0.4 m and a length of 10 m.
These inclusions are not penetrated in the LTP. The axis-to-axis spacing is 1.5 m, resulting
in a coverage area ratio of 5.6 %. The lateral interaction mechanism MEL II is used.

166 Chapter 8 Seismic bearing capacity: Theoretical framework



The interaction diagram in the V-H plane is depicted in Figure 8.27, showing the result of
the superimposing of the three sub-systems presented in Figure 8.25. For small vertical
forces (V/Bc < 1), the V-H interaction diagram is predominantly represented by Case I,
corresponding to failure within the LTP layer. As the vertical force increases, a sliding
mechanism between the LTP and the soft soil becomes apparent. Finally, for greater
vertical forces (V/Bc > 4), the interaction diagram is primarily controlled by Case III,
which represents a failure mechanism in the reinforced soil.
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Fig. 8.27. Superimposition of the interaction curves of the simplified sub-systems in the nor-
malised V-H plane

It is also worth considering the superimposition of the interaction curves in the V-M plane,
as depicted in Figure 8.28 (a). Case II does not play a role in the V-M plane. The result of
superimposition reveals that the interaction curve in the V-M plane is primarily composed
of the curves corresponding to Case I and Case III. For small vertical forces (V/Bc < 1),
the V-M interaction diagram is primarily represented by Case I, which corresponds to
failure within the LTP.

Fig. 8.28. Superimposition of the interaction curves of the simplified sub-systems: (a) in the
normalised V-M plane and (b) in the normalised H-M plane for V/Vmax = 1/10
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Concerning the interaction diagram in the H-M plane, several interaction curves for
different values of V/Vmax are also presented. The H-M interaction diagram for V/Vmax =
1/10 is displayed in Figure 8.28 (b). This curve is composed of two mechanisms: Case I
and Case III.

The H-M interaction diagrams for V/Vmax = 1/6 and V/Vmax = 1/3 are presented
in Figures 8.29 (a) and (b), respectively. In the H-M plane with V/Vmax = 1/6 and
V/Vmax = 1/3, the frictional sliding mechanism represented by Case I does not contribute
to the interaction curve. These interaction curves are composed of the interaction curve
obtained from Cases II and III, representing a cohesive sliding and the failure mechanism
within reinforced soil.

Fig. 8.29. Superimposition of the interaction curves of the simplified sub-systems in the nor-
malised H-M plane for: (a) V/Vmax = 1/6 and (b) V/Vmax = 1/3

The interaction diagrams for V/Vmax = 1/2 and V/Vmax = 2/3 in the H-M plane are
presented in Figures 8.30 (a) and (b), respectively. In these H-M planes with different
V/Vmax, it can be observed that the failure mechanism in reinforced soil (Case III) is the
principle failure mechanism. This observation is confirmed by Figure 8.27 where the
failure mechanism in reinforced soil is not influenced by the sliding mechanism (Cases I
and II) for a high V/Vmax ratio.

Fig. 8.30. Superimposition of the interaction curves of the three simplified sub-systems in the
normalised H-M plane for: (a) V/Vmax = 1/2 and (b) V/Vmax = 2/3
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This study is specifically applicable to 2D plane strain problems. Nevertheless, it is feasible
to introduce shape coefficients, defined in Equation 8.17, analogous to those utilised in
the bearing capacity calculations for square, rectangular, or circular shallow foundations
(ASIRI, 2012). This extension would allow the application of the obtained results to 3D
situations.

sc = 1 + 0.2B
L

(8.17)

8.4.4 Comparison with non-reinforced foundation

In this section, the investigation of the influence of reinforcement by rigid inclusions on
the bearing capacity, as described by interaction curves, is of vital interest. The interaction
curves for the two systems are depicted in Figure 8.31. For the configuration with rigid
inclusions, identical parameters as those presented in Section 8.4.3 are employed, as
illustrated in Figure 8.31 (a). The corresponding configuration without rigid inclusions is
shown in Figure 8.31 (b). The properties of LTP and soft soil remain consistent throughout
the analysis.

Fig. 8.31. Configuration of foundation: (a) with reinforcement and (b) without reinforcement

The interaction diagram is initially compared in the V-H plane, as depicted in Figure 8.32
(a). There is a substantial increase in the ultimate bearing capacity of the foundation. The
bearing capacity Vmax for the configuration with inclusions (depicted by the orange curve)
approaches approximately 9 times Bc, while for the configuration without inclusions
(depicted by the black dashed curve), this value is limited to 5.14 times Bc.

The interaction diagrams in the V-M plane for both configurations are also compared in
Figure 8.32 (b). It is observed that the stability domain is considerably larger for the
configuration with inclusions as compared to the one without inclusions. This outcome
underscores the fact that the incorporation of rigid inclusions has the potential to enhance
the bearing capacity of the foundations under eccentric loading conditions.
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Fig. 8.32. Comparison between the interaction diagrams in (a) the normalised V-H plane, (b) the
normalised V-M plane, and (c) the normalised H-M plane for the non-reinforced and
reinforced foundations

The illustration of the comparison between the interaction curves for the configurations
with and without inclusions in the H-M plane, with a constant value of V = 4.5 Bc,
can be found in Figure 8.32 (c). In the H-M plane at V = 4.5 Bc, the influence of
soil reinforcement by rigid inclusions is notably significant. The stability domain, as
enclosed by the interaction curves, is substantially greater for the reinforced foundation
in comparison to the non-reinforced foundation.

8.4.5 Contribution of vertical and horizontal forces of rigid
inclusions

Following the ASIRI+ recommendation (ASIRI, 2012), it is observed that incorporating
axial forces provided by rigid inclusions typically leads to a substantial improvement.
Conversely, the additional advantage gained from introducing shear forces is comparatively
limited. Therefore, disregarding the shear contribution does not exert a significant
influence and can be considered a safe simplification. This section aims to validate this
assumption.

Different interaction diagrams are calculated based on different assumptions and are
presented in Figure 8.33:
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• The axial forces in rigid inclusions are not considered (Tn = 0, Tc ̸= 0);

• The shear forces in rigid inclusions are not considered (Tn ̸= 0, Tc = 0);

• The shear and axial forces in rigid inclusions are both considered (Tn ̸= 0, Tc ̸= 0).

Figure 8.33 illustrates that the interaction curve (green curve), which considers both axial
and shear forces, exhibits a larger stability domain compared to the curves obtained under
the other two assumptions. Notably, the interaction curve accounting solely for shear
forces (blue curve) closely resembles the curve obtained for the configuration without
inclusions (represented by a black dashed curve).
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Fig. 8.33. Normalised V-H interaction curves with the contribution of different forces of rigid
inclusions

This suggests that a configuration considering only shear forces in rigid inclusions performs
a similar bearing capacity to that of the configuration without reinforcement by rigid
inclusions. Furthermore, the configurations considering shear forces and those not
considering shear forces give two similar interaction curves (green and orange curves)
in Figure 8.33, implying that taking into account shear forces provides only a limited
benefit.

8.5 Hypothesis verification

8.5.1 Load inclination at the head of inclusions

In Section 8.3.2, the limit force at the heads of inclusions, denoted as F0, is influenced
by the inclination of the applied load. It is worth noting that this inclination effect has
not been accounted for in the results presented in the preceding sections. However,
based on the inertial force analysis detailed in Chapter 6, it becomes apparent that
the inclination at the heads of rigid inclusions is of less significance compared to the
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overall load inclination. In essence, if the load applied to the foundation inclines δ, the
inclination of the load applied at the heads of the inclusions, denoted as δRI , is consistently
smaller than δ, as illustrated in Figure 8.34. To quantitatively assess this difference, an
inclination ratio, denoted as κ, is proposed to capture the relationship between these
angles: tan(δRI) = κ · tan(δ) with κ ≤ 1.

Fig. 8.34. Load inclination at the foundation and the heads of inclusions

To explore the impact of the load inclination effect on the force at the heads of inclusions
F0, the stability curves in the V-H plane are generated, considering various inclination
ratios κ, as displayed in Figure 8.35. The properties of the foundation system remain
consistent with those presented in Section 8.4.3.

The interaction curves exhibit similarity across various inclination ratios κ. The curves
consistently demonstrate the same trend and magnitude, regardless of the different κ
values employed in the calculations. These findings affirm that the inclination of the force
at the heads of inclusions has minimal influence on the interaction curve and bearing
capacity.

Fig. 8.35. Normalised V-H interaction curves considering various load inclination at heads of
inclusions
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8.5.2 Different limit equilibrium models

In Section 8.3.3, two potential limit equilibrium models for assessing the lateral interaction
between soil and inclusions are introduced, denominated as MEL I (depicted in Figure
8.17) and MEL II (depicted in Figure 8.18). The examination of how distinct limit
equilibrium models impact the interaction diagrams describing the bearing capacity under
various load conditions is of interest. The interaction diagrams, computed using two
distinct lateral limit equilibrium models, are presented in Figure 8.36.
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Fig. 8.36. Normalised V-H interaction curves with different lateral limit equilibrium models

It is observed that these two interaction curves are relatively close to each other and even
overlap. A noticeable deviation appears for V/Vmax ratios exceeding 7.5. The bearing
capacity values under vertical load, obtained from MEL I and MEL II, are also quite similar,
with MEL I proceeding 9.6 Bc and MEL II resulting in 9 Bc. These results indicate that the
lateral limit equilibrium model has only a minor influence on both the bearing capacity
and interaction diagram. Given that the limit equilibrium model MEL II offers a more
conservative interaction curve, it is employed in this study for configurations without
embedment of inclusions in the LTP.

8.6 Summary

This chapter begins with a brief overview of the existing literature on the study of the
ultimate bearing capacity by the kinematic exterior approach for strip foundations on
homogeneous cohesionless and cohesive soil. An examination of the failure velocity fields
for strip foundations is conducted. To obtain the interaction curves corresponding to these
failure velocity fields, a direct algorithm of proof by exhaustion has been employed. The
algorithm and its implementation have been rigorously validated by comparing with the
results presented in the cited references.
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The examination of failure modes for rigid inclusions is a focal point of this chapter. Build-
ing upon the insights gained from the investigation of nailed soil, a multicriterion tailored
specifically for rigid inclusions has been introduced. This multicriterion encompasses
different potential mechanisms, which include intrinsic material resistance, vertical soil-
inclusion interaction resistance, as well as lateral soil-structure interaction resistance. The
soil-interaction resistance is explored through the utilisation of limit equilibrium models,
and it is worth noting that the limit equilibrium model developed for rigid inclusions can
be extended to other geotechnical structures, such as piles and retaining walls.

Recognising the complexity inherent in reinforced foundation configurations, this study
initially examines a series of simplified potential failure mechanisms. The interaction
diagrams that define the stability domain for this foundation type are established through
the superimposition of these three distinct potential failure mechanisms. A comprehensive
description of the superimposition process in various planes is provided.

Subsequently, the interaction curves obtained through the proposed methodology are
compared with those generated for a non-reinforced configuration where rigid inclusions
are absent. This comparison highlights the impact of reinforcement by rigid inclusions.
Additionally, the contribution of both axial and shear forces provided by rigid inclusions
to the stability of the foundation system is examined. The results indicate that the axial-
resistant force from rigid inclusions plays a more pivotal role in stabilising the system
compared to the shear-resistant force.

The study also explores various hypotheses, including factors such as the load inclination
at the heads of inclusions and the use of different limit equilibrium models for lateral
soil-inclusion interaction resistance. The findings suggest that these factors do not exert a
significant influence on the bearing capacity.

In summary, this work establishes an innovative analytical approach for assessing the
bearing capacity of foundations reinforced by rigid inclusions subjected to static and
dynamic loads, employing the upper-bound kinematic approach. A novel multicriterion is
proposed to better understand the forces provided by rigid inclusions and potential failure
modes that can occur. These advances provide a comprehensive and versatile tool for
dynamic SSI macro-element analysis and are readily applicable in engineering practice.
Table 8.1 provides a comprehensive comparison of various features and hypotheses
between this study and other related research endeavours.
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Tab. 8.1. Application of the kinematic exterior approach to analyse reinforced soil

Nailed slope Design software Rio-Antirrio Bridge
This study

(de Buhan et al., 1992) (Terrasol, 2023) (Pecker et al., 1998)

Application Nailed slope Nailed slope
Foundation reinforced

by rigid inclusions
Foundation reinforced

by rigid inclusions

Failure
mechanism

Logarithmic
spirals

Logarithmic
spirals

Mechanisms inspired
by shallow foundations

Mechanisms inspired
by shallow foundations

Limit
equilibrium
of inclusion

Single criterion
Multicriterion

for nail
Single criterion

Multicriterion
for inclusion

Stability
domain

Single domain Single domain
Superimposition

of several domains
Superimposition

of several domains
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Seismic bearing capacity:
Numerical validation

9
9.1 Objective of numerical validation

Chapter 8 has presented the theoretical framework for investigating the bearing capacity
of rigid inclusion-reinforced foundations. Within this framework, an analytical approach
is introduced for the estimation of bearing capacity and the derivation of the interaction
curves for rigid inclusion-reinforced foundations.

In this chapter, a validation process is carried out using Finite Element Limit Analysis
(FELA) modelling to validate the analytical approach (Optum Computational Engineering,
2021). This validation encompasses both qualitative and quantitative aspects. Quali-
tatively, it aims to confirm the three proposed potential mechanisms. Quantitatively, it
involves a comparison of interaction curves and bearing capacities obtained through the
analytical approach with those derived from the numerical calculations.

9.2 Finite element limit analysis model

In the field of geotechnical engineering, the static interior approach is not frequently
employed due to the complexity involved in establishing the statically admissible stress
field. However, to validate the proposed analytical approach based on the kinematic
exterior approach, it is beneficial to undertake the static interior approach to pinpoint
the position of the derived upper-bound solution. In this endeavour, the numerical
approach: FELA model, as a kind of FEM model, can serve as a valuable validation tool.
The modelling technique is detailed in Section 3.4.2. These foundations reinforced by
rigid inclusions are modelled using the OPTUM FELA software (Optum Computational
Engineering, 2021).

A 2D plane strain model is utilised to represent the soil-foundation system, including the
LTP, the strip footing, and the rigid inclusions. Solid elements are employed for modelling
both the soil and the LTP. These solid elements are triangular with the lower-bound or
upper-bound element formulations, capable of providing a lower-bound or upper-bound
estimation compared to the exact solution. The two-element formulations are depicted in
Figure 9.1. The soft soil is simulated using the Tresca material model, which incorporates
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its undrained shear strength c. The LTP is modelled using a Mohr-Coulomb material
model characterised by a friction angle φ and zero cohesion.

Fig. 9.1. FELA triangular: (a) lower-bound element and (b) upper-bound element

The strip foundation is assumed to be perfectly rigid and possesses infinite strength. The
rigid inclusions are represented by pile rows, which are modelled using an embedded
beam element in 2D plane strain analysis. To accurately simulate inclusion rows, it is
necessary to define their geometric properties, including section geometries and soil-pile
strength parameters such as axial strength, lateral strength, and base strength.

The geometry and mesh are depicted in Figure 9.2. It is important to highlight that
the mesh displayed in Figure 9.2 (b) represents the adapted mesh following iterative
calculations.

Fig. 9.2. 2D FEM model for a foundation on soil reinforced by rigid inclusions: (a) model
geometry, and (b) iterated mesh

9.3 Failure mechanisms

9.3.1 Studied configurations

By utilising the failure mechanisms induced in Section 8.4.2, it becomes feasible to gen-
erate interaction diagrams in various planes through the superimposition of interaction
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diagrams obtained from different sub-systems. To ensure the reliability of these failure
mechanisms, validation via numerical modelling is imperative. The various load combina-
tions are delineated in Figure 9.3. Each segment of the V-H interaction curve corresponds
to a failure mechanism, as dictated by the three sub-systems. These corresponding failure
mechanisms are also clearly indicated in the figure.

Fig. 9.3. Tested load combinations (red point) within V-H interaction plane

9.3.2 Comparison of failure mechanisms derived from two
approaches

The first comparison is illustrated in Figure 9.4. The load point under investigation is
located on the left part of the interaction diagram, as depicted in Figure 9.4 (a). It is
noteworthy that both the analytical solution and FEM calculation have the same extreme
load couple (V,H). Under the given load conditions, the kinematic failure mechanism is
primarily governed by a failure mechanism within the LTP. The analytical study results in
a failure mechanism, as presented in Figure 9.4 (b), while for the same load conditions,
the FEM modelling exhibits a similar failure surface in Figure 9.4 (c).

An additional qualitative comparison of mechanisms is provided in Figure 9.5 to validate
the mechanism representing a cohesive sliding failure occurring at the interface between
the LTP and the soft soil. Figure 9.5 (b) demonstrates a sliding mechanism, and it is
noteworthy that nearly identical limit force couples (V,H) are observed through both
analytical and numerical approaches.

The comparison of the failure mechanism for the third tested load combination is displayed
in Figure 9.6. In this particular load combination, the failure mechanism involves a failure
within the reinforced soil, occurring at a much greater depth compared to the first two
load combinations. Notably, this failure mechanism intersects with only one row of
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inclusions. The inclusion row that intersects with the failure surface is referred to as the
active inclusion and is coloured red.

Fig. 9.4. Comparison of failure mechanisms: (a) load combination A, (b) failure mechanism
obtained by analytical solution, and (c) obtained by FEM

Fig. 9.5. Comparison of failure mechanisms: (a) load combination B, (b) failure mechanism
obtained by analytical solution, and (c) obtained by FEM

The failure mechanism obtained through the kinematic exterior approach in this study, as
depicted in Figure 9.6 (b), exhibits a resemblance to the one obtained through numerical
modelling, as shown in Figure 9.6 (c).

The analytical solution has a limit horizontal force slightly smaller than the value obtained
through FEM calculations. This discrepancy can be attributed to the variations in modelling
between the two approaches. Notably, the analytical approach does not consider the
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presence of the LTP, while in the FEM approach, the LTP contributes to an increase in the
resistance for the reinforced foundation.

Fig. 9.6. Comparison of failure mechanisms: (a) load combination C, (b) failure mechanism
obtained by analytical solution, and (c) obtained by FEM

A mechanism comparison is also conducted for the studied load combination D, situated
at the interaction curve with a vertical force, of approximately 6.5 Bc. This comparison is
depicted in Figure 9.7. It is evident that the failure mechanism for load combination D,
as obtained through the analytical kinematic exterior approach, bears similarity to that
acquired through FEM.

In both approaches, a failure mechanism that intersects with two rows of inclusions
is evident. A larger vertical load results in a deeper failure mechanism, involving the
participation of more rigid inclusions. It is noteworthy that the presence of rigid inclusions
influences the failure mechanisms within the soil. However, in the analytical approach,
which relies on certain assumptions, the contributions of the soil and the inclusions are
simply superimposed. The interaction between the failure mechanism of the soil and the
failure mechanism of the inclusions is not taken into consideration.

In the FEM modelling, the LTP is taken into account, which is inherently more resistant
than the surrounding soft soil and thus can potentially provide some additional resistance.
However, in the analytical approach, the contribution of LTP is not considered in the
calculation of soil resistance. For the mechanism illustrated in 9.7 (b) and (c), it becomes
apparent that a substantial portion of the soil volume involved corresponds to the LTP
soil. This observation may account for the larger limit for horizontal force observed in
FEM calculations.
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Fig. 9.7. Comparison of failure mechanisms: (a) load combination D, (b) failure mechanism
obtained by analytical solution, and (c) obtained by FEM

The load combination with a larger vertical force V (load combination E) results in a
deeper mechanism, and the volume of soil excited by the failure mechanism is significantly
greater. In this case, only a minor difference is observed between the horizontal force
limit obtained from the analytical solution and the FEM calculation.

Upon visualising the failure mechanism obtained through the kinematic exterior approach,
as shown in Figure 9.8 (b), it is evident that four rows of rigid inclusions intersect with
the failure mechanism. This observation is further confirmed by the failure mechanism
presented in Figure 9.8 (c). The similarity between these two different approaches is
apparent.

When comparing the failure mechanism of the analytical solution, which is a multi-block
mechanism, with the field velocity observed in the numerical study, it is evident that
the presence of the rigid inclusions does slightly influence the velocity field in the soil.
Nevertheless, the overall global failure mechanisms obtained in both solutions remain
similar.

Load combination F is positioned on the interaction curve with a vertical force V that
approaches the bearing capacity Vmax under vertical load. Remarkably, the extreme
force couples (V,H) is nearly identical between the analytical solution and the FEM
calculation.

Figure 9.9 (b) illustrates a significantly deeper failure mechanism when compared to
Figure 9.8 (b). In this case, five rows of rigid inclusions, rather than four, contribute to the
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stability of the reinforced foundation. The similarities between the failure mechanisms
presented in Figures 9.9 (b) and 9.9 (c) serve as validation of the assumption regarding
the failure mechanism.

Fig. 9.8. Comparison of failure mechanisms: (a) load combination E, (b) failure mechanism
obtained by analytical solution, and (c) obtained by FEM

Fig. 9.9. Comparison of failure mechanisms: (a) load combination F, (b) failure mechanism
obtained by analytical solution, and (c) obtained by FEM
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The velocity field observed in the FEM calculation shows that the soil between the
inclusions is also excited. Nevertheless, the overall global failure, represented by the red
zone, bears similarity to the multi-block failure employed in the analytical solution. It
should be noted that in the last two mechanisms, as depicted in Figures 9.8 and 9.9, the
volume activated by the failure load is significantly larger than the volume of the LTP. In
such situations, the impact of neglecting the resistance of LTP in the contribution of the
soil is relatively minimal.

In summary, the comparative study of failure mechanisms with various load combinations
reveals a strong agreement. Several differences in the limit loads can be attributed to
the nuances in the failure mechanisms associated with the LTP and the soil volumes
between inclusion rows. However, it is important to note that these results are sufficiently
satisfactory for engineering applications.

9.4 Interaction diagrams

9.4.1 Studied configurations

Following a sequence of qualitative validations of the failure mechanisms, this section pro-
vides quantitative validation. It involves a comparison between the interaction diagrams
obtained through the analytical approach within the framework of the kinematic exterior
approach proposed in this study and those obtained through a FEM analysis.

In this validation study, a range of foundation configurations is chosen, involving varia-
tions in the dimension of the foundation B, the diameter of inclusions d, the non-drained
strength of the soft soil c, and the axis-to-axis spacing of inclusions s. The loading condi-
tions are also modified incorporating soil inertia and load eccentricity. The configurations
tested are detailed in Table 9.1.

Tab. 9.1. Configurations for interaction curve validations

No. B (m) s (m) d (m) NRI Cohesion c (kPa) Load condition

A 10 1.5 0.4 7 25 (V,H)
10 1.5 0.4 7 25 (V,H) with ax = 0.1g
10 1.5 0.4 7 25 (V,H) with e = 0.2B

B 10 1.5 0.2 7 50 (V,H)
C 3 2 0.4 2 25 (V,H)
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9.4.2 Comparison of interaction diagrams derived from two
approaches

The first quantitative validation focuses on Case III, which represents failure within the
reinforced soil. This sub-system is detailed in Figure 8.26 with detail. In this sub-system,
the calculation of soil resisting contribution simplifies the LTP layer, while the LTP is
considered at the heads of rigid inclusions when calculating the limit axial force Tnl.

To validate the calculation, two configurations utilised in FEM numerical modelling are
proposed. The first configuration involves a complete model with the LTP between
the foundation and the heads of rigid inclusions, as shown in Figure 8.26 (a). In this
configuration, the resisting contribution is considered. The second configuration is a
model without the LTP, as depicted in Figure 8.26 (b), where the soft soil is present
between the rigid inclusions and the strip foundation. Theoretically, the exact solution
Kexact (not the upper-bound solution) should fall between the solutions obtained with
these two configurations, as described in Equation 9.1.

Fig. 9.10. Configurations of FEM modelling: (a) with LTP modelling, (b) without LTP

Kexact
conf. (b) ⊂ Kexact

current work ⊂ Kexact
conf. (a) (9.1)

The limit loads in the V-H plane for these two configurations are depicted in Figure 9.11.
Lower-bound and upper-bound solutions are provided for configuration (b). Notably,
the analytical solution falls between the lower-bound solution for configuration (a) and
the upper-bound solution for configuration (b). This comparative diagram validates
the assumption that the analytical solution should be situated between the solutions
associated with these two configurations, as indicated in Equation 9.1. It is worth noting
that the difference between these calculations is not significant, indicating that neglecting
the LTP layer in the calculation of resisting power for the soil is acceptable.

The analytical solution based on the kinematic exterior approach can account for soil
inertia by introducing a horizontal body force fx into the calculation. The comparison is
depicted in Figure 9.12. A strong agreement is evident between these two calculations.
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Fig. 9.11. Comparison of interaction curves in V-H plane obtained by analytical kinematic exterior
approach and lower-bound and upper-bound FEM modelling
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Fig. 9.12. Comparison of interaction curves in V-H plane obtained by analytical kinematic exterior
approach and lower-bound FEM modelling considering soil inertia in Configuration A

With an eccentricity of e = 0.2B, it is evident that the analytical solution adequately
captures the general trend of the interaction curve. The analytical solution also provides a
good estimation of Vmax,e=0.2. Although there are occasionally differences between these
two solutions, these differences are within an acceptable margin smaller than 15 %.

The interaction curve of configuration B is also computed and compared with the limit
force couples (V,H) obtained by FEM calculation. The cohesion of the soft soil is set
as 50 kPa, and the diameter of rigid inclusions is reduced to 0.2 m. This comparative
diagram is presented in Figure 9.14.

A strong agreement is evident between the two calculations. The overall trend in the
results from the FEM calculation reveals three different failure mechanisms: failure within
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Fig. 9.13. Comparison of interaction curves in V-H plane obtained by analytical kinematic exterior
approach and lower-bound FEM modelling considering load eccentricity in Configura-
tion A

the LTP layer, cohesive sliding between the LTP and the soft soil (noted by H/Bc = 1),
and a failure mechanism within the reinforced soft soil.
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Fig. 9.14. Comparison of interaction curves in V-H plane obtained by analytical kinematic exterior
approach and lower-bound FEM modelling (Configuration B: a greater soil cohesion c
= 50kPa and smaller inclusion diameter of 0.2 m)

Configuration C involves a 3 m wide strip foundation with two rows of rigid inclusions.
The results from both calculation approaches are compared in Figure 9.15. The FEM calcu-
lation aligns well with the analytical solution. Although the FEM calculation occasionally
gives slightly higher results, the order of magnitude of the global interaction curve is well
captured.
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Fig. 9.15. Comparison of interaction curves in V-H plane obtained by analytical kinematic exterior
approach and lower-bound FEM modelling (Configuration C: a smaller foundation of 3
m)

9.5 Ultimate vertical bearing capacity

9.5.1 Studied configurations

The previous two sections primarily concentrated on validating the failure mechanisms
and interaction diagrams. In this section, the focus shifts to comparing the ultimate
bearing capacity under vertical load for various configurations obtained through the
analytical approach proposed in this work and those obtained through FEM. The studied
configurations are detailed in Table 9.2. For each configuration, five different diameters
ranging from 0.2 m to 0.6 m are tested.

Tab. 9.2. Studied configurations for ultimate bearing capacity validation

B (m) s (m) NRI Coverage ratio ratio range

3 1.0 3 [3.1 %, 28.3 %]
1.5 2 [1.4 %, 12.6 %]
2.0 2 [1.0 %, 7.1 %]
2.5 2 [0.8 %, 7.5 %]

5 1.0 5 [3.1 %, 28.3 %]
1.5 3 [1.3 %, 11.3 %]
1.5 4 [1.7 %, 15.1 %]
2.0 2 [0.6 %, 5.7 %]
2.0 3 [0.9 %, 8.5 %]
3.0 2 [0.4 %, 3.8 %]

10 1.5 6 [1.3 %, 11.3 %]
1.5 7 [1.5 %, 13.2 %]
2.0 5 [0.8 %, 7.1 %]
2.5 4 [0.5 %, 4.5 %]
3.0 4 [0.4 %, 3.8 %]

188 Chapter 9 Seismic bearing capacity: Numerical validation



9.5.2 Comparison of bearing capacity derived from two
approaches

Figure 9.16 presents the ultimate bearing capacity values predicted by FEM and the
analytical solution for different configurations listed in Table 9.2. The analytical approach
can generally capture the ultimate bearing capacity of the rigid inclusion-reinforced
foundation within a margin of ± 10%.

Fig. 9.16. Comparasion of the normalised ultimate bearing capacity predicted by FEM and the
analytical approach

For a few configurations in which the FEM yields an over-estimation exceeding 10%,
represented by red points enclosed by circles, a more in-depth examination is conducted
to comprehend the source of this over-estimation.

The configuration represented by red points enclosed by the brown circle constitutes a 3
m wide strip foundation with three rows of inclusions implemented with a spacing of 1
m. The differences in the estimated bearing capacity values Vmax range from 13.4 % to
24.4 % for the diameters of rigid inclusions of 0.2m, 0.3 m, 0.4 m, 0.5 m, and 0.6 m. The
analytical solution consistently provides smaller values for Vmax compared to the FEM
calculations.

To understand the source of this difference, two failure mechanisms for the configuration
with a diameter of 0.6 m are superimposed, as shown in Figure 9.17. It becomes apparent
that the principal failure mechanism (red zone) obtained through FEM calculations follows
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a similar pattern to the analytical multi-block failure mechanism represented by the green
curves.

However, it is notable that a failure mechanism also arises between the inclusions, which
cannot be simulated by the multi-block mechanism. It is evident that the soil between the
inclusions experiences significant excitation, and the influence extends to a considerable
depth. This mechanism could result from the interaction between the failure mechanism
of the inclusions and the failure mechanism of the soil. The presence of rigid inclusions
modifies the failure mechanism of the soft soil, potentially activating the soil between the
rigid inclusions.

Furthermore, in the analytical solution, the contribution of the soil is calculated only with
the soft soil, without accounting for the LTP. In this configuration, the failure depth is
nearly twice the thickness of the LTP, indicating that disregarding the presence of the LTP
is a strong assumption. This implies that the analytical approach is better suited for cases
where the depth of the failure surface significantly exceeds the thickness of the LTP.

Fig. 9.17. Comparison of the failure mechanisms obtained by analytical approach and FEM for
the foundation with a width of 3 m, inclusion spacing of 1 m and diameter of 0.6 m

The imperfect prediction values enclosed by the brown circle represent the configuration
with a 5 m wide strip foundation reinforced by five rows of inclusions implemented
with a spacing of 1 m. It is observed that the bearing capacity values Vmax calculated
by the analytical solution are consistently smaller than those obtained by FEM, with an
underestimation ranging from 10.4 % to 21.2 % for the diameters of rigid inclusions of
0.3 m, 0.4 m, 0.5 m, and 0.6 m.

Figure 9.18 presents the comparison of the failure mechanisms obtained by the analytical
solution and the numerical calculation for the configuration with a diameter of 0.4 m. As
observed in the previous case, the principal failure mechanism can be captured by the
analytical approach when comparing the red zone and the green curve. The soil between
the two rows of inclusions at the right edge plays also a role.
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From this comparison, it can be observed that the analytical failure depth is only twice
the thickness of the LTP layer. The contribution of the LTP layer to the resisting power can
be significantly pronounced. Neglecting the LTP layer naturally leads to a conservative
solution. To improve the analytical approach, controlling the depth of the analytical
failure mechanism and the number of intersected inclusions can be a crucial aspect to
consider. In essence, this analytical approach is better suited for foundations with a small
or moderate coverage area ratio α, where the failure mechanism is not confined to a
shallow depth, and the soil volume involved in the failure mechanism is significantly
larger than the volume of the LTP.

Fig. 9.18. Comparison of the failure mechanisms obtained by analytical approach and FEM for
the foundation with a width of 5 m, inclusion spacing of 1 m and diameter of 0.4 m

9.6 Summary

This chapter is devoted to the validation of the analytical approach introduced in Chapter 8
for addressing the seismic bearing capacity problem in foundations reinforced by rigid
inclusions. The validation encompasses three main validation studies:

• Failure mechanism validation;

• Interaction diagram comparison;

• Ultimate vertical bearing capacity comparison.

Firstly, a qualitative validation is performed by comparing the velocity field acquired
through FEM calculations with the analytical solution. It is noteworthy that a high degree
of similarity is observed between the failure mechanisms derived from the analytical
solution and those obtained from the numerical analyses.

Following this, a quantitative validation is carried out by calculating and comparing
the interaction curves for various configurations and different load conditions. This is

9.6 Summary 191



accomplished by employing the proposed analytical approach and comparing the results
with those obtained from FEM. Encouragingly, a significant alignment is evident between
the proposed approach and the numerical modelling, allowing validation for the proposed
analytical approach.

Lastly, a comparative study is conducted to evaluate the ultimate bearing capacity of
various reinforced foundation configurations using both numerical and analytical ap-
proaches. Considering the inherent uncertainties in soil parameters, this level of precision
is deemed acceptable for engineering applications. Compared to the incertitude of the
soil parameters, this precision can be acceptable for engineering utilisation. Notably, from
this extensive numerical investigation, it becomes evident that the analytical approach
tends to provide a conservative solution, primarily because it does not account for the
presence of the LTP in the soil contribution.
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Seismic bearing capacity:
Impact factors

10

10.1 Bearing capacity verification criterion

Having established the validity of the analytical solution, this study proceeds also to
examine the reduction factors that impact the bearing capacity of rigid inclusion-reinforced
foundations. These reduction factors are associated with load eccentricity, load inclination,
and soil inertia effects. Additionally, the study delves into indicating potential avenues for
future development and enhancement of the proposed analytical approach.

The conventional verification framework involves comparing the vertical force V with the
limit value Vmax, following the criterion:

V − Vmax ≤ 0 (10.1)

To consider seismic effects, the limit value Vmax is adjusted by applying certain reduction
factors. The verification criterion is then expressed as Inequation 10.2.

V − Vmax ie iδ ig ≤ 0 (10.2)

where ie represents the load eccentricity reduction factor, iδ is the load inclination reduc-
tion factor, and ig accounts for the soil inertia reduction factor.

10.2 Studied configurations

These three reduction factors will be examined in the following sections using the same
10 m wide strip foundation with seven rows of inclusions, as depicted in Figure 10.1.
Three diameters of inclusions, 0.2m, 0.4m, and 0.55 m, correspond to coverage area ratios
α of 1.4 %, 5.6 %, and 10.6 %. To assess the impact of reinforcement, a non-reinforced
configuration will also be analysed. It is important to note that the non-reinforced
configuration also includes a frictional LTP layer.
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Fig. 10.1. Reinforced foundation configuration to study the factors influencing the bearing capac-
ity of reinforced foundation

10.3 Load eccentricity effect

10.3.1 Interaction diagram under different load eccentricities

The effect of load eccentricity is first examined through the study of V-H interaction
diagrams. Figure 10.2 presents these diagrams for various load eccentricities (e = M/V )
associated with three different diameter configurations. The results reveal that an increase
in load eccentricity leads to a decrease in both the ultimate bearing capacity and the
maximum horizontal forces.

Figure 10.2 (a) illustrates the interaction curves for different load eccentricities e/B with
a small coverage area ratio of 1.4 %. It is evident that the bearing capacity under non-
eccentric vertical load, with a small coverage area ratio α, is approximately 7 Bc. However,
when a load eccentricity of e = 0.3B is introduced, the bearing capacity decreases
significantly, reaching only one-third of the bearing capacity under a non-eccentric vertical
load. Similar trends are also observed in Figures 10.2 (b) and 10.2 (c).

Figure 10.3 displays the bearing capacities for various configurations and different load
eccentricities. The figure also includes the same interpretation for the configuration
without rigid inclusions. A consistent trend is observed across all studied cases. As the
load eccentricity increases, the bearing capacity decreases. It is evident that the presence of
rigid inclusion reinforcement significantly enhances the bearing capacity of the foundation
under eccentric load. For the foundation with reinforcement of α = 10.6 %, its bearing
capacity under load with eccentricity of 0.2 B is as same as the bearing capacity for the
foundation without reinforcement.

Among the various reinforced configurations examined, it is noteworthy that the bearing
capacity is consistently higher for configurations with a larger coverage area ratio α than
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Fig. 10.2. Normalised V-H interaction curves for different load eccentricities: (a) configuration
with α=1.4%, (b) configuration with α=5.6%, and (c) configuration with α=10.6%

for those with a smaller coverage area ratio α when the load eccentricity is less than 0.3B.
However, under vertical loads with significant eccentricity (exceeding 0.4B), the coverage
area ratio ceases to exert a substantial influence, and the impact of reinforcement becomes
less pronounced.
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Fig. 10.3. Bearing capacity for reinforced foundations with different coverage area ratios to load
eccentricities
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10.3.2 Load eccentricity reduction factor

For all studied configurations, the bearing capacities under different eccentric loads are
normalised by the bearing capacity under non-eccentric conditions, denoted as Vmax,e=0.
This ratio, represented as ie, serves as a reduction factor affecting the foundation bearing
capacity due to load eccentricity, as defined in Equation 10.3. Furthermore, the results are
depicted in Figure 10.4 and compared with the eccentricity reduction factor ie = 1 − 2e/B
proposed by Meyerhof (1953).

ie = Vmax,e

Vmax,e=0
(10.3)
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Fig. 10.4. Eccentricity reduction factor ie for reinforced foundations with different coverage area
ratios to load eccentricities

The proposed ie = 1−2e/B for the non-reinforced foundation is notably more conservative
than the value obtained through upper-bound limit analyses. However, the impact of load
eccentricity is more significant for foundations reinforced by rigid inclusions than for non-
reinforced ones. Applying the same load eccentricity reduction factor ie for non-reinforced
foundations to the case of reinforced foundations may conduct non-conservative results.
For example, at an eccentricity of e/B = 0.2, the strip foundation can still retain 64 %
of its ultimate bearing capacity, whereas the rigid inclusion-reinforced foundation with a
coverage area ratio of 5.6 % can only support 53 % of its ultimate bearing capacity.

The comparison among three reinforced configurations reveals that the configuration with
a high coverage area ratio α is more susceptible to the load eccentricity effect compared
to the configuration with a low coverage area ratio α. However, the variation in the ie
values for different coverage area ratios α varying from 1.4 % to 10.6 % is not significant.
The three blue curves (solid, dotted, and dashed) representing reinforced foundations
closely overlap.

196 Chapter 10 Seismic bearing capacity: Impact factors



10.4 Load inclination effect

10.4.1 Ultimate bearing capacity under different load inclinations

The bearing capacity of a non-reinforced strip foundation experiences a decay when
subjected to combined inclined loading effects. However, the impact of load inclination
on rigid inclusion-reinforced foundations remains unclear. As a result, this section is
dedicated to studying the load inclination effect is studied in this section.

The interaction curves in the V-H plane, as illustrated in Figure 10.5, offer a direct means
of assessing the impact of load inclination. It can be found that for load inclinations δ
less than 16◦, the interaction curves for reinforced foundations with varying coverage
area ratios exhibit differences. However, for inclinations δ exceeding 16◦, the interaction
curves for reinforced foundations with different coverage area ratios become identical.
This implies that for loads with significant inclinations, increasing the coverage area ratio
does not lead to an increase in the ultimate bearing capacity. When the inclinations δ
exceed 38◦, equivalent to the friction angle of the LTP, the reinforced foundations lose the
bearing capacity.

Fig. 10.5. Normalised interaction curves in V-H plane for reinforced foundation: (a) configuration
with α=1.4%, (b) configuration with α=5.6%, and (c) configuration with α=10.6%

Figure 10.6 displays an evaluation of the bearing capacity under inclined loading for
various studied configurations. The results are presented as a function of the load
inclination δ normalised by the friction angle φ of the LTP. Additionally, the bearing
capacity is normalised by the theoretical bearing capacity for non-reinforced foundations,
referred to as (π + 2)Bc. This ratio evaluates the effect of soil improvement compared to
the same configuration without reinforcement.

The effect of reinforcement on bearing capacity is particularly pronounced for load
inclination angles smaller than 0.5 φ. However, for load inclinations exceeding 16◦

(0.5 φ), the bearing capacity values for the studied configurations become nearly identical,
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Fig. 10.6. Bearing capacity for reinforced foundations with different coverage area ratios to
different load inclinations

indicating that the advantage of reinforcement by rigid inclusions diminishes for strongly
inclined loads. It is also noteworthy that there is a reduction in bearing capacity when the
inclination equals the friction angle φ. In the presence of a frictional LTP layer, an inclined
load with an inclination equal to the friction angle φ directly leads to sliding failure. This
implies that the sliding behaviour is inherently taken into account in the stability domain
determined by the kinematic exterior approach.

10.4.2 Load inclination reduction factor

The load inclination reduction factor iδ, as defined in Equation 10.4, has been calculated
for the studied configurations. The reduction factor iδ, as a function of the normalised
inclination δ

φ , is presented in Figure 10.7.

iδ = Vmax,δ

Vmax,δ=0
(10.4)

It can be observed that the load inclination reduction factor iδ calculated for different
load inclinations in the studied configurations is generally bounded by two iδ expressions
for cohesionless and cohesive soil proposed by Meyerhof (1953), as given in Equations
10.5 and 10.6 respectively.

iδ = (1 − δ/φ)2 (10.5)

iδ = (1 − 2δ/π)2 (10.6)
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Fig. 10.7. Inclination reduction factor iδ for reinforced foundations with different coverage area
ratios to different load inclinations

From Figure 10.7, it can be observed that the load inclination reduction factor iδ for the
non-reinforced foundation is consistently higher than that for the reinforced configurations,
which means that the reinforced foundations are more sensitive with the load inclination.
It is interesting to note that the configuration with a coverage area ratio α of 1.4 %
has a higher reduction factor iδ value compared to the configuration with a coverage
area ratio α of 10.4 %. The evaluation of the reduction factor iδ for the configuration
with a coverage area ratio of 5.6 % falls in between the other two configurations. This
observation leads to the conclusion that foundations with a higher coverage area ratio α
are more influenced by load inclination.

When comparing the curves representing the reinforced foundations with the conventional
expressions proposed by Meyerhof (1953), it is interesting to observe that the inclination
reduction factor iδ becomes progressively closer to the expression for the cohesionless soil
as the reinforcement coverage area ratio α increases.

10.5 Soil inertia effect

10.5.1 Interaction diagram under different soil inertias

The adverse impacts of soil inertia forces can at times be significant, particularly for
foundations designed with a low safety factor under a static centred vertical load or those
subjected to a significantly eccentric load. This observation is supported by insights gained
from the 1985 Mexico earthquake (Auvinet et al., 1996). Consequently, the current study
is also focused on analysing the effect of soil inertia on the ultimate bearing capacity.
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The configurations in this section are the same as those described in Section 10.5. The
V-H interaction curves for several acceleration values in the soil ranging from 0 to 0.4g are
displayed in Figure 10.8 for the three investigated configurations with inclusion diameters
of 0.2 m, 0.4 m, and 0.55 m.

Fig. 10.8. Normalised V-H interaction curves for different soil inertias: (a) configuration with
α=1.4 %, (b) configuration with α=5.6 %, and (c) configuration with α=10.6 %

It is observed that the shape of the V-H interaction curves is not affected by soil inertia
effects, and only the amplitude of their right-hand side, which is controlled by the failure
in reinforced soil, is influenced by the soil inertia.

The bearing capacity values for the investigated configurations to different soil inertias,
described by a dimensionless soil inertia force F̄ , are depicted in Figure 10.9. This
dimensionless soil inertia force F̄ is defined in Equation 10.7.

F̄ = ρaxB/c (10.7)

Comparing the non-reinforced foundation (orange curve) to the reinforced foundations
(blue curves), it is evident that the rigid inclusion improvement enhances the foundation’s
ability to withstand the soil inertia. For instance, at a dimensionless soil inertia force
of F̄ = 2 (equivalent to ax = 0.25 g, ρ = 2 t/m3, B = 10 m, and c = 25 kPa), the
non-improved foundation experiences a 50 % reduction in its ultimate bearing capacity
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due to soil inertia effect. In contrast, the reinforced configuration with the same soil
inertia still retains approximately 80 % of its ultimate bearing capacity.

The normalised critical soil inertial force F̄cr is defined as the maximum soil inertia that
the foundation can withstand before losing its bearing capacity. When the normalised
critical soil inertial force F̄cr exceeds 2.3, the non-reinforced foundation becomes unable
to maintain equilibrium with any external forces acting on itself. However, with the
reinforcement by rigid inclusions, the normalised critical soil inertia force F̄cr can reach
nearly 4, indicating a significant enhancement in the bearing capacity of the foundation
to withstand the soil inertia.
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F = axB/c
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with reinforcement = 1.4%
with reinforcement = 5.6%
with reinforcement = 10.6%

Fig. 10.9. Bearing capacity for reinforced foundations with different coverage area ratios to
different soil inertias

10.5.2 Soil inertia reduction factor

Figure 10.10 examines the decrease in the ultimate bearing capacity caused by the soil
inertia. This reduction can be evaluated by calculating the ratio of the bearing capacity
affected by the soil inertia to the bearing capacity without the soil inertia, as defined in
Equation 10.8. This ratio is represented as ig.

ig = Vmax,ax

Vmax,ax=0
(10.8)

As depicted in Figure 10.10, this factor diminishes as the soil inertia increases across all
the studied configurations. Notably, the soil inertia reduction factor ig for the reinforced
foundations (blue curves) surpasses that of the non-reinforced foundation (orange curve).
This implies that the bearing capacity for the reinforced foundations declines at a slower
rate as the soil inertia intensifies. This observation underscores the reinforcement ability
to enhance the resilience of the foundations under seismic excitation.
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Fig. 10.10. Soil inertia reduction factor ig for reinforced foundations with different coverage area
ratios to different soil inertia

10.6 Effect of the embedment of rigid inclusions in the
LTP

The embedment of rigid inclusions can indeed be a significant factor affecting the ultimate
bearing capacity. In the recommendations proposed by AFPS and CFMS (2012), it is
advised to embed the heads of the rigid inclusions within the LTP to ensure an effective
transfer of horizontal forces under seismic loads. However, this assertion is seldom proven
by existing literature studies. Therefore, the embedment of rigid inclusions in the LTP is
also an important factor influencing the bearing capacity of the reinforced foundations.

This section delves into the investigation of the impact of embedment of rigid inclusions
within the LTP. Two configurations, one without embedment and the other with embed-
ment, are depicted in Figure 10.11. For the LTP, a limit pressure denoted as p∗

l ,LT P , set
at 1 MPa is employed. The diameter of the rigid inclusions is 0.5 m. Three levels of
embedment are tested, including 0.1 m, 0.2 m, and 0.5 m. The final value of embedment
corresponds to one times the diameter. All other parameters remain consistent with those
defined in Section 8.4.3.

Fig. 10.11. Configuration without and with embedment of rigid inclusions in LTP
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The interaction diagrams are displayed in Figure 10.12 (a). The stability domain enclosed
by the interaction curve for the configuration with an embedment of one times the
diameter (indicated by the blue curve) is notably larger than that for the configuration
without embedment (illustrated by the black dashed curve). This observation confirms a
notable enhancement effect in bearing capacity associated with the embedment of rigid
inclusions in the LTP.

However, for a smaller embedment of 0.1 m (green curve), the improvement in bearing
capacity is not significant enough when compared to the configuration without embed-
ment. This observation affirms that while embedment can indeed increase the bearing
capacity of inclusion-reinforced foundations, it necessitates a sufficient embedment depth
De is necessary to ensure a more pronounced enhancement effect.

Fig. 10.12. Normalised V-H interaction curves considering different embedments of rigid inclu-
sions in the LTP: (a) comparison between the configurations with different embed-
ments of rigid inclusions in the LTP and (b) comparison between the configurations
with and without embedment of rigid inclusions in the LTP subjected to a soil inertia
of 0.2 g

Figure 10.12 (b) illustrates the interaction diagrams for the configuration without em-
bedment of inclusions in the LTP and the configuration with embedment of inclusions
in the LTP when subjected to seismic loads. In this analysis, a soil inertia of 0.2 g is
applied. It is apparent that when subjected to the soil inertia from seismic excitation,
the ultimate bearing capacity for the configuration with embedment decreases by 13 %
while the ultimate bearing capacity for the configuration without embedment decreases
by 18 %. Despite these reductions, the stability domain enclosed by the interaction curves
for the configuration with embedment, even under the influence of soil inertia, remains
larger than that of the configuration without embedment in the absence of soil inertia.
This underscores the importance of embedding rigid inclusions in the LTP and suggests it
as a recommended practice, particularly in earthquake-prone regions.
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10.7 Summary

A comprehensive parametric study is conducted to explore the impact of load eccentricity,
load inclination, and soil inertia on the bearing capacity of foundations reinforced by rigid
inclusions.

The results obtained through this approach reveal that load eccentricity, load inclination,
and soil inertia can substantially diminish the bearing capacity of the foundation. Nev-
ertheless, the utilisation of rigid inclusion reinforcement proves to enhance the bearing
capacity of the foundation under various loading conditions.

Regarding the effect of load eccentricity, the presence of rigid inclusions enhances the
foundation’s capacity to withstand loads with significant eccentricity. This reinforcing
effect becomes more evident with a higher coverage area ratio α and diminishes as load
eccentricity increases.

Concerning the influence of load inclination, it is evident that the implementation of rigid
inclusions can increase the bearing capacity when subjected to inclined loads. However,
the improvement effect is less pronounced for foundations subjected to highly inclined
loads. The foundation can effectively withstand a maximum load inclination equal to the
friction angle φ of LTP. Beyond this threshold, a sliding mechanism comes into play.

Regarding the soil inertia effect induced by seismic motion, the parametric study affirms
that rigid inclusions can effectively mitigate the harmful impact of soil inertia and im-
prove the seismic resilience of foundations. With the reinforcement by rigid inclusions,
foundations can still maintain a substantial portion of their bearing capacity, even when
subjected to significant soil inertia. This effect increases with the coverage area ratio
α. This finding highlights the potential benefits of employing rigid inclusion-reinforced
foundations in earthquake-prone regions.

These influences are also assessed using the reduction factors ie, iδ, and ig, which are
commonly utilised to quantify the adverse effects of load characteristics on the bearing
capacity of foundations. It is noteworthy that the reinforced configuration is more
susceptible to load eccentricity in comparison to the same foundation on non-reinforced
soil. Consequently, there is a more significant reduction in ultimate bearing capacity due to
load eccentricity than the conventional reduction factor ie for non-reinforced foundations.
A similar trend is observed with load inclination, where the load inclination factor iδ is
higher in the case without reinforcement than in the case with reinforcement. In contrast,
the soil inertia reduction factor ig is greater in the case with reinforcement compared to
the case without reinforcement.

Furthermore, an investigation into the effects of embedding rigid inclusions within the LTP
is also conducted. It is observed that the embedment of rigid inclusions has a significant
effect in expanding the stability domain for foundations reinforced with rigid inclusions.
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Conclusion

This part deals with the bearing capacity of foundations on reinforced soil by rigid
inclusions both under static and seismic loads.

Chapter 8 introduces an innovative analytical method for assessing the bearing capacity of
foundations within the upper-bound kinematic theory framework. A novel multicriterion
incorporating several possible failure modes that control the forces generated by the rigid
inclusions is developed to take into account the contribution of these reinforcements
to the resistance of the foundation. This chapter also provides validation for several
hypotheses, such as the impact of different limit equilibrium models and the effect of
loading inclination at the heads of inclusions.

The proposed approach is subsequently subjected to both qualitative and quantitative
validation by comparison with FEM modelling in Chapter 9. The validation focuses on
three key aspects: the failure mechanism, the interaction diagram and the ultimate bearing
capacity, and highlights the pertinence and relevance of this analytical approach.

The effects of several elements influencing the bearing capacity, such as the load eccen-
tricity, the load inclination, and the soil inertia, are examined in Chapter 10 using the
proposed approach. For various coverage area ratios, the evolution of the corresponding
equivalent eccentricity reduction factor ie the inclination reduction factor iδ and the soil
inertia influence factor ig is examined. The observed factors are also compared with those
considered to determine the bearing capacity of shallow foundations on unreinforced
soil.

The work presented in these chapters establishes the basis for exploring more complex
configurations in future research studies. This could include investigations into non-
homogeneous soil conditions and three-dimensional failure mechanisms.
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Part IV

Non-linear SSI study





Introduction

Under strong seismic excitation, the foundation can undergo non-linear behaviour, includ-
ing uplift, sliding, and loss of bearing capacity. This part of the dissertation is devoted to
the comprehensive examination of dynamic non-linear SSI behaviour for the inclusion-
reinforced foundations, using a macro-element approach.

Chapter 11 introduces the dynamic SSI macro-element of the inclusion-reinforced founda-
tions with its validation work. This comprehensive chapter explores the structure of the
macro-element, encompassing both the non-linear elastic model and the elastic-perfectly
plastic model. Moreover, it presents the numerical resolution techniques employed to
solve dynamic and non-linear problems and their implementation. Additionally, this
chapter includes a detailed validation study to demonstrate the correct functioning of
each component, the numerical resolution and their interaction in the macro-element
model.

Moving forward, Chapter 12 explores the application of the macro-element under dynamic
loading conditions. The chapter encompasses two parametric studies with the macro-
element, involving numerical applications to real structures represented by a lumped mass
model and a continuous Timoshenko beam model. These studies consider various dynamic
SSI conditions. The macro-element approach is a time-saving numerical modelling method,
allowing the generation of a rich database. The primary objective of these comprehensive
parametric studies is to produce insightful charts that enhance the understanding of the
dynamic SSI response for structures founded on rigid inclusion-reinforced foundations
based on the generated database.
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Macro-element for a rigid
inclusion-reinforced foundation:
Formulation, resolution, and
validation

11

11.1 Displacement-based seismic design using SSI
macro-element approach

In light of the empirical evidence, the emphasis in the evolution of seismic design principles
has shifted towards the reduction of displacements or strains during earthquakes, rather
than prioritising strength. Consequently, it has become evident that seismic vulnerability
should be appropriately defined in terms of deformations rather than strength (Calvi et al.,
2008). This shift leads to a transition from force-based seismic design to displacement-
based seismic design. Additionally, as illustrated by several studies (Anastasopoulos et al.,
2010; Gazetas et al., 2014), it is essential to emphasise that an overly designed foundation
does not necessarily guarantee a safer structure.

The macro-element approach, which involves replacing the entire foundation-soil system
with a single element located at the base of the superstructure, provides a straightforward
method of addressing potential non-linearities within the soil-foundation system in a
simplified manner. This approach can be framed within the context of displacement-based
seismic design. One of its advantages is its ability to estimate residual displacement within
the soil-structure system. Additionally, the modelling strategy is advantageous for its
capacity to incorporate non-linearities with only minimal computational costs.

11.2 Macro-element formulation

11.2.1 Foundations with different shapes and global variables

The macro-element developed in this study aims to replicate the behaviour of reinforced
foundations of various shapes in both static and seismic scenarios. It is formulated using
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generalised variables, including general forces and displacements, which are defined at
the centre of the foundation.

Strip foundation

The behaviour of a strip foundation can be characterised by two vectors of three compo-
nents: a displacement vector U and a force vector F . Equation 11.1 defines these vectors,
and they are both associated with the central point of the foundation.

The vector U comprises three components: horizontal displacement ux, vertical displace-
ment uz, and rotation θy. Similarly, the vector F consists of three components: horizontal
force Hx, vertical force V , and moment My, as depicted in Figure 11.1. To facilitate clarity,
the schematic does not include the representation of the rigid inclusions.

U =


ux

uz

θy

 F =


Hx

V

My

 (11.1)

Fig. 11.1. Global variables: (a) strip foundation (b) forces and moment, and (c) displacements
and rotation on the strip foundation reinforced by rigid inclusions (not shown)

Rectangular foundation

For a rectangular foundation, its behaviour can be described using two vectors of five
components: a displacement vector U and a force vector F , as defined in Equation 11.2.

The vector U consists of two horizontal displacements, ux and uy, one vertical displace-
ment uz, and two rotations, θx about the x-axis and θy about the y-axis. Respectively,
the vector F includes two horizontal forces, Hx and Hy, one vertical force V , and two
moments, Mx about the x-axis and My about the y-axis, as depicted in Figure 11.2. It
should be noted that this study does not consider the torsion about the z-axis, similar
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to the other developed macro-elements (Chatzigogos et al., 2005; Grange et al., 2009;
Abboud, 2017).

U =



ux

uy

uz

θx

θy


F =



Hx

Hy

V

Mx

My


(11.2)

Fig. 11.2. Global variables: (a) forces and moments and (b) displacements and rotations on the
rectangular foundation reinforced by rigid inclusions (not shown)

Circular foundation

Similarly to the rectangular foundation, the behaviour of the circular foundation can
be characterised using a displacement vector U and a force vector F , as defined in
Equation 11.3.

U =



ux

uy

uz

θx

θy


F =



Hx

Hy

V

Mx

My


(11.3)

11.2.2 Elastic behaviour

Under low to moderate amplitude loads, a foundation reinforced by rigid inclusions
demonstrates an elastic response. Recent investigations (Shen et al., 2021, 2022b) and
Chapter 5 have specifically focused on the dynamic impedances of shallow foundations
on reinforced soils. An important finding from these studies is that the coupling terms
within the dynamic impedance matrix can be considered negligible. In other words, the
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Fig. 11.3. Global variables: (a) forces and moments and (b) displacements and rotations on the
circular foundation reinforced by rigid inclusions (not shown)

elastic response of these foundations can be accurately modelled using independent linear
springs for each degree of freedom.

The elastic linear behaviour can be expressed through the following equation:

F = KeU e (11.4)

In this equation, the force vector F has been previously defined, Ke represents the elastic
stiffness matrix, and U e denotes the elastic displacement vector. For rectangular and
circular foundations, the elastic stiffness matrix Ke takes the following form:

Ke =



Kx

Ky

Kz

Krx

Kry


(11.5)

For strip foundations, the elastic stiffness matrix Ke can be simplified as follows:

Ke =


Kx

Kz

Kry

 (11.6)

Under seismic loading, various types of energy dissipation mechanisms occur as described
in Section 1.2.3. In the elastic domain, it is essential to consider material and radiation
damping, which can be expressed as follows:

F = KeU e + CU̇
e (11.7)
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The damping matrix C can be written as follows for rectangular and circular founda-
tions:

C =



Cx

Cy

Cz

Crx

Cry


(11.8)

For strip foundations, the damping matrix C can be simplified as follows:

C =


Cx

Cz

Cry

 (11.9)

In Chapter 5, it is evident that rigid inclusion ground improvement introduces an
anisotropic behaviour under static and dynamic loading scenarios. For static loading
scenarios, the determination of the stiffnesses can be achieved through static numerical
modelling.

In dynamic loading scenarios, it is essential to determine both stiffness and damping
terms. These terms exhibit significant frequency dependence. Calibration is performed at
a frequency corresponding to the fundamental frequency of the SSI mode for each specific
direction. Typically, these stiffness and damping terms are calibrated using dynamic
impedance functions obtained from numerical modelling or directly from well-established
analytical solutions available in the literature. Further details regarding the calibration
process based on dynamic impedance functions are presented in Section 11.3.

11.2.3 Non-linear elastic behaviour

The uplift of a foundation constitutes a reversible mechanism that does not dissipate any
energy. Nevertheless, this form of uplift results in an evident and rapid degradation of the
rotational stiffness.

The conventional approach for studying the uplift behaviour in a rigid shallow foundation
relies on assuming a trapezoidal distribution of soil reaction when no uplift occurs and a
triangular distribution once the foundation uplifts, as depicted in Figure 11.4.
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Fig. 11.4. Reinforced soil reaction under vertical force and moment: (a) trapezoidal distribution
without uplift and (b) triangular distribution with uplift

For a rectangular foundation with a width of B or a circular foundation with a diameter
of B, the ultimate moment Mu that causes the foundation to tip over is determined by
Equation 11.10.

Mu = B

2 V (11.10)

where V represents the vertical force applied at the centre of the foundation.

In this convention, the initiation of uplift for the foundation occurs at a moment equal to
Mu/4 for a circular foundation and Mu/3 for a rectangular foundation. For a rectangular
foundation, a rotation of the foundation at the initiation of uplift δ0 can be defined through
Equation 11.11. This uplift is accompanied by a rapid degradation in the rotational
stiffness of the foundation, whether it is circular or rectangular. The degradation curves
for the rotational stiffness of both rectangular and circular foundations are depicted in
Figure 11.5. The degradation of the rotational stiffness of a rectangular foundation can
be described using Equation 11.12.

θ0 = Mu

3K0
(11.11)

K

K0
= 27

4
M

Mu
(1 − M

Mu
)2 for

M

Mu
>

1
3 (11.12)

where K represents the reduced rotational stiffness and K0 is the initial rotational
stiffness.

In cases involving moments about the x-axis and the y-axis, the uplift behaviour becomes
more complex. To tackle this complexity, two distinct methods have been proposed for
the study of this problem: the decoupled method and the coupled method.

The decoupled method is relatively straightforward. In this approach, the uplift behaviour
in the two horizontal directions is treated independently. The stiffness reduction can be
calculated separately for each direction, and the total detached surface can be determined
by superimposing the detached surfaces of each direction. Figures 11.6 (a) and (b) depict
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Fig. 11.5. Rotational stiffness degradation curves due to uplift

the detached surfaces under moments about the x-axis and the y-axis, respectively. The
superimposed result is shown in Figure 11.6 (c). Under this assumption, the compressed
surface takes on a rectangular shape. This decoupled approach simplifies the analysis by
considering the two horizontal directions separately.

Fig. 11.6. Detached surface of the foundation: (a) under moment about the y-axis, (b) under
moment about the x-axis, (c) superimposition of detached surfaces, and (d) real
detached surface under moments

However, for a rectangular foundation under moments about the x-axis and the y-axis,
the detached and compressed surfaces should resemble those shown in Figure 11.6 (d).
To analyse this behaviour, numerical analysis becomes necessary. The foundation can be
discretised into n small elements, and the global equilibrium equation can be expressed as
Equation 11.13. If detachment occurs, the normal stiffness of the small element should be
zero. Iterative calculations are required to determine the final detached and compressed
surfaces (Alzate and Cuira, 2022).
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

n∑
i

ki(u0 + xiδry + yiδrx)Si = V

n∑
i

ki(u0 + xiδry + yiδrx)Si(xi − x0) = My

n∑
i

ki(u0 + xiδry + yiδrx)Si(yi − y0) = Mx

ki = 0 if uplift

(11.13)

In the provided equation, V , Mx and My denote the vertical force, moment about the
x-axis and moment about the y-axis applied at the centre of the foundation. u0 represents
the rigid body movement of the foundation, δry signifies the rotation of the foundation
about the y-axis, and δrx represents the rotation of the foundation about the x-axis. Si

corresponds to the area of element i, and xi and yi denote the center coordinates of
element i. Additionally, x0 and y0 stand for the centre coordinates of the foundation.

11.2.4 Plastic behaviour

The force-displacement relationship plays a pivotal role in understanding the plastic
behaviour of the macro-element. These relationships are described by equations known as
constitutive laws. The constitutive law for plasticity comprises several key components:

• Yield surface to determine the force state when yielding occurs;

• Flow rule to describe how the increment of plastic displacement changes when yield
occurs;

• Hardening rule to explain how the yield surface evolves under plastic deformation;

• Loading-unloading conditions to specify the next move in the loading program.

In the proposed macro-element, akin to a shallow foundation, the plastic behaviour of
a reinforced foundation can be characterised by two yield criteria, with each criterion
representing a distinct plastic mechanism, namely sliding and loss of bearing capacity.
These surfaces are delineated within the force space. For each of these surfaces, an
appropriate flow rule should be established.

Within the framework of the proposed macro-element, an elastic-perfectly plastic law is
employed to replicate the plastic behaviour, which offers several advantages in engineering.
This law is characterised by its relative simplicity in comprehension and application. It
simplifies material behaviour by assuming an instantaneous transition from the elastic
domain to the plastic domain upon reaching a yield stress (force). Furthermore, it exhibits
predictability, where the occurrence of plastic deformation signifies non-satisfaction with
the failure criteria. It is worth noting that this study does not consider the incorporation of
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a hardening rule, as determining hardening parameters can prove challenging in practical
applications, and their physical interpretation may not always be apparent.

Loss of bearing capacity

• Yield surface

The expression of the yield surface is derived from the yield design theory, as
presented in Chapters 8 and 9. The solution to the seismic stability problem is framed
within the context of 2D plane strain problems. Consequently, the resulting yield
surface is inherently applicable to strip foundations reinforced by rigid inclusions.

It is observed that the yield surface in the V-H plane lacks the smoothness required
for an easily matched mathematical expression, even after experimenting with
numerous numerical expressions. Therefore, three strategies are introduced to
calibrate the expression of the yield surface in the V-H plane.

– An inner expression capable of attaining the maximum value of horizontal
force Hmax;

– An outer expression designed to encompass the overall shape;

– A generalised ellipse designed to capture the shape effectively.

Both the inner and outer expressions draw inspiration from the formulation of the
seismic stability criterion for shallow foundations as outlined in Eurocode 8 (AFNOR,
2007). To identify the optimal parameters within a specified target function form, a
non-linear regression algorithm (Kitchin, 2015) is employed. The obtained criteria
for the loss of bearing capacity are outlined in Equations 11.14, 11.15, and 11.16.

– The inner expression:

(0.32hx)1.57

v1.13(1 − v)1.49 + (2.05my)2.08

v2.08(1 − v)2.54 − 1 ≤ 0 (11.14)

– The outer expression:

(0.22hx)1.7

v1.31(1 − v)1.75 + (2.05my)1.8

v1.8(1 − v)2.2 − 1 ≤ 0 (11.15)

– The general ellipse expression:

h1.36
x

(1 − (1 − 2v)6)1.7 + (2.05my)1.8

v1.8(1 − v)2.2 − 1 ≤ 0 (11.16)
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where hx, my and v represented normalised force (moment) as described in Equa-
tions 11.17.

v = V

Vmax
hx = Hx

Hmax
my = My

BVmax
(11.17)
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Fig. 11.7. Yield surface in the normalised V-H plane for loss of bearing capacity
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Fig. 11.8. Yield surface in the normalised V-M plane for loss of bearing capacity
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Fig. 11.9. Yield surface in the normalised H-M plane for loss of bearing capacity

To expand the applicability of the yield surfaces to circular or rectangular foun-
dations, it is necessary to adapt the criteria for excitations in the two horizontal
directions. Two additional terms need to be integrated into Equations 11.14, 11.15
and 11.16. These newly introduced terms correspond to the horizontal force Hx

and the moment My. Consequently, 5D yield surfaces in the space (V , Hx, Hy, Mx,
My) are obtained, and they are described by Equations 11.18, 11.19 and 11.20.

– The inner expression:

(0.32hx)1.57

v1.13(1 − v)1.49 + (0.32hy)1.57

v1.13(1 − v)1.49

+ (2.05mx)2.08

v2.08(1 − v)2.54 + (2.05my)2.08

v2.08(1 − v)2.54 − 1 ≤ 0
(11.18)

– The outer expression:

(0.22hx)1.7

v1.31(1 − v)1.75 + (0.22hy)1.7

v1.31(1 − v)1.75

+ (2.05mx)1.8

v1.8(1 − v)2.2 + (2.05my)1.8

v1.8(1 − v)2.2 − 1 ≤ 0
(11.19)

– The general ellipse expression:

h1.36
x

(1 − (1 − 2v)6)1.7 +
h1.36

y

(1 − (1 − 2v)6)1.7

+ (2.05mx)1.8

v1.8(1 − v)2.2 + (2.05my)1.8

v1.8(1 − v)2.2 − 1 ≤ 0
(11.20)

where hy and mx are normalised force (moment) as described in Equations 11.21.
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hy = Hy

Hmax
my = My

BVmax
(11.21)

In these proposed yield surface expressions, only two parameters, namely, Vmax

and Hmax, require identification. The bearing capacity Vmax can be estimated using
the proposed analytical approach based on yield design theory or other numerical
modelling methods. The maximum horizontal force can be estimated simply using
Equation 11.22.

Hmax = cA (11.22)

where c represents the cohesion of the soft soil, and A denotes the area of the
reinforced foundation.

It is important to note that this expression does not account for soil inertia. However,
a reduction factor ig can be directly applied to the foundation bearing capacity Vmax,
as described in Equation 11.23. Details regarding the soil inertia reduction factor ig
are provided in Section 10.5.

Vmax,ag = Vmaxig (11.23)

• Plastic flow rule

An appropriate plastic flow rule is essential to characterise plasticity, and initially, an
associated law is examined.

In the context of an associated flow rule, four "trial" force vectors are illustrated
in either the V-H or V-M plane, as shown in Figure 11.10. The utilisation of an
associated flow rule generally assumes that the plastic displacement increment and
the normal to the yield surface have the same orientation. Following this rule, the
directions of plastic displacement for these four trial force vectors are indicated by
the arrows in Figure 11.10.

In the case of trial force vectors A and B, it becomes evident that the direction
of the plastic vertical displacement upl

z is downward, indicating the occurrence of
irreversible settlement. Conversely, for trial force vectors C and D, the direction of
the plastic vertical displacement upl

z is upward, suggesting that the structure will
experience an unnatural upward movement during seismic excitation.
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Fig. 11.10. Associated flow rule in V-H (V-M) plane

To address this concern, Cremer et al. (2002) introduced a non-associated plastic
potential, denoted as g, which is fundamentally distinct from the yield surface. This
potential describes an ellipsoid centred at the axis origin. Similarly, Grange (2008)
also proposed a non-associated plastic potential, whose expression is identical to the
proposed yield surface in the H-M planes but differs from the proposed yield surface
in the V-H and V-M planes. This allows for the modification of the flow rule shape to
control the direction of the plastic displacement upl

z . The relationship between the
proposed yield surface and the plastic potential is depicted in Figure 11.11. With
this proposed plastic potential, regardless of the trial force vector’s position, only
downward plastic vertical displacement can be generated. However, it should be
noted that the proposed plastic flow rule lacks a clear physical interpretation and
introduces supplementary parameters.

Fig. 11.11. Non-associated plastic flow rule used in the macro-element of Grange (2008)

For this reason, the non-associated law is also employed in the plastic constitutive law
for loss of bearing capacity for foundations reinforced by rigid inclusions. Drawing
inspiration from the work of Grange (2008), the proposed plastic potential in this
study follows a similar approach. In this case, the derivation of the plastic potential
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∂g/∂V is set to 0. The direction of the plastic displacement can be visualised in
Figure 11.12.

Fig. 11.12. Non-associated flow rule in V-H (V-M) plane

Compared to the associated flow rule illustrated in Figure 11.11, the directions of
plastic displacement for trial force vectors A and B remain unchanged. However, for
trial force vectors C and D, their directions for plastic displacement are altered and
are no longer perpendicular to the yield surface. With these modified directions, no
plastic vertical displacement can be generated. The modification is pertinent to the
loss of bearing capacity behaviour for the reinforced foundations. Consequently, a
non-associated flow rule is adopted in the proposed macro-element.

Sliding behaviour

In a foundation reinforced with rigid inclusions, the possibility of sliding failure may arise
between the foundation and the LTP.

• Yield surface

The expression of this yield surface is grounded in the Coulomb friction model.

For strip foundations, the expression of the yield surface is as follows:

f(Hx, V ) = Hx − V tanφ (11.24)

For rectangular and circular foundations, the expression of the yield surface is given
by:

f(Hx, Hy, V ) =
√
H2

x +H2
y − V tanφ (11.25)
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• Plastic flow rule

The flow rule determines the direction in which plastic displacements will occur. In a
typical Coulomb friction criterion, a dilation angle ψ is introduced in the expression
of the plastic potential. For strip foundations, the expression of the plastic potential
is as follows:

g(Hx, V ) = Hx − V tanψ (11.26)

For rectangular and circular foundations, the expression of the plastic potential is
given by:

g(Hx, Hy, V ) =
√
H2

x +H2
y − V tanψ (11.27)

Equations 11.26 and 11.27 are identical to the yield surface expressions detailed in
Equations 11.24 and 11.25 when the dilation angle ψ is equal to the friction angle φ.
In this scenario, the flow rule is considered associated.

For cohesionless soils, including sand and gravel, with an angle of internal frictionφ
exceeding 30°, it is possible to estimate the dilation angle ψ as ψ = φ − 30◦. To
prevent the creation of undesirable plastic vertical displacement, setting ψ = 0 is
advisable for the same reasons explained earlier in the context of loss of bearing
capacity behaviour, to avoid unnatural upward movement.

The findings in Section 10.4 demonstrate that the sliding mechanism is inherently
considered in the loss of bearing capacity. In situations where the bearing capacity
of the studied reinforced foundations is already validated, the sliding criterion can
be incorporated into the macro-element.

11.3 Numerical resolution and implementation

11.3.1 Structure of macro-element

The developed macro-element comprises the following components:

• A plasticity model

A plasticity model is employed to depict the irreversible behaviours of the foundation.
This model replicates the inherent material non-linearity in the system and is for-
mulated with an elastic-perfectly plastic constitutive law featuring a non-associated
flow rule.
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• A nonlinear elasticity model

A nonlinear elasticity model, which is non-dissipative and reversible, is utilised to
characterise the uplift behaviour. This model replicates the non-linearity at the
soil-foundation interface and is expressed through rotational stiffness reduction.

• A dash-pot

A dash-pot is employed to account for energy dissipation resulting from material
properties and wave propagation. This model replicates the material damping and
radiation damping within the system under dynamic loading.

The plasticity model and the nonlinear elasticity model are always connected in series.
When considering static loading or an undamped system, the rheological model of the
macro-element can be represented as shown in Figure 11.13.

Fig. 11.13. Simplified rheological model for static or undamped macro-element

There are two possible positions for the dash-pot: it can be placed in parallel with the
series of the plasticity model and the nonlinear elasticity model or in parallel with just the
nonlinear elasticity model. Two potential structures for the proposed macro-element are
depicted in Figure 11.14.

Fig. 11.14. Simplified rheological model for the macro-element subjected to dynamic loading: (a)
dash-pot in parallel with the series of the plasticity model and the non-linear elasticity
model and (b) dash-pot in parallel with the non-linear elasticity model

Based on the structures of the proposed macro-element, the solution is attained through
time integration schemes, such as the Newmark-beta integration, in conjunction with
nonlinear solution algorithms like the modified Newton-Raphson algorithm.
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11.3.2 Non-linear problem resolution

Plasticity problem resolution

Traditionally, algorithms for constitutive laws formulated within the framework of classical
plasticity are based on the given strains. In the macro-element, the algorithms are based
on displacements. The techniques for integrating the constitutive equations can be
categorised into two groups: explicit and implicit schemes (Huang and Griffiths, 2009).
The implicit closest point projection method is a "return mapping" algorithm introduced
by Simo and Taylor (1985) and is now widely used in the analysis of non-linear problems
in geomechanics.

The return mapping algorithm involves an initial step of integrating the elastic equations
with total force increments to obtain an elastic predictor Fn+1,trial. The elastically pre-
dicted forces are then adjusted to lie on a yield surface by iteratively correcting ∆F pl, lead-
ing to plastic displacement increments. This process is illustrated in Figure 11.15 (a).

Fig. 11.15. Plasticity problem resolution: (a) Return mapping scheme for elastic-perfectly plastic
model and (b) Modified Newton-Raphson algorithm in an elastic-perfectly plastic
problem

A constitutive law is defined within the reference frame (U,F ). For simplicity, a 1D
representation is depicted in Figure 11.15 (b). The solution to the elastic-perfectly plastic
problem is obtained using the modified Newton-Raphson algorithm.

The state (Un, Fn) represents the converged state from the previous step n and is fully
known. The problem is to determine the displacement un+1 and the corresponding Fn+1.
To calculate this, an auxiliary state is introduced with a "trial" exponent, which is obtained
by considering a purely elastic step.

F
trial
n+1 = Ke∆U + Fn

f trial
n+1 = f(F trial

n+1 )
(11.28)
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The sign of f trial
n+1 will then indicate the current regime to be considered for resolution,

leading to two possibilities.

• if f trial
n+1 < 0, the regime is plastic, and therefore, un+1 = utrial

n+1 and Fn+1 = F trial
n+1 .

• if f trial
n+1 > 0, the regime is plastic, and therefore, Equation 11.29 should be solved.

f(F trial
n+1 ) = 0 (11.29)

A Taylor expansion around the trial state (F trial
n+1 , U

trial
n+1 ) results in Equation 11.30.

f(F trial
n+1 − ∆F ) = f(F trial

n+1 ) − ∂f

∂F
∆F = 0 (11.30)

According to the flow rule, the plastic displacement can be calculated using Equation 11.31.
Then, the force corrector ∆F can be calculated by Equation 11.32.

∆Upl = ∆λ ∂g
∂F

(11.31)

∆F = Ke∆Upl (11.32)

By introducing Equations 11.31 and 11.32, Equation 11.30 becomes Equation 11.33.

f(F trial
n+1 ) − ∂f

∂F
Ke∆λ ∂g

∂F
= 0 (11.33)

The only unknown variable in Equation 11.33 is the plastic multiplier ∆λ, which can be
calculated using Equation 11.34.

∆λ =
f(F trial

n+1 )
∂f
∂F K

e ∂g
∂F

(11.34)

Once the plastic multiplier ∆λ is calculated, the displacement and force for the n+ 1 step
can be determined, as described in Equations 11.35 and 11.36.

Upl
n+1 = Upl

n + ∆Upl (11.35)

Fn+1 = Ke(Un+1 − Upl
n+1) (11.36)
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Multiple yield surfaces

The problem with multiple yield surfaces requires a more complex formulation and
numerical treatment. In the case of M activated yield surfaces, the plastic displacement
increment can be considered as a sum of the contributions from each yield surface.

∆Upl =
M∑
1

∆Upl,m (11.37)

This equation can be formulated using the plastic flow rule as follows:

∆Upl =
M∑
1

∆λm∂g
m

∂F
(11.38)

Equation 11.33 becomes Equation 11.39. In this case, there are M equations and M

unknown plastic multiplier.



f1(F trial
n+1 ) − ∂f1

∂F K
e(∆λ1 ∂g1

∂F + ∆λ2 ∂g2

∂F + · · · + ∆λM ∂gM

∂F ) = 0

f2(F trial
n+1 ) − ∂f2

∂F K
e(∆λ1 ∂g1

∂F + ∆λ2 ∂g2

∂F + · · · + ∆λM ∂gM

∂F ) = 0
...

fM (F trial
n+1 ) − ∂fM

∂F Ke(∆λ1 ∂g1

∂F + ∆λ2 ∂g2

∂F + · · · + ∆λM ∂gM

∂F ) = 0

(11.39)

The displacement and force for the n+ 1 step can be determined, using Equations 11.35
and 11.36.

Large load step

The yield surface expression is defined for the normalised vertical force V̄ smaller than
1. When using a large load step, there is a possibility that the elastic predictor may be
located in a domain where the yield surface is not defined, as depicted in Figure 11.16.

Two situations can be identified. The first situation, where either the horizontal or moment
is non-zero or the load path is not vertical, resembles the loading path starting at FA,n

in Figure 11.16. In this scenario, it can be observed that the elastic predictor F trial
A,n+1

falls into a domain where the yield surface is not defined, resulting in a negative plastic
multiplier or a corrected force state that does not lie on the yield surface. In such cases, it
is advisable to divide the load step into several smaller steps. Employing a smaller loading
step from FA,n to F trial

A,n+1,i ensures that the elastic predictor remains within a domain
where the yield surface is defined.
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Fig. 11.16. Elastic predictor outside the yield surface’s definition domain

In the second situation, where both the horizontal and moment components are not zero,
and the load path is vertical, like the path from FB,n to F trial

b,n+1, employing a smaller
loading step cannot solve the problem. This is because the elastic predictor would directly
enter a domain where the yield surface is not defined. In such cases, an imposed correction
should be used. The corrected force state is adjusted to the state where V = 1. The
force correction ∆F can be directly calculated without the need to calculate the plastic
multiplier. The plastic displacement ∆Upl can be determined using Equation 11.40.

∆Upl = [Ke]−1∆F (11.40)

The same strategy was employed in the study by El Arja (2020) for addressing the gradient
discontinuity issue in the Mohr-Coulomb criterion.

Non-linear elastic problem resolution

The uplift behaviour is a non-linear elastic problem, and this study originally proposes an
iterative algorithm to account for the rotational stiffness reduction with the moment. The
first trial is calculated with the non-reduced rotational stiffness K0 in each time increment,
resulting in a corresponding moment M trial,0. If M trial,0 does not exceed Mu/3 for a
rectangular foundation or Mu/4 for a circular foundation, it becomes evident that no
uplift initiates, and there is no need for iterative calculation. However, if the uplift is
initiated, the rotational stiffness should be reduced according to the stiffness reduction
curve K = K(M).

As shown in Figure 11.17, when considering the first trial moment and stiffness couple
(M trial,0,K0), a line connecting (M trial,0,K0) and the origin point can be drawn. The
intersection of this line with the stiffness degradation curve provides a new rotational
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stiffness value K1. Then, a new calculation is conducted with the updated rotational
stiffness K1. The calculation iterates until the couple (M trial,j ,Kj) lies on the rotational
stiffness degradation curve. The convergence of the calculation is assessed using an uplift
criterion fup, described in Equation 11.41.

Fig. 11.17. Iterative algorithm to solve the non-linear elastic problem

fup =
M(Kj+1,trial

n+1 ) −M j+1,trial
n+1

M j+1,trial
n+1

(11.41)

Consideration of damping for dynamic calculations

Figure 11.14 illustrates two models with different dash-pot positions. In the first structure,
where the dash-pot is in parallel with the series of the plasticity model and the non-linear
elasticity model, as depicted in Figure 11.14 (a), the previously explained mathematical
interpretation remains valid. This is because the force in the dash-pot does not influence
the plasticity and non-linear elasticity.

However, if the dash-pot is only in parallel with the elasticity and non-linear elasticity
model, as shown in Figure 11.14 (b), several adjustments should be made to the non-linear
resolution algorithm.

The calculation of the elastic predictor F trial
n+1 should consider the damping terms C∆U̇ .

F trial
n+1 = Ke∆U + C∆U̇ + Fn (11.42)

The plastic multiplier ∆λ can be calculated, taking into account damping, as described in
Equation 11.43.

11.3 Numerical resolution and implementation 231



∆λ =
f(F trial

n+1 )
∂f
∂F (Ke + C/∆t) ∂g

∂F

(11.43)

The damping term should also be considered within the non-linear elasticity model. The
rotational damping can be adjusted based on the rotational stiffness, as described in
Equation 11.44.

C = K

K0
C0 (11.44)

11.3.3 Superstructure modelling

In a dynamic SSI analysis employing the macro-element, the superstructure is usually
simplified by an analogical model, as depicted in Figures 11.18 (a) and (b).

According to the dynamic characteristic of the superstructure, three types of elements
can be used in the analysis to capture the key features of the superstructure. They
are the Kelvin-Voight model (spring and dash-pot), the Euler-Bernoulli beam, and the
Timoshenko beam combined with the lumped mass matrix or the consistent mass matrix.
The formulation of the elementary stiffness and mass matrices of each element adopted in
this work can be found in the literature (Zienkiewicz and Taylor, 2000; EDF, 2019; Shen
et al., 2022d).

Depending on the type of model chosen, the degrees of freedom for a node in a super-
structure modelling are listed in Table 11.1.

Tab. 11.1. List of degrees of freedom for a node in superstructure modelling

Model Degrees of freedom

Kelvin-Voight mode Ux, Uy, Uz

Euler-Bernoulli beam Ux, Uy, Uz, θx, θy

Timoshenko beam Ux, Uy, Uz, θx, θy

The application of the macro-element is not limited to the dynamic SSI analysis with a
superstructure with an analogue model. A more sophisticated 3D FEM model can be used
to simulate the superstructure and combined with the macro-element approach, which is
not in the framework of the thesis.
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Fig. 11.18. Superstructure modelling: (a) complete modelling, (b) simplified modelling, (c)
spring and dash-pot model, and (d) two beam-type models

11.3.4 Dynamic equation and numerical integration

Dynamic equation of motion

To demonstrate the formulation of the dynamic equation for the system considering the
SSI effect, a three-storey building is employed. This three-storey building is simplified
using a lumped mass model with beams connecting the lumped masses. The macro-
element is positioned at the foundation level. The configuration of the superstructure and
the macro-element is depicted in Figure 11.19.

The equation of motion for the overall system can be generally expressed in matrix form
as Equation 11.45.

M Ü + C U̇ +K U = P (11.45)

whereM , C, andK represent the global mass, damping and stiffness matrices, respectively.
U is the node displacement vector and P is the force vector due to externally applied
dynamic or seismic loads. The Newmark dynamic integration algorithm is used to resolve
the dynamic equation of motion. The details of this algorithm can be found in Section E.1
with an illustration of the global stiffness matrix assembly illustrated in Figure E.1.

Calibration of SSI springs

As discussed in Section 11.2.2, calibration is necessary to account for the frequency effect,
as illustrated in Figure 11.20.
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Fig. 11.19. Combination of a three-story building superstructure and a foundation SSI macro-
element

Fig. 11.20. SSI stiffness calibration based on the dynamic impedance function

The values of Kx, Ky, and Kz terms are calibrated based on the fundamental modes in
translation for each direction. The rocking terms, Krx and Kry, are calibrated according
to the fundamental modes in translation along the Y and X axes, respectively.

The iterative process can be initiated by selecting the first set of soil stiffness and damping
values from the impedance functions corresponding to the structure on a fixed base. These
values for stiffness and damping in each degree of freedom should be adjusted through
iterative calculations to align with the principal modes of the corresponding degree of
freedom. The iterative calculation should be terminated when frequencies between two
iterative steps no longer exhibit significant changes. A variation of the fundamental
frequency lower than 0.1 % is used as the convergence criterion. Upon the conclusion of
the interactive calculation, the damping terms, including Cx, Cy, Cz, Crx, and Cry, can be
determined from damping curves with the corresponding SSI frequencies.
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11.4 Validation work

The validation study is conducted to systematically validate various components and
numerical resolutions of the program. This process ensures that each element and their
collective interaction are rigorously tested and confirmed to perform as intended.

Three families of validation work are organised to validate different aspects of the macro-
element program, as depicted in Figure 11.21.

Fig. 11.21. Three families of validation work

Initially, the validation focuses on the formulation of each component, affirming the
integrity of individual elements within the macro-element program. Subsequently, the
validation of numerical resolution aims to ensure the precision of all applied numerical res-
olution algorithms. Finally, consistency checks are executed under quasi-static conditions
to assess the performance coherence of the macro-element in static scenarios. Additionally,
cross-comparisons under seismic conditions are carried out with a parallel program coded
in VBA language, ensuring the robustness and accuracy of the macro-element.

11.4.1 Component formulation validation

The macro-element program comprises various components to simulate the SSI system.
The validity of the program is controlled by these elements, as depicted in Figure 11.22.

Fig. 11.22. Component formulation validation with the elements that control validity

SSI springs

In this study, the SSI springs are proposed to be calibrated based on the dynamic impedance
functions. The stiffness value for each degree of freedom is incorporated into a SSI stiffness
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matrix. Dynamic impedance functions can be obtained using commercial numerical
software, such as PLAXIS (Bentley, 2022b), FLAC3D (Itasca Consulting Group, 2023), and
SASSI (Ostadan and Deng, 2011).

The study conducted by Pereira (2020) indicates that the complete model analysis and the
SSI springs calibrated based on the dynamic impedance functions yield nearly identical
results.

Superstructure and assembly with SSI springs

The static response of both the Euler-Bernoulli beam element and the Timoshenko beam
element implemented in the macro-element is verified through cross-comparison with
Code_Aster (EDF, 2023).

Seven different tests are conducted, encompassing four static analyses and three vibra-
tion mode analyses with fixed-base superstructure models and superstructure models
considering the SSI springs to validate both the superstructure and the assembly of the
superstructure with the SSI springs. More information on the validation tests can be found
in Section F.1.

The obtained results demonstrate the capability to accurately depict the behaviour of
beam-type superstructure modelling and the assembly with SSI springs.

Uplift behaviour

The uplift behaviour for a foundation reinforced by rigid inclusions can be simulated using
the rotational stiffness degradation curves presented in the work of (Brûlé and Cuira,
2018).

Sliding behaviour

The yield surface for the sliding failure mechanism is based on the Coulomb friction model,
enabling the incorporation of a shear stress limit. This limit represents the maximum
shear stress that the interface can sustain before the sliding occurs. The identical yield
surface is employed in the studies of Abboud (2017) and Shen (2019).

Loss of bearing capacity

The yield surface for the macro-element of rigid inclusions is obtained by an analytical
approach based on the yield design theory. The validation of this approach involves a
series of comparisons with FELA numerical modelling, as detailed in Chapter 9.
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11.4.2 Numerical resolution validation

Validation of the numerical resolution algorithms is crucial. various algorithms are
employed in the macro-element to resolve the non-linear dynamic problem in the temporal
domain. This validation effort is categorised into four different resolution algorithms, as
illustrated in Figure 11.23.

Fig. 11.23. Different numerical resolution algorithms within the numerical resolution validation

Dynamic integration algorithm

The dynamic integration algorithm is initially validated through cross-comparison with
Code_Aster (EDF, 2023). These tests involve fixed-base superstructure models and
superstructure models with the SSI springs subjected to a rectangular impulse. The aim is
to verify the dynamic resolution algorithms incorporated into the macro-element model.

Further details of the validation tests are available in Section F.2. The results obtained
from these tests affirm the validation of the implemented dynamic integration algorithm.

Non-linear elastic resolution: uplift

The performed tests are designed to validate the uplift behaviour and its resolution within
the macro-element through cross-comparison with FEM software: PLAXIS 2D (Bentley,
2022a).

The studied system comprises a SDOF structure and an interface between the foundation
base and the supporting soil, allowing the uplift of the foundation. The sinusoidal-type
and seismic excitations are used in the validation tests.

The details of the validation tests can be found in Section F.3. For tests involving sinusoidal-
type excitations, both models successfully capture the same overall response of the system,
with slight differences observed within similar orders of magnitude for the macro-element
model and FEM analysis. However, slight differences are noticeable, remaining within
similar orders of magnitude for both numerical models. In the case of the test conducted
with a seismic excitation, the responses of the macro-element approach and results of
FEM analysis overlap in a very satisfactory manner.
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Plasticity resolution

The validation of the plasticity resolution includes the use of a simple sliding criterion.
This validation is based on the analytical solution for the sliding of a rigid block, the
SLAMMER software, and PLAXIS 2D (Bentley, 2022a).

The conclusion derived from these comparisons is that the macro-element exhibits a highly
satisfactory reproduction of the dynamic plastic SSI response. The obtained responses
closely align with both analytical solutions and the outcomes from the referenced software.
Further details on the validation tests can be found in Section F.4.

Combination of non-linear elasticity and plasticity resolution

The tests in this section are designed to confirm the integration of non-linear elastic and
plasticity resolution within the macro-element. This is achieved through a comparative
analysis with the "FONDA_SUPERFI" macro-element, which describes the non-linear
elasto-plastic behaviour of a rectangular foundation subjected to 3D seismic excitation in
Code_Aster (EDF, 2023). The examination in these tests focuses on the combined analysis
of sliding and uplift behaviours.

The studied system comprises a structure modelled with an Euler-Bernoulli beam and
two lumped masses. Comprehensive details of the validation tests are available in
Section F.3.

Minor differences are observed in this test group, partially attributed to the utilisation
of different solution algorithms and precision applied in the two analyses. Despite these
occasional and marginal distinctions, both models adeptly capture the variation of the
nonlinear dynamic response, with comparable magnitudes observed for key indicators.

11.4.3 Consistency checks: Quasi-static loading test

This section conducts tests on the macro-element for the foundation reinforced by rigid
inclusions under quasi-static monotonic and cyclic loading, serving as a consistency check.
The tests are organised as illustrated in Figure 11.24.

Fig. 11.24. Consistency check: Quasi-static monotonic and cyclic loading test
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On one hand, the results can be examined to verify the essential characteristics of non-
linear behaviours, ensuring that the macro-element reacts as predefined. On the other
hand, these tests can demonstrate the fundamental features of non-linear behaviours
within the foundation-soil system.

Studied configuration

In this study, a typical foundation configuration with rigid inclusion reinforcement is
considered, as depicted in Figure 11.25, with several complementary parameters in the
scheme used to calibrate the macro-element. The behaviour of the LTP is modelled with an
elastic-perfectly plastic constitutive law using the Mohr-Coulomb criterion characterised
by a friction angle φ = 38 ◦. The behaviour of the soft clay is characterised by the Tresca
criterion with a cohesion c = 50 kPa. The limit pressure p∗

l and the limit unit shaft friction
qs can be estimated as 300 kPa and 50 kPa, respectively. The configuration studied here is
the same as the Group E01 configuration used in Section 5.3.2.

Fig. 11.25. Foundation configuration used in pseudo-static study

The elastic stiffness terms denoted as Kx, Kz, and Kry employed in this research can be
obtained from the previously calculated impedance functions outlined in Section 5.3.2 for
Group E01. The stiffness values corresponding to a frequency of f = 0.1 Hz are selected.
The bearing capacity of the foundation Vmax and the maximum horizontal force Hmax are
determined by employing the kinematic exterior approach. The calibrated parameters for
the macro-element in the pseudo-static test are summarised in Table 11.2.

Tab. 11.2. Calibrated parameters for the macro-element

Parameter Value Description

Kx 6.09 × 105 kN/m
Elastic stiffnessKz 1.16 × 106 kN/m

Kry 2.04 × 106 kNm/rad
Vmax 3.64 × 103 kN Bearing capacity
Hmax 4.5 × 102 kN Maximum horizontal force
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Behaviour under vertical loading

The foundation is subjected to a monotonically increasing vertical displacement, and
the corresponding displacement-force relationship is depicted in Figure 11.26 (a). It is
observed that the model begins within the elastic domain, with the initial linear curve
representing the elastic response of the system. Upon reaching the bearing capacity Vmax,
the macro-element promptly transitions into the plastic domain.

Fig. 11.26. Behaviour of macro-element under vertical loading: (a) relation between vertical
displacement and vertical force under monotone vertical loading and (b) relation
between vertical displacement and vertical force under cyclic vertical loading

Subsequently, a numerical loading-unloading-reloading test is conducted, as illustrated
in Figure 11.26 (b). The unloading-reloading stiffness remains consistent. During each
reloading cycle, the system attains the same limit platform Vmax.

Behaviour under horizontal loading

The first pseudo-static monotonic test under horizontal loading is illustrated in Figure
11.27. The loading path is depicted in Figure 11.27 (a). The foundation is initially loaded
with a vertical force to point I. Then, the foundation is horizontally loaded until the failure
to the loading state II.

Owing to the elastic-perfectly plastic constitutive law featuring a non-associated flow
rule, no vertical plastic displacement is generated. After entering the plastic domain,
the horizontal displacement continues to increase while the horizontal force remains
constant.

The second pseudo-static monotonic test under horizontal loading is depicted in Figure
11.28. Initially, the foundation is subjected to vertical loading, reaching 80 % of the
ultimate vertical bearing capacity Vmax. The load path from point I to point II exhibits
an elastic loading path. Then, the foundation experiences horizontal loading. During the
loading, the plasticity appears at point II and continues to point III. The corresponding
loading path is presented in Figure 11.28 (a). The loading path from points II to point III
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Fig. 11.27. Behaviour of the macro-element under a small constant vertical force and a constant
vertical force: (a) load path and (b) relation between horizontal displacement and
horizontal force

consistently aligns with the yield surface, generating plastic settlement along the loading
path from point II to point III.

The relationship between the horizontal force and the horizontal displacement at the
foundation is depicted in Figure 11.28 (b). From point II to point III, horizontal displace-
ment persists under a lightly increasing horizontal force. Figure 11.28 (c) illustrates the
relation between the horizontal force and vertical displacement. From point I to point
II, the macro-element exhibits elastic behaviour, with no plastic deformation generated.
From point II to point III, the macro-element enters a plastic state. As the plastic hori-
zontal displacement increases, the plastic settlement is generated, as depicted in Figure
11.28 (d).

The response of the macro-element under cyclic horizontal loading is examined in
Figure 11.29. The foundation is initially loaded with a vertical force to point I, fol-
lowed by the application of horizontal force to attain point II. Then, the system undergoes
unloading, reloading in the opposite direction to reach point III, and then reloading in the
initial direction to achieve point IV, as depicted in Figure 11.29 (a).

The relation between the horizontal force and the horizontal displacement is illustrated
in Figure 11.29 (b). The unloading-reloading paths II-III and III-IV exhibit the same
slope as the loading path I-II. There is a clear relation between the horizontal force and
the horizontal displacement during a cyclic loading and unloading process, commonly
referred to as the hysteresis curve. The area enclosed by the hysteresis loop serves as a
measure of the energy dissipated within the macro-element during the loading-unloading
cycle.

Behaviour under moment loading

In the tests evaluating the behaviour of the macro-element under moment, the non-linear
elastic response is initially examined without employing any plasticity criteria.
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Fig. 11.28. Behaviour of the macro-element under a strong constant vertical force and a constant
vertical force: (a) load path, (b) relation between horizontal displacement and
horizontal force, (c) relation between horizontal force and settlement, and (d) relation
between horizontal displacement and vertical displacement

The relations between the moment at the foundation and the rotation of the foundation
under monotonic moment loading are presented in Figure 11.30. In this test, the founda-
tion is subjected to a constant vertical load. Then a moment is incrementally applied at
the foundation, starting from 0 and progressing through point I to reach point II.

The moment and rotation are normalised by Mu and θ0, defined in Equations 11.10 and
11.11, respectively. Under monotonic moment loading, the uplift initiates at a rotation θy

= θ0 with the corresponding moment M = Mu/3. Before M = Mu/3, the load path M−θ

follows the linear elastic behaviour until the point I. As the foundation experiences uplift,
the M − θ load path deviates from the linear elastic trajectory, as depicted in Figure 11.30
(a). The stiffness-moment relation, depicted in Figure 11.30 (b), follows the theoretical
rotational stiffness degradation curve.

Under cyclic moment loading, the foundation is loaded by a moment, followed by un-
loading reloading with a moment in the opposite direction, and finally unloading to zero,
as depicted in Figure 11.31 (a). The load and unload paths align along the same curve,
indicating no energy dissipation during this loading-unloading-reloading process.

The stiffness-moment relation, as depicted in Figure 11.31 (b), conforms to the prescribed
stiffness-moment curve.

242 Chapter 11 Macro-element for a rigid inclusion-reinforced foundation: Formula-
tion, resolution, and validation



Fig. 11.29. Behaviour of macro-element under cyclic horizontal loading: (a) load path and (b)
relation between horizontal displacement and horizontal force

Fig. 11.30. Behaviour of macro-element under monotonic moment loading: (a) relation of
rotation of the foundation and the moment and (b) rotational stiffness degradation
curve

Fig. 11.31. Behaviour of macro-element under cyclic moment loading: (a) relation of rotation of
the foundation and the moment and (b) rotational stiffness degradation curve

Another monotonic test is conducted to assess the combination of the uplift model and
the plasticity model. The foundation is subjected to vertical loading, followed by the
application of monotonic moment loading on the foundation starting from 0, passing
through point I to reach point II. The load process is detailed in Figure 11.32 (a).
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It is observed that the behaviour remains linear until reaching point I. Subsequently,
from point I to point II, the macro-element behaviour remains within the elastic domain
but exhibits non-linear elastic characteristics. Ultimately, the load state reaches point II,
positioned on the yield surface, signifying the entry of the macro-element into the plastic
domain.

Fig. 11.32. Behaviour of macro-element under monotonic moment loading: (a) load path and (b)
relation of rotation of the foundation and the moment

The relation between the rotation and the moment of the macro-element is illustrated
in Figure 11.32 (b). From 0 to point I, the relation between moment and rotation is
linear. From point I to point II, the load path of the macro-element deviates, following a
non-linear elastic model, indicating the initiation of uplift at point I. After reaching point
II, the moment remains constant while the rotation increases, which means the occurrence
of the plastic behaviour.

11.4.4 Consistency checks: cross-comparison under seismic
condition

Another set of consistency checks is conducted to validate the correct implementation
of the resolution algorithms in the program under seismic conditions. The comparison
is made against results obtained from the VBA program, which is based on the same
numerical resolution algorithms. The organisation of the consistency checks is presented
in Figure 11.33.

Fig. 11.33. Consistency check: cross-comparison under seismic condition
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The cross-comparison under seismic conditions validates the consistency between the
macro-element and the equivalent VBA program. Further details of various cross-
comparison tests can be found in Section F.6.

11.5 Summary

This chapter introduces a novel SSI macro-element formulation for rigid inclusion-
reinforced foundations. The proposed macro-element accounts for both the non-linear
elastic and plastic behaviour of the foundation on reinforced soil.

The chapter begins by examining various reinforced foundation geometries suitable
for investigation using macro-elements. The developed macro-element can address 2D
problems, such as strip foundations or cases with single horizontal direction excitation,
as well as 3D problems, including rectangular and circular foundations subjected to
excitation in two horizontal directions. The global variables associated with foundations
of different shapes are presented.

Secondly, the chapter provides a detailed analytical formulation of the macro-element.
The elastic behaviour within the macro-element is described, incorporating the dynamic
impedance functions. The uplift mechanism of foundations is discussed, emphasising its
non-linear elastic nature. Both decoupled and coupled modelling strategies to simulate
the uplift behaviour are explained. Furthermore, the analytical description of potential
plastic behaviours is also introduced, including the loss of bearing capacity and sliding
mechanisms. The formulations for both 2D and 3D formulations of these non-linear
behaviours are presented.

The following section of the chapter focuses on the numerical implementation of the macro-
element, including the rheological structures of the macro-element under both static and
dynamic loading conditions. Two distinct dynamic macro-element configurations are then
introduced, each featuring a different dash-pot position.

The chapter proceeds to outline the resolution of the plasticity model in the framework
of the classical plasticity model using the Return Mapping Newton-Raphson method. An
iterative algorithm is introduced in this study to solve the non-linear elastic problem.

To employ the macro-element for studying the behaviour of both the foundation and the
supported superstructure under dynamic excitation, the dynamic equations of the system
are outlined. This is demonstrated using an example of a three-storey structure. In this
study, an explicit dynamic numerical integration, the Newmark-beta method, is adopted,
with an unconditionally stable scheme to ensure accurate and stable results.

Numerical validation is systematically conducted to validate the macro-element program,
encompassing four distinct families of validation steps.
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In summary, the chapter offers an overview of the combination of non-linear problem
resolution and the dynamic integration scheme, as illustrated in Section E.3.
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Macro-element for a rigid
inclusion-reinforced foundation:
Practical applications

12

12.1 Description of applications

In this chapter, two parametric studies are conducted under seismic conditions to illustrate
the practical applications of the macro-element for rigid inclusion-reinforced foundations.
They are described as follows.

In the first application, the superstructure is simplified to a simple lumped mass model
connected to the foundation by an Euler-Bernoulli beam. Various superstructures are
tested, including different horizontal periods, varying slendernesses, different safety
factors, and different soft soil shear velocities. A real earthquake record is chosen and
amplified to two peak acceleration levels. Three types of boundary conditions at the base
of the structure are considered and compared. The results are presented with respect to
the common dynamic SSI factors.

In the second application, a study of the seismic response of a real structure is conducted.
Similarly to the first application, three different boundary conditions at the base of the
structure are considered. A set of real earthquake records is employed in the analysis to
carry out a parametric study. Various quantities are drawn from this study to estimate the
behaviour of the structure under seismic loading. The results are then analysed and the
contributions of the macroelement approach are discussed.

12.2 Application to a simple lumped mass model

12.2.1 Studied configurations

Structural model

The superstructure, modelled as a simple oscillator with a discrete mass, is connected to
the foundation by an Euler-Bernoulli beam characterised by EI, EA, and beam length
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heq. The foundation is a 10 m × 10 m square foundation reinforced by rigid inclusions
arranged in a 5 × 5 pattern with a spacing of 2 m.

The horizontal period of the superstructure, denoted as Tstr or TF B, is set to 0.5 s or 0.25
s, corresponding to the fixed-base structural frequency fF B of 2 Hz or 4 Hz, respectively.
The damping ratio of the structure is set at 5 %. The vertical frequency fF B,V of the
superstructure is set at 6 Hz or 10 Hz, respectively. With the given foundation width,
a series of slenderness ratios heq/B is set as 0.1, 0.3, 0.5, 0.75, 1, 1.25, and 1.5. It is
assumed that heq is half of the total height of the superstructure.

The soil profile consists of a soft soil layer, where reinforcement by rigid inclusions is
necessary, a hard soil layer, and a substratum. The rigid inclusions extend across the
soft soil layer and are embedded in the hard soil layer with a depth of 0.5 m. The shear
velocity Vs of the soft soil varies between 100 m/s, 150 m/s and 200 m/s. A gravel LTP
with a thickness of 0.5 m is positioned between the foundation base and the heads of the
rigid inclusions. The concrete rigid inclusions have a diameter of 0.42 m and a length of
10 m. Additional details about the foundation configurations and the soil profile can be
found in Section 5.3.1 and Table 5.1.

The bearing capacity of this foundation denoted as Vmax and the maximum horizontal
force Hmax, can be estimated by applying the analytical approach presented in Part III.
The mass of the superstructure can be evaluated using Equation 12.1 with a safety factor
F , varying between 6, 3, 1.5 and 1.2. The density of the structure, ρstr, can be determined
by the mass of the superstructure and the volume of the superstructure.

m = Vmax

F g
(12.1)

With the given vertical and horizontal frequencies fv and fh and the mass m, the EA and
EI can be evaluated using Equations 12.2 and 12.3.

EA = (2πfF B,V )2mheq (12.2)

EI = 1
3(2πfF B)2mh3

eq (12.3)

Three types of boundary conditions at the base of the structure are considered, as depicted
in Figure 12.1. The first corresponds to the fixed-base model (FB), where all the degrees
of freedom at the base of the structure are directly fixed. In the second, a conventional
linear SSI approach is employed, introducing the stiffness of the foundation-soil system in
the model using an elastic stiffness matrix and damping matrix, calibrated with dynamic
impedance functions. Finally, the non-linear elastic model is studied, incorporating the
non-linear SSI macro-element.
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Fig. 12.1. Model accounting for different SSI condition: (a) fixed-base model, (b) linear elastic
SSI model, and (c) non-linear elastic SSI model

Foundation impedance functions

The rigid inclusion reinforced foundation with the soil profile featuring three different
shear wave propagation velocities has already been studied, corresponding to the cases
A01, B01 and B02 in Table 5.2. The impedance functions for such foundations on rigid
inclusions have been previously calculated and presented in Figures 5.8, C.1 and C.2. The
dynamic stiffness and the damping ratio for these three foundation configurations are
presented in Figure 12.2.

SSI calibration is required for the different superstructures, following the process outlined
in Section 11.3.4. The corresponding stiffness and damping for different degrees of
freedom are presented in Appendix G. The calibrated parameters for the macro-element
are detailed in Table 12.1.
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Fig. 12.2. Dynamic impedance functions for different directions at the centre of the foundation
reinforced by rigid inclusions
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Tab. 12.1. Calibrated parameters for the macro-element

Parameter Value Description

Kx

See in Appendix G Elastic stiffnessKz

Kry

Cx

See in Appendix G DampingCz

Cry

Vmax 2.35 ×104 kN Bearing capacity
Hmax 5 ×103 kN Maximum horizontal force

Ground motion

A real seismic load is employed to investigate the response of the structure through
an acceleration time history. An acceleration time history recorded during the Friuli
earthquake (Italy, 1976) is depicted in Figure 12.3. The duration of the acceleration time
history is approximately 22.5 seconds, and its maximum recorded acceleration is 2.5 m/s2,
equivalent to 0.25 g. The same acceleration time history scaled to 0.5 g is also used in the
calculation.
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Fig. 12.3. Acceleration time history recorded during the Friuli earthquake (Italy, 1976)

12.2.2 Results: SSI impact on the dynamic responses

Dimensionless SSI parameter

The response of the SSI system primarily depends on the dimensions of the structure
and the dynamic properties of both the structure and the soil. This dependence can be
effectively described by the following non-dimensional parameters (Veletsos and Meek,
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1974; Ghannad, 1998; Nakhaei and Ali Ghannad, 2008). Three dimensionless SSI
parameters are selected in this study. They are described as follows:

• The slenderness ratio for the building: Heq/B;

• The structure-soil stiffness ratio Heq/VsTstr;

• The structure-soil mass ratio: ρstr/ρsoil.

A structure with a high slenderness ratio has a high aspect ratio, meaning that the height
of the building is significantly greater in proportion to its width. The structure-soil stiffness
ratio can be defined as the relative stiffness between the structure and the soil. A stiffer
structure with softer soil can result in a greater structure stiffness ratio. The structure-soil
mass ratio is used to evaluate the mass density contrast between the structure and the
soil. A heavy structure can have a high structure-soil mass ratio.

Period elongation

Period elongation due to SSI refers to the phenomenon where the natural period of a
building or structure is lengthened. The period taking into account the SSI effect is
denoted as TSSI . Period elongation is studied using a period elongation ratio, which is
defined as the ratio of the SSI period to the period of the fixed-base structure, denoted as
TF B.

The results are plotted with respect to the three previously mentioned dimensionless
parameters, as depicted in Figure 12.4. Each circle represents the result from a time
history analysis conducted for a case with the prescribed parameters. The line represents
the evolution of the trendline of the results, and the plus or minus one-time standard
deviation σ range is also indicated.
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Fig. 12.4. Period elongation due to SSI effects with respect to (a) slenderness ratio, (b) structure-
soil stiffness ratio, and (c) structure-soil mass ratio

The models considering the stiffness of the soil-foundation system consistently exhibit a
greater period. A maximum period elongation ratio of 3 is observed, specifically for the
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case with a safety factor of 1.2, heq/B of 1.5, the shear wave propagation velocity of 100
m/s, and fundamental fixed-base frequency as 4 Hz.

From Figure 12.4 (a), the trend is clear that the period elongation effect increases with
the slenderness ratio. The period is lengthened for a more slender structure. For a
structure with a small slenderness, the period elongation effect is less significant. The
period elongation ratio also increases with the structure-soil stiffness ratio Heq/VsTstr, as
depicted in Figure 12.4 (b). The period elongation due to the SSI effect is greater for a
taller and stiffer structure founded on softer soil. However, the trendline for the period
elongation increases and decreases with the structure-soil mass ratio, as depicted in Figure
12.4 (c). For the structure with a structure-soil mass ratio of around 0.3, a significant
period elongation effect can reach 3.

SSI damping

Taking into account the SSI effect can also increase the damping of the system. In the
linear domain, the equivalent damping ξSSI is calculated using a simplified process (Brûlé
and Cuira, 2018). The equivalent dampings ξSSI are plotted as a function of the three
previously mentioned dimensionless parameters, as depicted in Figure 12.5.

It is observed that the equivalent damping in all the studied cases exceeds the damping of
the fixed-base structure. A maximum SSI damping ratio of up to 50 % can be attained.
The SSI damping increases with the structure slenderness and the structure-soil stiffness
ratio. The trend of the SSI damping is not monotonic concerning the structure-mass ratio.
Similar to the observation in the period elongation, a greater SSI damping can be obtained
with a structure-soil mass ratio of around 0.3.
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Fig. 12.5. Damping ratio of the soil-structure system with respect to (a) slenderness ratio, (b)
structure-soil stiffness ratio, and (c) structure-soil mass ratio

Shear force and moment at the foundation

The shear force at the foundation is also calculated under the three boundary conditions,
considering two levels of acceleration time history: 0.25 g and 0.5 g. The maximum shear
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force for the configuration accounting for the SSI effect is normalised by the maximum
shear force of a fixed-base model, presenting the results in the form of a shear force
ratio HSSI/HF B. With the linear elastic SSI boundary condition, the shear force ratio
HSSI/HF B remains unaffected by the different acceleration amplitudes. Additionally, the
results for the shear force at the foundation for the linear elastic SSI boundary condition
are depicted in Figure 12.6.
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Fig. 12.6. Shear force ratio at the foundation for Linear elastic SSI boundary condition with
respect to (a) slenderness ratio, (b) structure-soil stiffness ratio, and (c) structure-soil
mass ratio

To facilitate comparison, only the trendlines for different configurations are presented
in Figure 12.7 as other following figures. The figure reveals that the shear force ratio is
consistently less than unity, indicating that considering the SSI effects generally has a
favourable impact, leading to a reduction in the shear force at the foundation. When only
the linear SSI effect is considered, the shear force reduction varies from 20 % to 50 %
compared with a fixed-based model. However, with the consideration of the non-linear SSI
effect, the shear force reduction can reach up to If the non-linear SSI effect is considered,
the shear force reduction can reach up to 65 % under 0.25 g earthquake excitation and
80 % under 0.5 g earthquake excitation.
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Fig. 12.7. Trendlines of shear force ratio at the foundation with respect to (a) slenderness ratio,
(b) structure-soil stiffness ratio, and (c) structure-soil mass ratio

Observing Figure 12.7 (a) and (b), it can be found that the linear SSI effect is more
significant, resulting in a more pronounced reduction in shear force for stiffer and more
slender structures on softer soil. However, the relationship between the shear force
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reduction due to the non-linear SSI effect and the SSI parameters is not monotonic. The
trendlines with respect to the structure-soil mass ratio are not monotonic, suggesting
the existence of an optimal structure-soil mass ratio that maximises the benefits of the
non-linear SSI effect.

It can also be observed in Figure 12.7 that the non-linear SSI effect leads to a more
significant reduction in shear force at the foundation compared to the linear SSI effect,
albeit with the occurrence of irreversible displacement. Furthermore, the shear force
reduction is more pronounced in the cases with the acceleration scaled to 0.5 g than in
the cases with the acceleration scaled to 0.25 g. This implies that systems subjected to
strong earthquakes derive greater benefits from the non-linear SSI effect.

The moment applied at the foundation during the earthquake excitation is also captured.
The trendlines for the maximum moment ratio with and without SSI effect, denoted as
MSSI/MF B, are presented in Figure 12.8. The same observation for the maximum shear
force ratio remains valid for the maximum moment ratio.
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Fig. 12.8. Trendlines of moment ratio at the foundation with respect to (a) slenderness ratio, (b)
structure-soil stiffness ratio, and (c) structure-soil mass ratio

Residual displacement of the foundation

In the linear domain, no irreversible displacement is generated. However, considering the
non-linearities of the foundation can result in irreversible displacements. The trendlines
of the residual horizontal displacement of the foundation are depicted in Figure 12.9.

The magnitude of the residual horizontal displacement is found to be smaller than 0.1 %
B for the 0.5 g excitation and 0.03 % B for the 0.25 g excitation. The residual horizontal
displacement increases and then decreases with the slenderness ratio and the structure-soil
stiffness ratio, as depicted in Figure 12.9 (a) and (b), which corresponds the shear force
reduction decreases and then increases.

The residual settlements are generated for certain cases. In this parametric study, only the
configurations with safety factor F = 1.2 and 1.5 can generate the residual settlement.
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Fig. 12.9. Trendlines of residual horizontal displacement of the foundation with respect to (a)
slenderness ratio, (b) structure-soil stiffness ratio, and (c) structure-soil mass ratio

There is no general monotonic trend for the residual rotation at the foundation with
respect to the dimensionless SSI parameters, as depicted in Figure 12.10.
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Fig. 12.10. Trendlines of residual settlement of the foundation with respect to (a) slenderness
ratio, (b) structure-soil stiffness ratio, and (c) structure-soil mass ratio

The residual rotation of the foundation can result in a differential settlement. However,
no general monotonic trend is observed for the residual rotation at the foundation with
the dimensionless SSI parameters, as depicted in Figure 12.11. It is worth noting that the
maximum residual rotation captured by the trendline does not exceed 0.1 % rad under
0.5 g earthquake excitation, which is very small.
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Fig. 12.11. Trendlines of residual rotation of the foundation with respect to (a) slenderness ratio,
(b) structure-soil stiffness ratio, and (c) structure-soil mass ratio
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12.3 Application to a 22-storey building

12.3.1 A 22-storey building

The second application focuses on a 22-storey high building inspired by Nice Prefecture,
constructed in 1979 in France, as investigated in the work of Lorenzo et al. (2018). The
prototype building, Nice Prefecture, is depicted in Figure 12.12.

The structure consists of two symmetric parts, each representing a reinforced concrete
tower. These two sections are divided by a 10-centimetre joint designed to ensure the
independence of dynamic responses of both sides during strong motions.

Each part comprises a reinforced concrete core wall, supporting reinforced concrete shells
fixed to the core wall on each floor. The foundation of the building is reinforced by rigid
inclusions.

Fig. 12.12. Nice Prefecture: (a) perspective view of the building and (b) horizontal section of
building structure

Structural model

The analysis conducted in this numerical application focuses on the lateral response of
the building. Instead of modelling the whole structure in detail, which is numerically
expensive, a simplified model of the building is used in this study. Lorenzo (2016) has
identified the mechanical parameters for an equivalent homogeneous Timoshenko beam
(Timoshenko, 1921). The identified geometrical and mechanical parameters are detailed
in Table 12.2.

Tab. 12.2. Geometrical and mechanical parameters for the equivalent Timoshenko beam model

H (m) b (m) h (m) ρ (kg/m3) E (GPa) ν

66 35 38 830 1 0.48
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Fig. 12.13. Studied building modelling: (a) building model scheme and (b) equivalent Timo-
shenko beam model

The section dimensions of the equivalent homogeneous model (38 m × 35 m) significantly
differ from those of the actual building (60 m × 17 m), due to a non-uniform distribution
of stiffness in both horizontal directions (Lorenzo, 2016).

The modal analysis of the fixed-base simplified Timoshenko beam model is conducted.
The fundamental frequencies are presented in Table 12.3.

Tab. 12.3. Natural frequencies of the building

Mode Direction Frequency (Hz)

1 Y 1.216
2 X 1.288
3 Z 4.162

Lorenzo (2016) has identified the nature frequency of the building by ambient vibration
records. The first two nature frequencies for the X and Y directions are 1.216 Hz and 1.228
Hz, respectively. The differences between the identified frequencies and the frequencies
calculated from the simplified Timoshenko beam model are less than 5 %.

Even though energy dissipation is a crucial aspect of any dynamic analysis, it is still a
mishandled phenomenon. In the present study, a 5 % damping ratio is considered for the
overall structure, implemented in the dynamic resolution through Raleigh damping theory
(Pecker, 2023a). Similar to the investigation in Section 12.2, three types of boundary
conditions at the base of the structure are considered.
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Foundation

The building is supported by a 60 m × 17 m foundation reinforced by 32 × 9 concrete
rigid inclusions of 0.6 m in diameter and 30 m in length1, as depicted in Figure 12.14.
The spacing of inclusions is 2 m. The rigid inclusions are embedded in a two-layered
soil profile. The upper layer consists of a 30 m thick soft clay, and beneath it is a deep
underlying dense sand layer. The first 0.5 m thick layer of the soft clay is replaced by a
gravel LTP layer, serving as an LTP layer.

Fig. 12.14. General layout of foundation system: (a) cross-section view and (b) plan view of the
foundation and the soil profile

The behaviour of LTP is modelled with an elastic-perfectly plastic constitutive law using
Mohr-Coulomb criterion, with shear wave velocity Vs = 350 m/s, Poisson’s ratio ν =
0.45, density ρ = 2 t/m3, viscous damping β = 5 %, and a friction angle φ = 38 ◦. The
behaviour of soft clay is modelled with an elastic-perfectly plastic constitutive law with a
Tresca criterion, with shear wave velocity Vs = 250 m/s, Poisson’s ratio ν = 0.45, density
ρ = 2 t/m3, viscous damping β = 5 %, and a cohesion c = 100 kPa. The dense sand layer
is modelled as an elastic material with a shear wave velocity Vs = 1 000 m/s, Poisson’s
ratio ν = 0.35, density ρ = 2 t/m3, and viscous damping β = 5 %. The rigid inclusions

1Due to the lack of relevant information, the configuration of the foundation and the geotechnical model
are proposed by the author and may differ from the actual project.
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are assumed to be elastic, characterised by Young’s modulus of E = 3 × 104 MPa, ν = 0.2,
and ρ = 2.5 t/m3.

The dynamic impedance functions of the foundation are determined through the FEM-BIE
modelling, employing the methodology described in Chapter 5. The results of dynamic
impedance functions calculated for the reinforced foundation are illustrated in Figure
12.15.
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Fig. 12.15. Dynamic impedances at the centre of the reinforced foundation for the 22-storey
building

Linear SSI is incorporated at the base of the Timoshenko beam model using elastic springs
obtained from the dynamic impedance functions. An iterative calibration is conducted,
and the natural frequencies considering the SSI are presented in Table 12.4.

Tab. 12.4. Natural frequencies of the building considering SSI

Mode Direction Frequency (Hz)

1 Y 1.013
2 X 1.051
3 Z 3.130

12.3.2 Calibration of macro-element parameters

In this study, a rigid inclusion-reinforced foundation is employed to simulate dynamic
non-linear SSI effects at the base of the building. Before using the macro-element, it is
imperative to calibrate its parameters.

The stiffness terms are already used in the nature frequency of building considering SSI.
The damping terms are identified based on the corresponding SSI frequencies. The uplift
behaviour and loss of bearing capacity (inner expression) are included in the non-linear
SSI macro-element application. The non-linear parameters, Vmax and Hmax, used in the
yield surface of loss of bearing capacity are also calculated through the analytical approach
based on the kinematic exterior approach.
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Tab. 12.5. Calibrated parameters for the macroelement for the rigid inclusion-reinforced founda-
tion

Parameter Value Description

Kx 1.48×107 kN/m
Elastic stiffnessKz 5.81×107 kN/m

Kry 2.62×1010 kNm/rad
Cx 1.48×105 kNs/m

DampingCz 7.34×105 kNs/m
Cry 2.75×108 kNms/rad
Vmax 1.78 ×106 kN Bearing capacity
Hmax 1.02 ×105 kN Maximum horizontal force

12.3.3 Incremental dynamic analysis

Incremental dynamic analysis (IDA) serves as a powerful computational technique used
in earthquake engineering, offering a means to evaluate the seismic performance of
structures. This parametric analysis involves increasing the intensity of earthquake
ground motions to evaluate how a structure responds under a range of seismic excitations
(Vamvatsikos and Cornell, 2002, 2004).

The outcome of IDA is a set of IDA curves, depicting a chosen intensity measure (IM) with
respect to a selected damage measure (DM) or engineering demand parameter (EDP).
Each IDA curve within the set corresponds to the same structural model, providing a
comprehensive view of the structure’s response under varying seismic intensities.

Nowadays, the IDA is largely used in earthquake engineering, spanning various structures
such as buildings and bridge piers. In the context of the dynamic SSI macro-element,
this approach is utilised to examine the ductility demand imposed on the structure, as
demonstrated in several studies (Pecker and Chatzigogos, 2010; Correia et al., 2012;
Pérez-Herreros, 2020).

In this section, a selection of earthquake records is presented and employed to conduct an
IDA on a building supported by rigid inclusion-reinforced foundation macroelement. The
IDA curve set obtained by this analysis is subsequently compared to those derived from
the fixed-base configuration, as well as from the conventional linear SSI configuration
employing only dynamic impedances.

Seismic loading

A set of 20 real earthquake records is employed in this study. They are selected for an
interval of earthquake moment magnitudes, MW = 5 to 7, with moderate distances Rrup

smaller than 35 km, and for sites with Vs,30 ≤ 200 m/s. The non-scaled earthquake
acceleration time histories are presented in Figure 12.16. General information and
characteristics of the selected earthquake records are listed in Table 12.6.
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As discussed in Section 1.2, the presence of the rigidity contrast between the foundation
elements and the soil can affect the propagation of seismic waves and alter the incident
seismic action. The numerical study in Chapter 4 confirms that the presence of inclusions
has only limited potential to modify the seismic motion reaching the base of a structure.
Therefore, the earthquake signals are directly applied at the base of the foundation without
consideration of the ground motion modification due to the SSI kinematic effects.

Fig. 12.16. Earthquake records used for IDA (data from the PEER Strong Motion Database
(Ancheta et al., 2013))

Intensity measure and damage measure

The term intensity measure (IM) is used to describe parameters that indicate the severity
of the input motion while damage measures (DM) or engineering demand parameter
(EDP) are used to describe parameters that characterise the response of the structure.

Different options are available for the intensity measure to be used in the IDA curves:

• The peak ground acceleration of the input motion (PGA);

• The peak ground velocity of the input motion (PGV);

• The cumulative absolute velocity (CAV);
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Tab. 12.6. General information and characteristics of the earthquake records used for IDA (data
from the PEER Strong Motion Database (Ancheta et al., 2013))

# Earthquake Year Station ϕ1 V 2
s,30

(m/s)
M3

W
R4

rup

(km)
PGA5

(g)

1 Imperial Valley, USA 1951 El Centro Array #9 000 213 5.6 25.2 0.031
2 Central Calif, USA 1954 Hollister City 181 199 5.3 25.8 0.049
3 Northern Calif, USA 1954 Ferndale City Hall 044 219 6.5 27.0 0.163
4 Imperial Valley, USA 1955 El Centro Array #9 000 213 5.4 14.9 0.051
5 Hollister, USA 1961 Hollister City 181 199 5.6 19.6 0.059
6 Northern Calif, USA 1967 Ferndale City Hall 224 219 5.6 28.7 0.253
7 Friuli, Italy 1976 Codroipo 000 249 6.5 33.4 0.062
8 Coyote Lake, USA 1979 Gilroy Array 270 222 5.7 5.7 0.233
9 Victoria, Mexico 1980 Chihuahua 102 242 6.3 19.0 0.151
10 Westmorland, USA 1981 Brawley Airport 225 209 5.9 15.4 0.155
11 Coalinga, USA 1983 Parkfield - Fault Zone 14 000 246 6.4 29.5 0.262
12 Morgan Hill, USA 1984 Agnews State 240 240 6.2 24.5 0.032
13 Whittier Narrows, USA 1987 Carbon Canyon Dam 040 235 6.0 26.8 0.166
14 Superstition Hills, USA 1987 Wildlife Liquefaction Array 090 179 6.2 17.6 0.131
15 Loma Prieta, USA 1989 Agnews State 000 240 6.9 24.6 0.170
16 Northridge, USA 1994 Pacific Palisades 190 191 6.7 24.1 0.461
17 Kobe, Japan 1995 Port Island 000 198 6.9 3.3 0.348
18 Northwest, China 1997 Jiashi 000 240 5.9 24.1 0.274
19 Whittier Narrows, USA 1987 Carson - Water St 180 161 5.3 29.1 0.048
20 Tottori, Japan 2000 SMN002 002 139 6.6 16.6 0.154
1: Component.
2: Average shear wave velocity in the upper 30 m of the soil profile.
3: Moment magnitude.
4: Closest distance to fault rupture.
5: Peak ground acceleration.

• The spectral acceleration at the first-mode SSI period (Sa(fSSI , ξ = 5%)).

In this application, the peak ground acceleration of the input motion (PGA) is selected as
the intensity measure of interest. For each record, a range of 10 PGA values, spanning
from 0.1g to 1g, is considered.

The damage measure is a non-negative scalar value, corresponding to an observable
quantity derived from the results of the corresponding non-linear dynamic analysis. In
this application, several state variables are of interest, which include:

• The maximum absolute acceleration observed at the foundation and the top of the
building;

• The maximum and residual displacements at the foundation;

• The maximum and residual rotation at the foundation;

• The maximum base shear force and moment experienced at the base of the building.

The SSI macro-element is a source of the non-linearities of the system. The selected dam-
age measures therefore particularly focus on the response of the foundation, such as the
maximum shear force and rocking moment. The maximum displacement (rotation) and
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residual displacement (rotation) are key indicators to evaluate the seismic damage. The
residual displacement (rotation) represents the final irreversible displacement (rotation)
at the end of the earthquake event. Moreover, the maximum absolute acceleration at the
foundation and the top of the building are also used to evaluate the amplification effect.

Results: IDA curves and SSI effect

The IDA curves for all earthquake records are presented in Figures 12.17, 12.18, 12.19,
and 12.20. Each circle represents an engineering demand parameter obtained from a time
history analysis conducted for a given scaled record. The lines represent the evolution of
the median value of the selected engineering demand parameter for increasing values of
PGA, and the 16 %-84 % fractile range is also indicated in grey. To study the SSI effect,
the median value of the engineering demand parameter from fixed-base and elastic SSI
configurations are also presented in the figures.

The peak absolute acceleration at the foundation and the top of the building as a function
of the PGA of the input excitation is presented in Figure 12.17. It can be found that the
peak absolute accelerations at the foundation level for the fixed-based configurations
and the linear elastic SSI configurations are similar. The medium value of the maximum
acceleration at the foundation for the linear elastic SSI configurations is a little higher
than that for the fixed-base configurations, which means that the ground motion is slightly
amplified with the consideration of the stiffness within the foundation-soil system.
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Fig. 12.17. IDA curves: peak absolute acceleration recorded at the foundation and the top of the
building

The SSI plays an important role in the reduction of the maximum absolute acceleration
at the top of the building. This reduction is already significant between the fixed-base
configurations (blue line) and the linear SSI configurations (orange line), especially in the
reduction of the maximum acceleration at the top of the foundation. However, it should
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be noted that the PGA at the top of the building is largely amplified in the fixed-based
configurations and the linear SSI configurations. The addition of non-linearity within the
foundation-soil system, replicated by the non-linear SSI macro-element, collaborates in
the reduction of the acceleration at the top of the building in a significant manner with no
acceleration amplification.

The IDA curves regarding the maximum shear force and moment at the foundation
are depicted in Figure 12.18. As expected, the maximum shear force and moment are
smaller in the configurations with linear SSI than the fixed-base configurations. The SSI
phenomenon becomes increasingly significant as the load intensity rises, underscoring
the necessity of considering SSI effects in the design process. Additionally, the beneficial
role of the non-linearity is observed in these comparisons. The maximum shear force and
moment at the foundation of the non-linear SSI macro-element is not on the same scale
as other configurations with fixed-base and linear SSI boundary conditions.
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Fig. 12.18. IDA curves: maximum shear force and moment at the foundation

The outcomes, as depicted in Figure 12.19, illustrate the foundation’s maximum and
residual relative displacement (relative to free-field displacement). The non-linear SSI
macro-element configurations produce larger horizontal displacement at the founda-
tion, attributed to the irreversible displacement generated during the strong earthquake.
Consequently, the maximum foundation horizontal displacement of the non-linear SSI
macro-element configurations surpasses that of the linear SSI configurations.

Figure 12.20 illustrates the results concerning the maximum and residual rotation of the
foundation. The linear SSI macro-element configurations exhibit a greater maximum
rotation at the foundation compared to the non-linear SSI macro-element configurations.
In the non-linear SSI macro-element model, the moment applied at the foundation is
constrained by the yield surface. Consequently, the maximum rotation at the foundation
in a non-linear SSI model is smaller than that in a linear SSI model even when accounting
for the presence of residual rotation.
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Fig. 12.19. IDA curves: maximum and residual relative displacements (relative to free-field
displacement) at the foundation
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Fig. 12.20. IDA curves: maximum and residual rotation at the foundation

12.4 Summary

This chapter illustrates the application of the proposed macro-element for rigid inclusion-
reinforced foundations. An important characteristic of the macro-element is that is a
time-saving approach, allowing performing numerous calculations quickly. Two parametric
studies involve a lumped mass model and a real structure simulated by a Timoshenko
beam model.

In the first application, the structure is represented by a lumped mass model. Various
superstructures are examined with variations in the natural frequency, slenderness, safety
factor, and soft soil shear velocities. Three different support conditions are used, namely:
fixed-based condition, linear elastic SSI condition, and non-linear SSI condition using
macro-element. The results are depicted in relation to the SSI parameters to provide a
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comprehensive understanding of both linear and non-linear SSI effects in such foundations.
The period elongation effect and the increase in damping are observed, and these effects
are significant for slender and stiffer buildings founded on soft soil.

In the second numerical application of the macro-element, a 22-storey building is inves-
tigated. The building is modelled by a homogeneous Timoshenko beam. The seismic
response of the building is analysed through IDA analysis using a set of 20 different
earthquake records. A comparative analysis of results is conducted for three different
support conditions, emphasising the significance of considering the SSI effects in the
seismic design.

From these two studies, it can be observed that incorporating SSI effects, especially
introducing non-linearity through the macro-element for SSI analysis, results in a reduction
in maximum base shear forces and moments.
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Conclusion

This part of the dissertation is dedicated to introducing the development and the applica-
tions of SSI macro-element for rigid inclusion-reinforced foundations.

Chapter 11 outlines the development of the dynamic SSI macro-element. The proposed
macro-element formulation can be applicable for solving both 2D and 3D dynamic SSI
problem. This chapter provides insights into the macro-element structures under static
and seismic conditions, encompassing the plasticity model and the non-linear elasticity
model to simulate the sliding, the loss of bearing capacity, and the uplift behaviour of
the reinforced foundations. The numerical resolutions and their implementation are
thoroughly discussed in this chapter, and validation procedures are carried out to ensure
the accuracy and reliability of the macro-element.

In Chapter 12, the practical applications of the macro-element are detailed. Through
a statistical analysis of the results in two applications, it is observed that incorporating
SSI effects and particularly introducing nonlinearity through the macro-element for soil-
foundation interaction, leads to a reduction in maximum base shear forces and moments.
This reduction is more pronounced when considering soil-foundation nonlinearity. The
applications confirm the effectiveness of the macro-element for rigid inclusion-reinforced
foundations in terms of computational time and result accuracy. It is noteworthy that the
extensive number of time-history analyses could hardly be accomplished with a direct 3D
FEM analysis at a reasonable cost.
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General conclusion

This PhD dissertation examines the dynamic soil-structure interaction phenomena of foun-
dations reinforced by rigid inclusions under seismic loading using several complementary
approaches, including different numerical models, resolution strategies and analytical
analyses. The study is completed by an examination of the bearing capacity of such
foundations, using the kinematic exterior approach within the framework of yield design
theory. Furthermore, a novel macro-element has been developed to deal with foundations
reinforced by rigid inclusions under seismic loading.

The main contributions and conclusions of this work are outlined below.

The literature review focuses on different dynamic soil-interaction effects and their
impact on the response of the foundation, either globally or at a local level (i.e., focusing
on the individual behaviour of rigid inclusions, the load transfer platform, etc.). To date,
there are still few experimental studies dealing with the dynamic behaviour of foundations
on reinforced soil by rigid inclusions, but existing work already makes it possible to
observe interesting characteristics of this type of foundation under seismic loading. The
numerical methods available today can answer most of the questions concerning dynamic
SSI problems in the linear domain (i.e., kinematic interaction, group effects, etc.), but
there is a need for suitable computational tools to better understand the specifics involved
in the non-linear response of these foundations and to enable performance-based design
analyses on a routine basis.

The key findings of the numerical and experimental studies highlighted in the literature
review can be summarised as follows:

• The introduction of rigid inclusions attenuates foundation settlement during seismic
excitations;

• Compared with pile foundations, rigid inclusions experience lower inertial efforts,
which is mainly due to the disconnection between the raft and the piles;

• Seismic isolation effects are observed in rigid inclusion-reinforced foundations under
high-intensity seismic loads. The LTP offers the possibility of developing a sliding
mechanism at the interface between the foundation and the LTP, temporarily isolat-
ing the structure from the reinforced soil that supports it. This non-linear mechanism
prevents part of the seismic energy arriving at the base of the structure from being
transmitted, thereby reducing the load effectively applied to the structure.
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The second part of this dissertation has focused on the primary dynamic SSI effects
developed in foundations reinforced by rigid inclusions through an SSI study in the
linear elastic domain. The main observations of this study can be summarised as
follows:

• Compared with pile foundations, the modification of the ground motion at the
base of the structure due to the kinematic interaction phenomenon is generally less
significant. This effect is practically inappreciable in the low-frequency range and
only becomes perceptible, albeit of relatively small amplitude (for most practical
configurations), at high frequencies. From a design point of view, this generally
implies a reduction in input motion compared to free-field conditions;

• The presence of the rigid inclusions has a negligible impact on the dynamic impedances
of the foundation along the horizontal axes. In the vertical and rotational directions,
the dynamic stiffness lies between that of shallow foundations and pile foundations;

• The vertical force transfer efficiency in a rigid inclusion-reinforced foundation system
is observed to be higher than the horizontal one. The soil mainly recovers most
of the horizontal forces transferred by the raft, which affects the direction of the
stresses in the soil. Thus, the inclination of the loads transmitted through the soil
around the reinforcements is greater than that applied to the foundation;

• Regarding kinematic bending moments in rigid inclusions, the observations are
consistent with those already made for pile foundations, the maximum bending
moment being located at the interfaces between different soil layers of different
characteristics. Its amplitude is mainly controlled by the stiffness contrast at the
interface. Differences from pile foundations can be found at the head of the rigid
inclusions, which is related to the different boundary conditions at this location (no
connection of the rigid inclusions to the raft). Finally, no group effects are observed
when a group of rigid inclusions was submitted to kinematic loading. This is also
consistent with the usual observations made for pile foundations.

The bearing capacity of the rigid inclusion-reinforced foundation is examined in Part III
using the kinematic exterior approach. The study of the foundation’s seismic stability
considers the development of inertia forces in the soil as well as the inclination and the
eccentricity of the loads applied by the superstructure to the foundation. The following
points serve as a summary of the main contributions:

• This work extends the application of the kinematic exterior approach to rigid
inclusion-reinforced foundations. The validation is achieved through comparisons
with results from the literature for the non-reinforced configurations and FEM
analysis for the reinforced configurations;
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• To accurately estimate the contribution of the inclusions to the resistance within the
framework of the kinematic exterior approach, a multicriterion for rigid inclusions
is proposed, taking into account different failure modes;

• Several factors influencing the foundation’s bearing capacity are explored, revealing
that the bearing capacity consistently increases as the coverage area ratio does.
The bearing capacity of a reinforced foundation constantly exceeds that of an
unreinforced one under the same loading conditions: seismic intensity, inclination,
and eccentricity;

• For reinforced foundations exhibiting a significant safety factor (i.e., more than 3)
under a vertically centred static load, the impact of soil inertia may often be ignored.
When the foundation’s initial safety factor is already low, however, a significant loss
of bearing capacity may occur as a result of the inertial forces of the soil.

A novel macro-element for rigid inclusion-reinforced foundations under seismic
loading has been developed in Part IV, allowing to consider both linear and non-linear
SSI phenomena in the study of structures founded on reinforced soil by rigid inclusions
submitted to seismic loading.

The yield surface determined by yield design and the dynamic impedances of the foun-
dation are integrated into the formulation of the macro-element. Consistency checks,
third-party software, and multiple comparisons with analytical solutions verify the validity
of the various parts of this macro-element.

The validated macro-element model is then employed to conduct a parametric study
on a simplified structure and an Incremental Dynamic Analysis (IDA) of a 22-storey
building. These applications demonstrate the macro-element approach’s effectiveness and
usefulness in practical design.
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Perspectives

Potential future investigation could focus on the following aspects:

SSI study in the linear elastic domain

• Comparison with experimental studies

A comparative analysis can be conducted with experimental studies like ICEDA (EDF,
2008a) to verify the validity of the numerical modelling approach and confirm the
observation in the numerical study.

• Study of more complex configurations

The study primarily focuses on foundations of relatively modest dimensions, and the
investigation of larger foundations remains unexplored. Addressing this gap could
fulfil specific engineering requirements, like LNG tanks or nuclear power plants.

• Improvement of the conventional pseudo-static method for the determination of the
kinematic loads in deep foundations

The work should also focus on refining the conventional pseudo-static approach
used to estimate kinematic bending moments, aiming to enhance its performance
and reduce the observed differences with the dynamic approach. This work would
apply not only to rigid inclusions but also to pile foundations.

Seismic bearing capacity

• 3D effect for the bearing capacity

It is also interesting to investigate the 3D effect on bearing capacity, as the current
seismic bearing capacity study is conducted in a 2D plane. Further research could
propose a shape factor to appropriately account for the 3D effect, employing either
numerical modelling or applying a 3D virtual velocity field.
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• Considering the contribution of the LTP

The study can be improved by considering the contribution of the LTP in the failure
mechanism intersecting the rigid inclusions, which is currently neglected to facilitate
the use of the existing failure mechanisms developed for non-reinforced shallow
foundations. This improvement could involve applying a kinematically admissible
velocity field.

• Homogenised profile

Following the inspiration of the homogenisation approach, a homogenised profile
can be proposed with equivalent resistance parameters (c-φ) through an extensive
analysis of various configurations. A series of charts could be established to indicate
the potential correlations between equivalent resistance parameters (c-φ), the soft
soil properties, and the coverage area ratio.

Macro-element approach

• Design charts

A set of charts can be produced using this tool to offer insights into the linear and
non-linear SSI response of structures founded on rigid inclusions, in terms of several
dimensionless parameters.

• Cross-comparison

A supplementary comparison study could be conducted using numerical 3D non-
linear modelling, experimental results from centrifuge tests, and real seismic mea-
surements (i.e., the Rio-Antirrio Bridge) to enrich the application of the macro-
element model and gather more information.

• Frequency-dependent response

In the present macro-element model, the far field is characterised by a set of springs
and dash-pot calibrated using dynamic impedance functions. However, the current
formulation does not account for the frequency-dependent response. To address this
limitation, frequency-dependent effects can be integrated into the proposed macro-
element model through advanced methods, such as the Laplace-Time approach.
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Résumé en français A
Objectif du projet

L’utilisation des inclusions rigides pour le renforcement du sol a suscité un intérêt en raison
de leur potentiel à améliorer la capacité portante de la fondation, à réduire les tassements
et à renforcer la stabilité globale de l’ouvrage. Comprendre les phénomènes d’interaction
sol-structure (ISS) qui régissent de telles fondations sous chargement sismique est essentiel
pour garantir leur performance sécurisée et fiable dans les zones sujettes aux séismes.

Dans la pratique, la conception sismique des fondations renforcées par inclusions rigides
repose principalement sur les approches pseudo-statiques introduites par le projet national
ASIRI (ASIRI, 2012). Cependant, la fiabilité de ces méthodes de calcul largement util-
isées dans des contextes sismiques reste incertaine. Par conséquent, il devient impératif
d’étudier la différence entre les résultats obtenus à partir d’un modèle pseudo-statique
simplifié et d’un modèle dynamique sophistiqué. Cette exploration s’étend également à
l’examen du potentiel d’amélioration des approches de calcul pseudo-statique proposée.

Il est aussi nécessaire de quantifier la contribution des inclusions rigides à l’amélioration
de la capacité portante. Cependant, une méthode pratique fait défaut. Ainsi, la prise en
compte de l’inertie du sol devient cruciale dans les scénarios sismiques. Dans le contexte
de l’amélioration du sol par inclusions rigides, la quantification des effets de renforcement
à l’aide de la théorie de la conception à la rupture (Salençon, 1983) constitue une
motivation essentielle pour cette recherche.

De plus, la réponse dynamique des structures fondées sur une fondation améliorée par
inclusions rigides présente un problème complexe d’ISS qui nécessite l’utilisation de
méthodes de calcul adaptées. Dans le cadre de la conception basée sur les performances,
les codes de conception contemporains tels que l’Eurocode 8 (AFNOR, 2007) reconnaissent
l’influence de l’ISS et la dissipation d’énergie non-linéaire lors de séismes intenses (Pérez-
Herreros, 2020).

L’approche la plus directe, connue sous le nom d’approche globale, consiste à modéliser le
sol, les éléments de fondation et la superstructure pour prendre en compte le comporte-
ment non-linéaire du système de fondation-superstructure. Cependant, cette méthode
requiert des ressources informatiques importantes. Pour réduire la complexité et les
coûts informatiques, le concept d’un macro-élément, introduit initialement par Nova and
Montrasio (1991) et plus tard appliqué de manière efficace aux fondations superficielles
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et profondes, permet de consolider les effets d’ISS linéaires et non-linéaires au sein d’un
élément non-linéaire multidirectionnel. Le macro-élément intègre une loi constitutive
non-linéaire définie en termes de forces généralisées et de déplacements dans le cadre de
la théorie de la plasticité ou de l’hypoplasticité, capable de coupler les comportements
dynamiques linéaires et non-linéaires (Pérez-Herreros, 2020).

Dans ce contexte, l’objectif principal de ce travail de thèse est d’explorer à la fois les aspects
linéaires et non-linéaires de l’ISS pour les fondations renforcées par inclusions rigides
sous chargement sismique. L’objectif final est de développer un modèle de macro-élément
capable de représenter ces comportements.

Par conséquent, la recherche vise à aborder les aspects fondamentaux suivants :

• Revue des études expérimentales et numériques existantes

Une revue exhaustive des études expérimentales et numériques existantes dans la
littérature offre des informations précieuses sur le comportement des fondations
renforcées par inclusions rigides sous diverses conditions de charge. Plusieurs études
ont déjà été menées dans la littérature existante, et dans certains cas, les obser-
vations des études liées à d’autres systèmes de fondation peuvent être extrapolés
et appliqués aux inclusions rigides. Néanmoins, un écart important persiste en-
tre les investigations orientées vers la recherche et leur application pratique dans
l’ingénierie.

• Comportement de l’ISS linéaire

Cette étude se concentre sur l’investigation du comportement de l’ISS des fondations
renforcées par inclusions rigides dans le domaine linéaire élastique. L’étude explore
les effets de l’interaction inertielle et cinématique, dans le but de comprendre
la réponse dynamique du système lorsqu’il est soumis à des charges sismiques.
Cette analyse devrait fournir des informations sur le comportement linéaire de ces
fondations et leur réponse au mouvement du sol induit par les séismes.

• Stabilité sismique des fondations

L’exploration du domaine non-linéaire commence par une évaluation de la stabilité
sismique des fondations grâce à la mise en œuvre de la théorie du calcul à la rupture.
Plus précisément, l’approche cinématique par l’extérieur de la théorie du calcul à la
rupture est utilisée pour établir un domaine de stabilité.

L’objectif de cette approche est de fournir une compréhension approfondie sur les
mécanismes de rupture que les fondations sur inclusions rigides peuvent rencontrer
sous des charges sismiques et la capacité portante associée.
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• Développement et validation du macro-élément

L’accent principal est mis sur le développement d’un modèle de macro-élément qui
représente précisément le comportement des fondations renforcées par inclusions
rigides et intègre les effets d’ISS identifiés par l’analyse linéaire et le calcul à la
rupture. Ce macro-élément est censé offrir un outil efficace pour analyser la réponse
de ces systèmes de fondation sous chargement sismique. La recherche comprend
également l’incorporation de la modélisation numérique pour valider l’approche
proposée du macro-élément. Des études paramétriques peuvent être menées à l’aide
du modèle de macro-élément pour obtenir une compréhension complète des effets
d’ISS sur de telles fondations.

Conclusion principale

Cette thèse de doctorat examine les phénomènes d’ISS dynamique des fondations ren-
forcées par inclusions rigides sous chargement sismique en utilisant plusieurs approches
complémentaires, y compris différents modèles numériques, stratégies de modélisation
et solution analytiques. L’étude est complétée par un examen de la capacité portante
de telles fondations, en utilisant l’approche cinématique par l’extérieur de la théorie du
calcul à la rupture. De plus, un nouveau macro-élément a été développé pour traiter le
problème d’ISS dynamique non-linéaire des fondations renforcées par inclusions rigides
sous chargement sismique.

Les principales contributions et conclusions de ce travail sont exposées ci-dessous.

La revue de la littérature se concentre sur différents effets d’ISS dynamique et leur
impact sur la réponse de la fondation, soit au niveau global sur la fondation entière, soit
au niveau local sur le comportement individuel des inclusions rigides, de la plate-forme
de transfert de charge, etc. À ce jour, il existe encore peu d’études expérimentales portant
sur le comportement dynamique des fondations sur sol renforcé par des inclusions rigides,
mais les travaux existants permettent déjà d’observer des caractéristiques intéressantes de
ce type de fondation sous chargement sismique. Les méthodes numériques disponibles
aujourd’hui peuvent répondre à la plupart des questions concernant les problèmes dy-
namiques d’ISS dans le domaine linéaire (c’est-à-dire l’interaction cinématique, l’effet
de groupe, etc.). Cependant, il est encore nécessaire de disposer d’outils informatiques
appropriés pour mieux comprendre les spécificités impliquées dans la réponse non-linéaire
de ces fondations.

Les principales conclusions des études numériques et expérimentales mises en évidence
dans la revue de la littérature peuvent être résumées comme suit :
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• L’introduction d’inclusions rigides atténue le tassement des fondations lors de
séismes;

• Comparées aux fondations sur pieux, les inclusions rigides subissent des efforts
inertiels plus faibles, principalement en raison de la déconnexion entre la dalle et
les inclusions;

• Des effets d’isolation sismique sont observés dans les fondations renforcées par
inclusions rigides sous chargements sismiques de haute intensité. La plate-forme de
transfert de charge offre la possibilité de développer un mécanisme de glissement
à l’interface entre la fondation et la plate-forme de transfert de charge, isolant la
structure du sol renforcé qui la supporte. Ce mécanisme non-linéaire empêche une
partie de l’énergie sismique arrivant à la base de la structure.

La deuxième partie de cette thèse s’est concentrée sur les principaux effets dynamiques
d’ISS développés dans les fondations renforcées par inclusions rigides à travers une étude
d’ISS dans le domaine élastique linéaire. Les principales observations de cette étude
peuvent être résumées comme suit :

• Comparé aux fondations sur pieux, la modification du mouvement sismique à la
base de la structure due au phénomène d’interaction cinématique est généralement
moins significative. Cet effet est pratiquement imperceptible dans la plage de
basses fréquences et ne devient perceptible qu’à des fréquences élevées, bien que
l’amplitude soit relativement faible pour la plupart des configurations pratiques.
Du point de vue de la conception, cela implique généralement une réduction du
mouvement d’entrée par rapport aux conditions en champ libre;

• La présence des inclusions rigides a un impact négligeable sur les impédances
dynamiques de la fondation dans les directions horizontales. Dans la direction
verticale et de rotation, la raideur dynamique se situe entre celle des fondations
superficielles et des fondations sur pieux;

• L’efficacité du transfert de charge verticale dans un système de fondation renforcée
par inclusions rigides est observée comme étant supérieure à celle horizontale. Le
sol récupère principalement la plupart des forces horizontales transférées par la
dalle, ce qui affecte la direction des contraintes dans le sol. Ainsi, l’inclinaison des
charges transmises à travers le sol autour des renforcements est plus importante que
celle appliquée à la fondation;

• En ce qui concerne les moments fléchissants cinématiques dans les inclusions rigides,
les observations sont cohérentes avec celles déjà trouvées pour les fondations sur
pieux, le moment fléchissant maximal étant situé aux interfaces entre différentes
couches de sol de caractéristiques différentes. Son amplitude est principalement
contrôlée par le contraste de rigidité à l’interface. Des différences par rapport aux
fondations sur pieux peuvent être observées en tête des inclusions rigides, ce qui
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est lié aux différentes conditions aux limites à cet endroit (sans connexion rigide
entre les inclusions et la dalle). Enfin, aucun effet de groupe n’est observé lorsqu’un
groupe d’inclusions rigides est soumis à une charge cinématique. Cela est également
cohérent avec les observations habituelles faites pour les fondations sur pieux.

La capacité portante de la fondation renforcée par inclusions rigides est examinée dans la
partie III en utilisant l’approche extérieure cinématique. L’étude de la stabilité sismique
de la fondation prend en compte le développement des forces d’inertie dans le sol
ainsi que l’inclinaison et l’excentricité des charges appliquées par la superstructure à la
fondation. Les points suivants servent de résumé les principales contributions :

• Ce travail étend l’application de l’approche cinématique par l’extérieur aux fon-
dations renforcées par inclusions rigides. La validation est réalisée grâce à des
comparaisons avec les résultats dans la littérature pour les configurations non
renforcées et à une analyse par éléments finis pour les configurations renforcées;

• Pour estimer avec précision la contribution des inclusions dans le cadre de l’approche
cinématique par l’extérieur, un multicritère pour les inclusions rigides est proposé,
prenant en compte différents modes de rupture;

• Plusieurs facteurs influençant la capacité portante de la fondation sont explorés,
révélant que la capacité portante augmente systématiquement avec le taux de
substitution. La capacité portante d’une fondation renforcée dépasse constamment
celle d’une fondation non renforcée dans les mêmes conditions de chargement :
intensité sismique, inclinaison et excentricité;

• Pour les fondations renforcées présentant un facteur de sécurité significatif (c’est-à-
dire plus de 3) sous une charge statique centrée verticalement, l’impact de l’inertie
du sol peut souvent être négligé. Cependant, lorsque le facteur de sécurité initial de
la fondation est déjà faible, une perte significative de capacité portante peut survenir
en raison des forces d’inertie du sol.

Un nouveau macro-élément pour les fondations renforcées par inclusions rigides
sous chargement sismique a été développé dans la partie IV, permettant de prendre en
compte à la fois les phénomènes d’ISS linéaire et non-linéaire dans l’étude de la stabilité
de structures fondées sur le sol renforcé par inclusions rigides soumises à des charges
sismiques.

La surface de rupture déterminée par le calcul à la rupture et les impédances dynamiques
de la fondation sont intégrées dans la formulation du macro-élément. Des vérifications de
cohérence, des validations par des logiciels tiers et des comparaisons avec des solutions
analytiques vérifient la validité des différents composants de ce macro-élément.

Le modèle de macro-élément validé est ensuite utilisé pour mener une étude paramétrique
sur une structure simplifiée et une analyse dynamique incrémentale d’un bâtiment de 22
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étages. Ces applications démontrent l’utilité et l’efficacité de l’approche du macro-élément
d’ISS dans la conception pratique.

Perspectives

Les futures recherches pourraient se concentrer sur les aspects suivants :

Étude dans le domaine linéaire élastique

• Comparaison avec des études expérimentales

Une analyse comparative peut être menée avec des études expérimentales telles
que ICEDA (EDF, 2008a) pour vérifier la validité de l’approche de modélisation
numérique.

• Étude de configurations plus complexes

L’étude se concentre principalement sur des fondations de dimensions relativement
modestes, et l’exploration de fondations plus grandes reste inexplorée. Combler
cette lacune pourrait répondre à des besoins d’ingénierie spécifiques, tels que les
réservoirs de GNL ou les centrales nucléaires.

• Amélioration de la méthode pseudo-statique conventionnelle pour la détermination
des charges cinématiques dans les inclusions

Le travail devrait également se concentrer sur l’amélioration de l’approche pseudo-
statique conventionnelle utilisée pour estimer les moments fléchissants cinématiques,
dans le but d’améliorer ses performances et de réduire les différences observées
avec l’approche dynamique. Ce travail s’appliquerait non seulement aux inclusions
rigides, mais aussi aux fondations sur pieux.

Capacité portante sismique

• Effet 3D pour la capacité portante

Il est également intéressant d’étudier l’effet tridimensionnel sur la capacité portante,
car l’étude actuelle de la capacité portante sismique est menée dans un plan en 2D.
Des recherches supplémentaires pourraient proposer un facteur de forme pour tenir
compte adéquatement de l’effet tridimensionnel, en utilisant soit la modélisation
numérique soit un champ de vitesse virtuel en 3D.

• Considération de la contribution de plate-forme de transfert de charge

L’étude peut être améliorée en considérant la contribution du matelas de transfert
de charge dans le mécanisme de rupture intersectant les inclusions rigides, ce qui est
actuellement négligé pour faciliter l’utilisation des mécanismes de rupture existants
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développés pour les fondations superficielles non renforcées. Cette amélioration
pourrait impliquer l’application d’un champ de vitesse cinématiquement admissible.

• Profil homogénéisé

Suivant l’approche d’homogénéisation, un profil homogénéisé peut être proposé
avec des paramètres de résistance équivalents (c-φ) par le biais d’une analyse
approfondie de diverses configurations. Une série de graphiques pourrait être
établie pour indiquer les corrélations potentielles entre les paramètres de résistance
équivalents (c-φ), les propriétés du sol mou et le taux de substitution.

Approche de macro-élément

• Abaque de conception

Un ensemble de courbes peut être produit à l’aide de cet outil pour offrir des
compréhensions sur la réponse d’ISS linéaire et non-linéaire des structures fondées
sur des inclusions rigides, en termes de plusieurs paramètres adimensionnels.

• Comparaison croisée

Une étude comparative supplémentaire pourrait être réalisée en utilisant une mod-
élisation numérique 3D non-linéaire, des résultats expérimentaux issus de essais en
centrifugeuse et de mesures sismiques réelles (par exemple, le pont Rion-Antirion)
afin d’enrichir l’application du modèle macro-élément et de recueillir davantage
d’informations.

• Réponse dépendante de la fréquence

Dans le modèle macro-élément actuel, le champ lointain est caractérisé par un
ensemble de ressorts et d’amortisseurs calibrés à l’aide de fonctions d’impédance
dynamique. Cependant, la formulation actuelle ne tient pas compte de la réponse
dépendante de la fréquence. Pour remédier à cette limitation, les effets dépendant
de la fréquence peuvent être intégrés dans le modèle de macro-élément proposé
grâce à des méthodes numériques avancées, telles que l’approche Laplace-Temps.
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Analogue modelling of the
dynamic response of a soil
column

B

The soil displacement profile g(z) is assumed to replicate the shape of the fundamental
eigenmode of the soil column, with an amplitude equal to dmax at the soil surface. This
amplitude corresponds to the maximum free-field displacement at the ground surface, and
in this context, it is obtained as the average value of the peak ground displacements from
the five artificial accelerograms. The fundamental eigenmode can be obtained through a
discrete model, as illustrated in Figure B.1.

Fig. B.1. Discrete model to assessing the fundamental model of a soil column (Brûlé and Cuira,
2018)

The behaviour of a soil column consisting of n layers can be approximated by representing
it as an equivalent model composed of a series arrangement of n simple oscillators. Each
oscillator comprises concentrated surface masses mi linked to an analogue Kelvin-Voigt
model. Each layer is defined by its shear modulus Gi, density ρi and material damping
ratio ξi.

The concentrated masses mi that define this analogue model are determined using
Equations B.1 and B.2.

- For the first layer:

m1 = h1ρ1
2 (B.1)

- For layers other than the first one:

mi = hiρi + hi−1ρi−1
2 (B.2)
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The stiffness of this analogue model is represented by Equation B.3.

ki = Gi

hi
(B.3)

Solving Equation B.4 in matrix form for this discretised system provides the displacement
profile g(z) at each node i for all the eigenmodes.

K.Ui = ω2
iM.Ui (B.4)

where K is the stiffness matrix, M is the mass matrix, Ui represents the ith mode, and ωi

is the ith modal angular frequency.
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Complementary results for
dynamic impedances

C
The detailed comparisons of the reinforced foundation with the configuration A01 with
the corresponding shallow foundations and pile foundations are provided in Section 5.3
of Chapter 5. The other configurations of the reinforced foundation, listed in Table C.1,
are also compared with the shallow foundations and the pile foundations with LTP.

Tab. C.1. Main characteristics of the studied configurations

Group Case fs* (Hz) fc** (Hz) B/L L/d Ep/Es s/d α Figure

B 01 2.42 4.76 1 23.8 517 4.76 3.46% Figure C.1
02 4.43 8.72 " " 129 " " Figure C.2

C 01 3.50 6.89 1 31.3 230 6.25 2.01% Figure C.3
02 " " " 19.2 " 3.85 5.31% Figure C.4

D 01 3.50 6.89 1 23.8 230 3.57 6.16% Figure C.5
02 " " " " " 5.95 2.22% Figure C.6

E 01 3.50 6.89 0.33 23.8 230 4.76 3.46% Figure C.7
02 " " 2 " " " " Figure C.8

* fs is horizontal fundamental frequency of soil column
** fc is vertical fundamental frequency of soil column

The main characteristics of different groups are listed as follows:

• Group A: reference configuration (α = 3.46 %);

• Group B: shear wave velocity Vs, 100 m/s for B01 and 200 m/s for B02;

• Group C: coverage area ratio α, α = 2.01 % for C01, α = 5.31 % for C02 and α =
7.54 % for C03 ;

• Group D: centre-to-centre spacing, 1.5 m for D01 and 2.5 m for D02, as depicted in
Figure 4.7;

• Group E: foundation dimension B, 3 m for E01 and 20 m for E02, as depicted in
Figure 5.2.

The comparisons are conducted concerning dynamic stiffness, damping ratio, and dynamic
magnification factor. The dynamic stiffness values are normalised by the static stiffness
of the shallow foundation with the LTP for each direction. The damping is expressed
in the form of a damping ratio, with a maximum value of 1. Additionally, the dynamic
magnification factor is also examined.
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The observations from the comparisons remain consistent with the results presented in
Section 5.3 as the parameters of the foundation systems are varied. These parameters
include soil stiffness, coverage area ratio, number of rigid inclusions, inclusion spacing,
and foundation dimension.

To briefly recap, the conclusions from the comparison with different foundation systems
are provided.

Regarding dynamic stiffness, the following observations emerge:

• In the horizontal direction, the dynamic stiffness of a reinforced foundation is
comparable to that of a shallow foundation with LTP;

• In the vertical and rotational directions, the dynamic stiffness of a reinforced
foundation falls between that of a shallow foundation with LTP and a pile foundation
with LTP.

Concerning the damping ratio, the conclusions are as follows:

• In the horizontal direction, the damping of a reinforced foundation resembles that
in a shallow foundation with LTP;

• In the vertical and rotational directions, the damping characteristics in a reinforced
foundation align with those of a pile foundation with LTP.

In terms of the dynamic magnification factor, the key findings are as follows:

• In the horizontal direction, the dynamic magnification factor of a reinforced founda-
tion mirrors that of a shallow foundation with LTP;

• In the vertical and rotational directions, the dynamic magnification factor of a
reinforced foundation is akin to that of a pile foundation with LTP, and the maximum
amplification of a reinforced foundation is smaller than of a shallow foundation.
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Fig. C.1. Dynamic stiffness and damping ratio of configuration B01 (Vs,soft soil=100 m/s)
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Fig. C.2. Dynamic stiffness and damping ratio of configuration B02 (Vs,soft soil=200 m/s)
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Fig. C.3. Dynamic stiffness and damping ratio of configuration C01 (α = 2.01%)
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Fig. C.4. Dynamic stiffness and damping ratio of configuration C02 (α = 5.31%)

324 Appendix C Complementary results for dynamic impedances



0 2 4
a0 = B/2Vs

1

0

1

2

3

4

K H
/K

SF
+

m
H

,f
=

0

fs

(a)

0 2 4
a0 = B/2Vs

1

0

1

2

3

4

K V
/K

SF
+

m
V,

f=
0

fc

(b)

0 2 4
a0 = B/2Vs

1

0

1

2

3

4

K M
/K

SF
+

m
M

,f
=

0

fc

(c)

0 2 4
a0 = B/2Vs

0.0

0.2

0.4

0.6

0.8

1.0

H

fs

(d)

0 2 4
a0 = B/2Vs

0.0

0.2

0.4

0.6

0.8

1.0

V

fc

(e)

0 2 4
a0 = B/2Vs

0.0

0.2

0.4

0.6

0.8

1.0

M

fc

(f)

0 2 4
a0 = B/2Vs

0

1

2

3

D
H

fs

(g)

0 2 4
a0 = B/2Vs

0

1

2

3

D
V

fc

(h)

0 2 4
a0 = B/2Vs

0

1

2

3

D
M

fc

(i)

Foundation on rigid inclusions Shallow foundation with LTP Pile group with LTP

Fig. C.5. Dynamic stiffness and damping ratio of configuration D01 (s = 1.5 m,NRI = 49)
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Fig. C.6. Dynamic stiffness and damping ratio of configuration D02 (s = 2.5 m,NRI = 25)
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Fig. C.7. Dynamic impedances of configuration E01 (B = 3 m)
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Fig. C.8. Dynamic impedances of configuration E02 (B = 20 m)
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Maximum resisting rate
functions for the usual criteria

D
Maximum resisting rate functions π for the usual criteria are presented in this Appendix.

For a Tresca criterion:

• In the volume:

π(d̂) =

+∞ if tr(d̂) ̸= 0

C(|d̂1| + |d̂2|) if tr(d̂) = 0
(D.1)

• Along the lines of velocity discontinuity, with normal vector n:

π(n, ∥Û∥) =

 +∞ if ∥Û∥ · n ̸= 0

C|∥Û∥| if ∥Û∥ · n = 0
(D.2)

For a Tresca criterion without tensile strength:

• In the volume:

π(d̂) =

 +∞ if tr(d̂) ̸= 0

C(|d̂1| + |d̂2| − tr(d̂)) if tr(d̂) = 0
(D.3)

• Along the lines of velocity discontinuity, with normal vector n:

π(n, ∥Û∥) =

 +∞ if ∥Û∥ · n ̸= 0

C(|∥Û∥| − ∥Û∥ · n) if ∥Û∥ · n = 0
(D.4)

For a Coulomb criterion:

• In the volume:

π(d̂) =


C

tanφ
tr(d̂) if tr(d̂) > (|d̂1| + |d̂2|)sinφ

+∞ otherwise
(D.5)
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• Along the lines of velocity discontinuity, with normal vector n:

π(n, ∥Û∥) =

 +∞ if ∥Û∥ · n ̸= 0

C|∥Û∥| if ∥Û∥ · n = 0
(D.6)
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Numerical resolution of the
macro-element

E
E.1 Dynamic numerical integration

The time response of the system can be obtained using the Newmark-Beta algorithm. In
the formulation of the Newmark-Beta algorithm, the integral equations for velocity and
displacement are expressed as follows:

U̇1 = U̇0 + (1 − γ)∆tÜ0 + γ∆tÜ1 (E.1)

U1 = U0 + ∆tU̇0 + (1 − β)∆t2Ü0 + β∆t2Ü1 (E.2)

The index 0 denotes the initial step with known acceleration, velocity, and displacement,
while the index 1 corresponds to the next step to be determined.

It is evident that the factors γ and β describe the evaluation between the influence of the
initial acceleration and the final acceleration in a time step ∆t. The stability conditions
for the Newmark-beta algorithm are introduced as follows:

• γ < 1
2 : unstable;

• γ ≥ 1
2 and β ≥ γ

2 : unconditionally stable;

• γ ≥ 1
2 and β < γ

2 : conditionally stable if the time step is sufficiently small.

Therefore, the combination of γ = 1
2 and β = 1

4 , which results in an unconditionally stable
scheme with the best accuracy, is the most widely used scheme in structural mechanics.

This scheme is employed to solve the equation of motion described by Equation 11.45.
Using the notations n0 = γ∆t, n1 = β∆t2, n2 = (1 − γ)∆t, and n3 = (1

2 − β)∆t2, the
dynamic equation can be simplified as follows:

(M + n0C + n1K)Ü1 = P + C(U̇0 + n2Ü0) +K(U0 + ∆tU̇0 + n3Ü0) (E.3)
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E.2 Global stiffness matrix assembly

The global stiffness matrix assembly is illustrated in Figure E.1.

Fig. E.1. Illustration of the global stiffness matrix assembly
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E.3 Numerical resolution scheme

The numerical resolution scheme can be found in Figure E.2.

Fig. E.2. Macro-element numerical resolution scheme
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Macro-element validation F
F.1 Superstructure and assembly with SSI springs

The characteristics of the models to validate the superstructure and the assembly with SSI
springs are listed as follows. The models are depicted in Figure F.1.

• PFC01: an Euler-Bernoulli beam with a fixed base under horizontal forces;

• PFC02: a Timoshenko beam with a fixed base under horizontal forces;

• PFC03: an Euler-Bernoulli beam with SSI springs under horizontal forces and
moments;

• PFC04: an Timoshenko beam with SSI springs under horizontal forces and moments;

• RMP01: Vibration mode analysis for a structure composed of an Euler-Bernoulli
beam, two lumped masses with SSI springs;

• RMP02: Vibration mode analysis for a fixed base structure composed of four Timo-
shenko beams, five lumped masses;

• RMP03: Vibration mode analysis for a structure composed of four Timoshenko
beams, five lumped masses with SSI springs.

Fig. F.1. Tested structure model under static load: (a) fixed based model and (b) model combined
with SSI springs
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F.2 Dynamic integration algorithm

The characteristics of the models to validate the dynamic integration algorithm are listed
as follows. The models are depicted in Figure F.2.

• PEB01: A fixed base Euler-Bernoulli beam with a lumped mass subjected to a
rectangular impulse;

• PEB02: A Euler-Bernoulli beam with a lumped mass and SSI springs subjected to a
rectangular impulse;

• PEB03: A fixed base Euler-Bernoulli beam with a distributed mass subjected to a
rectangular impulse;

• PEB04: A Euler-Bernoulli beam with a distributed mass and SSI springs subjected to
a rectangular impulse;

• PEB05: A Euler-Bernoulli beam with a distributed mass and SSI springs and damping
subjected to a rectangular impulse.

• PTB01: A fixed base Timoshenko beam with a lumped mass subjected to a rectangu-
lar impulse;

• PTB02: A Timoshenko beam with a lumped mass and SSI springs and damping
subjected to a rectangular impulse;

• PTB03: A fixed base Timoshenko beam with a lumped mass subjected to a rectangu-
lar impulse;

• PTB04: A Timoshenko beam with a lumped mass and SSI springs and damping
subjected to a rectangular impulse;

Fig. F.2. Tested structure model under dynamic impulse: (a) fixed based model and (b) model
combined with SSI springs

336 Appendix F Macro-element validation



F.3 Non-linear elastic resolution: uplift

The descriptions of the models to validate the non-linear elastic resolution are listed as
follows.

• DEP01: System subjected to a sinusoidal signal at 1 Hz with a maximum acceleration
of 0.5 m/s2;

• DEP02: System subjected to a sinusoidal signal at 2 Hz with a maximum acceleration
of 0.6 m/s2;

• DEP03: System subjected to a sinusoidal signal at 1 Hz with a maximum acceleration
of 0.6 m/s2;

• DEP04: System subjected to an accelerogram (Chi-chi HWA033-000) with a maxi-
mum acceleration of 0.6 m/s2;

F.4 Plasticity resolution

The descriptions of the models to validate the plasticity resolution are listed as follows.

• ANL01: Sliding of a rigid block subjected to a rectangular impulse compared with
the analytical solution;

• ANL02: Sliding of a rigid block subjected to a rectangular impulse for different
safety factors compared with the analytical solution;

• SLA01 - SLA03: Sliding of a rigid block subjected to an accelerogram compared with
SLAMMER. Three earthquake records are selected: Tabs BOS-L1, Coalinga C03-000,
and Chichi HWA033-000;

• GLP01 - GLP03: Sliding of a structure subjected to an accelerogram compared with
Plaxis 2D. Three earthquake records are selected: Tabs BOS-L1, Kobe TAK-090, and
Chichi HWA033-000.

F.5 Combination of non-linear elastic resolution and
plasticity resolution

The descriptions of the models to validate the combination of non-linear elastic resolution
and plasticity resolution are listed as follows.
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• VGD01: Macro-element model with the sliding and uplift behaviours subjected to
the seismic excitation in X and Z direction;

• VGD02: Macro-element model with the sliding and uplift behaviours subjected to
the seismic excitation in X, Y and Z direction.

F.6 Consistency checks

The descriptions of the models used in consistency checks are listed as follows. The
studied model is depicted in Figure F.3.

• TCD01 - TCD03: uplift behaviour with different structure heights with the earth-
quake record Kobe TAK-090;

• TCG01 - TCG04: sliding behaviour with different frictional angles and dilatancy
angles with the earthquake record Kobe TAK-090;

• TCC01: Combination of resolution of non-linear elasticity (uplift) resolution and
plasticity (sliding) resolution with the earthquake record Kobe TAK-090;

Fig. F.3. Tested structure model in consistency checks
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Calibrated stiffness and
damping

G
The calibrated stiffness and damping for each tested configuration used in Section 12.2
are listed in the following tables.

Tab. G.1. Calibrated stiffness and damping terms for the configurations with safety factor F = 6

F
Vs

(m/s)
heq

(m)
fh

(Hz)
Kx

(MN/m)
Kz

(MN/m)
Kry

(MNm/rad)
Cx

(MNs/m)
Cz

(MNs/m)
Cry

(MNms/rad)

6 100 3 2 717 2778 43869 58 81 3581
6 150 3 2 1784 4550 70967 144 128 5715
6 200 3 2 3044 6737 102832 244 186 8244
6 100 5 2 723 2778 43897 59 81 3601
6 150 5 2 1788 4550 70985 144 128 5736
6 200 5 2 3046 6737 102844 245 186 8266
6 100 7.5 2 735 2778 43950 60 81 3643
6 150 7.5 2 1794 4550 71017 146 128 5777
6 200 7.5 2 3050 6737 102867 246 186 8309
6 100 10 2 750 2778 44019 62 81 3706
6 150 10 2 1801 4550 71062 148 128 5834
6 200 10 2 3055 6737 102898 248 186 8366
6 100 12.5 2 766 2778 44096 65 81 3797
6 150 12.5 2 1811 4550 71116 150 128 5908
6 200 12.5 2 3061 6737 102935 251 186 8437
6 100 15 2 783 2778 44179 69 81 3932
6 150 15 2 1821 4550 71175 153 128 6006
6 200 15 2 3068 6737 102979 254 186 8525
6 100 3 4 395 2156 41190 20 45 2127
6 150 3 4 1045 3070 67697 47 60 3034
6 200 3 4 2310 4420 99412 98 82 4201
6 100 5 4 396 2156 41441 21 45 2196
6 150 5 4 1074 3070 67896 49 60 3106
6 200 5 4 2350 4420 99578 101 82 4277
6 100 7.5 4 396 2156 41848 22 45 2320
6 150 7.5 4 1139 3070 68232 54 60 3240
6 200 7.5 4 2422 4420 99874 107 82 4426
6 100 10 4 403 2156 42271 23 45 2478
6 150 10 4 1234 3070 68619 62 60 3416
6 200 10 4 2507 4420 100224 116 82 4627
6 100 12.5 4 430 2156 42647 27 45 2665
6 150 12.5 4 1347 3070 69031 71 60 3628
6 200 12.5 4 2593 4420 100593 126 82 4876
6 100 15 4 483 2156 42980 33 45 2887
6 150 15 4 1453 3070 69439 81 60 3864
6 200 15 4 2674 4420 100954 137 82 5157
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Tab. G.2. Calibrated stiffness and damping terms for the configurations with safety factor F = 3

F
Vs

(m/s)
heq

(m)
fh

(Hz)
Kx

(MN/m)
Kz

(MN/m)
Kry

(MNm/rad)
Cx

(MNs/m)
Cz

(MNs/m)
Cry

(MNms/rad)

3 100 5 2 753 2880 44030 63 90 3718
3 150 5 2 1799 4703 71051 147 139 5819
3 200 5 2 3053 6853 102887 247 196 8345
3 100 7.5 2 770 2880 44112 66 90 3820
3 150 7.5 2 1810 4703 71112 150 139 5902
3 200 7.5 2 3060 6853 102929 250 196 8425
3 100 10 2 789 2880 44212 70 90 3999
3 150 10 2 1823 4703 71187 154 139 6028
3 200 10 2 3069 6853 102984 254 196 8536
3 100 12.5 2 808 2880 44317 77 90 4284
3 150 12.5 2 1837 4703 71272 160 139 6221
3 200 12.5 2 3079 6853 103049 259 196 8695
3 100 15 2 825 2880 44419 87 90 4707
3 150 15 2 1851 4703 71361 168 139 6513
3 200 15 2 3090 6853 103119 267 196 8916
3 100 5 4 426 2411 42612 26 58 2645
3 150 5 4 1246 3445 68663 63 76 3438
3 200 5 4 2489 5129 100151 114 103 4582
3 100 7.5 4 466 2411 42890 31 58 2822
3 150 7.5 4 1360 3445 69077 72 76 3653
3 200 7.5 4 2586 5129 100564 125 103 4855
3 100 10 4 534 2411 43199 39 58 3059
3 150 10 4 1480 3445 69550 84 76 3936
3 200 10 4 2687 5129 101014 139 103 5207
3 100 12.5 4 622 2411 43517 48 58 3323
3 150 12.5 4 1584 3445 70003 97 76 4312
3 200 12.5 4 2779 5129 101447 153 103 5601
3 100 15 4 703 2411 43813 57 58 3543
3 150 15 4 1666 3445 70380 114 76 4801
3 200 15 4 2857 5129 101839 170 103 6062
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Tab. G.3. Calibrated stiffness and damping terms for the configurations with safety factor F =
1.5

F
Vs

(m/s)
heq

(m)
fh

(Hz)
Kx

(MN/m)
Kz

(MN/m)
Kry

(MNm/rad)
Cx

(MNs/m)
Cz

(MNs/m)
Cry

(MNms/rad)

1.5 100 10 2 832 3128 44455 92 109 4903
1.5 150 10 2 1854 4923 71377 170 157 6578
1.5 200 10 2 3091 7045 103127 268 214 8948
1.5 100 12.5 2 852 3128 44570 109 109 5655
1.5 150 12.5 2 1872 4923 71489 188 157 7193
1.5 200 12.5 2 3106 7045 103225 283 214 9410
1.5 100 15 2 869 3128 44672 126 109 6394
1.5 150 15 2 1889 4923 71594 214 157 8113
1.5 200 15 2 3120 7045 103322 305 214 10126
1.5 100 10 4 732 2773 43934 60 79 3629
1.5 150 10 4 1682 4112 70453 118 103 4917
1.5 200 10 4 2867 5910 101888 173 135 6135
1.5 100 12.5 4 789 2773 44214 71 79 4002
1.5 150 12.5 4 1756 4112 70817 137 103 5510
1.5 200 12.5 4 2946 5910 102296 200 135 6935
1.5 100 15 4 827 2773 44431 89 79 4772
1.5 150 15 4 1810 4112 71115 150 103 5906
1.5 200 15 4 3007 5910 102618 228 135 7762

Tab. G.4. Calibrated stiffness and damping terms for the configurations with safety factor F =
1.2

F
Vs

(m/s)
heq

(m)
fh

(Hz)
Kx

(MN/m)
Kz

(MN/m)
Kry

(MNm/rad)
Cx

(MNs/m)
Cz

(MNs/m)
Cry

(MNms/rad)

1.2 100 10 2 846 3224 44537 104 117 5421
1.2 150 10 2 1865 5006 71450 181 166 6941
1.2 200 10 2 3100 7125 103187 276 223 9208
1.2 100 12.5 2 866 3224 44650 122 117 6239
1.2 150 12.5 2 1884 5006 71566 206 166 7832
1.2 200 12.5 2 3116 7125 103295 298 223 9889
1.2 100 15 2 883 3224 44748 137 117 6877
1.2 150 15 2 1901 5006 71669 239 166 8996
1.2 200 15 2 3132 7125 103397 331 223 10931
1.2 100 10 4 775 2847 44141 67 87 3865
1.2 150 10 4 1733 4338 70698 131 115 5323
1.2 200 10 4 2919 6155 102155 189 147 6612
1.2 100 12.5 4 820 2847 44387 84 87 4559
1.2 150 12.5 4 1797 4338 71039 147 115 5804
1.2 200 12.5 4 2991 6155 102532 220 147 7541
1.2 100 15 4 852 2847 44575 110 87 5692
1.2 150 15 4 1844 4338 71315 163 115 6346
1.2 200 15 4 3045 6155 102835 244 147 8249
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Résumé : La réponse dynamique d’une fondation ren-
forcée par inclusions rigides représente un problème
complexe d’interaction sol-structure (ISS). Cependant,
le nombre d’études s’intéressant à ce type de fonda-
tions reste encore limité, et il est nécessaire d’explo-
rer les phénomènes d’ISS impliqués dans leur réponse
sous l’action des séismes et d’améliorer les méthodes
d’analyse.
Sur la base des connaissances acquises à par-
tir des études expérimentaux et numériques dis-
ponibles, ce travail de recherche s’intéresse aux
phénomènes d’ISS dynamique des fondations ren-
forcées par inclusions rigides. L’étude vise à fournir
une meilleure compréhension du comportement sis-
mique de ce type de fondation en utilisant plusieurs ap-
proches complémentaires comprenant divers modèles
numériques, stratégies de résolution et approches ana-
lytiques. Les effets des phénomènes d’interaction iner-
tiel et cinématique à la fois sur la réponse globale de la
fondation et sur la réponse des différents éléments du
système sont examinés en détail.
La capacité portante sismique des fondations ren-

forcées par inclusions rigides est étudiée en utilisant
l’approche cinématique par l’extérieur dans le cadre de
la théorie du calcul à la rupture. Une approche analy-
tique permettant d’explorer plusieurs mécanismes de
rupture de la fondation est proposée et validée par des
analyses numériques en éléments finis. L’évolution des
facteurs de réduction est également explorée pour plu-
sieurs configurations de renforcement.
Un nouveau macro-élément pour les fondations ren-
forcées par inclusions rigides sous chargement sis-
mique est développé et validé numériquement. Il per-
met la modélisation de la réponse linéaire et non-
linéaire de la fondation, incluant les mécanismes de
décollement, de glissement et de perte de la capacité
portante. Ce modèle est ensuite utilisé pour conduire
une étude paramétrique à l’aide d’un modèle de struc-
ture simplifiée et l’analyse dynamique incrémentale
d’une tour R+22, démontrant l’efficacité et l’utilité de
l’approche proposée dans une démarche de concep-
tion parasismique basée sur la performance.
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Abstract : The dynamic response of a rigid inclusion-
reinforced foundation represents a complex Soil-
Structure Interaction (SSI) problem. Considering the li-
mited existing studies, there is a clear necessity to ex-
plore the SSI phenomena involved in the response of
such foundations under seismic conditions and to en-
hance the corresponding design methodologies.
Building upon insights from a limited number of dyna-
mic experimental and numerical studies, this research
focuses on the dynamic SSI phenomena of foundations
reinforced by rigid inclusions. The study aims to unders-
tand the seismic behaviour of such foundations better
using several complementary approaches, including va-
rious numerical models, resolution strategies, and ana-
lytical analyses. The effects of inertial and kinematic in-
teraction phenomena on the response of both the ove-
rall foundation and individual elements within the sys-
tem are examined in detail.
The seismic bearing capacity of foundations reinforced
by rigid inclusions is further investigated, using the ki-

nematic exterior approach within the framework of yield
design theory. A multi-subsystem analytical approach
based on the kinematic exterior approach is introduced
and validated through FEM analyses. The evolution of
the reduction factors is also explored for several confi-
gurations of the reinforcement.
A novel macro-element for rigid inclusion-reinforced
foundations under seismic loading is developed and nu-
merically validated. It allows the modelling of both the
linear and non-linear response of the foundation, inclu-
ding uplift, sliding and loss of bearing capacity mecha-
nisms. The validated macro-element model is used to
perform a parametric study using a lumped mass model
and the Incremental Dynamic Analysis of a 22-storey
building, demonstrating the effectiveness and useful-
ness of the proposed approach in a performance-based
design approach.
This research is conducted within the framework of the
French National project ASIRI+ and French National
Research (ANR) project ASIRIplus SDS.
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