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Abstract

This thesis explores Lipschitz constraints with respect to the input in deep learning. They have been
used in the past for computational optimal transport and certifiability against adversarial attacks.
However, some of their properties were still unknown; in particular, it was not clear if arbitrary
classification tasks could be solved by these networks.

In this thesis, I answer positively this question by showing there exists an intrinsic accuracy/ro-
bustness tradeoff for Lipschitz neural networks, controlled by the entropic regularization of the
loss. Furthermore, they benefit from various generalization guarantees, including ones that are
architecture-independent.

Then, the thesis shows that Signed Distance Function (SDF) estimation can be reformulated as
a regularized optimal transport problem, that can be solved with Lipschitz networks trained in an
adversarial setting. The methods can be used for robust One Class learning or more stable implicit
surface parametrization.

Finally, I show that Lipschitzness with respect to inputs is tightly linked to robustness with
respect to parameters. This yields a “backpropagation for bounds” algorithm, that can automatically
compute loss gradient bounds for Lipschitz networks. In particular, this allows for training with
robustness and differential privacy guarantees.
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Chapter 1

Introduction

1.1 Deep learning and open challenges

In this chapter, we attempt to define deep learning as a field and to identify the main challenges it
faces. Then, we give the first theoretical tools that are widely used throughout the thesis. After, we
motivate the study of Lipschitz constraints in deep learning by performing a literature review of
their usage. Finally, we summarize the main contributions of this work.
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For simplicity of the exposure, we start by defining feedforward neural networks. The affine
transformation takes the form h �→ ft(Wt, h)+bt, where bt is the the bias, and Wt the “linear” weights
whose exact form depends on the layer (densely connected pattern, convolution, channel/token
mixing, etc).

Definition 1 (Feedforward neural network). A feedforward neural network of depth T , with input
space X ⊂ Rn, and with parameter space Θ ⊂ Rp, is a parameterized function f : Θ×X → Y defined
by the following recursion:

h0(x) := x, zt(x) := ft(Wt, ht−1(x)) + bt,

ht(x) := σ(zt(x)), f(θ, x) := zT+1(x). (1.1)

The set of parameters is denoted as θ = (Wt, bt)1≤t≤T+1, the output space as Y ⊂ RK (e.g logits),
the layer-wise non-linearity as σ : Rn → Rn. Here, ft denotes a bilinear function.
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In the following, AllNet will denote these networks.

Remark 1.1. The above formulation is extremely general.

The non-linearity σ was historically the sigmoid x �→ 1
1+exp−x or the hyperbolic tangent

function x �→ ex−e−x

ex+e−x . Now, practitioners typically rely on ReLU x �→ max (0, x) and its
variants: LeakyReLU, SiLU, GeLU, SELU, Softplus, etc. All these modern activations share
the property of being close to zero on one side of the graph (when x → −∞), and almost linear
on the other (when x → +∞). In this sense, they can all be interpreted as the integral of some
smooth relaxation of the step function s(x) = 1x≥0, that first appeared in the perceptron
algorithm (Rosenblatt, 1957).
The bi-linear operator ft can denote a matrix-vector product, a convolution, any concatenation
or splitting method, a mean reduction, a residual connection, a batch normalization Ioffe and
Szegedy (2015) in test mode (with fixed statistics).
Furthermore, other operations like layer normalization Ba et al. (2016) or group normal-
ization Wu and He (2018) can be modelized as a non-linearity. Even the “self-attention”
mechanism (Vaswani et al., 2017) can be modelized by stacking linear layers (with some
sparsity structure) and a softmax non-linearity.

The most common architectures, such as Convolutional Neural Networks (CNNs), Fully Connected
Networks (FCNs), Residual Networks (ResNets), patch-based classifiers (like MLP-Mixers), and
Transformers, all fall under the category of feed-forward networks.

Remark 1.2. Universal Approximation theorem(s).

Under extremely mild assumptions on the non-linearity σ, AllNet networks benefit from
universal approximation theorem in C(X ,RK), a classical result of literature (Cybenko, 1989;
Hornik, 1991). See also Hassoun et al. (1995); Pinkus (1999); Haykin (1998) for a survey.

More than a single result, it is actually of family of results that depends on additional assumptions
such as the exact form of σ. Some variants are easier than others, for example when the activation has
finite limits σ(−∞) < σ(+∞). The main limitation is that σ cannot be a polynomial, in particular,
it cannot be linear, otherwise, the whole network would degenerate to an over-parametrized linear
function.

Warning 1.1. Beware of false sirens.

The universal approximation theorem often serves as a justification for the widespread use of
neural networksa. In the language of learning, this is a class of functions without bias. This
contrasts with most of the classical literature on machine learning, which traditionally focused
on models with some sort of bias to mitigate variance, following findings of the seminal work
of Valiant (1984).
Moreover, this is not the only parametrized class of functions benefiting from universal
approximation theorems: polynomials with Stone–Weierstrass theorem (Stone, 1937), Fourier
basis (Trigub and Belinsky, 2004), and wavelets basis (Kaiser and Hudgins, 1994); they all
share this surprisingly common property. Therefore, the expressiveness of neural networks is
not enough to explain their empirical success.
However, neural networks seem to have an asymptotic advantage regarding the number of
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parameters required to achieve error at most ε, see the works of Cheridito et al. (2021); DeVore
et al. (2021); Yarotsky (2017).

aThis can be found as far as on the X (ex-Twitter) threads of some “data-science influencers”.

In recent years research has focused a lot on the implicit bias induced by the optimization
procedure itself. Instead of looking for the minimizers of the empirical risk, the role of the optimizer
is now studied as well. It revealed that the optimizer itself induced a bias on the solutions returned.
This interlacing between the hypothesis class on one hand, and the optimization procedure on the
other hand, is now believed to play a central part in explaining the generalization of neural networks.

The difference between the two paradigms is detailed below:

θ∗ ∈ argmin
θ

Ez∼D[Lθ(z)]︸ ︷︷ ︸
Empirical Risk Minimization

�= θT ∼ A (θ �→ ∇θEz∼D[Lθ(z)])︸ ︷︷ ︸
Implicit Regularization of Stochastic Optimization

(1.2)

where:
• D the dataset: a finite sample of size n.
• Lθ(z) a loss parametrized by θ. For example, in supervised learning task with input x and

target y, the loss takes the form L(fθ(x), y) with fθ a neural network.
• A a stochastic algorithm that attempts to find the optimum, in a stochastic manner, using

stochastic gradients θ �→ ∇θEz∼D[Lθ] evaluations, and returning some θT after a finite time T .
The optimization landscape of neural networks is notoriously not convex, often non-smooth

(e.g because of ReLU), and stochastic because of the mini-batchs, therefore it is expected that an
algorithm A running for a finite amount of time to fail to return the true global optimum. But even
though the algorithm could find a global optimum, there are no reasons for it to be unique. Indeed,
for a finite dataset D, without regularization on model’s weights, the predictions of the model on D
are determined by argmin, but outside of it, on the whole domain Rm, where there are typically
multiple behaviors possible. Some of the empirical minimizers will generalize, and some others, not
so much. So, even if A could find a global minimum (and there are many of these), it needs to find
one of the “good ones”, i.e. one that generalizes well.

Therefore, the role of the optimizer in learning has provoked an important number of works,
among which the study of the “double-descent” phenomenon (Zhang et al., 2021b; Belkin et al., 2019;
d’Ascoli et al., 2020; Nakkiran et al., 2021). For example see Schaeffer et al. (2023) and references
therein.

The definition of neural network is ever-changing as new architectures are created over the years.
The frontier between what is considered as preprocessing, what is considered a layer, and what is
considered as part of the loss becomes more and more blurry with the appearance of “optimization
layers” (see chapter 3 for a short introduction), or with the new data augmentations like mixup (Zhang
et al., 2017). While the prototype of the optimizer is “vanilla” Stochastic Gradient Descent, now
it is frequent to incorporate momentums (with and without Nesterov (Nesterov, 1983) correction),
gradient rescalings, gradient clipping, adaptive learning rates, etc. which makes the characterization
of the optimizer extremely tedious.

It is common for theorists to create precise concepts (like in definition 1) because it allows
reasoning, but it may also fail to faithfully capture the dynamics at play. For example, most theorists
will assume that computations are done on R, whereas it is done in the field F of representable
numbers in floating arithmetic. The most frequent precision used is float32 due to typical GPU
requirements, but recent interest in frugality or training cost sparked interest for float16, and even
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sometimes lower precision. While numerical inaccuracies seem like a trivial matter, they play an
important role as a regularizer, as explored in chapter 4.

Takeaways

It is more useful to think about Deep learning as a paradigm in which to think about problems
and solutions, than a specific technology. The details are ever-changing at time of writing,
but in modern deep learning the following principles remain:

1. Parametric approximation of functions, typically organized into layers, but typically
not convex nor smooth. The architecture of the approximator captures some (partial)
invariance of the data, like invariance under translation for convolutional layers for
example.

2. The function approximator is locally linear in its parameters, hence subgradients exist.
The gradient is computed with Autodiff automatically.

3. The optimization is stochastic: only a subset of samples is used at each step.
4. Capacity to handle huge amounts of data in high dimensions, including with label noise

or corrupted data. Capacity to handle data augmentations. This implies to rely on
algorithms whose runtime is linear in the size of the train set.

5. Can leverage parallelism, especially the one offered by GPU, in low-precision arithmetic
(like matrix-vector products).

Each of those items brings its implicit regularization through randomness, constraints, opti-
mization landscape, etc. Each of those five contributes to the generalization capabilities and
efficiency of the method on real-world tasks. Every algorithm that falls within those principles
may be argued to belong to the “deep learning” paradigm. In particular, this does required to
use neural networks: ODE (Chen et al., 2018), Fixed point computations (El Ghaoui et al.,
2021), or other arbitrary computations graphs (Weber et al., 2019). This view is summarized
in Figure 1.1.

The thesis will focus on 1. Architectural constraints, and 2. Autodifferentiation. More
specifically, we will study how to incorporate Lipschitz constraint in Deep learning pipeline in
chapters 2,4,5,6 and convexity constraints in chapter 7. Implementing these constraints require
looking at the computation graph and ensuring that every constraint is compatible with automatic
differentiation. This is studied in chapters 3,7 and 6.

1.2 Notations and tools

Most of the tools of the thesis will be introduced on the fly in the chapters that need it. However,
some of these are relevant to the whole thesis and deserve to be introduced here.

Definition 2 (Lipschitz constant). The function f : Rm → Rn is said �-Lipschitz for l2 norm if for
every x, y ∈ Rm we have:

‖f(x)− f(y)‖2 ≤ �‖x− y‖2. (1.3)

Per Rademacher’s theorem (Simon et al., 1983), its gradient is bounded: ‖∇f‖ ≤ �. Reciprocally,
continuous functions gradient bounded by � are �-Lipschitz.

Another tool that will come handy is related to the convexity of a function.
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Definition 3 (Convex function). The function f : Rm → R is said to be convex if and only if for all
x, y ∈ Rm, for all λ ∈ [0, 1], the following inequality holds:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y). (1.4)

Furthermore, if f is differentiable, then its gradient ∇xf is cyclically monotone (Peyré et al., 2017).
Finally, if f is twice-differentiable its Hessian Hxf is a positive semidefinite matrix.

In the following, the notation ‖ · ‖2 will denote the common Euclidean norm for vectors, i.e.:

‖x‖2 =
√∑

i

x2i , (1.5)

whereas for linear operators x �→ Wx it will denote the spectral norm:

‖W‖2 = max
‖x‖2≤1

‖Wx‖2 = σmax, (1.6)

where σmax is the largest singular value in the SDV of W .

Warning 1.2. Vector or matrix?

The difference between vectors and operators is not tied up to the “shape” of the object, but
rather dependant on the context. For example, a black-and-white image is a 2D matrix but it
should be considered a vector. Linear operators acting on RGB images are technically 6D
tensors, but it is more useful to think about them as 2D matrices acting on flattened images.

1.2.1 Optimal transport

Some of the results of this thesis are tightly linked to optimal transport. We give below the definition
of Wasserstein-p distance, as found in Villani (2008) (Definition 6.1).

Definition 4 (Wasserstein-p distance). Let d : Rm ×Rm → R be a metric. For any two measures P
and Q on Rm the Wasserstein-1 distance is defined by the following optimization problem:

Wp
p (P,Q) := inf

π∈Π(P,Q)

∫
Rm

(d(x, y))pdπ(x, y) (1.7)

where Π(P,Q) denote the set of measures on Rm × Rm whose marginals are P and Q respectively.
Equivalently we can write:

W1(P,Q) := inf
Law(X)=P
Law(Y )=Q

E[d(X,Y )]. (1.8)

The right hand side of 1.7 corresponds to a Kantorovich problem. It is often presented as a
relaxation of the Monge problem:

inf
T#P=Q

∫
Rm

d(x, T (x))dp(x). (1.9)

In this context, the (optimal) T : Rm → Rm is called the (optimal) Monge map. For arbitrary
measures, the two problems are different. The Kantorovich problem always admits a solution. This
is not the case with the Monge problem. For example, for discrete measures with supports of size
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|P | < |Q|, it is impossible to fulfill the pushforward condition T#P = Q since |T#P | ≤ |P | ≤ |Q|.
Nonetheless, when both P and Q admit a density (w.r.t Lebesgue measure) then the two problems
happen to be equivalent. In this case, the Monge problem corresponds to a deterministic coupling
π(x, ·) = δT (x).

By Remark 6.3 of Villani (2008) the Wasserstein-1 distance is the Kantorovich-Rubinstein
distance:

W1(P,Q) = sup
f∈Lip1(X ,R)

Ex∼P [f(x)]− Ez∼Q[f(z)]. (1.10)

In our case we are working with neural networks that are Lipschitz w.r.t. l2 distance, so we have
d(x, y) := ‖x− y‖2. This chapter is one of the first motivations for the design of Lipschitz networks,
and a strong inspiration for most of the work throughout the thesis, notably chapters 456.

Dual formulations of optimal transport

We can also mention a useful duality result related to Wasserstein-2 distance (see Peyré et al. (2017)
or Korotin et al. (2021) for example):

W2
2 (P,Q) = sup

f∈Convex(X ,R)
Ex∼P [f(x)] + Ez∼Q[f

c(z)], (1.11)

where f c is the c-transform defined as:

f c(x) := min
y
c(x, y)− f(y) (1.12)

for c(x, y) = ‖x − y‖. This result will not be used as-is, but it shows the connections between
optimization over convex functions on one side and optimal transport on the other side. This is
explored further in chapter 7.

1.2.2 Losses

We detail below the losses (and activations) that will be used in this work.

The Binary Cross-Entropy (BCE) loss (also called log loss) is among the most popular choices
of loss within the deep learning community. Let f : Rn → R be a neural network. For an example
x ∈ Rn with label y ∈ Y , and σ(x) = 1

1+exp (−x) the logistic function mapping logits to probabilities,

the BCE is written Lbce
τ (f(x), y) = − log σ(yτf(x)), with (inverse) temperature 1 scaling parameter

τ > 0. This hyper-parameter of the loss defaults to τ = 1 in most frameworks such as Tensorflow or
Pytorch. Note that Lbce

τ (f(x), y) = Lbce
1 (τf(x), y) so we can equivalently tune τ or the Lipschitz

constant L. We show in Chapter 4 that for LipNet1 the temperature τ allow to control the
generalization gap.

The Hinge loss LH
m(f(x), y) = max (0,m− yf(x)) with margin m > 0 is also of particular

interest.
1The name “temperature” finds its roots in statistical physics, notably a link with Shannon entropy, which is itself

linked with the conventional thermodynamics’s entropy, as we will see later.
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1.3 Motivations and open problems

In this thesis, we focus mainly on Lipschitz constraints. We also briefly explore the convexity
constraints in chapter 7. The motivation behind constraining and studying the Lipschitz constant of
neural networks is two-fold. First, we are looking to strive for a better understanding of learning
dynamics in neural networks. Secondly, we are interested in learning with guarantees: robustness,
privacy, or fairness. The societal implications of these topics are largely discussed in surveys such
as Akhtar and Mian (2018), Liu et al. (2020) and Mehrabi et al. (2021). Their content will not be
detailed here.

A literature review on Lipschitz constraints in neural networks reveals their usage can be roughly
sorted under four main categories:

1. Robustness against adversarial attack. Historically one of the first motivations for their
study. The link between robustness against adversarial attacks and Lipschitz constant is as
old as the field of adversarial robustness itself (Szegedy et al., 2014).

2. Lipschitz constraints for optimal transport. The link between Lipschitz constraints and
optimal transport is straightforward through the Kantorovich-Rubinstein duality and was the
origin of Wasserstein Adversarial Neural Networks Arjovsky et al. (2017)2

3. To obtain generalization guarantees. In this context the Lipschitz hypothesis appears as
a vessel for different quantities related to the model’s complexity, which frequently appears
in generalization results. The Lipschitz constant of hypothesis class frequently appears in
theorems, either directly or through related complexity measures.

4. Stability of the training. In various applications, the Lipschitz (or sometimes the even
stronger orthogonality condition) appears as a natural solution to overcome instabilities in
training, divergence, or other unwanted behaviors.

All those topics are (distantly) related:
• 3 ↔ 4: stabilizing the training procedure yields algorithms that are more algorithmically

stable Bousquet and Elisseeff (2002), which in known to yield generalization guarantees.
• 1 ↔ 3, 4: the instabilities that arise during the training of neural networks typically come for

their high expressiveness. On some ill-formed losses, divergence of the training procedure can
be observed. Robustness against adversarial attacks is arguably a form of regularization that
may mitigate these phenomena.

• 1 ↔ 2: a first attempt at drawing a link between those two field is made in chapter 4.

1.3.1 Certifiable robustness

LipNet1 networks provide robustness radius certificates against adversarial attacks (Tsuzuku et al.,
2018). There is no need for adversarial training (Madry et al., 2018) that fails to produce guarantees,
or for randomized smoothing (Cohen et al., 2019) which is costly.

Confusingly, any network of AllNet has a finite Lipschitz constant (since weights are bounded),
but computing it is NP-hard (Scaman and Virmaux, 2018). Only a loose upper bound can be
cheaply estimated: Lip(f) ≤ Lip(σ)dΠd

i=1‖Wi‖2 using the property that Lip(fd ◦ fd−1 ◦ . . . ◦ f1) ≤
Πd

i=1Lip(fi). In practice, this bound is often too high to provide meaningful certificates and besides,
AllNet networks are known to have a very small robustness radius (Szegedy et al., 2014).

Definition 5 (Adversarial Attack). For any classifier c : X → Y, any x ∈ Rn, consider the following

2Interestingly, Goodfellow was looking for defense against adversarial attacks when he discovered the first GAN Good-
fellow et al. (2014), a remarkable example of serendipity.
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optimization problem:
ε = inf

δ∈Rn
‖δ‖ such that c(x+ δ) �= c(x). (1.13)

δ is an adversarial attack, x+ δ is an adversarial example, and ε is the robustness radius of c in x.
The smallest ‖δ‖ achievable by x ∈ X is the minimum robustness radius of c.

Lipschitz constraints yield robustness certificates against adversarial attacks.

Property 1 (Local Robustness Certificates (Tsuzuku et al., 2018)). For any f ∈ LipL(X ,R) the
robustness radius ε of binary classifier sign ◦ f at example x verifies Lε ≥ |f(x)|.

Property 1 can be extended to the multiclass case, with the use of multiclass margins.

Property 2 (Multiclass Local Robustness Certificates). For any f ∈ LipL(X ,RK) the robustness
radius ε of classifier k̂ := argmaxk fk(x) verifies

√
2Lε ≥ (fk̂(x)− argmaxi �=k̂ fi(x)).

Note that these definitions of adversarial attack do not take into account the true label: it
focuses on the robustness of the decision, irrespective of the ground truth label. For practical
applications, however, it is common to consider that the robustness radius of a misclassified example
is zero: this way, the certified accuracy never exceeds the clean accuracy.

Computing these certificates is straightforward and does not increase runtime, contrary to
methods based on bounding boxes or abstract interpretation (see section 2.1). Controlling the
Lipschitz may even benefit robustness certificates based on randomized smoothing (Delattre et al.,
2023a).

In Hu et al. (2023a) the authors propose a comprehensive framework to design �-Lipschitz
networks, leveraging both real and generated data to improve the generalization and the certificates.
In Hu et al. (2023b) let the Lipschitz constant of individual layers evolve freely, but they rely on
the product bound to produce certificates. The case of certification against l∞-attacks is handled
by Zhang et al. (2021a) and Zhang et al. (2022). The link between Lipschitz constant, dimension
of parameter space and robustness is estavblished in Bubeck and Sellke (2021). Finally, the recent
work of Mangal et al. (2023) and Leino (2023) explores the limits of Lipschitz-based certificates.

1.3.2 Optimal transport and generative models

Lipschitz constraints arise in the context of optimal transport (Arjovsky et al., 2017). The optimal
transportation plan G is used as a generative model by minimizing W1(G#P,Q). In Gulrajani et al.
(2017), authors show that the potential f of the Kantorovich-Rubinstein dual transport problem
verifies ‖∇xf(x)‖ = 1 almost everywhere on the support of the distributions PXY . In Tanielian and
Biau (2021) the benefit of GroupSort for WGAN training is studied. The convergence rate of WGAN
discriminators for Wasserstein-distance approximation is also studied in Gao et al. (2023). We
illustrate an optimal transportation plan between two moons for Euclidean cost in Figure 1.2, based
on 1-Lipschitz neural networks. Optimal transport itself can be used for classification (Serrurier
et al., 2021) or XAI (Serrurier et al., 2023). In this context, 1-Lipschitz neural networks trained with
the appropriate loss are shown to produce more interpretable gradients than conventional networks
(see figure 1.3). More recently, high-quality embeddings from DreamSim (Fu et al., 2023) have been
distilled into 1-Lipschitz backbones (Ghazanfari et al., 2023) to produce robust perceptual similarity
metrics.

Among possible applications of optimal transport based on Lipschitz networks, we can mention
cell counting Ding et al. (2023). We can also mention Coiffier et al. (2020) for the applications of
WGAN in 3D modeling of geological layers.
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Figure 1.3: 1-Lipschitz neural networks trained with optimal transport losses are aligned
with Human attention (Serrurier et al., 2023). This figure is a courtesy of Mathieu Serrurier.
The study shows that the Saliency Map of the 1-Lipschitz neural network (named OTNN here) is
highly aligned with human attention on the ClickMe dataset (Linsley et al., 2017).

1.3.3 Generalization guarantees

In the seminal work of von Luxburg and Bousquet (2004) a link is established between Lipschitz
classifiers and linear large-margin classifiers. Generalization bounds for a large class of Lipschitz
classifiers are provided by the work of Gottlieb et al. (2014) using Vapnik–Chervonenkis theory. Other
generalization bounds related to spectral normalization can be found in Bartlett et al. (2017). Links
between adversarial robustness, large margins classifiers and optimization bias are studied in Faghri
et al. (2021); Finlay et al. (2018); Jiang et al. (2019). The importance of the loss in adversarial
robustness is studied in Pang et al. (2019). In Tsuzuku et al. (2018), the control of Lipschitz constant
and margins are used to guarantee robustness against attacks. A link between classification and
optimal transport is established in Serrurier et al. (2021) by considering a hinge regularized version
of the Kantorovich-Rubinstein dual objective. Note that the PAC-Bayes theory (Shawe-Taylor and
Williamson, 1997) can also be applied to the question of adversarial robustness (Viallard et al., 2021).
The Dirichlet energy is a distantly (but related) measure of complexity, that shares similarities with
the Lipschitz constant, and was shown to correlate with better generalization (Dherin et al., 2022).

1.3.4 Lipschitz and orthogonality constraints for stability

In Zhang et al. (2018b) the use of Householder reflectors is discussed to solve the vanishing gradient
issues that arise in the training of Recurrent Neural Networks. Orthogonal kernels are also of special
interest in the context of normalizing flows (Hasenclever et al., 2017). Orthogonalization methods
have been used on the output of base classifiers (Mashhadi et al., 2021) for ensemble methods.
Lipschitz constraints are used in reinforcement learning to stabilize the policy, notably on continuous
control tasks (Song et al., 2023), or to avoid catastrophic divergence of the optimizer (Gogianu
et al., 2021). In the context of graph neural networks, Dasoulas et al. (2021) proposed to remove the
exploding gradient phenomenon arising in the graph attention layer, using matrix norm constraints.
They have also been used for fairness purposes (Jia and Zhang, 2023). Finally, we can mention
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all the work in Gupta (2023) and its companion articles such as Gupta et al. (2022a,b), where the
Lipschitz constant of a network is optimized and adjusted online. Lipschitz constraint have also
shown promises for continual learning in the work of Bonicelli et al. (2022).

1.4 Contributions of this thesis

This thesis focuses largely on two topics: architectural constraints in deep learning, and more specifi-
cally Lipschitz constraints, and the use of back-propagation to train these constrained architectures.
The short-term objective of studying Lipschitz constraints in learning amounts to their traditional
applications such as robustness certification against adversarial attacks, or differentially private
learning. But another longer-term is to strive better understanding of deep learning in general, and
Lipschitz constraints appear as a natural lens to do so.

1.4.1 Research contributions

The contributions of the thesis are twofold: one part is dedicated to Lipschitz constraints in learning
with some applications, while the second part explores the possibilities offered by the paradigm of
differentiable programming.

The main part of the manuscript focuses on Lipschitz constraints and their applications.
Chapter 2 is a brief literature review on the topic of Lipschitz networks, covering their

parametrizations. It also covers the topic of “orthogonal layers”, which are not only 1-Lipschitz but
also fulfill the Eikonal equation ‖∇xf(x)‖ = 1 almost everywhere.

Chapter 3 showcase different applications of the implicit function theorem to compute derivatives
of optimization problems in various contexts, like Non-Negative Matrix Factorization, or the projection
onto the Stiefel manifold for the parametrization of orthogonal layers.

Chapter 4 asks the question of the expressiveness of the 1-Lipschitz function class for classification
purposes. It derives the theoretical guarantees that Lipschitz constraints can bring to classification
tasks, including robustness, and generalization. An opening to calibration in the presence of a
distribution shift is discussed.

Chapter 5 explores the application of these constraints to the parametrization of signed distance
functions, which allows applications in robust one-class learning, anomaly detection, and implicit
surface parametrization. The links with Energy Based Models (EBM) are discussed.

Chapter 6 proposes to use Lipschitz networks in the context of differential privacy: it is based
on a variation of the backpropagation algorithm, to automatically derive bounds.

Chapter 7 presents an attempt at using Lipschitz and convexity constraints for Wasserstein-2
distance estimation, with applications to counterfactual fairness or multivariate quantiles with the
center outward map. Finally, a fully neural multivariate quantile regression algorithm is discussed.

Finally, the conclusion in chapter 8 is intended as a research statement of possible future work,
and broadens the topic of Lipschitz networks by drawing links with existing tools.

Appendix C shows how automatic differentiation can be used to optimize the hyper-parameters
of a Gaussian process on distribution, by backpropagating through a GP likelihood and Sinkhorn
algorithm.
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1.4.2 Software contributions

During an internship in Google Brain, I contributed to jaxopt library3, a Jax library for differentiable
optimization. It relies on implicit differentiation to compute the derivative of the solution of an
optimization problem w.r.t parameters of the problem. In particular, I implemented the following
tools:

• Anderson acceleration for fixed point solving (Walker and Ni, 2011), with applications to
Deep Equilibrium models (Bai et al., 2019), or to speed up solvers, since the optimum of an
optimization problem is often the fixed point of the optimization algorithm itself.

• SGD with Armijo line search as described in Vaswani et al. (2019).
• OSQP solver: a general framework to solve convex quadratic programs with linear inequality

constraints, where every linear operator can be formulated implicitly. It includes most of the
features of the original’s OSQP solver in GPU version (Schubiger et al., 2020).

More details on this framework are given in section 3.1.

1.4.3 Statement of authorship

The unpublished contributions to the thesis are exclusively my work. Some chapters are largely
taken from published articles, for which I detail below the contributions.

Chapter 3. My contribution was the design and the implementation of a differentiable NMF in
the following paper:

Thomas Fel, Agustin Picard, Louis Béthune, Thibaut Boissin, David Vigouroux, Julien Colin,
Rémi Cadène, Thomas Serre, CRAFT: Concept Recursive Activation FacTorization for
Explainability, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2023

The other contributions are unpublished work.

Chapter 4. Most parts of this chapter have been published in:
L. Béthune, T. Boissin, M. Serrurier, F. Mamalet, C. Friedrich, and A. G. Sanz. Pay attention

to your loss : understanding misconceptions about Lipschitz neural networks., Advances
in Neural Information Processing Systems (NeurIPS), 2022.

The theoretical results are my own work, while the experimental results are joint work with
Thibaut Boissin. Mathieu, Franck, Corentin, and Alberto played an important role in the discussion,
writing, and proofreading.

Chapter 5. Most parts of this chapter have been published in:
Louis Béthune, Paul Novello, Thibaut Boissin, Guillaume Coiffier, Mathieu Serrurier, Quentin

Vincenot, Andres Troya Galvis, Robust One-Class Classification with signed distance function
using 1-Lipschitz neural networks, International Conference on Machine Learning (ICML),
2023.

The theoretical results and the code are my work. The experimental results on concurrent
baselines can be attributed to Paul and Guillaume. The original algorithm stems from the ideas of
Mathieu. Quentin and Andres also took part in discussions of the early work.

3Distributed under Apache V2 license.
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Chapter 6. The whole chapter have been published at:
Louis Béthune, Thomas Masséna, Thibaut Boissin, Yannick Prudent, Corentin Friedrich, Franck

Mamalet, Aurelien Bellet, Mathieu Serrurier, David Vigouroux, DP-SGD Without Clipping: the
Lipschitz neural network way, International Conference on Learning Representations (ICLR),
2024.

The original ideas stem from a discussion between Aurelien and me. I supervised Thomas
Massena as an intern, who played an important role in both theoretical and experimental results.
Thibaut contributed to the code of the library, while Corentin and Yannick contributed to run some
experiments. All authors were deeply involved in discussions, proofreading, or figure design.

Chapter 7. Parts of the work of this chapter come from the preprint:
González-Sanz, A., De Lara, L., Béthune, L. and Loubes, J.M.. GAN estimation of Lipschitz

optimal transport maps, 2022.
This chapter also presents some unpublished results related to Wasserstein-2 W2 distance and on

the parametrization of convex functions and their gradient.

Appendix C. Some parts of this chapter have been published in the following papers, on which I
coded and designed all the experiments. The theoretical work must be attributed to my co-authors.

François Bachoc, Louis Béthune, Alberto Gonzalez-Sanz, Jean-Michel Loubes, Gaussian Pro-
cesses on Distributions based on regularized optimal transport, Artificial Intelligence and
Statistics Conference (AISTATS), 2023

François Bachoc, Louis Béthune, Alberto Gonzalez-Sanz, Jean-Michel Loubes, Improved learn-
ing theory for kernel distribution regression with two-stage sampling, arxiv preprint, 2023

Finally, other contributions to the field are part of collaborations that are beyond the scope of
this manuscript, and will not be presented here. Here is the list:

Thomas, FEL, Boutin, V., Moayeri, M., Cadene, R., Béthune, L., Andéol, L., Chalvidal, M. and
Serre, T., 2023, November. A Holistic Approach to Unifying Automatic Concept Extraction
and Concept Importance Estimation. In Thirty-seventh Conference on Neural Information
Processing Systems (NeurIPS), 2023.

Serrurier, M., Mamalet, F., Fel, T., Béthune, L. and Boissin, T.. On the explainable
properties of 1-Lipschitz Neural Networks: An Optimal Transport Perspective. In
Thirty-seventh Conference on Neural Information Processing Systems (NeurIPS), 2023.

Mullor, T., Vigouroux, D. and Bethune, L.. Efficient circuit implementation for coined
quantum walks on binary trees and application to reinforcement learning. In 2022
IEEE/ACM 7th Symposium on Edge Computing (SEC) (pp. 436-443). IEEE. 2022.
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Chapter 2

Lipschitz and orthogonal constraints in

deep learning

In this chapter, we examine the existing literature regarding the parametrization of Lipschitz neural
networks, and in particular orthogonal neural networks.

Contents

2.1 Lipschitz constant estimation . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 Empirical methods for lower bounds . . . . . . . . . . . . . . . . . . . . . . 16

2.1.2 Formal methods for upper bounds . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Parametrizations of Lipschitz networks . . . . . . . . . . . . . . . . . . . 17

2.2.1 Universal approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Regularization and penalties . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.3 Constraints and clipping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.4 An emerging approach: direct parametrizations . . . . . . . . . . . . . . . . 19

2.3 Gradient Norm Preserving (“Eikonal”) networks . . . . . . . . . . . . . . 20

2.3.1 Orthogonal layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2 Optimization over the Stiefel manifold . . . . . . . . . . . . . . . . . . . . . 21

2.3.3 Orthogonal convolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.1 Practical considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.2 Frameworks in the wild . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

First, we define Lipschitz constrained neural networks.

Definition 6 (Lipschitz constrained feed-forward neural network). The space of feedforward neural
network of depth D, with input space X ⊂ Rn, output space Y ⊂ RK (e.g logits), and parameter
space Θ ⊂ Rp, is a parameterized function f : Θ×X → Y defined by the sequential composition of
layers f1 . . . fD:

f(θ, x) := (fD(θD) ◦ . . . ◦ f2(θ2) ◦ f1(θ1)) (x). (2.1)

The parameters of the layers are denoted by θ = (θd)1≤d≤D ∈ Θ. For affine layers, it corresponds to
bias and weight matrix θd = (Wd, bd). For activation functions, there are no parameters: θd = ∅.
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The space of Lipschitz-constrained neural networks is a subset of the space of feedforward networks,
with the additional constraint that each layer

xd �→ fd(θd, xd) := yd

is �d-Lipschitz for all θd. Consequently, the function x �→ f(θ, x) is �-Lipschitz with

� ≤ �1 × . . .× �D

for all θ ∈ Θ.

In the following, LipNet1 will denote the class of Lipschitz-constrained networks with constant
� = 1. For simplicity, all the networks in this manuscript are considered �-Lipschitz with respect to
‖ · ‖2 norm.

Remark 2.1. Lipschitzness w.r.t the inputs

Note that in this context the Lipschitz constraint is understood w.r.t to the input of the neural
network, not w.r.t the parameters. Typically, Lipschitzness w.r.t the input is insufficient to
ensure Lipschitzness w.r.t the parameters, even for linear models. However, under suitable
assumptions on the input and the activations, the Lipschitz constant w.r.t parameters can
also be bounded. This is explored in chapter 6.

2.1 Lipschitz constant estimation

The estimation of the Lipschitz constant is a hard task, known to be NP-hard since the seminal
work of Scaman and Virmaux (2018). Therefore, on any neural network of meaningful size, one
must resort to algorithms with imperfect estimations, or prohibitively high computation times. In
the context of certification against adversarial attacks, the imperfect estimation must be an upper
bound and not a lower bound.

2.1.1 Empirical methods for lower bounds

The most straightforward method is to evaluate the Lipschitz constant empirically. Those methods
are empirical because they are obtained from a measure on some finite set S ⊂ Rm. There are
several proxies of interest such as:

• the maximum of ‖∇xf(x)‖2 over S.
• the maximum of ‖f(x)−f(y)‖2

‖x−y‖2 for all pairs x, y ∈ S such that x �= y.

• the maximum of ‖f(x)−f(x+δ)‖2
‖δ‖2 for x ∈ S, with δ an adversarial attack returned by any attack

method (preferably w.r.t l2 norm).
Since the true Lipschitz constant � is defined as a supremum over the whole domain Rd, any

method that uses a proxy over a subset S ⊂ Rm yields a lower bound. This is not suitable for
certification purposes but might be enough to give insights on training or generalization. We refer to
the recent work of Khromov and Singh (2023).

Remark 2.2. Dirichlet energy

Some of these quantities are known under other names in literature, like “Dirichlet en-
ergy” (Dherin et al., 2022) for the average of ‖∇xf(x)‖2. Therefore, the Lipschitz constant
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can be seen as (yet!) another proxy to evaluate quantities of interest like generalization.

2.1.2 Formal methods for upper bounds

Certifications methods against adversarial attacks can be used to estimate Lipschitz bounds which
motivates the (brief) survey of the section.

Virmaux and Scaman (2018) introduce the AutoLip algorithm, which compute Lipschitz bounds
of a whole network by backpropagating bounds of each layer, based on the observations that if each
fd is �d-Lipschitz then their composition fd ◦ . . . f1 is �d × . . . × �1-Lipschitz. We study a natural
extension of their framework in chapter 6.

Libraries like Decomon (Airbus, 2023) or auto-LiRPA (Xu et al., 2020) provide tighter bounds
for Xd via linear relaxations (Singh et al., 2019; Zhang et al., 2018a). Note that some of these
methods are restricted to the computation of a local Lipschitz constant.

In Weng et al. (2018a) the authors propose an efficient method for ReLU networks by forward
propagation of polyhedrons. There exist methods based on exactness verification (Ebihara et al.,
2023). We can also mention the tools from extreme value theory (Weng et al., 2018b).

In convex relaxations, the initial problem is relaxed into a form amenable to convex optimization,
which guarantees that the optimum can be found efficiently. Depending on the quality of the
relaxation, the bounds may be more or less tight, and the solution will be found more or less quickly.
A striking example of this approach is the LipSDP framework introduced in Fazlyab et al. (2019),
later improved by Wang et al. (2022b). Note that this framework is very expressive and can handle
a lot of activations functions, like GroupSort, as detailed in Pauli et al. (2023). We can also mention
LiPopt (Latorre et al., 2019) among other candidates for certification methods.

2.2 Parametrizations of Lipschitz networks

This thesis does not address the parametrization of Lipschitz networks: instead, the study focuses
on the class of Lipschitz functions as a whole. However, for practical implementation, we detail in
this section the major contributions of the field related to the parametrization of Lipschitz functions.
The reader in a hurry can just read section 2.2.1 and skip the rest.

2.2.1 Universal approximation

In practice, this is enforced by using activations with Lipschitz constant ld, and by applying
a constraint Π : Rp → Θ on the weights of affine layers. This corresponds to spectrally nor-
malized matrices (Yoshida and Miyato, 2017; Bartlett et al., 2017), since for affine layers we
have ld = ‖Wd‖2 := max

‖x‖2≤1
‖Wdx‖2 hence Θ = {Wd, ‖Wd‖ ≤ lq}. Note that ‖Wd‖2 denotes the

spectral norm, while ‖x‖ and ‖Wdx‖2 are (vector) euclidean norm. The parametrization of Lipschitz
networks is detailed in the next section.

The seminal work of Anil et al. (2019) proved that universal approximation in the set of l-Lipschitz
functions was achievable with certain constraints on the weights, and with the GroupSort activation
function. GroupSort activation has the specificity to operate on pairs of consecutive neurons - it
is not an elementwise activation, which contrasts with other common activation functions. It is
defined as follow for all coordinates i:

GroupSort2(x)2i,2i+1 = [min (x2i, x2i+1),max (x2i, x2i+1)]. (2.2)
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The theorem of Anil et al. (2019) bounds the “two-to-infinity” norm (Cape et al., 2019) of the first
layer, noted ‖ · ‖2→∞, and the ‖ · ‖∞ norms of further layers to obtain universal approximation in
Lip1(X ,R). These networks are 1-Lipschitz by construction.

Remark 2.3. Universal Approximation in the space of L-Lipschitz functions

LipNet1 networks also benefit from an universal approximation theorem in Lip1(X ,R) with
respect to uniform convergence Anil et al. (2019). Note that

LipL(X ,RK) = {Lf | f ∈ Lip1(X ,RK)} (2.3)

so LipNet1 can be used to approximate functions in LipL(X ,RK).

In practice, authors of Anil et al. (2019) reported that bounding spectral norm ‖·‖2 and enforcing
orthogonality of rows/columns of weight matrices (i.e W T

i W = I) yielded the best empirical results
because it turned the network into a Gradient Norm Preserving network. Orthogonal networks
benefit from their own field of research, as detailed in Section 2.3.

Most activation functions are Lipschitz, the popular including ReLU, sigmoid, tanh, softplus,
etc. Self-Attention is not Lipschitz (Kim et al., 2021), but solutions have been proposed in Xu
et al. (2022a) and Qi et al. (2022). In Zhai et al. (2023) the update of the spectral norm and of the
weight itself are decoupled. Lipschitz recurrent units have been proposed in Helfrich et al. (2018)
and Erichson et al. (2021).

While there exist numerous approaches for the parametrization of Lipschitz networks, they
mainly rely on optimization over matrix manifolds (Absil et al., 2009). For example, we can mention
differentiable re-parametrization (aka “trivialization”) like Miyato et al. (2018); Anil et al. (2019),
direct parametrization (Meunier et al., 2022b; Wang and Manchester, 2023), or projections (Arjovsky
et al., 2017). We highlight below two notable strategies:

1. In differentiable reparametrization Π : Rp → Θ where θ̃ = Π(θ): the weights θ̃ are used
during the forward pass, but the gradients are back-propagated to θ through Π. This turns the
training into an unconstrained optimization problem on the landscape of the loss L ◦ f ◦Π.

2. With a suitable projection operator Π : Rp → Θ: this is the celebrated Projected Gradient
Descent (PGD) algorithm (Bubeck et al., 2015) applied on the landscape of the loss L ◦ f .

2.2.2 Regularization and penalties

Regularization approaches in general do not give formal guarantees, only a very crude upper bound.
Indeed, the optimizer strives for a balance with the objective and the regularization, and in some
circumstances the local Lipschitz constant may blow up.

The Lipschitz constant of affine layers can be constrained with a Gradient penalty (Gulrajani
et al., 2017), a regularization term taking the form (1− ‖∇xf‖2 − 2)2. It has the disadvantage of
requiring nested differentiation of f : once with w.r.t x, and another one with w.r.t θ. This can be
costly. This technique is also used in Zhou et al. (2019) for Lipschitz GAN.

Spectral regularization (Yoshida and Miyato, 2017) operates on the weights themselves, unlike
gradient penalty which operates on the whole network. Among concurrent approaches based on
regularization we can also mention Cisse et al. (2017) or Gouk et al. (2021).
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2.2.3 Constraints and clipping

In the seminal Wasserstein-GAN article (Arjovsky et al., 2017) the authors propose the “weight
clipping” operation, which consists in projecting each coefficient Wij onto the [−c,+c] interval.
Another related strategy is the “Frobenius normalization” (Salimans and Kingma, 2016), i.e. the
projection W �→ W

‖W‖F , or the spectral normalization (Miyato et al., 2018) with W �→ W
‖W‖2 . These

approaches lead to a tighter upper bound than regularization. As all norms are equivalent in finite
dimension, all those methods are related to each other, with multiplicative constants that depend
on the size of the matrix. Naively stacking such layers may lead to vanishing gradients. Indeed,
projections and clipping ensure σmax ≤ K for some K, but the other singular values of W may
collapse to zero.

Spectral normalization requires the leading singular value, which can be computed with Power Iter-
ation1 (Mises and Pollaczek-Geiringer, 1929) or SVD decomposition (Trefethen and Bau, 2022). Note
that typical implementations of SVD decomposition are not well-behaved during back-propagation
and may suffer from numerical issues, which have been partially addressed in Wang et al. (2019a).

In some applications (like robustness certification) the estimate of the Lipschitz constant must
be an upper bound, and not a lower bound. Unfortunately, Power Iteration solves a maximization
problem: the leading singular value is estimated from below. Therefore, incomplete convergence may
yield poor estimates of the true Lipschitz constant. Moreover, on big matrices or ill-conditioned
matrices, waiting for convergence might be impracticable. This led Delattre et al. (2023b) to propose
a new method estimating the leading singular value from above. Moreover their method, like Power
Iteration, only relies on matrix-vector products so they can be applied to any (sparse) linear operator
like convolutions. This is also the direction chosen by the recent work of Ebrahimpour-Boroojeny
et al. (2023), which furthermore relies on AutoDiff to extract the matrix-vector product without
relying on the matrix.

2.2.4 An emerging approach: direct parametrizations

Another line of work was opened by the seminal works Meunier et al. (2022b) and Araujo et al. (2022).
This approach contrasts with other methods: instead of constraining each layer to be 1-Lipschitz,
a whole block of layers is made 1-Lipschitz by reasoning at the scale of a whole block. However,
universal approximation results are still lacking with this family of architectures.

Discretization of dynamical systems

Following the line of work initiated by Haber and Ruthotto (2017); Lu et al. (2018); Chen et al.
(2018), Meunier et al. (2022b) and Araujo et al. (2022) re-interpret the forward pass in a residual
network as the discretization of a continuous dynamical system. This approach allows reasoning on
the properties of the dynamical system, for which enforcing the constraints is easier. More precisely,
they show that for the dynamical system{

x0 ∈ X ,
∂xt

∂t
:= Ft(xt) := −∇xft(xt) +Atxt

(2.4)

with ft convex, and A skew-symmetric, satisfies for every x0, z0 the property ‖x0 − z0‖2 ≤ ‖xt − zt‖
holds for all t > 0. The remaining difficulty is to ensure that the properties are preserved under a

1Power Iteration will celebrate its centenary in 2029, don’t miss it.
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suitable discretization scheme. By choosing the mid-point Euler method and a clever parametrization
of the convex function ft, they show that their method ends up as:

z = x− 2

‖W‖22
W Tσ(Wx+ b), (2.5)

with σ a 1-Lipschitz activation function. Interestingly, other knowns Lipschitz layers such as Cayley
convolutions or Householder activation can be retrieved as a special case of the above framework
(see section 2.3 for more details).

Formulations based on matrix optimization problems

In Wang and Manchester (2023) the bounds on the Lipschitz constant are computed using a quadratic
program. Interestingly, this formulation allows to bound the Lipschitz constant, if the coefficients
(and structure) appearing in the quadratic program are controlled. For a clever choice of structure,
not only the Lipschitz constant of the operator is bounded, but its implementation takes the form of
a “sandwich” layer. This sandwich layer is a (highly structured) composition of other layers with
some constraints on weight matrices and activation functions.

2.3 Gradient Norm Preserving (“Eikonal”) networks

LipNet1 networks fulfilling ‖∇xf(x)‖ = 1 almost everywhere wrt any intermediate activation
x are said to be Gradient Norm Preserving (GNP), and elegantly avoids the vanishing gradients
phenomenon (Li et al., 2019a; Bansal et al., 2018). They are also present in WGAN training (Gulrajani
et al., 2017). This property is typically achieved in affine layers with orthogonal matrices, which
justify the “orthogonal neural network” terminology (Stasiak and Yatsymirskyy, 2006; Li et al.,
2019b).

Definition 7 (Gradient Norm Preserving Networks). GNP networks are 1-Lipschitz neural networks
with the additional constraint that the Jacobian of layers consists of orthogonal matrices:(

∂fd
∂xd

)T (∂fd
∂xd

)
= I. (2.6)

For example, this is achieved with GroupSort activation (Anil et al., 2019; Tanielian and Biau, 2021),
Householder activation (Mhammedi et al., 2017), and orthogonal weight matrices (Li et al., 2019a,b)
or orthogonal convolutions (see Achour et al. (2022); Singla and Feizi (2022); Xu et al. (2022b) and
references therein). Without biases these networks are also norm preserving: ‖f(θ, x)‖ = ‖x‖.

However, to this day, a universal approximation of Lipschitz function by the mean of orthogonal
networks is still lacking.

Warning 2.1. Expressiveness of orthogonal networks.

It is not clear why orthogonal matrices help in reaching maximum accuracy. Solving the
vanishing gradient phenomenon that plagues spectrally normalized matrices is an element
of response, but it does not tell the full story. The Eikonal property ‖∇xf‖2 = 1 might be
extremely severe for some applications and induces a bias. This bias is either explicit (i.e.
intrinsic limitations of this family of architectures) or implicit (i.e. bad interactions with the
stochastic optimizer). It may generalize in unexpected ways that may be, or may not be,
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aligned with “real-world data”. One heuristic argument in this direction is the following: if
one wants to parametrize a function with slope s < 1, the Eikonal network can do so by using
“triangular stairs”, defined by a “step function” S(x) = x1x≤a + (a− x)1x>a with x ∈ [0, 1]
and a = (1/2)(1 + s). This base step function S can be re-scaled as Ŝw(x) = wS(x/w) to
generate steps of width w with x ∈ [0, w]. The steps are glued together (to ensure continuity),
and by taking the limit w → w we obtain an approximation of a slope s with stairs of slope 1.
We see that the number of steps grows polynomially with 1

w . Eikonal networks are piecewise
affine, and the number of pieces typically depends on the number of neurons (and depth!).
Therefore, approximating a slope s with Eikonal network requires a lot of neurons, whereas a
single one is necessary with conventional networks.

The following section is devoted to a short literature review on orthogonal layers, that the reader
in a hurry may skip.

2.3.1 Orthogonal layers

Anil et al. (2019) establish that GNP networks with ReLU are exactly affine functions. They proposed
Sorting activation functions to circumvent the expressiveness issue. In particular, GroupSort2 revealed
to be an efficient alternative (Tanielian and Biau, 2021) to ReLU, and can be seen as a particular case
of Householder reflections (Mhammedi et al., 2017; Singla et al., 2021). Other authors tried to fix
ReLU itself (Huang et al., 2021). Note that layers like “group normalization” or “layer normalization”
are not Lipschitz (because of the division occurring). However, layer centering is 1-Lipschitz and
almost orthogonal.

Property 3. Bounded loss gradient for layer centering. Layer centering is defined as
f(x) = x− ( 1n

∑n
i=1 xi)1 where 1 is a vector full of ones and acts as a “centering” operation along

some channels (or all channels). Then the singular values of this linear operation are:

σ1 = 0, and σ2 = σ3 = . . . = σn = 1. (2.7)

In particular ‖∂f
∂x‖2 ≤ 1.

The proof is given in appendix B.
In Prach and Lampert (2022) the authors leverage certain structure on the matrix to obtain an

almost orthogonal layer, that can also be extended to convolutions.

2.3.2 Optimization over the Stiefel manifold

The literature on the topic is plethoric. It has been extensively studied in Absil et al. (2009), while
Arjovsky et al. (2016); Hyland and Rätsch (2017); Lezcano-Casado and Martınez-Rubio (2019);
Huang et al. (2018) focus on neural networks retractions like Cayley transform or the exponential
map; more recently Ablin and Peyré (2022) proposed a landing algorithm, and Kerenidis et al. (2021)
proposed an algorithm inspired by quantum computing, while Choromanski et al. (2020) proposed
an approach based on graph matching.

The set of orthogonal matrices, and its generalization the Stiefel manifold (Absil et al., 2009),
are not convex, and not even connected. This makes the optimization over these sets challenging.

In this section, W denotes the matrix of the linear operator, C ∈ N the number of input channels,
and M ∈ N the number of output channels. SO(C) denotes the special orthogonal group of matrices
of size C × C. This is a connected Lie group that consists of all the orthogonal matrices whose
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determinant is 1. O(C) denotes the orthogonal group. This is a Lie group with two connected
components, having {−1,+1} determinants. St(M,C) denotes the Stiefel manifold, defined as the
set of orthonormal M -frames in RC , i.e. the set of ordered orthonormal M -tuples of vectors in RC .

Remark 2.4. Three flavors of orthogonal transformations.

The following inclusions hold

Special
Orthogonal Group

M=C
det=+1

�
Orthogonal Group

M=C
det ∈ {−1/+ 1}

� Stiefel Manifold
M �= C

(2.8)

Because of width constraints in networks, most works attempt to optimize over the Stiefel
manifold, as the orthogonal group requires exclusively square matrices. Some methods only
work on the special orthogonal group.

One typically look for methods allowing optimization in the outermost set, the Stiefel manifold.
The dimension of Stiefel manifold is MC − 1

2C(C + 1), where we assumed M > C (see Chap 3. p26
in Absil et al. (2009)). When the matrix is square it simplifies into C(C−1)

2 , since the tangent space
of the Stiefel manifold consists of skew-symmetric matrices, whose dimension is indeed C(C−1)

2 .

Differentiable re-parametrizations (“trivializations”)

In this setting the constrained optimization problem is re-casted as an unconstrained optimization
problem with a different optimization landscape:

argmin
x∈Rp

F (Π(x)) (2.9)

where Π : x �→ K maps an arbitrary parameter vector x ∈ Rp of dimension p onto the Stiefel manifold
(or Special Orthogonal, or Orthogonal groups). Such mapping can be surjective (all orthogonal
matrices can be represented), bijective (the mapping is one-to-one), or with looser properties (i.e. a
parameterization can fail to represent all matrices, some re-parametrizations are redundant). As
noticed in Warning 1, it is not clear which property would yield a priori the best results in the
context of deep learning. See Lezcano Casado (2019) and references therein for this family of methods.
Different candidates for Π are detailed below.

Gram-Schmidt (GS) and Modified Gram-Schmidt (MGS)

These algorithms compute the QR factorization of the matrix. We are left with the orthogonal
matrix Q. MGS is notoriously more stable than GS (Greenbaum et al., 1997).

The Cayley transform and the exponential map are two related methods that relies on a bijection
between the special orthogonal group and skew-symmetric matrices, i.e. matrices A that fulfill
A+AT = 0. The projection of any matrix W onto the set of skew-symmetric matrices is given by
1
2(W −W T ): this transformation comes in handy when a skew-symmetric matrix is required.

Cayley Transform

Cayley transform is based on the mapping

Q = (I −A)(I +A)−1. (2.10)
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Algorithm 1 QR factorization by Modified Gram-Schmidt
Require: W = [wi]i∈[0,C−1] ∈ RC×C ,
Ensure: W = QR with Q ∈ O(C) and R ∈ RC×C an upper-triangular matrix
wc
i = wi, ∀i ∈ [0, C − 1] � Copy of input matrix

for j = 1 to C do
rjj = ||wc

j ||2
qj = wc

j/rjj
for k = j + 1 to C do

rjk = qTj w
c
k

wc
k = wc

k − rjkqj
end for

end for
return QR

The extension to rectangular matrices is described in Macías-Virgós et al. (2018), and corresponds to
Algorithm 2. Cayley transformation is also the Padé approximant of degree (1, 1) of the exponential
map (Lezcano-Casado and Martınez-Rubio, 2019), see below.

Algorithm 2 Computing Cayley transform
Require: W ∈ RM×C , case M > C
Ensure: Ŵ ∈ RM×C is an orthogonal matrix
U, V =W [: C, :],W [C :, :] � U ∈ RC×C , V ∈ RM−C×C

A = U − UT + V T .V � Remark: A is not skew-symmetric
Z = (I +A)−1

Ŵ1 = Z(I −A) � Ŵ1 ∈ RC×C

Ŵ2 = −2V Z � Ŵ2 ∈ RM−C×C

Ŵ = [Ŵ1, Ŵ2] � Ŵ ∈ RM×C

return Ŵ

Exponential map

If A is skew-symmetric, then

Θ = exp(A) =

∞∑
k=0

Ak

k!
is orthogonal. (2.11)

This transformation only represents the special orthogonal group SO(n). Moreover, since the
exponential map of a connected compact Lie group is always surjective, it turns out that every
orthogonal matrix with unit determinant can be written as the exponential of some skew-symmetric
matrix. Approximating the matrix exponential can be performed with various methods. Taylor
expansion and Padé approximation (Baker Jr and Gammel, 1961) are often used. Note that Taylor
expansion truncated to degree k is the Padé approximant of order (p, q) = (k, 0).
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Product of Householder matrices

According to a result of Uhlig (2001), every C × C orthogonal matrix can be decomposed into a
product of Householder matrices:

U =

C∏
i=1

Hi, with Hi = I − 2
viv

T
i

‖vi‖22
, vi ∈ RC (2.12)

where vivTi is an outer product returning a C × C matrix of rank 1, and where Hi is a Householder
matrix, which has the property of being orthogonal. This decomposition is stable under gradient
descent updates Mhammedi et al. (2017) which makes it a valid re-parametrization. This can be
seen as a special case of the QR factorization when R = I. Different strategies are available to
efficiently compute the product:

1. Naive product. Each product of Hi with Hi+1 costs O(C3). Chaining those C products
induces a O(C4) cost to form U .

2. Matrix-vector products (see Mhammedi et al. (2017)). We are usually interested
in computing the matrix-vector product Ux for some x ∈ RC . In this case the product is
rewritten Ux = H1 . . . (HC−1(HCx)). Each Hix = x− vi

vTi x

‖vi‖22
product only cost O(C) because

vTi x is an inner product between two vectors of dimension C. The total cost falls to O(C2).
Hence the parametrization is “free” in the sense that it is no more expensive than computing
Ux directly from U . Observe that U = JX(X �→ UX) so Autodiff can be used to retrieve U
from VJP (vector-jacobian products) automatically.

3. Partial parallelization. Due to its sequential nature of C products, the algorithm cannot
be efficiently parallelized on GPU. In Mathiasen et al. (2020) the authors propose a novel
algorithm, in which the overall cost remain O(C2) but with only C

b + b sequential products,
for some 1 < b < C that divides C. Theory suggests to use b =

√
C, while in practice the

optimal value is selected with a clever exhaustive search. They report a ×29 speed-up increase.
However this implementation increases the complexity of the code by a non negligible factor.

See Zhang et al. (2018b) for additionnal insights on Householder parametrization.

Differentiable Projections

This instance is a special case of differentiable re-parametrization (see section 2.3.2). In this case,
input and output spaces share the same dimension. We look for a projector Π : RM×C → St(M,C)
onto the Stiefel manifold:

K := Π(W ) = arg min
Θ∈RM×C

1

2
‖W −Θ‖2

such that ΘTΘ− I = 0.

(2.13)

Since there is multiple connected component, the projection operator cannot be continuous everywhere.
The feasible set ΘTΘ− I = 0 is not convex either. The norm ‖ · ‖ can denote either the Frobenius
norm

‖M‖2F :=
∑
ij

M2
ij =

min(m,n)∑
i=1

σ2i (M) = Tr(MTM) (2.14)

where σi is the i-th singular value of M , either the spectral norm ‖M‖22 = σmax(M). The two
formulations happen to be equivalent. Projections are also useful for Projected Gradient Descent
(PGD) algorithms. Some examples of projection algorithms are detailed below.
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Singular Value Decomposition

Let W = UΣV T be the Singular Value Decomposition (SVD) of W , with UTU = I, V TV = I and
Σ the diagonal matrix containing the singular values. Then it is well known that Θ = Π(W ) =
Π(UΣV T ) := UV T is the orthogonal projection of W onto the Stiefel manifold. The overall cost
of the SVD decomposition is typically O(MCmin(M,C)). See Trefethen and Bau (2022) for more
details.

Björck Projection

This method introduced in Björck and Bowie (1971) solves the optimization problem of equation (2.13)
with an iterative algorithm that only involves matrix products. Here we detail the first order form of
Björck algorithm. The sequence starts from Θ0 ← W

σmax(W ) and is expanded as follows:

Θt+1 ← 3

2
Θt −

1

2
ΘtΘ

T
t Θt. (2.15)

Note that this iteration corresponds to a step of the gradient descent for minimizing the loss
||ΘTΘ− I||, as detailed in section 2.3.2.

The estimation of σmax(M) can be done with the methods discussed in section 2.2.3. As explained
previously, Power Iteration tends to underestimate the true spectral norm when run for insufficient
iterations. Fortunately, according to Björck and Bowie (1971) the convergence of this first order
scheme is guaranteed as long as ‖W‖2 <

√
3, which leaves room for errors, while the convergence

of the ∞-order scheme (not implemented in practice) is guaranteed as long as ‖W‖2 ≤ 1. In
practice, we can run the algorithm until the residuals ‖I −ΘTΘ‖ fall below some threshold ε or for
a fixed number of iterations t ∈ N (hoping for the best). Note that the ΘtΘ

T
t Θt product can be

re-ordered as (ΘtΘ
T
t )Θt or Θt(Θ

T
t Θt) whether M < C or M > C. Hence each iteration induces a

O(MCmin(M,C)) cost. Such a method is also reported in Kovarik (1970).
Björck algorithm is the default method advocated in Anil et al. (2019) for the parametrization

of Lipschitz networks, and this is also the default method implemented in deel-lip library. Some
tests suggested than 15 iterations was more than enough for most use-case, including matrices of
size 256× 256 or bigger.

Orthogonalization by Newton’s Iteration (ONI)

The following method is described for M ≤ C (row orthogonality), but it can be easily extended to
the case M > C. The problem of eq. (2.13) has a closed-form solution, obtained from adapting the
SVD decomposition:

Θ =
(
WW T

)− 1
2 W. (2.16)

Solving (2.16) requires the computation of
(
WW T

)− 1
2 which can be performed using Newton’s

iteration (Huang et al., 2020). The authors called their method ONI, standing for Orthogonalization by

Newton’s Iteration. The Newton’s method can be used to compute the inverse p-th root A− 1
p ∈ RM×M

According to Bini et al. (2005), when initializing X0 ← IM , the sequence Xk defined recursively as

Xk+1 ← 1

2

(
3Xk −X3

kA
)

(2.17)

converges to A− 1
2 . Convergence is ensured if the spectral radius of A is not greater than 1. Authors

reported that running run 2 to 5 iterations of ONI was sufficient for most applications.
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Implicit differentiation of the projection.

The problem (2.13) is not convex everywhere because the feasible set ΘTΘ− I = 0 is not convex.
The Stiefel manifold has two connected components, even in the M = C case, because it contains
the matrices of determinants +1 and −1. Note that det is a continuous application, hence having
disjoint images {−1,+1} proves that there are at least two disjoint components in its pre-image.

Conjecture 1. The problem of Equation 2.13 is convex almost everywhere: the operator Π is
continuous and differentiable almost everywhere. Therefore we can apply the implicit function
theorem to compute derivatives for almost all values of W .

The application of implicit function theorem yields a simple form for the derivative ∂Π
∂W (only

requires solving a linear system with a symmetric matrix), making it amenable to fast computation.
To the best of my knowledge, this method was not explored before my work. All the details are
given in section 3.2.

Differentiation through unrolled iterations.

Björck algorithm, and power iteration, are two algorithms whose iterations are differentiable. Some
Tensorflow or Jax implementations of SVD are also differentiable (often w.r.t Σ, less often w.r.t
U,W T factors). Finally, iterations of Newton method are also differentiable, see Annex A in Huang
et al. (2020). Hence it is possible to obtain the derivative ∂Π

∂W from backpropagation to perform
gradient steps on the unconstrained matrix W directly, circumventing the problem of computing
Riemannian gradients over the Stiefel manifold. Thanks to Autodiff frameworks, the computation of
the derivative is “free” and does not require additional coding effort. The backward pass typically
costs about ×3 times the runtime of the forward pass, because of the identities (fg)′ = fg′ + f ′g
and (f ◦ g)′ = g′(f ′ ◦ g) that typically produces computation graphs three times bigger.

In Golinski et al. (2019), the authors report that the Björck algorithm may be unstable during
the computation of gradients with unrolling. The tradeoff between implicit differentiation, or back-
propagation through unrolled steps, is a hot topic that has gathered much interest in recent years,
see for example Scieur et al. (2022) and references therein.

Projected Gradient Descent

In this scheme, the differentiability of Π is irrelevant. The gradient step is performed on the
constrained matrix Θ directly and ends up outside the manifold. This algorithm is very simple and
benefits from numerous studies. However, it does not benefit straightforwardly from momentum
since the curvature of the manifold must be taken into account. Curvature-compatible algorithms
are handled by Riemannian Gradient Descent (Bonnabel, 2013) and parallel transport Alimisis et al.
(2021).

ProjUNN-D

The method introduced in Kiani et al. (2022) relies on the closed form of the projection onto the
Stiefel manifold, based on the polar transformation given in Equation 2.16. To reduce the complexity
of this projection, they propose to restrict the gradient update to a low-rank matrix Gk. The
complexity is in O(k(C2 + Ck + k2)), and the authors also discuss the numerical stability of this
projection.
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Riemannian Gradient Descent

In this setting we fall back to the original formulation:

argmin
K∈St

F (K). (2.18)

We are still relying on gradient-based optimization, but instead of using the Euclidean gradient ∇xF ,
the goal is to use the Riemannian gradient gradxf , which is a vector living in the tangent space
TSt(x) at x in manifold St. Riemannian gradient coincides with Euclidean one when the manifold M
is a vector space. We refer to Absil and Malick (2012) for more details on Riemannian optimization
on matrix manifold.

Remark 2.5. Retractions.

Retraction is a central tool in Riemannian optimization. According to Absil and Malick
(2012): “Retractions generate approximations of geodesics that are first-order accurate. A
retraction can also be viewed as providing “locally rigid” mappings from the tangent space
into the manifold ”. Most projections fulfill this definition. However, the opposite is false:
some retractions are not projections (Lezcano-Casado and Martınez-Rubio, 2019). Recently,
a “landing” algorithm Ablin and Peyré (2022) has been proposed, which get rid of the need
for retractions.

ProjUNN-T

Like projUNN-D, the projUNN-T method (Kiani et al., 2022) computes the gradient G w.r.t. the
loss. The gradient is then projected onto the tangent space of the Stiefeld Manifold with the operator
ΠTU

(X) = 1
2(X − UXTU). The initial matrix is transported or rotated in the direction of the

projected gradient, using the exponential map.

U �→ U exp (−ηUTΠTU
(X)). (2.19)

To reduce the computational complexity, authors propose to restrict the gradient update to a
low-rank matrix. The complexity is also in O(k(C2 + Ck + k2)).

Regularization for orthogonality constraint

In this approach, the constraint is loosely enforced by transformation into a regularization term
φ : Rmn → R that measures the “closeness” between the candidate W and the Stiefel manifold. We
usually chose φ(Θ) = 0 when Θ is orthogonal.

argmin
W∈Rmn

F (W ) + λφ(W ). (2.20)

See the work of Xiao and Liu (2021) for a list of penalty function useful to optimize over the
Stiefel manifold.

Parseval’s tightness

In Cisse et al. (2017) the authors propose to optimize the so-called Parseval tightness Kovačević
et al. (2008) the weight matrices:
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Φ(W ) =
1

2
‖I −W TW‖2F . (2.21)

The (matrix) derivative of Φ takes a simple form (see appendix B. from Anil et al. (2019)):

∇WΦ(W ) = −W +WW TW. (2.22)

The gradient descent with stepsize λ on the regularized objective of equation 2.21 yields:

Wt+1 ← Wt − λ(−Wt +WtW
T
t Wt) = (1 + λ)Wt − λWtW

T
t Wt.

Observe that when λ = 0.5 we recognize the first order update rule of Björck algorithm.

Parseval’s tightness with Matrix-vector products.

The aforementioned methods can suffer from a high cost for a high dimensional W . This is typically
the case for the Toeplitz matrix corresponding to a convolution (Araujo et al., 2021). Fortunately, it
is possible to adapt it in a stochastic variant that only requires matrix-vector products:

φ(W ) = Ex∼Rn [
1

2
‖x−W T (Wx)‖22]. (2.23)

This makes the method amenable to convolutions for which the operations x �→ Wx and
x �→ W Tx can be computed efficiently.

Mixing approaches

To add to the confusion, those approaches are not necessarily mutually exclusive and it is possible
to combine regularization (see section 2.3.2 with projected gradient steps (see section 2.3.2), or
Riemannian gradient steps 2.3.2. It is also possible to combine differentiable projections (see
section 2.3.2) and apply a PGD step every T regular gradient steps (GD). To this day, a comprehensive
benchmark is lacking to determine the best orthogonalization algorithm in deep learning.

Warning 2.2. Metrics that must be monitored for a comprehensive benchmark.

Optimization in deep learning is always a complicated question because there are typically
two quantities in tension. On one hand, one desires an efficient optimizer that navigates the
optimization landscape and finds the best (local) optimum. On the other hand, finding the
optimum on the train set is by no means a guarantee that the test loss will be low. Some
“inefficiency” of the optimizer might push it away from a local optimum that overfits toward
a local optimum that generalizes, even though its train error is higher. This interlacing is
typical of deep learning and makes every attempt to improve the optimizer tedious. The
following metrics are of special interest in balancing everything:

• Time/Space Complexity.
• Wallclock Runtime on CPU and GPU/TPU.
• Memory consumption, maximum network size supported on typical hardware.
• Numerical accuracy in float32 and float64 environments.
• Compatibility with stochastic optimization or momentum.
• Metric on the final task, including on the test set, which can be accuracy or even optimal

transport maps.
The last point is useful to monitor if the optimizer leverages an implicit bias beneficial to
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the final task. This was initially intended as a future work but the very recent benchmark
of Prach et al. (2023) answers (partially) the question.

2.3.3 Orthogonal convolutions

Strict orthogonality is challenging to enforce, especially for convolutions for which it is still an active
research area: see Trockman and Kolter (2021); Singla and Feizi (2021b); Achour et al. (2022); Singla
and Feizi (2022); Xu et al. (2022b) and references therein.

The “truly orthogonal” convolutions have been characterized by the work of Achour et al. (2022):
this requires a circular padding, and the number of channels must be related to each other and
depends on the image size. In this work, the authors build upon the regularization proposed in Wang
et al. (2020) to achieve orthogonality.

Some concurrent work pretends to parametrize orthogonal convolutions. But most of the time
the operator is only almost orthogonal, or it does not exhibit the structure of a true convolution
anymore. Almost orthogonal convolutions typically have some singular values strictly smaller than
1, and less frequently bigger than 1. This may induce vanishing gradients during back-propagation,
if the cotangent vector falls in the (almost) null space of the operator. When the operator loses
its convolution structure, it may lose some of its sparseness properties in pixel space. It cannot be
efficiently implemented with Deep learning frameworks, and it must be performed in Fourier space.
This induces a higher cost than conventional (unconstrained) convolutions. Whether or not strict
orthogonality is a desirable property for learning is a question that remains to be answered.

In this setting K denotes both the linear operator and the matrix that operates on vectorized
(i.e. flattened) input tensors.

H,W ∈ N Height and width inputs.
C ∈ N Input channels.
M ∈ N Output channels.
S ∈ N Stride.
k, l ∈ N Kernel size. Often k = l.

For convolution n = k2CHW , m = M(H/S)(W/S), and m ≤ n is not equivalent to n ≤ m.
Only circular padding ensures the existence of truly orthogonal convolutions (Achour et al., 2022).

Structure of convolutions as linear operators

For a convolution operator K�x, the image x can seen as flattened vector flat(x), and the corresponding
matrix Θ can be studied. It appears that such matrix exhibits Toeplitz structure as explored in Araujo
et al. (2021), where the singular values are computed. We can also mention the significant work
of Singla and Feizi (2021a) regarding Lipschitz bounds of convolutions.

Reshaped Kernel Method (RKO)

This method is one of the first proposed, and also of of the simplest. It amounts to orthogonalize
the kernel matrix. The order-4 tensor kernel of size C ×M × k × l is reshaped into 2D matrix
Ckl ×M on which techniques from the previous section can be applied. The Lipschitz constant of
the convolution is bounded by a constant factor of the spectral norm of its reshaped matrix (that
depends on k, l, and of the padding) as specified in Cisse et al. (2017); Tsuzuku et al. (2018); Qian
and Wegman (2018).
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Cayley Transform

Trockman and Kolter (2021) proposed a method for learning orthogonal convolution based on Cayley
transform in the Fourier domain. Thus even if the kernel size (# of weight) is C2.k2, the receptive
field for each output is the full input image C.H.W . At inference, the convolution still requires
computation in the Fourier domain. This method has the disadvantage of requiring forward and
inverse FFT transforms. The algorithm is described in Alg. 3.

Algorithm 3 Convolutional Cayley transform
Require: W ∈ RM×C×k×k, case M = C, X ∈ RC×H×W , H =W
Ensure: Y ∈ RM×H×W output of an orthogonal convolution
X̂[i] = FFT(X[i]), i ∈ [0, C[ � X̂ ∈ CC×H×H

Ŵ [i, j] = FFT(Pad(W [i, j], (H,H)), (i, j) ∈ [0, C[2 � Ŵ ∈ CC×C×H×H

Ŵ [i, j] = Cayley(α[i, j]Ŵ [i, j]/||Ŵ [i, j]||) � Ŵ ∈ CC×C×H×H

Ŷ [i] = Ŵ [i]X̂ � Ŷ ∈ CC×H×H

Y [i] = FFT−1(Ŷ [i]), i ∈ [0, C[ � Y ∈ RC×H×H return Y

Exponential map (SOC)

Singla and Feizi (2021b) introduced Skew Orthogonal Convolutions (SOC), based on the exponential
map. From the original unconstrained kernel W , they first construct a convolution kernel Ws

such that the corresponding Jacobian Js is skew-symmetric. They compute Θ = exp(Js), which is
orthogonal.

1. They prove that the Jacobian Js of a convolution is skew-symmetric if and only if the convolution
kernel Ws is built from any kernel W as

convWs = convW − conv_transposeW . (2.24)

where the conv_transpose operation is defined as

conv_transpose(W )i,j,m,c =Wk−1−i,l−1−j,c,m,

i.e., flipping the kernel along the horizontal and vertical directions, and transposing dimensions
corresponding to input and output channels. This analogous to the method exposed in
section 2.3.2. Note that this operation brings some constraints on W : we must have the same
number of input and output channels (M = C) and an odd kernel size (k and l must be odd).

2. The (flattened) orthogonal convolution is expanded as

Θx = exp(Js)x =

∞∑
k=0

Jk
sx

k!
= x+

Ws � x

1!
+
Ws �

2 x

2!
+
Ws �

3 x

3!
+ . . . (2.25)

In practice, exp(Js) is not explicitly computed. Instead, an approximation of the product
exp(Js)x is obtained with a truncated Taylor expansion. Successive convolution operations
are applied: Ws � x, Ws �

2 x =Ws � (Ws � x), etc. Since the parametrization is implicit, the
successive convolutions must be done for any new x, in particular at inference time. The
authors suggest to keep 6 terms in the power series during training (for speed) and 12 terms
for inference (for precision). Moreover, spectral normalization is applied on Ws to ensure that
the matrix falls within the convergence radius of the Taylor expansion.
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Note that this formulation holds for square matrix Θ, especially for M = C and S = 1. The authors
in Singla and Feizi (2021b) propose solutions to handle the more general cases. Strides are handled
using an invertible downsampling as pre-processing. If the convolution contains more output channels
than input channels, i.e. M > C, the convolution kernel is built with M filters, and the input is
zero-padded with M − C channels. If the convolution contains fewer output channels than input
channels, i.e. M < C, the convolution kernel is built with C filters, and the output is truncated to
keep the first M channels. In Singla and Feizi (2022), an improvement is proposed to speed up the
computation of the gradient: compute the gradient only from the first-order term.

LOT (Layer-wise orthogonal training) Xu et al. (2022b)

This method is a direct extension of Newton’s iterations of section 2.3.2 to convolutions. As Cayley
transform, it requires to work in Fourier space and suffers from the same drawbacks that it implies:
a FFT and an inverse FFT are required.

2.4 Implementation

In this section we discuss some practical tricks involved in the implementation of Lipschitz networks.

2.4.1 Practical considerations

Residual connections are Lipschitz but prone to vanishing gradients.

Remark 2.6. Residual connections

If f verifies ‖∇xf(x)‖ = 1 almost everywhere, and if g verifies ‖∇xg(x)‖ = 1 almost everywhere,
then ‖∇x(

1
2f(x) +

1
2g(x))‖ < 1 in general, unless ∇xf(x) = ∇xg(x). Taking f(x) = x we end

up with residual connections, for which ensuring ‖∇x(
1
2f(x) +

1
2g(x))‖ = 1 almost everywhere

is not possible unless f = g. Seemingly easy tasks like “copy and duplicate” such as x �→ [x, x]
(which are common for networks with parallel branches) are not GNP.

Remark 6 essentially shows that the set of GNP layers is not stable by sum or other com-
mon operations. This makes their practical implementations, and the demonstration of universal
approximation theorems trickier.

Vanishing and Exploding gradients have been a long-time issue in the training of neural networks.
The latter is usually avoided by regularizing the weights of the networks and using bounded losses,
while the former can be avoided using residual connections (such ideas can found on LSTM Gers
et al. (1999) or ResNet He et al. (2016)). On Gradient Norm Preserving (GNP) networks (orthogonal
networks with GroupSort activation such as the ones of Deel.lip library), we can guarantee the
absence of exploding gradient:

Proposition 1 (No exploding gradients Li et al. (2019a)). Assume that f = hM ◦hM−1 ◦ . . .◦h2 ◦h1
is a feed-forward neural network and that each layer hi is 1-Lipschitz, where hi is either a 1-Lipschitz
affine transformation hi(x) =W ix+Bi either a 1-Lipschitz activation function. Let L : Rk ×Y → R

the loss function. Let ỹ = f(x), H i = hi ◦ hi−1 ◦ . . . ◦ h2 ◦ h1 and H0(x) = x. Then we have:

‖∇W iL(ỹ, y)‖ ≤ ‖∇ỹL(ỹ, y)‖ × ‖H i−1(x)‖, (2.26)

‖∇BiL(ỹ, y)‖ ≤ ‖∇ỹL(ỹ, y)‖. (2.27)

To prove Proposition 1 we just need to write the chain rule.
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Proof. The gradient is computed using chain rule. Let θ be any parameter of layer hi. Let hj⊥ be a
dummy variable corresponding to the input of layer hj , which is also the output of layer hj−1. Then
we have:

∇θL(ỹ, y) = ∇ỹL(ỹ, y)M(Jθh
j(H i−1(x))). (2.28)

with M =
(∏i+1

j=M J
hj
⊥
hj(Hj−1(x))

)
. As the layers of the neural network are all 1-Lipschitz, we

have:
‖J

hj
⊥
hj(Hj−1(x))‖ ≤ 1.

Hence we get the following inequality:

‖∇θL(ỹ, y)‖ ≤ ‖∇ỹL(ỹ, y)‖‖Jθhj(H i−1(x))‖. (2.29)

Finally, for hi(H i−1(x)) =W iH i−1(x) +Bi we replace θ by the appropriate parameter which yields
the desired result.

There is still a risk of vanishing gradient, which strongly depends of the loss L.

2.4.2 Frameworks in the wild

Deel-lip. Most experiments done in the thesis rely on the deel-lip2 library (Serrurier et al., 2021)
to enforce Lipschitz constraints in practice, with Reshaped Kernel Orthogonalization (RKO) for fast
and near-orthogonal convolutions (Li et al., 2019b). Its design follows ideas of Anil et al. (2019). The
networks use 1) orthogonal matrices and 2) GroupSort2 activation. Orthogonalization is enforced
using Spectral normalization (Miyato et al., 2018) and Björck algorithm (Björck and Bowie, 1971).

Deel-lip relies on Power Iteration for fast computation of the spectral norm. The leading
eigenvector is cached from one gradient step to another to speed up computations. Indeed, by
continuity, the leading singular values of Wt and Wt+1 :=Wt + η∇WL are very close when the step
size η is small. This is an instance of amortized optimization (Amos et al., 2023).

• Torch-lip is the Pytorch implementation of deel-lip. It contains fewer features and lags a
little behind the Tensorflow implementation.

• Pytorch standard API provides few building blocks for Lipschitz networks on tabular data,
such as spectrally normalized matrices or matrices with orthogonal constraints, thanks to the
parametrization API.

• Other libraries. At the time of writing (2023), to the best of my knowledge, no other library
implement neural networks with Lipschitz constraints. Most projects related to Lipschitz
networks parametrization give public code that companions a paper, but to date, no project
gathers every implementation in one place with a common API and a comprehensive comparison.

In this chapter, we performed a brief review of the state of the art regarding the parametrization
of Lipschitz networks. In the next chapter, we take a detour by the field of “optimization as a layer”
and “implicit differentiation” before going back to Lipschitz networks. The reason is that these
paradigms give tools to efficiently compute the projection of a matrix onto the Stiefel manifold and
to back-propagate through this operation. We also explore other applications of these tools.

2https://github.com/deel-ai/deel-lip distributed under MIT License.
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Chapter 3

Optimization as a layer

This chapter delves into a recent trend of deep learning, that can be summarized under the name
of “optimization as a layer” and whose terminology can be attributed to Amos and Kolter (2017).
The spirit of the idea is older, and be found in works like Genevay et al. (2018). Even the min-max
formulations of GAN (Goodfellow et al., 2014) can be seen as an instance of this framework. The
idea is to use the solution to a constrained optimization problem as a layer in a neural network, as
follow:

y(θ, x) ∈ argmin
y∈Rd

f(θ, x, y)

such that g(θ, x, y) ≤ 0

h(θ, x, y) = 0

(3.1)

where θ are parameters, x an input, y(θ, x) a function of input and parameters (like any layer), f
the objective function, and g and h the constraints. Typically, the functions f, g, h are chosen such
that y(θ, x) is uniquely defined for almost all values of x and θ, even though exceptions may exist.

Exemple 3.1. “Optimization layers”

This framework is versatile. For example:
• It can be used to design a loss function, in which case y(θ, x) is a scalar, and θ is

just a hyper-parameter of the algorithm. For example, it is the case of Sinkhorn
algorithm (Genevay et al., 2018).

• It can be used as a layer parametrized by θ. Softmax is an example of such function, as
detailed in equation 4.31 in section 4.4. Even non-linearities like ReLU can me modelized
as argminy≥0 ‖y − x‖2.

Layers inherit the property and the structure of the optimization problem. This is a way to
enforce constraints in the network, and to leverage all the work done in the field of optimization
to design new layers. In either case, the application of the “deep learning framework” requires to
compute the derivatives

∂y

∂x
or

∂y

∂θ

to allow for optimization with gradient descent.
The first strategy, called unrolling, consists in using an Algorithm A to compute y(θ, x) := yT .
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An algorithm can be seen as a discrete dynamical system acting on a state yt:{
y0 arbitrary

yt+1 := S(θ, x, yt)
(3.2)

where S is the “step” function, that carries one iteration of computation. If S is differentiable,
then the Autodiff can be used to back-propagate through algorithm iterations and will return a
“derivative”. Here, things start to get ugly because one must ensure that the derivative computed
this way is indeed the derivative of the original’s problem. Indeed, in the typical situation S is
differentiable almost everywhere, and yT is not the true optimum but rather an approximation of
thereof (Bolte et al., 2022). These considerations are outside the scope of this work but illustrate the
difficulty related to this paradigm. An alternative method to compute derivatives, named implicit
differentiation, is exposed in the next section.

This chapter is structured as follow:
1. First, we expose the implicit function theorem, and its practical implementation in Jaxopt

library with AutoDiff.
2. Then, we showcase an application of implicit differentiation to Non-Negative Matrix Factor-

ization, using ADMM, with application to explainability of neural networks.
3. Finally, we show how to accelerate the computations of the derivatives of the projection onto

Stiefel manifold using implicit differentiation.
In Appendix A.1 we also showcase an example of the manual differentiation of differentiable images
data-augmentations.
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3.1 Differentiation of optimization problems

Implicit differentiation is a technique based on the implicit function theorem, that can be used to
compute the derivative of functions implicitly defined as the root, the fixed point, or the solution to
an optimization problem (Krantz and Parks, 2002; Griewank and Walther, 2008; Bell and Burke,
2008). In this section, we explain the technique and discuss its practical implementation in the
Jaxopt library.

3.1.1 Implicit differentiation

The function y(θ, x) is implicitly defined. Under suitable assumptions on the optimization problem
given in equation 3.1, the optimum y(θ, x) is the root of the so-called “optimality function” F . In
the neighborhood of the root of F , and under suitable smoothness assumptions on F , the derivatives
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of y(θ, x) can be computed using the derivatives of F . Implicit functions theorems are a family of
results that relate these two quantities, with more or less restrictive hypotheses on F (Krantz and
Parks, 2002). We detail below the most frequent version, that is of interest in the context of deep
learning.

Theorem 1 (Implicit Function Theorem). Let F : Rn × Rm → Rm be a continuously differentiable
function, and suppose that there exist points (a, b) ∈ Rn × Rm such that F (a, b) = 0. We note:

• ∂1F (a, b) ∈ Rm×n be the Jacobian matrix of F w.r.t the first variable at the point (a, b),
• ∂2F (a, b) ∈ Rm×m be the Jacobian matrix of F w.r.t the second variable at the point (a, b),

and we assume that ∂2F (a, b) is invertible. Then, there exist open neighborhoods U of a in Rn, and
a continuously differentiable function f : U → Rm such that for all x ∈ U , we have F (x, f(x)) = 0
and f(a) = b. Moreover, the Jacobian ∂f(a) ∈ Rm× n verifies:

∂f(a) = − (∂2F (a, b))
−1 ∂1F (a, b). (3.3)

We consider an optimization problem with optimum x(θ), objective function f(·, θ), equality
constraints g(·, θ) and inequality constraints h(·, θ):

x(θ) ∈ argmin
x∈Rn

f(x, θ)

such that g(x, θ) ≤ 0

h(x, θ) = 0

(3.4)

The optimality function F is typically obtained with the Karush–Kuhn–Tucker (KKT) condi-
tions Karush (1939); Kuhn and Tucker (1951). The KKT conditions apply in various situations,
depending on the hypothesis made on f , g, and h. For example, for convex optimization problems,
Slater’s condition is one of them (Slater, 2013): this requires that f and g are convex functions and
that h is affine. In every case, the optimality function F takes the following form:

F ((x, λ, μ)), θ) =

⎧⎪⎨
⎪⎩

∇xf(x, θ) + λT∂1g(x, θ) + μT∂1h(x, θ), stationarity

h(x, θ), primal feasability

λ ◦ g(x, θ), complementary slackness

(3.5)

where λ and μ are the dual variables (Lagrange multipliers) of the problem. One can check that
the triplet (x(θ), λ(θ), μ(θ)) is indeed a root of (x, λ, μ) �→ F ((x, λ, μ)), θ). Note that the optimality
function F requires the dual variables, not only the primal ones. Other simpler example for F is
in fixed point finding: if x∗ is a fixed point of G, i.e. G(x∗) = x∗, then x∗ is indeed the root of
F (x) = G(x)− x, and reciprocally. The details regarding these formulations can be found in Blondel
et al. (2022).

Implicit differentiation in literature. Implicit differentiation has gathered considerable attention
in recent years, with applications ranging from hyper-parameter optimization (Lorraine et al., 2020),
implicit layers (Bai et al., 2019; El Ghaoui et al., 2021; Fung et al., 2022), optimization as a
layer (Amos and Kolter, 2017; Niculae and Blondel, 2017) for structured prediction. Implicit
differentiation has been used for a long time, and was historically named “Adjoint state method ” in
other fields, notably optimization (Céa, 1986).

3.1.2 Jaxopt library
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Remark 3.1. What’s new in deep learning?

As mentioned previously, the implicit function theorem has been used for a long time in the
field of optimization. In deep learning, the novelty is that AutoDiff allows for computation
of the Jacobians ∂2F (a, b) and ∂1F (a, b) automatically, instead of manually. Therefore, not
implicit differentiation benefit to deep learning by offering ways to train implicit layers or
hyper-parameters, but it also benefits from deep learning AutoDiff. This offers the possibility
to use deep learning frameworks (like Tensorflow, Pytorch or Jax ) for optimization tasks,
outside the context of learning (which involves more than just optimization).

Jaxopt (Blondel et al., 2022) allows efficient computation of ∂x
∂θ = −(∂1F )

−1∂2F . The matrix
(∂1F )

−1 is never explicitly computed – that would be too costly. Instead, the system

(∂1F )
∂x

∂θ
= −∂2F (3.6)

is solved with indirect linear system solvers. Among indirect linear solvers we can mention conjugate
gradient (Hestenes and Stiefel, 1952), generalized minimal residual method (Saad and Schultz, 1986)
or biconjugate gradient stabilized method (Van der Vorst, 1992). They are called “indirect” because
they only require access to the linear operator x �→ Mx but not . We propose to rely on Jacobian
Vector Products (JVP) v �→ (∂1F )v. These JVP are efficiently computed by Autodiff. Often, we are
not interested in the Jacobian ∂x

∂θ directly, but rather a gradient

∇θL = (∇xL)
∂x

∂θ
. (3.7)

of some loss function L. Therefore, the matrix linear system (where the unknown is a Jacobian)
becomes a vector linear system where the unknown is a cotangent vector.

In the Jaxopt framework, the user only has to implement f , g, and h in Jax, and the library
takes care of the rest: AutoDiff handles everything transparently. This recipe allows effortless
computation of the derivative of dozens of optimization tasks. The “optimization layers” can be
seamlessly incorporated in computation graphs and be compatible with backpropagation. Moreover,
they can run on GPU thanks to Jax. Finally, computations can be parallelized transparently with
‘jax.vmap‘ transformation, which allows solving dozens of optimization problems in parallel.

My contributions to this framework are highlighted below1.

Fixed point computations and Anderson acceleration

For a contractive mapping T , i.e. T : Rn → Rn fulfill ‖T (x)− T (y)‖2 < ‖x− y‖2, the fixed point x∗

exist and is unique: T (x∗) = x∗. This is the Banach fixed point theorem (Banach, 1922). The proof
is constructive and relies on the sequence xn+1 := T (xn), sometimes referred to as “Picard iterations”
in the context of ODE solving (Coddington et al., 1956). Anderson acceleration with history size
m is an algorithm that performs a weighted average of the previous iterates xt, xt+1, . . . xt+m to
interpolate the next one xt+m+1, instead of taking the last in the sequence. We illustrate this on
ODE solving task in Figure 3.1. This algorithm can also be used to speed up the convergence of
fixed-point solvers under some circumstances. Indeed, the optimum of an iterative solver is also
its fixed point. We illustrate this on the “Block coordinate descent” algorithm, following Bertrand
and Massias (2021), in Figure 3.2. Finally, we can mention Deep Equilibrium Models (DEQ) (Bai

1It can also be found on https://jaxopt.github.io/stable/changelog.html
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Figure 3.1: ODE solving with Picard method. According to Picard- Lindelof theorem dCodding} 
fuon et al.l jl956D, the solutions of ODE y'(t) = J(t, y(t)) with y(to) = Yo are the fixed point of the 
operator T (y)(t) = Yo + ft: J(s, y(s))ds. By discretizing the interval [to, t] into n bins, the solution 
takes the form y E lRn, and the operator takes the form 7: lRn-+ ]Rn _ We accelerate the fi.xed-point 
solving if>k+l = T(if>k) with Anderson extrapolation. This plot can also be found in Jaxopt example 
gallery. 

!et aq j2019D among applications of Fixed point iterations solvers. In a DEQ, the layer is defined 
as z0(x) where z0(x) is the fixed point of the fonction z H Te(z,x), starting from zo = x. These 
models can be trained with implicit differentiation, using optimality function F(z) = Te(z,x) - z . 
An implementation can be found in Jaxopt. 

Stochastic optimization with Armijo line-search. 

The step size rJ is a crucial hyper-parameter on every grad icnt-based algorithm. If it is too big, the 
training may diverge catastrophically. If it is too small, the algorithm may never reach the optimum. 
For example, !Robbins and Monrol 019510 consider a sequence 'l'/t of decreasing step sizes such that 
~t 'T/t = +oo and ~t 'f/f < +oo. Another strategy is to use a linesearch: at each step, the optimal 
step size 'l'/t is chosen by optimizing a certain criterion. Armijo line search stands out QArmijob !1966D. 
It has becn adapted to the stochastic setting in !Vaswani et a l.! 02019D. This search looks for 'f/t 
such that f 0t - 'f/t'7ef 0t ~ f(0t - CrJdl'7ef(0t)II~ with c > 0 an hyper-parameter. Polyak step 

sizes Polya 11964 Loizou et al. 2021 are much simpler and use the rule 'l'/t ex: ~f~t~ïl~·. Note that 
the step s1zes given in quation 5.11 in Section ~ can be interpreted as detenninistic Polyak step 
sizes. The comparison between the different algorithms is given on Fashion-Mnist in Figure [] 

Quadratic programming. 

The last solver implemented during my internship was the celebrated Operator Splitting Quaclratic 
Program (OSQP) solver presented in !Stellato et al.l Q2020D; !Banjac et a l.l 02019~. This is a solver for 
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convex quadratic programs, i.e. optimization problems of the form:

argmin
x∈Rd

f(x) :=
1

2
xTQx+ cTx

such that l ≤ Ax ≤ u

(3.8)

with Q ∈ Rd×d a Positive Definite Matrix (which guarantees that the problem is convex), with
c ∈ Rd an arbitrary vector, with A ∈ Rn×d the matrix of n linear constraints, with lower bounds
l ∈ Rn and upper bounds u ∈ Rn. This formulation is extremely general since one-sided inequalities
constraints can be achieved with li = −∞ and ui = +∞. It was re-implemented integrally in Jax
with support for GPU, following guidelines of Schubiger et al. (2020), and with support for AutoDiff.
Furthermore, the matrix representation of Q and c are not required: any function f(x) promised to
be quadratic convex (even with constant term) and differentiable can be used. Indeed, the vector c
is the offset c = ∇xf(0). And the operator x �→ Qx is the function x �→ ∇x(f(x)− cTx). When Q
is sparse this translates into enormous gains since the coefficients Qi are never directly needed. This
algorithm made possible the re-implementation of an SVM solver from scratch, which can be found
in Jaxopt’s examples gallery.

3.2 Trivialization of the Stiefel Manifold

In this section, we explore the implicit differentiation of the projection onto the Stiefel manifold.
The content of this section is unpublished. This echoes discussions of section 2.3. For simplicity, we
focus on orthogonal matrices, i.e. square matrices. We are looking for the operator Π : Rn2 → Rn2

that solves the projection on the Stiefel manifold (in the least Frobenius norm square sense):

Π(W ) = arg min
Θ∈Rn2

1

2
‖W −Θ‖2F

such that ΘTΘ− I = 0.

(3.9)

This optimization problem is given by objective fW (Θ) = 1
2‖Θ−W‖2F and constraint g(Θ) =

ΘTΘ − I. Any projection algorithm can be used with implicit differentiation, including Björck
algorithm (Björck and Bowie, 1971), see the section 2.3 for suggestions. We consider the problem
defined in Equation (3.9). For clarity remember that f : Rn2 → R and g : Rn2 → Rn2

. The
Lagrangian reads (with λ ∈ Rn2

):

L(Θ) = fW (Θ) + 〈Λ, g(Θ)〉F . (3.10)

Here 〈Λ, g(Θ)〉F = Trace(ΛT g(Θ)) is the Frobenius inner product. We can compute its derivative
to obtain the stationarity conditions:

∇ΘL(Θ) = (Θ−W ) + Θ(Λ + ΛT ) = 0. (3.11)

This implies that at the optimum (with Θ−1 = ΘT ) we have:

Θ(Λ + ΛT ) =W −Θ =⇒ sym(Λ) =
1

2
(ΘTW − I) (3.12)

The matrix sym(Λ) can be parametrized with only n(n+1)
2 parameters since it is symmetrized

with operation sym. We name this reduce set of parameters λ ∈ R
n(n + 1)/2 such that Λ = tri(λ) with

tri a linear operation that reshapes the flat vector λ into symmetric matrix.

40



Once Θ has been computed, for example with Björck algorithm, λ is recovered by extracting the
diagonal part of 1

2(Θ
TW −I). We can readily see that if W = Θ (i.e the matrix is already orthogonal)

then λ = 0: there is no cost induced by the projection. Other cases are more interesting. This is
compliant with the results of Dalmau-Cedeno and Oviedo (2017), up to a factor 2 on Λ (attributed
to the leading 1

2 in objective). Then we plug these expressions into the implicit differentiation
framework. The implicit root function is defined as:

F ((Θ, λ),W ) =

{
(Θ−W ) + 2Θtri(λ) = 0, stationnarity

ΘTΘ− I = 0, primal feasability.
(3.13)

Here the quantity of interest is ∇WL = ∂(Θ,Λ)
∂W ∇(Θ,Λ)L. We define:

x :=
∂Θ

∂W
and y :=

∂Λ

∂W
(3.14)

that are order-4 tensors. The implicit function theorem yields the following:

[x, y]
∂F

∂(Θ,Λ)
= − ∂F

∂W
. (3.15)

Remark 3.2. Breaking down every term.

The term ∂F
∂W takes the simple form ∂F

∂W = (−I,0). The term ∂F
∂(Θ,Λ) can be splitted in tuples

∂F
∂Θ and ∂F

∂Λ . They involve order-4 tensors which can be tricky to write down. Hence we rely
on Vector Jacobian Product (VJP) to explicit their form, where ∂F

∂(Θ,Λ) is seen as a linear
operator that operates on its co-tangent vector [x, y]:

[x, y]
∂F

∂Θ
= x+ x(Λ + ΛT ) + Θ(y + yT ),

[x, y]
∂F

∂Λ
= ΘTx+ (ΘTx)T .

(3.16)

Note that equation 3.15 can be rewritten to make the ∇WL term appear:

∇WL ∂F

∂(Θ,Λ)
= −(∇(Θ,Λ)L)

∂F

∂W

=⇒ (∇(Θ,Λ)L)
∂(Θ,Λ)

∂W

∂F

∂(Θ,Λ)
= −(∇(Θ,Λ)L)

∂F

∂W
.

(3.17)

We can manually expand this equation and obtain a closed form solution for x and y. Notice
that ∇ΛL = 0 for all practical applications, since the dual variables are often of little use. We note
u := ∇ΘL the cotangent vector of the projection. Let B and C be:

B =W TΘ = BT , (3.18)

C = ΘTu− uTΘ = 2skew(ΘTu). (3.19)

We denote the anti-commutator matrix operator as {B,X} := BX +XB which is a linear operator.
Let A be the solution to the linear system:

A := solveX({B,X} = C).
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Observe that A is a skew-symmetric matrix: it lies in a space of dimension n(n−1)
2 which is compliant

with the dimension of the Stiefel manifold. Then we have:

∂L
∂W

= ΘA.

The vector u is obtained with classical back-propagation in the network. The matrix product
ΘA is inexpensive, as well as forming B and C. The main difficulty is solving the anti-commutator
problem {B,X} = C. The linear operator X �→ {B,X} is an order-4 tensor of size n2 × n2 which
makes its materialization in memory impracticable even for small values of n. This draws out methods
based on direct inversion or factorization (e.g. Cholesky). Indirect methods such as conjugate
gradient can be applied out of the box.

Remark 3.3. Analytical solution.

It is also possible to derive manually the solution to the problem using the work of Rabkin
(2015) and (https://math.stackexchange.com/users/67071/robert lewis). Let W = UΣV T be
the Singular Value Decomposition (SVD) of W with UTU = I, V TV = I and Σ the diagonal
matrix of singular values. Then it is well known that Θ = Π(W ) = Π(UΣV T ) = UV T is the
orthogonal projection of W onto Stiefel manifold. Consequently, we have B = V ΣV T . This
allows to rewrite A as function of singular values σi ∈ Σ:

C̃ = V TCV, Ãij =
C̃ij

σi + σj
, A = V ÃV T . (3.20)

The solution is guaranteed as long as σi + σj �= 0 for all pairs i, j. In particular, the null
space of W should be of dimension at most 1. Since GLn(R) is dense in Mn(R) this can be
guaranteed numerically by adding a random perturbation W + E of small norm ‖E‖ � 1.

It is possible to compute either the eigenvalue decomposition of B = W TΘ = V ΣV T , either
its Schur decomposition. This is cheaper than computing the SVD of W . Indeed the factor U is
not required. And since B is a symmetric matrix, more efficient factorization and decomposition
algorithms are available. Note that the SVD of W allows to compute Θ efficiently. However
preliminary tests showed that it was not worth the overhead during forward pass and that Björck
projection should be preferred in every case.

Exemple 3.2. Speed of the implicit differentiation.

We perform a benchmark by computing random Vector Jacobian Products ∇WL =
∂(Θ,Λ)
∂W ∇(Θ,Λ)L on GPU. The results of the benchmark are summarized in figure 3.4. We

notice that implicit differentiation with conjugate gradient is particularly inefficient. However
implicit differentiation with eigenvalue decomposition matches the performance of unrolled
Björck iterations for medium-size matrices (n < 1000) and outperform it for large matrices.
The gap is even more significant for matrices of spectral norm greater than one: the overhead
induced by power iteration to estimate the highest eigenvalue is non-negligible. The unrolling
of Power Iteration and Björck algorithm leads to Out Of Memory (OOM) error on GPU
when n > 2000 (see figure 3.5), with Colab default’s hardware. This is because the number of
iterations required to converge is huge.

Example 2 shows that implicit differentiation is only advantageous for enormous matrices
(extremely wide neural networks), which severely limits the appeal of the method. The implementation

42



10 
Method 

8 • 
unrotled bJorck 
lmi>'lclt bJorcl< eJ.oen 
imptic1t bjorck cg 

0 500 1000 1500 2000 2500 3000 3500 40-00 
Size n of square matrix 

Figure 3.4: Wall clock time cost of com
puting a VJP 'v'w.C = a~ewJ\) 'v'(e,J\).C with 
three differcnt methods, on random matri
ces with unitary norm. "unrolled" refers 
to the back-propagation through Bjorck iter
ations. "eigen" relies on the eigenvalue de
composit ion of the symmetric matrix B. "cg" 
salves the anti-commutator matrix equation 
with conjugate g,Tadient. 

is sketched below. 

©tf .custom_gradient 

Î 100 
C 

i ... 
E 10- 1 

~ 
li 

Method 
- unrolled bjOf'C.k 

impUclt bjorck eigen 

1-mpllclt bJOfCk CO 

, 
;.,' 
1 

Ill conditionned 

.--
............. ..................... _ 

.... ·•· .... -----__ ..,. __ ..,._ ..... -

0 500 1000 1500 2000 2500 3000 3500 4000 
Sîze n of square matrlx 

Figure 3.5: Wall dock time cost of comput
ing a VJP 'v'w .C = 8~0/> v (e,A).C with three 
different methods on random matrices, with 
ill-conditioned spectrum. The line is inter
rupted when an out-of-memory error is raised. 
The wallclock runtime is typically higher for 
ill-conditioned matrices since solving the lin
ear system takes more time. Similarly, Bjorck 
projection takes more t ime to converge. 

def implicit_stiefel(W, u, adjustment_coef): 
theta = Pi(W, u, adjustment_coef) # overhead here. 
theta = tf.stop_gradient(theta) 

def dPi_dW(dL_dTheta): 
B = tf.transpose(W) © theta 
OTu = tf.transpose(theta) © dL _dTheta 
C = OTu - tf.transpose(Oîu) 
Sigma, V= tf.linalg.eigh(B) # overhead here. 
V= V* tf.sign(Sigma) 
Sigma= tf. abs (Sigma) 
VT = tf.transpose(V) 
lbdas = tf.expand_dims(Sigma, axis=O) + tf.expand_dims(Sigma, axis=-1) 
epsilon= le-9 
lbdas = tf.where(tf. abs (lbdas) <= epsilon, epsilon, lbdas) 
C_tilde VT © C © V 
A_tilde = C_tilde / lbdas 
A= V© A_ti l de © VT 
dL _dW = theta © A 
return dL_dW 

return theta, dPi_dW 

The experiments of figures ~ and ~ show that the method is only interesting in the very large 
scale regime, which does not frequent ly happen in practice. For neural networks this big, it might 
be more reasonable to use the SDP-based direct parametrization discussed in section [1]. 
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3.3 Differentiable Non Negative Matrix Factorization

In this section, we show how to apply implicit differentiation to an NMF solver based on ADMM.
We conclude by showcasing an application of this algorithm to the field of XAI.

Non Negative Matrix (Lee and Seung, 1999) factorization decomposes the positive features
vector A ∈ Rn×p of n examples lying in dimension p, into a product of positive low rank matrices
U(A) ∈ Rn×r and W(A) ∈ Rp×r (with r << min(n, p)), i.e the solution to the problem:

min
U≥0,W≥0

1

2
‖A−UWT ‖2F . (3.21)

In this section, we explore how to (i) solve NMF with ADMM (Boyd et al., 2011) (ii) compute
the derivatives with implicit differentiation of the ADMM solution, based on all the KKT variables.

Warning 3.1. Coordinate descent.

Our approach is not the only way to solve the NMF problem. Coordinate descent can also
be used for NMF, as in scikit-learn’s default implementation (Cichocki and Phan, 2009).
Moreover, this alternative formulation also opens a path for implicit differentiation, not based
on KKT conditions, but rather on the fixed point of a proximal operator. The benchmark
between the two methods remains to be done.

3.3.1 Alternating Direction Method of Multipliers

For simplicity, we used a non-regularized version of the NMF objective, following Algorithms 1 and
3 in Huang et al. (2016b), based on ADMM. ADMM framework transforms the non-linear equality
constraints into indicator functions δ. Auxiliary variables Ũ,W̃ are also introduced to separate the
optimization of the objective on the one side, and the satisfaction of the constraint on U,W on the
other side. The equality constraints Ũ = U,W̃ = W are linear and easily handled by the ADMM
framework through the associated dual variables Ū,W̄. In our case, the problem in Equation 3.21 is
transformed into:

min
U,Ũ,W,W̃

1

2
‖A− ŨW̃T ‖2F + δ(U) + δ(W),

s.t. Ũ = U,W̃ = W

with δ(H) =

{
0 if H ≥ 0,

+∞ otherwise.

(3.22)

Remark 3.4. The “useless” variables of ADMM framework.

Note that Ũ and U (resp. W̃ and W) seem redundant: they are meant to be equal thanks to
constraints Ũ = U,W̃ = W. This is standard practice within ADMM framework: introducing
redundancies allows to disentangling the (unconstrained) optimization of the objective on one
side (with Ũ and W̃), and constraint satisfaction on the other side with U and W. During
the optimization process the variables Ũ,U (resp. W̃,W) are different and only become
equal in the limit at convergence. The dual variables Ū,W̄ control the balance between
optimization of the objective 1

2‖A− ŨW̃T ‖2F and constraint satisfaction Ũ = U,W̃ = W.
The constraints are simplified at the cost of a non-smooth (and even a non-finite) objective
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function 1
2‖A− ŪW̄T ‖2F + δ(U) + δ(W) due to the term δ(U) + δ(W).

ADMM proceeds to create a so-called augmented Lagrangian with l2 regularization ρ > 0:

L(A,U,W, Ũ,W̃, Ū,W̄) =
1

2
‖A− ŨW̃T ‖2F + δ(U) + δ(W)

+ ŪT (Ũ−U) + W̄T (W̃ −W)

+
ρ

2

(
‖Ũ−U‖22 + ‖W̃ −W‖22

)
.

(3.23)

This regularization ensures that the dual problem is well posed and that it remain convex, even
with the non smooth and infinite terms δ(U) + δ(W). Once again, this is standard practice within
ADMM framework. The (regularized) problem associated to this Lagrangian is decomposed into
a sequence of convex problems that alternate minimization over the U, Ũ, Ū and the W,W̃,W̄
triplets.

Ut+1 = argmin
U=Ũ

1

2
‖A− ŨWT

t ‖2F + δ(U) +
ρ

2
‖Ũ−U‖22. (3.24)

Wt+1 = argmin
W=W̃

1

2
‖A−UtW̃

T ‖2F + δ(W) +
ρ

2
‖W̃ −W‖22. (3.25)

This guarantees a monotonic decrease of the objective function ‖A − ŨtW̃
T
t ‖2F . Each of

these sub-problems is thus solved with ADMM separately, by alternating minimization steps of
1
2‖A−ŨWT

t ‖2F +ŪT (Ũ−U)+ ρ
2‖U−Ũ‖22 over Ũ (i), with minimization steps of δ(U)+ ρ

2‖U−Ũ‖22
over U (ii), and gradient ascent steps (iii ) on the dual variable Ū ← Ū+(Ũ−U). A similar scheme
is used for W updates. Step (i) is a simple convex quadratic program with equality constraints,
whose KKT conditions (Karush, 1939; Kuhn and Tucker, 1951) yield a linear system with a Positive
Semi-Definite (PSD) matrix. Step (ii) is a simple projection of Ũ onto the convex set δ−1(0).
Finally, step (iii) is inexpensive.

Concretely, we solved the quadratic program using Conjugate Gradient (Hestenes and Stiefel,
1952), from jax.scipy.sparse.linalg.cg. This indirect method only involves matrix-vector products and
can be more GPU-efficient than methods that are based on matrix factorization (such as Cholesky
decomposition). Also, we re-implemented the pseudo code of Huang et al. (2016b) in Jax for a fully
GPU-compatible program. We used the primal variables U0,W0 returned by sklearn.decompose.nmf
as a warm start for ADMM and observe that the high-quality initialization of these primal variables
considerably speeds up the convergence of the dual variables.

3.3.2 Implicit differentiation of NMF

The Lagrangian of the NMF problem reads L(U,W, Ū,W̄) = 1
2‖A−UWT ‖2F − ŪTU− W̄TW,

with dual variables Ū and W̄ associated to the constraints U ≥ 0,W ≥ 0. It yields a function F

based on the KKT conditions whose optimal tuple U,W, Ū,W̄ is a root.
For single NNLS problem (for example, with optimization over U) the KKT conditions are:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
∇U

(
1
2‖A− ŨW̃T ‖2F + ŪT (−U)

)
= 0, stationarity,

−U ≤ 0, primal feasability,

Ū�U = 0, complementary slackness,

Ū ≥ 0, dual feasability.

(3.26)
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By stacking the KKT conditions of the NNLS problems the we obtain the so-called optimality
function F :

F ((U,W, Ū,W̄),A) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
(UWT −A)W − Ū, stationarity

(WUT −AT )U− W̄, stationarity

Ū�U, complementary slackness

W̄ �W. complementary slackness

(3.27)

The implicit function theorem allows us to use implicit differentiation to efficiently compute the
Jacobians ∂U

∂A and ∂W
∂A without requiring to back-propagate through each of the iterations of the

NMF solver:
∂(U,W, Ū,W̄)

∂A
= −(∂1F )−1∂2F . (3.28)

Implicit differentiation requires access to the dual variables of the optimization problem in
equation 3.21, which are not computed by Scikit-learn’s popular implementation. Scikit-learn uses
Block coordinate descent algorithm (Cichocki and Phan, 2009; Févotte and Idier, 2011), with a
randomized SVD initialization. Consequently, we leverage our implementation in Jax based on
ADMM (Boyd et al., 2011).

Concretely, we perform a two-stage backpropagation Jax (2)�Tensorflow (1) to leverage the
advantage of each framework. The lower stage (1) corresponds to feature extraction A = hl(X)
from crops of images X, and upper stage (2) computes NMF A ≈ UWT . We use the Jaxopt library.
The chain rule yields:

∂U

∂X
=
∂A

∂X

∂U

∂A
.

Remark 3.5. Backpropagation between autodiff frameworks

Usually, most Autodiff frameworks (e.g Tensorflow, Pytorch, Jax) handle the backpropagation
step automatically. Unfortunately, combining two of those framework raised a new difficulty
since they were not compatible at the time of the work (April 2022). In the meantime, Jax
introduced a callback object to allow interoperability of the two frameworks. Below, we
detail how to re-implement manually the two stages of auto-differentiation without relying on
callbacks.

Since r is far smaller (r = 25 in all our experiments) than input dimension X (typically 224× 244
for ImageNet images), back-propagation is the preferred algorithm in this setting over forward-
propagation. We start by computing sequentially the gradients ∇XUi for all concepts 1 ≤ i ≤ r.
This amounts to compute v = ∇AUi with Implicit Differentiation in Jax, convert the Jax array v

into Tensorflow tensor, and then to compute ∇XUi =
∂A
∂X∇AUi = ∇X(hl(X) · v). The latter is

easily done in Tensorflow. Finally we stack the gradients ∇XUi to obtain the Jacobian ∂U
∂X .

3.3.3 Applications to Concept-Based XAI

NMF is famous for producing interpretable “basis of concepts” in various tasks (Lee and Seung, 1999).
It can be applied in the latent space of a neural network. This produces a dictionary W of concepts,
and coefficients U. The concepts W can be understood as frequent features of the dataset that are
recognized by the neural network. The coefficient Ui indicates how much the concept i is present in
an image. This opens paths for the interpretability of the network decisions. This has been explored
in Fel et al. (2023b). In this work, a concept Wi is characterized by the sets of pixel patch (of
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Figme 3.6: Overview of CRAFT {!Fel et aq j2023bD, courtesy of Thomas Fel. Starting from 
a set of crops X containing a concept C (e .g. , crops images of the class "parachute") , wc compute 
activations g(X ) corresponding to an intermediate layer from a neural network for random image 
crops. We then factorize these activations into two lower-rank matrices, (U , \ ' ). \;\ is what we cal! 
a "concept bank" and is a new basis used to express the activations, while U corresponds to the 
corresponding coefficients in this new basis. We then extend the method with 3 new ingreclients: (1) 
recursivity - by proposing to re-decompose a concept (e.g., take a new set of images containing C1) 

at an earlier layer, (2) a importance estimation using Sobol indices and (3) implicit differentiation to 
generate concept attribution maps to localize concepts in an image. 

the train-set) that maximize the score Ui. For a given image x , it is possible to extra.et the latent 
vector a with a feature extractor (e.g. t he first layers of the network) , to solve the Non Negative 
Least Square (NNLS) problem (with a fixed concept bank W ) to obtain the coefficients U i, and 
then to find where in the input image the concept has been detected, by back-propagating through 
NNLS problem. The algorithm is illustrated in Figure [fil reproduced here with the authorization of 
Thomas Fel. Concept-based XAI can be clone with other clictionary learning methods, as explained 
in !Fel et al.l Q2023âj} . 

3.4 Conclusion 

In this section, we shown that the paradigm of optimization as a layer could be used to enforce 
architectural constraints, such as: 

• orthogonal weights in linear layers, 
• sparse clictionaries with differentiable NMF layers. 

When a certain structure needs to be enforced on the activations or the weights, it can be useful to 
think of these constraints as the solution to a well-chosen optimization problem. 

In the three next chapters, ,ve focus on Lipschitz constraints, with application to classification 
with generalization, robustness or privacy guarantees. 

47 



Chapter 4

Classification with Lipschitz constraints

— Votre paramètre de température τ , là, on est bien d’accord que c’est la même chose
que la constante de Lipschitz?
— Oui, complètement. Mais présenté comme ça on était moins compris: les relecteurs
déduisaient que petite constante de Lipschitz impliquait petite expressivité, et
réciproquement. Ce qui est l’opposé de notre message, qui est plus subtil.
— Vous vous êtes écrasés devant les reviewers, c’est dommage vous n’auriez pas dû.

Lesson of Wisdom taught by Rémi Flamary at NeurIPS Paris 2022.

In this chapter, we study the expressiveness of Lipschitz functions in the context of supervised
classification. This chapter is mostly adapted from the corresponding publication:

L. Béthune, T. Boissin, M. Serrurier, F. Mamalet, C. Friedrich, and A. G. Sanz. Pay attention
to your loss : understanding misconceptions about Lipschitz neural networks., Advances
in Neural Information Processing Systems, 2022.See Béthune et al. (2022).

Despite the competitiveness of Lipschitz-constrained networks over conventional networks on
medium-scale problems (Cisse et al., 2017; Serrurier et al., 2021), Lipschitz constrained networks still
suffer from misconceptions. A belief commonly invoked against networks of LipNet1 is that they
are less expressive: “Lipschitz-based approaches suffer from some representational limitations that
may prevent them from achieving higher levels of performance and applying to more complicated
problems” (Huster et al., 2018). Some reviews of this early work contained similar criticism, showing
that this belief is firmly rooted in the community. This objection is frequently encountered in .

Although this claim seems rational at first glance, the link between Lipschitz constant and
expressiveness is not trivial. While there is an obvious lack of expressiveness for regression tasks,
this intuition fades when it comes to classification. Indeed, every AllNet network g : Rn → RK is
L-Lipschitz for some (generally unknown) L > 0. Then f = 1

Lg is a 1-Lipschitz neural network with
the same decision boundary, since prediction argmaxk gk is invariant by positive rescaling of the
logits. In particular, f has the same accuracy and also the same robustness to adversarial attacks as
g. We illustrate this empirically by training a LipNet1 network until it reaches train 99.96%
accuracy on CIFAR-100 with random labels.

Our goal is to demonstrate that, despite being empirically harder to train, LipNet1 networks
are theoretically better grounded than AllNet networks when it comes to classification, through a
threefold contribution on Expressiveness (Section 4.1), Robustness (Section 4.2) and Generalization
(Section 4.3).

First, in Section 4.1 we confirm that LipNet1 are as expressive as AllNet networks for classifi-
cation, and can learn arbitrary complex decision boundary. We show that hyper-parameters of the
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loss are of crucial importance, and control the ability to fit properly the train set.
Then, in Section 4.2 we show that accuracy and robustness are often antipodal objectives. We

characterize the robustness of the highest accuracy LipNet1 classifier: it is achieved by the Signed
Distance Function. We also characterize the classifier of the highest certifiable robustness, and we
show it corresponds to the dual potential of Wasserstein-1 distance.

Finally, in Section 4.3 we show that LipNet1 benefit from several generalization guarantees.
They are consistent estimators: contrary to AllNet , we prove that their train loss will converge to
test loss as the size of the train set increases. Moreover, we show that LipNet1 classifiers with margin
are PAC-learnable (Valiant, 1984): it provides bounds on the number of train examples required
to reach a targeted test accuracy. Interestingly, this bound is independent of the architecture size,
which allows to training of enormous LipNet1 networks without risking overfitting.

We show in all three sections that tuning of losses hyper-parameters is crucial to control the
tradeoff between train accuracy, certifiable robustness, and generalization gap.

This raises a new question: if constraining the Lipschitz constant does not prevent high accuracy,
why is it difficult to train these LipNet1 networks? We answer the question through the prism of the
loss function. We outline that the minimization of the popular cross-entropy (as it is done frequently
in classification) is an ill posed problem for AllNet networks that may lead to catastrophic divergence
of the weights, whereas it is well posed for networks of LipNet1 networks but fails to yield good test
accuracy.

Therefore the main contributions of this chapter are to propose a general view of the multiple
interest of LipNet1 in classification tasks, gathering known results, and demonstrating new ones.
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4.1 Expressivity and the importance of the loss

First, we confirm that LipNet1 are as expressive as AllNet networks for classification, and can learn
arbitrary complex decision boundary. We show that hyper-parameters of the loss are of crucial
importance, and control the ability to fit properly the train set.

4.1.1 Boundary decision fitting

Proposition 2. Lipschitz Binary classification. For any binary classifier c : X → Y with
closed pre-images (c−1({y}) is a closed set) there exists a 1-Lipschitz function f : Rn → R such that
sign(f(x)) = c(x) on X and such that ‖∇xf‖ = 1 almost everywhere (w.r.t Lebesgue measure).

The proof of Proposition 2 is constructive, we need to introduce the Signed Distance Function,
already popularized in shape processing (Rousson and Paragios, 2002).

Definition 8. Signed Distance Function associated to decision boundary. Let c : X →
{−1,+1} be any classifier with closed pre-images. Let Ā = {x ∈ Rn|c(x) = +1} and B̄ = {x ∈
Rn|c(x) = −1} = X \ Ā. Let d(x, y) = ‖x − y‖ and d(x, S) = miny∈S d(x, y) be the distance to a
closed set S. Let ∂ = {x ∈ Rn|d(x, Ā) = d(x, B̄)}. We define f : Rn → R as follow:

f(x) =

{
d(x, ∂) if d(x, B̄) ≥ d(x, Ā)

−d(x, ∂) if d(x, B̄) < d(x, Ā).
(4.1)

We denote by SDF(c) the function f .

The signed distance function f previously defined verifies all the properties, as a special case of
Eikonal equation. We give the full proof here for completeness.

Proof. We start by proving that f is 1-Lipschitz. First, consider the case d(x, B̄) ≥ d(x, Ā) and
d(y, B̄) ≥ d(y, Ā). Then we have |f(x)−f(y)| = |d(x, ∂)−d(y, ∂)|. Assume without loss of generality
that d(x, ∂) ≥ d(y, ∂). Let z ∈ ∂ be such that d(y, ∂) = d(y, z) (it is guaranteed to exist since ∂ is a
closed set). Then by definition of d(x, ∂) we have d(x, z) ≥ d(x, ∂). So:

|f(x)− f(y)| = |d(x, ∂)− d(y, ∂)| ≤ d(x, z)− d(y, z) ≤ d(x, y). (4.2)

The cases d(x, B̄) < d(x, Ā) and d(y, B̄) < d(y, Ā) are identical. Now consider the case d(x, B̄) <
d(x, Ā) and d(y, B̄) ≥ d(y, Ā). Then we have |f(x)− f(y)| = d(x, ∂) + d(y, ∂). We will proceed by
contradiction. Assume that d(x, ∂) + d(y, ∂) > d(x, y). Let R > 0 be such that R < d(x, ∂) and
R+ d(y, ∂) > d(x, y). We let:

z = x+
R

d(x, y)
(x− y).

Then we have d(x, z) = ‖ R
d(x,y)(x− y)‖ = R

d(x,y)d(x, y) = R < d(x, ∂). So by definition of ∂ we have
d(z, B̄) < d(z, Ā). But we also have:

d(y, z) = ‖(x− y) +
R

d(x, y)
(x− y)‖ = |1− R

d(x, y)
| × ‖x− y‖

= |d(x, y)−R| < |d(y, ∂)| using the hypothesis on R.
. (4.3)

So we have d(z, B̄) ≥ d(z, Ā) which is a contradiction. Consequently, we must have d(x, ∂)+d(y, ∂) ≤
d(x, y). The function f is indeed 1-Lipschitz.
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Now, we will prove that ‖∇xf‖ = 1 everywhere it is defined. Let x be such that y ∈
argminy∈∂ d(x, y) is unique. Consider h = ε (y−x)

‖y−x‖ with 1 ≥ ε > 0 a small positive real. We
have d(x, x+ h) = ε, it follows by triangular inequality that d(x+ h, ∂) = d(x, ∂)− ε. We see that:

lim
ε→+∞

f(x+ h)− f(x)

‖h‖ = −1.

The vector u = −∇xf is the (unique) vector for which 〈u, f(x+h)−f(x)
‖h‖ 〉 is minimal. Knowing that

f is 1-Lipschitz yields that ‖∇xf‖ = 1. For points x for which argminy∈∂ d(x, y) is not unique,

the gradient is not defined because different directions minimize 〈u, f(x+h)−f(x)
‖h‖ 〉 which contradicts

the uniqueness of gradient vector. The number of points for which y ∈ argminy∈∂ d(x, y) is not
unique must have null measure, since Lipschitz functions are almost everywhere differentiable (by
Rademacher’s Theorem).

Finally, note that signf(x) = c(x) on Ā and B̄. Indeed, in this case either d(x, B̄) < d(x, Ā)
either d(x, B̄) > d(x, Ā) and the result is straightforward.

With this proposition in mind, we can deduce Corollary 1.

Corollary 1 (LipNet1 is as powerful as AllNet for classification). For any neural network f : Rn → R

there exists 1-Lipschitz neural network f̃ : Rn → R such that sign(f(x)) = sign(f̃(x)).

Proof. The proof sketched in Introduction is sufficient to show that LipNet1 networks and uncon-
strained ones have the same decision frontiers. We could have also taken a more convoluted path:
take the classifier c associated to an AllNet network, consider the restriction to a subset X of the
input space making the pre-images separated. Then we can apply Proposition 2 to get a 1-Lipschitz
function with the same classification power, and finally approximate those functions (in the sense of
uniform convergence) with LipNet1 network, thanks to the universal approximation theorem.

For the multiclass case the label set is now Y = {1, 2, . . . ,K}. In practice we use one-hot encoded
vectors to compute the loss, by taking the argmaxk over a vector of RK . J

Proposition 3 (Lipschitz Multiclass classification). For any multiclass classifier c : X → Y with
closed pre-images there exists a 1-Lipschitz function f : Rn → RK such that argmaxk fk(x) = c(x)
on X and such that ‖Jxf‖ = 1 almost everywhere (w.r.t Lebesgue measure).

The case K > 2 requires a slight change in the definition of signed distance function, to
prove Proposition 3.

Definition 9 (Multiclass Signed Distance Function). Let c : X → {1, 2, . . .K} be any classifier
with closed pre-images. Let Āk = c−1({k}). Let ∂ = {x ∈ Rn|∃k �= l, d(x, Āk) = d(x, Āl) =
argminm d(x, Ām)}. We define f : Rn → Rk as follow:

fk(x) =

{
d(x, ∂) if d(x, Āk) < d(x, Āl) for all l �= k,

0 otherwise.
(4.4)

In overall the proof remains the same.
The level-sets of a Lip1(X ,RK) functions (and especially the decision boundary) can be arbitrarily

complex: restraining classifiers to Lip1(X ,R) does not affect the classification power. The Error1

of a classifier c is defined as E(c) = E(x,y)∼PXY
[1{c(x) �= y}]. The Risk of a classifier is defined as

R(c) = E(c)− E(b) where b denotes the optimal Bayes classifier.
1Practitioners sometimes prefer to monitor accuracy 1− E.
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Definition 10 (ε-separated distributions). Distributions P and Q are ε-separated if the distance
between supp P and supp Q exceeds ε > 0.

Corollary 2. Separable classes implies zero error. If P and Q are ε-separated, then there
exists a network f ∈ LipNet1 such that error E(sign ◦ f) := E(x,y)∼PXY

[1{sign(f(x)) �= y}] = 0.

Proof. If classes are separable the optimal Bayes classifier b achieves zero error. Moreover, the
topological closure b−1({y}), y ∈ Y yields a set of closed sets that are all disjoints (since ε > 0)
and on which Proposition 3 can be applied, yielding a LipNet1 neural network with the wanted
properties.

Exemple 4.1. Bonus: non separable case.

We can also handle the case of non separable classes by imitating the optimal Baye classifier
c. We take X a subset of the input space on which the pre-images of c are closed. The
application of Proposition 2 for optimal Bayes classifier gives us a 1-Lipschitz function f with
the same decision frontier as c. Finally, we can use the universal approximation theorem of
Anil et al. (2019) to conclude there exists LipNet1 network that can approximate arbitrarily
well the function f , and hence approximate arbitrarily well the classifier c on X . Outside X ,
the error is not controlled but depends on the volume of the set (supp PX)/X whose Lebesgue
measure can be made arbitrarily small (by taking X big enough). As PX admits a pdf w.r.t
Lebesgue measure, then PX((supp PX)/X ) can be made arbitrarily small, and consequently
the risk as well.

The class of LipNet1 networks does not suffer from bias for classification tasks. Some empirical
studies show that indeed most datasets classes are separable (Yang et al., 2020) such as CIFAR10 or
MNIST. Furthermore, even if the classes are not separable, functions of LipNet1 can nonetheless
approximate the optimal Bayes classifier. Lipschitz constraint is not a constraint on the shape of
the boundary (Figure 4.1), but rather on the slope of the landscape of f .

Exemple 4.2. Fractal decision boundary with Von Koch snowflake.

In figure 4.1 we plot the level set of the network f trained from the discretized ground truth
(in 400× 400 pixels) of the Signed distance function. The distance to the frontier ∂ is easily
computed since the frontier ∂ is a finite collection of segments (fourth iteration of Von Koch
snowflake fractal). We train a 128 � 128 � 128 � 128 � 128 LipNet1 network. The network is
trained with Mean Square Error (MSE), and we stop the training once the Mean Absolute
Error (MAE) falls below 1.

4.1.2 Why Lipschitz networks are perceived as not expressive

LipNet1 networks cannot reach zero loss with BCE: this may explain why they are perceived as not
expressive enough. Yet the minimizer of BCE exists and is well defined.

Proposition 4. BCE minimization for 1-Lipschitz functions. Let X ⊂ Rn be a compact and
τ > 0. Then the infimum in Equation 4.5 is a minimum, denoted f τ ∈ Lip1(X ,R):

f τ ∈ arg inf
f∈Lip1(X ,R)

E(x,y)∼PXY
[Lbce

τ (f(x), y)]. (4.5)

Moreover, the LipNet1 networks will not suffer of vanishing gradient of the loss.
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Figure 4.1: Fractal D ecision Boundary â with â as the fourth iteration of Von Koch Snowfiake. 
We chose P as the interior ring, while the center and the exterior correspond to Q. We train a 
LipNetl network with Mean Square Error (MSE) to fit the Signed Distanc Function ground t ruth 
(160 000 pixels), until Mean Absolute Error (MAE) is inferior to l. It proves empirically that 
LipNetl networks can handle very sharp (almost fractal) decision boundary. 
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Proof. The proof is an application of Arzelà–Ascoli theorem.
Let E(f) = E(x,y)∼PXY

[L(f(x), y)]. Consider a sequence of functions f t in LipL(X ,R) such that
lim
t→∞

E(ft) = inff∈LipL(X ,R) E(f) = E∗.

Consider the sequence ut = ‖ft‖∞. We want to prove that (ut)t∈N is bounded. Proceed
by contradiction and observe that if lim sup

t→∞
ut = +∞ then lim sup

t→∞
E(ft) = +∞. Indeed, for

‖ft‖∞ ≥ 2Ldiam X we can guarantee that signft is constant over X and in this case one of the two
classes y is misclassified, knowing that lim

f(x)→∞
L(−yf(x), y) = O(f(x)) → +∞ yields the desired

result. But if lim sup
t→∞

E(ft) = +∞, then E(ft) cannot not converges to E∗. Consequently, ut must be

upper bounded by some M .
Hence the sequence ft is uniformly bounded. Moreover each function ft is L-Lipschitz so the

sequence ft is uniformly equicontinuous. By applying Arzelà–Ascoli theorem we deduce that it exists
a subsequence fφ(t) (where φ : N → N is strictly increasing) that converges uniformly to some f∗,
and f∗ ∈ LipL(X ,R). As E(f∗) = E∗, the infimum is indeed a minimum.

Warning 4.1. No element-wise vanishing gradients.

The upper bound on Lip(f) is turned into a lower bound on ‖∇θL(fθ∗L (x), y)‖: there is no
element-wise vanishing gradient. However its expectation ‖∇θE(x,y)∼PXY

[L((fθ∗L (x), y)]‖ = 0
is null at convergence. Therefore, the optimization of Lipschitz neural networks is truly a
different beast than the ones of conventional networks: there is no “interpolation regime” like
the ones required in Polyak step sizes (Loizou et al., 2021) or Armijo step sizes (Vaswani et al.,
2019). The expectation is null, but the variance remains non-zero, including at convergence :
this is problematic, as for small batch size, oscillations may be observed at convergence that
impedes the final accuracy.

Proposition 5 (No vanishing BCE gradients). Let (xi, yi)1≤i≤p be a non trivial training set (i.e
with more than one class) such that xi ∈ X , X a bounded subset of Rn. Then there exists a constant
K > 0 such that, for every minimizer f∗L of BCE (known to exist thanks to Proposition 4) we have:

f∗L ∈ arg min
f∈LipL(X ,R)

E(x,y)∼PXY
[Lbce

T (f(x), y)]. (4.6)

And such that for every 1 ≤ i ≤ p we have the following:

| ∂
∂ỹ

Lbce
T (ỹ = f∗L(xi), yi)| ≥ K. (4.7)

Note that K only depends of the training set, not f∗L.

Proof. Note that it exists K ′ > 0 such that |f∗L(xi)| ≤ K ′ for all xi and all minimizers f∗L, just like
in the proof of Proposition 4, because otherwise we could exhibit a sequence of minimizers (f∗L)t not
uniformly bounded, which is a contradiction. Consequently | ∂

∂ỹLbce
T (ỹ = f(xi), yi)| ≥ 1

1+exp (|f(xi)|) ≥
1

1+exp (K′) = K.

It means that a non-null gradient will remain for each element-wise gradient, but their mean over
the train set after convergence will be the null vector. Consequently, we must expect high variance
in gradients and oscillations when we get closer to the minimum.

Machine learning practitioners are mostly interested in maximizing accuracy. However, the
minimizer of BCE is not necessarily a minimizer of the error (see Figure 4.2). Yet, BCE is notoriously
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Figure 4.2: Importance of r in BCE. We train a LipNetl network with BCE and different values 
for T. We chose a toy example where P and! Q are Gaussian mixtures with two modes of weights 0.9 
and 0.1. We highlight the clifferent shapes of the minimizer a of as fonction of r. High values of 
T leads to better fitting, whereas for lower T the small weights Gaussian of the mixture 
are treated as noise and ignored. 

a differentiable proxy of the error E(sign of), and as T -+ oo we get asymptotically closer to 
maximum ernpirical accuracy. Bigger value for r might ultimately lead to overfitting, playing the 
same role as the Lipschitz constant L (see Figure ~ -

The implicit parameter r = 1 of the loss is partially r esponsible of the poor accuracy 
of LipNetl networks in literature, and not by any means the hypothesis space LipNetl itself. 
This can be observed in practice : when temperature r (resp. margin m) of cross-entropy (resp. 
hinge loss) is correctly adjusted a small Lip etl C N can rea.ch a competitive 88.2% validation 
accuracy on the CIFAR-10 dataset (results synthetized and discussed in Figure g without 
residual connections, batch normalization or dropout. Conversely, Al!Net networks are roughly 
equivalent to learning a Lip etl net\vork with r-+ oo: without regula.rization or data augmentation, 
such a network can always reach 100% train accuracy without generalization guarantees. 

Exemple 4 .3. Fitting CIFARlOO with random labels. 

This experiment illustrates that constraining the Lipschitz of a network does not affect its 
expressive power. To show this we train a constrained network on the CIFARl00 dataset 
where all labels have been replaced with random labels. This task is now a widely recognized 
benchmark to evaluate the expressiveness of an architecture OZhang et aq l2021bD. The 
architecture of this network is as simple as possible: two orthogonal dense layers with 1024 
neurons are followed by a dense layer (not orthogonal but witb unit norms rows), biases in 
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every linear transformation, and GroupSort2 activation.

Loss Lbce
τ=256 Lhkr

α=256,m=36/255

Clean Accuracy 99.9% 99.8%
Certifiable accuracy at ε = 36 38.2% 91.0%
Certifiable accuracy at ε = 72 21% 19%

At first glance it mights seem surprising to see both high accuracy and high provable robustness
on a dataset with random labels. This is compliant with the idea expressed by the authors
of Yang et al. (2020): for a given accuracy one can increase the robustness radius around a
sample x1 up to the value ‖x1−x2

2 ‖2 where x2 is the closest sample with a different label. The
decision frontier is close to the decision frontier of the 1-nearest neighbor based on the trained
set. This illustrates that constraining the Lipschitz constant does not necessarily decrease
accuracy and does not necessarily increase robustness.

Takeaways

Our empirical observation can be summarized as follow.
We let:

f∞ ∈ arg inf
f∈AllNet

E(x,y)∼PXY
[Lbce

τ (f(x), y)]. (4.8)

Then the following inequality holds in general:

f τ=1 �= 1

Lip(f∞)
f∞. (4.9)

This can be informally reformulated as “Optimizing over the set of 1-Lipschitz functions, or
re-normalizing a function to make it 1-Lipschitz does not yield the same decision frontier”. In
fact, f∞ might not be well defined as we will see in section 4.3.1.

4.2 Robustness guarantees and link to optimal transport

Here, we show that accuracy and robustness are often antipodal objectives. We characterize the
robustness of the highest accuracy LipNet1 classifier: it is achieved by the signed distance function.
We also characterize the classifier of highest certifiable robustness, and we show it corresponds to the
dual potential of Wasserstein-1 distance (i.e the discriminator of a WGAN (Arjovsky et al., 2017)).

Is there a trade-off between accuracy and robustness? Although the existence of a trade-off
between accuracy and robustness is commonly admitted, some works argue that “Robustness is not
inherently at odds with accuracy”(Yang et al., 2020). We propose a unified consideration by stating
that for a given train accuracy, robustness can be maximized up to a certain point, but allowing a
lower train accuracy helps achieving a higher robustness. Finally one must keep in mind that this
trade-off lives in the shade of generalization (see Section 4.3).

4.2.1 Improving the robustness of the maximally accurate classifier

The Signed Distance Function (Rousson and Paragios, 2002) (SDF) associated to the frontier ∂ of
Bayes classifier b is the 1-Lipschitz function that provides the largest certificates among the classifiers
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Figure 4.3: Accuracy-robustness tradeoff: Each network is optimal with respect to a certain 
criterion. The leftmost network is the most accurate a,t robustness radius E ~ 0.3, the r ightmost 
maximizes the MCR at the cost of low clean accuracy. T he center network corresponds to a 
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of maximum accuracy. 

Corollary 3. For the SDF(b), the bound of Property [!I is tight: E = IJ(x)I. ln particular o = 
- f ( x) 'V xf ( x) is 911,aranteed to be an adver.sarial attack. The risk is the smallest possible. There is 
no classifier with the same risk and better certificates. Said otherwise the SDF(b) is the solution to: 

where R (c) 
classifier. 

max min min 11611, 
fELip 1(1R", IR}xEX 8EIR" 

sign(f(x+8)) -:j; sign(J(x )) 

under the constraint f E arg min E( sign o g) . 
gELip1 (lR" ,IR) 

( 4.10) 

E(c) - E(b) is the risk of the classifier, and where b denotes the optimal Bayes 

Proof. Those properties hold by construction. T he risk R(sign(f)) is minimal since f is build 
with the optimal Bayes classifier. Note that , in general, for any classifier c : X --+ Y the bound of 
Property IT] is t ight by construction for SDF(c). Indeed f(x) is the distance to the frontier, and the 
direction is given by 'V x f (x) . D 

Those certificates are exactly equal to the distance of adversarial samples. Iterative gradient 
based attacks (sec lChakraborty et al.l Q2021D and references therein) can succeed in one step: therefore 
empirical attacks tend to provide the same ( optimal) adversarial examples, which was also noticed 
previously in Serrurier et al. Q2021D. Far from being a weakness, this may improve the interpretability 
of the model Don et al. 1201 'lt [romsett et aq !2018~ !Ross and Doshi-Velezl l2018D. 

T he SDF(b) cannot be explicit ly constructed since it relies on the (unknown) optimal Bayes 
classifier. We deduce that to train a LipNetl network that yields the best robustness certificates, we 
must aim to maximize IJ(x)I over the train set (with appropriate sign depending on the label). 
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4.2.2 Improving the accuracy of the maximally robust classifier

On the opposite side, we exhibit a family of classifiers with lower accuracy but with higher certifiable
robustness. We insist that the quantity of interest is the certifiable robustness |f(x)| and not the
true empirical robustness ε (which can be higher). The former is computed exactly and freely, while
the latter is a difficult problem for which only upper bounds returned by attacks are available. In
the literature, the robustness is only evaluated on well classified examples. The certificate can
be both interpreted as a form of “confidence” of the network, and as the minimal perturbations
required to switch the class. Hence, we shall weight negatively this certificate for the examples
that are misclassified since confidence in presence of errors is worse. For this reason, we propose in
Definition 11 a new metric called the Mean Certifiable Robustness (MCR).

Definition 11 (Mean Certifiable Robustness – MCR). For any function f : X → R ∈ LipNet1
we define its weighted mean certifiable robustness R(P,y)(f) on class P with label y ∈ {−1,+1} as:

R(P,y)(f) :=Ex∼P [1{yf(x) > 0}|f(x)|] + Ex∼P [−1{yf(x) < 0}|f(x)|]
=Ex∼P yf(x).

(4.11)

We can readily see from the definition that the classifier with highest MCR for class P is the
constant classifier f = y × ∞. The interest of this notion arises when we consider minimizing the
loss function LW (f(x), y) := −yf(x) for different classes P and Q, i.e when looking for classifier
with the highest MCR.

Property 4. Wasserstein classifiers (i.e WGAN discriminators) are optimally robust.
The minimum of LW (f(x), y) over P and Q is the Wasserstein-1 distance (Villani, 2008) between P
and Q according to the Kantorovich-Rubinstein duality:

max
f∈Lip1(X ,R)

R(P,+1)(f) +R(Q,−1)(f) = min
f∈Lip1(R

n,R)
EPXY

[LW (f(x), y)] = W1(P,Q). (4.12)

Proof. The result is straightforward by writing the dual formulation (following Kantorovich-Rubinstein)
of Wasserstein W1 metric. By Remark 6.3 of Villani (2008) the Wasserstein-1 distance is the
Kantorovich-Rubinstein distance:

W1(P,Q) = sup
f∈Lip1(X ,R)

Ex∼P [f(x)] + Ez∼Q[f(z)].

We see that:

W1(P,Q) = sup
f∈Lip1(X ,R)

Ex∼P [f(x)]− Ez∼Q[f(z)]

= inf
f∈Lip1(X ,R)

Ex∼P [−f(x)] + Ez∼Q[−(−f(z))]

= inf
f∈Lip1(X ,R)

E(x,y)∼PXY
[LW (f(x), y)].

(4.13)

By Kirszbraun’s theorem, the optimum of Equation 4.13 can be extended into a 1-Lipschitz
function over Rn. This function can, in turn, be approximated by a LipNet1 network over the
domain of interest.

Even though the minimizer of LW (f(x), y) can have low accuracy, it has the highest MCR.
Interestingly, the minimizer f∗ of equation 4.12 is invariant by translation: f∗−T is also a minimizer
for any T ∈ R. When T → ∞ (resp. −∞) the classifier has 100% recall on Q (resp. P ), and 0%
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on P (resp. Q). Does it always exist T* with 100% accuracy overall? Sadly, even when the P and 
Q have disjoint support, the answer is no. We precise this empirical observation of !Serrurier et al.l 
Q2021D in Proposition [fil 

Proposition 6 . W GAN discriminators ar e weak classifie rs. For every ½ 2 € > 0 there exist 
distributions p and Q with disjoint sitpports in lR sitch that for any optimum f of equation rn the 
error of classifier sign of is superior to ½ - €. 

Proof We will build P and Q as a finite collection of Dira.es. Let P = ¼ I:f=1 84(i-l) and Q = 
¼ I:;~1 o4i - l for some n E N, where Ox denotes the Dirac distribution in x ER A example is depicted 
in Figure ~ for n = 20. In dimension one, t he optimal transportation plan is easy to compute: each 
atom of mass from P at position i is matched with the corresponding one in Q to its irnmediate rigbt. 

Consequently we must have .f(4i- l) = f(4(i - 1))+3. 
The fonction f is not uniquely defined on segments 
[4i - 1, 4i] but it does not mat ter: since f is 1-Lipschitz 
we must have lf(4i - 1) - f(4i)I $ 1. Consequently in 
every case for i < j we must have f(4(i - 1)) < f (4(j - 1)) 
and .f ( 4i - 1) < f ( 4j - 1). Said otherwise, f is strictly 
increasing on supp P and supp Q. The solutions of 
the problems are invariant by translations: if f is the 
solution, then .f - T with T E lR is also a solution. Let's 
take a look at classifier c(x) = sign(.f(x) -T). If T is Figure 4.4: Pathological distributions P 
chosen such that f(4(i-1))-T < 0 and f(4i-1)-T > 0 and Q of 20 points each, on which the accu
for some 1 ::; i $ n then (n - 1) + 2 = n + 1 points are racy of the Wasserstein minimizer cannot 
correctly classified on a total of 2n points. It corresponds exceed 52.5%. 
to an error of n-l - 1 - ..!.. We see that other values 2n-2 2n· ~ 

for T leads to worse error. Take n = f le l to conclude. 0 
Note that the minimum of Equation []] is also invariant by dilatation: any finite upper bound 

L can be chosen. 

4.2.3 Controlling of t he accuracy / robustness tradeoff 

Now that the extrema of the accuracy robustness tradeoff were characterized in rnJ and ~ is 
yet to be answered if it is possible to control this tradeoff using conventional loss (and its parameters, 
as introduced in ~ -

Interestingly, observe that ,e~ce(f(x), y) = log2 - yr~(x) + 0(72 .f2 (x)) so when 7" --t O we get: 

In the lirnit of small temperatures, the BCE minimizer essentially behaves like the classifier of the 
highest MCR (see Figure g]}. Similarly, the HKR loss ,ehkr introduced in !Serrurier et ai.l d2021b for 
LipNetl training allows fine grained control of the accuracy-robustness tradeoff: 

L':/:,~(f(x) , y) = ,ew (f (x), y)+ a.C;ti(f(x) , y) = - yf (x) + a max (0, m - yf (x)). (4.14) 

'vVe recover W1 behavior for 0: = 0, and hinge .C!ft behavior for a --t oo, in a fashion that reminds 
the role of 7" for ,ebce. 
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Figure 4.5: Accuracy-Robustness trade-off on CIFARlO with Hinge , HKR and Categorical 
Cross-Entropy (CCE) hyper-paramet ers . Overall, for a given network architecture, a Pareto 
front appears between clean accuracy and robust accuracy. We move along it by turùng the parameters 
of each loss . We trained srnall LipNetl CNNs (0.4M params) with basic data augmentation. 

Takcaways 

The key takeaway is that BCE, HKR and hinge Joss have parameters that allow to control 
the accuracy / robustness tradeoff, reaching on one side the maximum robustness of Mean 
Certifiable Robustness, and the accuracy of unconstrained networks on the other. Empirically 
this t radeoff is observed as a Pareto front with accuracy on one axis, and robustness on the 
other . Figure E!] shows this on the CIFARlO dataset using the accuracy at € = 36/ 255 as a 
measure of robustness. 

A more fine-grained analysis of Binary Cross-Entropy 

In the following, we try to draw other links between BCE minimization and optimal t ransport . Since 
the objective function is optimized with gradient descent , the gradients of the loss is the object of 
interest. We re-introcluce fo as a function parameterizecl by 0, mapping the input to the logits. Let 
g~(x) = a(fo(x)) and g$(x) = 1 - a(fo(x)) . . </o(x) (resp. 9$(x)) are t he predictecl probabilit ies of 
class + 1 ( resp. -1) . 

Now define z ; = Ex,._,p[gZ(x) ] and zg = Ex,._,Q [9;(x)] . z ; can be seen as the weighted rate of 
false negatives. That is the average mass of probability given to class - 1 by fo when examples are 
sampled from class + l. Similarly, z g can be seen as the rate of false positives. We let: 

1 1 
dPo(x) = zP9Z(x) dP(x) and dQo(x) = zq9:(x) dQ(x). 

0 0 
(4.15) 

Consequently, Po (resp. Qo) is a valid probability distribution on !Rn corresponding to the probability 
of an example x to be incorrectly classified in class - 1 (resp. + l ). With these notations, the full 
expression of the gradient takes a simple form. Behold the minus sign: it is a gradient descent and 
not a gradient ascent. 

We apply a bias term T E IR to classify with .fo - T instead. For a well-chosen T we can enforce 
z; = zg, and such T can be found using the bisection method. The optimization is performed over 
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the set of 1-Lipschitz functions. We end up with:

Zp
θ (Ex∼Pθ

[∇θfθ(x)]− Ex∼Qθ
[∇θfθ(x)]). (4.17)

This is the gradient for the computation of Wasserstein metric W between Pθ and Qθ, using
Rubinstein-Kantorovich dual formulation. Hence, binary cross-entropy minimization is similar to
the computation of a transportation plan between “errors” distributions Pθ and Qθ. Note that Pθ

and Qθ depend on the current classifier fθ − T , so the problem is not stationary as the training
progresses.

In AllNet networks, as the training proceeds, the Lipschitz constant increases (equivalently
increasing τ) and the loss “self-correct” with Pθ and Qθ to improve accuracy.

Takeaways

This reasoning can be generalized to any elementwise loss in symmetric binary classification
tasks. In this context, symmetric means that the sign of the loss is flipped under label
swapping. For suitable weight functions gpθ and gqθ , the “importance sampling” trick used
previously can be re-applied, and always yield gradient steps of the form:

Zp
θ (Ex∼Pθ

[∇θfθ(x)]− Ex∼Qθ
[∇θfθ(x)]). (4.18)

for some some distributions Pθ and Qθ. Here, Pθ and Qθ can be seen as a dynamic re-
weighting of the samples on the fly, in a scheme that reminds of boosting approaches (see
for example Friedman (2001) and Friedman (2002)). This also draws some links with the re-
weighted gradient descent algorithms like those studied in El Hanchi et al. (2022) or Kumar et al.
(2023). In either case, if the loss depends on a hyper-parameter τ such that Pθ, Qθ −−−→

τ→0
c

for some constant c, then in the limit the gradient step behaves exactly like the one of
Kantorovich-Rubinstein loss.

4.3 Generalization results

These last two sections demonstrated that restraining networks to be in LipNet1 does not impact
the classification capabilities while providing certificates of robustness; however, for these networks
the loss parameters play an important role in this trade-off.

In this section, we explore the statistical and optimization properties of LipNet1 networks, and
we prove the assumption of Gouk et al. (2021) that “adjusting the Lipschitz constant of a feed-forward
neural network controls how well the model will generalise to new data”.

4.3.1 Consistency of LipNet1 class

LipNet1 class enjoys another remarkable property since it is a Glivenko-Cantelli class: minimizers of
Lipschitz losses are consistent estimators. In other words, as the size of the training set increases,
the training loss becomes a proxy for the test loss: LipNet1 neural networks will not overfit in the
limit of (very) large sample sizes.

Proposition 7. Train Loss is a proxy of Test Loss. Let PXY a probability measure on X × Y
where X ⊂ Rn is a bounded set. Let (xi, yi)1≤i≤p be a sample of p iid random variables with law
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PXY . Let L be a Lipschitz loss function over R× Y. We define:

Ep(f) :=
1

p

p∑
i=1

L(f(xi), yi) and E∞(f) := E(x,y)∼PXY
[L(f(x), y)]. (4.19)

Then the empirical loss Ep(f) converges to the test loss E∞(f) (taking the limit p → ∞):

min
f∈LipL(X ,R)

Ep(f) a.s−−→ min
f∈LipL(X ,R)

E∞(f). (4.20)

Proof. This result is an application of Glivenko-Cantelli theorem. We proved in Proposition 4 that
the minimum of equation 4.5 is attained, so we replace inf by min for the Lipschitz loss function L.
We restrict ourselves to a subset of LipL(X ,R) on which ‖f‖∞ ≤ 2Ldiam X because the minimum
lies in this subspace. We have:

|min
f

Ep(f)−min
f

E∞(f)| ≤ max
f

|Ep(f)− E∞(f)|.

Let gy(x) = L(f(x), y). Note that g is also Lipschitz and bounded on X . The entropy with
bracket (see A.W. van der vaart (1996), Chapter 2.1) of the class of functions G = {gy = L ◦ f |f ∈
LipL(X ,R), y ∈ Y,X bounded and ‖f‖∞ ≤ 2Ldiam X} is finite (see A.W. van der vaart (1996),
Chapter 3.2). Consequently G is Glivenko-Cantelli. Finally maxf |Ep(f) − E∞(f)| a.s−−→ 0 which
concludes the proof.

Results of Table 4.2. Loss Lhkr
m,λ still belong to Glivenko-Cantelli classes as sum of functions

LW and LH
m from Glivenko-Cantelli classes (on same distribution PX).

It is another flavor of the bias-variance trade-off in learning. Thanks to Corollary 2 we know the
LipNet1 class does not suffer of bias, while the generalization gap (i.e the variance) can be made as
small as we want by increasing the size of the training set (see Figure 4.6). This result may seem
obvious, but we emphasize this property is not shared by AllNet networks. Nonetheless, most
practitioners take for granted that bigger training sets ensure generalization for AllNet networks.

Exemple 4.4. experimental protocol of figure 4.6.

As the size of the training set increases, the training loss becomes a proxy for the test loss.
However, we do not give convergence speed bounds: we do not know how many samples are
needed for a given task to observe the convergence between train and test losses. Moreover,
the losses are parametrized (e.g by τ, α,m) so we expect to have different convergence rates,
depending on those parameters. In order to observe this empirically on the CIFAR10 dataset,
the same architecture was trained successively on 2%, 5%, 10%, 25%, 50% and 100% of the
dataset. The sub-sampling was performed with a different seed each time. Similarly, this
procedure has been repeated with different values for τ . The number of examples required to
close the generalization gap is dataset specific in general, however it seems that with low τ
fewer examples are required.

4.3.2 Divergence and overfitting in conventional networks

Surprisingly, on AllNet networks, minimization of BCE leads to uncontrolled growth of Lipschitz
constant and saturation of the predicted probabilities. This is an impediment to generalization
results.
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Figure 4.6: Link between LipNetl and generalization gap, dataset size and cross-entropy 
temperature. We train a CNN on different fractions of the CIFARlO train set (2%, 5%, 10%, 
25%, 50% and 100% on x-axis) with djfferent values of temperature T (bighlighted by d ifferent 
colors). Train (resp. validation) accuracy forms the upper (resp. lower) bound of each envelope. 
As T increases, more samples are required to reduce the generalization gap. Conversely, training 
a LipNet l network with small T is equivalent to training a Lipschitz network with small L: the 
network generalizes well but the accuracy reaches a plateau (under-fitting). The AllNet network (in 
red) severely overfit: the generalization gap is large and validation accuracy corresponds to the limit 
that woulcl reach a LipNetl as T increases. 

Proposition 8. Optimizing BCE over AllNet leads to divergence. Let .ft be a seqtience 
of neural networks, that minimizes the BCE over a non-trivial training set (at least two difj'erent 
examples with different labels) of size p, i.e assume that: 

1 p 

lim - ~.C-r(ft(xi) ,Yi) = O. 
l-+oo p . ,.=1 

(4.21) 

Let Lt be the Lipschitz constant of fi,. Then limt-too Lt = +oo. There is at least one weight matrix 
W such that limHoo IIWtll = +oo. Purthermore, the predicted probabilities are saturatecl: 

lim a(fl(xi)) E {O, l}. 
l-+oo 

(4.22) 

Proof This result only requires to take a look at the logits of two examples having different labels. 
Let t EN. For the pair i , j, as Yi=/- Yi, by positivity of[, we must have: 

(4.23) 

As the right band side has limit zero, we have: 

lim .C(ft(Xi) , +l) = lim I,(ft(xj) , -1) = 0 
l -+oo l -+oo 

=> lirn -ft(Xi) = lim ft(Xj) = -oo. 
l-+oo t-+oo 

(4.24) 

Consequently lirnHoo lft(xi) - ft(xj) I = +oo. By definition Lt ?: IJ,(tt:~=~~)1i)I so limHoo Lt 
+oo. D 
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This issue is especially important since Lipschitz constant and adversarial vulnerabilities are
related (Nar et al., 2019). Indeed, the existence of the adversarial attack itself is the proof that the
local Lipschitz constant is high. The predicted probability σ(f(x)) will either be 0 or 1 (regardless
of the train set), which do not carry any useful information on the true confidence of the classifier,
especially in the out-of-distribution setting.

Exemple 4.5. divergence of the optimization

Even on toy example 6 with a trivial model, the minimization problem is ill-defined. Without
weight regularization, the minimizer can not be attained. This is compliant with the high
Lipschitz constant of AllNet networks that have been observed in practice Scaman and Virmaux
(2018), and is confirmed by our experiment on MNIST with a ConvNet (see Figure 4.7).
The behavior of example 6 can be observed at larger scale on MNIST with a Convolutional
neural network. We used 3×3 convolution filters of widths 32 � 64 with MaxPool and ReLU,
followed by a flattening operation and densely connected layers of widths 256 � 10. Newton’s
method cannot be used due to its memory requirements on ConvNet. We tested SGD with
learning rate η = 0.1 and momentum m = 0.9, and Adam with learning rate η = 1e− 3 and
other default parameters. Experiments were run both in float32 and float64 precision. We
monitor the maximum spectral norm of the weights of the network throughout training for
each epoch t ∈ N:

Mt = max
i

‖W t
i ‖2.

We report Mt as function of epoch t in Figure 4.7. The validation accuracy is above 98%
after the first epoch, and fluctuates between 98.5% and 99.5% during the following epochs
(in either cases). Similarly the validation loss fluctuates between 1e − 1 and 10−3. We see
that on this simple task the spectral norm of weight matrices is multiplied by 5 over the
course of 25 epochs, , whereas the validation accuracy remains the same after the first epoch
(around 99%). Interestingly, on this experiment the vanishing gradient phenomenon cannot
be observed after 25 epochs and the results are robust with respect to the precision of the
floating point arithmetic.

This is compliant with the observations made in the literature about the high Lipschitz constant
of AllNet networks (Scaman and Virmaux, 2018). We observe that Adam makes the problem worse,
even if its learning rate is smaller. This may explain why many practitioners reported that Adam
was more susceptible to overfit than SGD with a carefully tuned learning rate scheduling.

We can always find a network reaching arbitrary small loss on the train set, and arbitrary high
loss on the test set. Hence, for AllNet networks increasing the size of the training set does not give
any formal guarantee to generalization capabilities in general.

Proposition 9 (AllNet networks can always overfit). Assume that distributions P and Q admit a
pdf. Let n ∈ N, M > 0 and ε > 0. Let (xi, yi)1≤i≤p be a sample of p iid random variables with law
PXY with xi �= xj for all i �= j. Then there exists f∗ ∈ AllNet such that:

f∗ ∈ {f ∈ AllNet |Ep(f) =
1

n

n∑
i=1

LT (f(xi), yi) ≤ ε}

and
E∞(f∗) = E(x,y)∼PXY

[LT (f
∗(x), y)] ≥ M.
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Figure 4. 7: Maximum spectral norm of t he weights of a simple Conv Net of AllN et trained 
with different optimizers on MNIST dataset. The validation accuracy remains above 98.5% 
after the second epoch but the network's weights do not converge: the spectral norm seems to grow 
indefinitely. 
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Exemple 4.6. Linear classifier 

Consider a classification task on IR with Jin
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Fortunately, as soon as the deep learning practitioner restricts itself to a subset of architectures 
of bounded size, the Proposition ~ is no longer relevant. However, this theorem suggests that if one 
wants to bencfit from useful generalization guarantees, one must keep the architecture of the network 
fi.xed once for al! while increasing the training set size. This contradicts the trend in deep learning 
community to use bigger and bigger models when more data becomes available (Resnet-152, GPT-3, 
etc.). In the light of this observation, t he existence of adversarial attacks should be an expected 
phenomenon. 

Lipschitz networks, on the other side, benefit from Proposition 0 minimization of train loss 
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implies minimization of test loss. Conversely, if the test loss is high and the sample size huge, it
means that the train loss is high too.

Furthermore, there is an issue of vanishing gradients with BCE : first order methods struggle to
saturate the logits of AllNet networks, whereas second order methods in float64 diverge as expected.
The poor properties of the optimizer, and the rounding errors in 32 bits floating point arithmetic,
have greatly contributed to the caveat of BCE minimization remaining mostly unnoticed by the
community.

4.3.3 Lipschitz classifiers are PAC learnable

Hinge loss LH
m and HKR loss Lhkr benefit from Proposition 7. The certificate |f(x)| can be understood

as confidence. Hence, we are interested in a classifier that makes a decision only if the prediction
is above some threshold m > 0, while |f(x)| < m can be understood as examples x for which the
classifier is unsure: the label may be flipped using attacks of norm ε ≤ m.

In this setting, we fall back to PAC learnability (Valiant, 1984): this theory gives bounds on
the number of train samples required to guarantee that the test error will fall below some threshold
0 ≤ e < 1

2 with probability at least 1 > β ≥ 0, through the use of Vapnik Chervonenkis (VC)
dimension bounds (Vapnik and Chervonenkis, 1971).

Remark 4.1. Classical learning theory: a crash course.

We recall below the definition of the Vapnik-Chervonenkis dimension (Vapnik and Chervo-
nenkis, 1971) of a class of hypothesis, that build upon shattered sets.

Definition 12 (Set shattered by an hypothesis class). Let Y = {−1,+1}. Let H be a
class of hypothesis - that is, a set of functions X → Y. The set of points (xi)1≤i≤N ∈ XN

is said to be shattered by H if for every sequence of labels (yi)1≤i≤N ∈ YN , there exists an
hypothesis h ∈ H such that for every 1 ≤ i ≤ N we have h(xi) = yi.

Definition 13 (Vapnik-Chervonenkis dimension). The VC dimension of H, denoted
V Cdim(H), is the greatest integer N ∈ N such that it exists a sequence of points (xi)1≤i≤N ∈
XN shattered by H.

Roughly speaking, the VC dimension of H is the size of the biggest set of points such that
H agrees with any label assignment on this set of points. It measures the capacity of a set
of classifiers H to separate some sets of points. The interest of VC dimension introduced in
Definition 13 is its link with Probably Approximately Correct (PAC) learning (Valiant, 1984).

Definition 14 (Agnostic Probably Approximately Correct (PAC) learnability).
An hypothesis class H of functions X → Y is PAC learnable if there exists a function
mH : (0, 1)2 → N and a learning algorithm D �→ hm such that for every (e, β) ∈ (0, 1)2, for

any distribution PXY on X × Y, for any dataset D = ((x1, y1), (x2, y2), . . . , (xm, ym))
iid∼ PXY

of size m ≥ mH(e, β), we have:

P(EPXY
(hm) ≤ min

h∈H
EPXY

(h) + e) ≥ 1− β.

We denote by EPXY
(h) := E(x,y)∼PXY

[1{h(x) �= y}] the empirical risk: the expectation of error
function over PXY .

Roughly speaking, for an agnostic PAC learnable class, the probability to pick the best
hypothesis h∗ ∈ H up to error e > 0 happens with probability at least 1 − β > 0 over
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datasets of size at least mH(e, β) sampled from distribution PXY . This definition captures
the hypothesis classes that are “small enough” such that a reasonably high number of samples
allows you to pick the best hypothesis by high probability.

The implication “finite VC dimension” =⇒ “agnostic PAC learnable” is a classical result from
Blumer et al. (1989). This motivates to compute the VC dimension of Lipschitz classifiers: it yields
PAC learnability results.

Proposition 10. 1-Lipschitz Functions with margin are PAC learnable. Assume P and
Q have bounded support X . Let m > 0 the margin. Let Cm(X ) = {cmf : X → {−1,⊥,+1}, f ∈
Lip1(X ,R)} be the hypothesis class defined as follow.

cmf (x) =

⎧⎪⎨
⎪⎩
+1 if f(x) ≥ m,

−1 if f(x) ≤ −m,
⊥ otherwise, meaning “f doesn’t feel confident”.

(4.25)

Let B be the unit ball. Then the VC dimension of Cm is finite:

(
1

m
)n
vol(X )

vol(B)
≤ V Cdim(Cm(X )) ≤ (

3

m
)n
vol(X )

vol(B)
. (4.26)

Proof. This approach with margins m yields objects known in the literature as m-fat shattering
sets Gottlieb et al. (2014).

The VC dimension of Cm(X ) is the maximum size of a set shattered by Cm(X ). As the functions
f are 1-Lipschitz, if cmf (x) = −cmf (y) then f(x) ≥ m, f(y) ≤ m and ‖x− y‖ ≥ 2m. Consequently, a
finite set X ⊂ X n is shattered by Cm(X ) if and only if for all x, y ∈ X we have B(x,m)∩B(y,m) = ∅

where B(x,m) is the open ball of center x and radius m.
The maximum number of disjoint balls of radius m that fit inside X is known as the packing

number of X with radius m. X is bounded, hence its packing number is finite.
The bounds on the packing number are a direct application of Szarek (1998) (Lemma 1).

Interestingly if the classes are ε separable (ε > 0), choosing m = ε guarantees that 100% accuracy
is reachable. Prior over the separability of the input space is turned into VC bounds over the space
of hypothesis. When m = 0 the VC dimension of space Cm(X ) becomes infinite and the class is
not PAC learnable anymore: the training error will not converge to test error in general, regardless
of the size of the training set. It is not a contradiction with Proposition 7: error E(cmf (x)) lacks
continuity w.r.t f(x) so it is not a consistent estimator. Note that this result is compliant with
earlier observations of Bartlett (1996).

Warning 4.2. Architecture independant bound

This VC bound is architecture independent which contrasts with the rest of literature on
AllNet networks. Practically, it means that the LipNet1 network architecture can be chosen
as big as we want without risking overfitting, as long as the margin m is chosen appropriately.

Proposition 11 also provides an architecture dependant bound for LipNet1 networks. With
GroupSort2 activation function, we get the following rough upper bound.
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Proposition 11. VC dimension of LipNet1 neural networks. Let fθ : Rn → R a LipNet1 neural
network with parameters θ ∈ Θ, with GroupSort2 activation functions, and a total of W neurons.
Let H = {signfθ|θ ∈ Θ} the hypothesis class spanned by this architecture. Then we have:

V Cdim(H) = O
(
(n+ 1)2W

)
. (4.27)

From Proposition 11 we can derive generalization bounds using PAC theory. Note that most
results on VC dimension of neural network use the hypothesis that the activation function is applied
element-wise (such as in Bartlett et al. (2019)) and get asymptotically tighter lower bounds for ReLU
case. This hypothesis does not apply to GroupSort2 which is known to be more expressive (Tanielian
and Biau, 2021), however we believe that this preliminary result can be strengthened.

Our result is actually a bit more general and applies more broadly to activation functions that
piece-wise linear and partition the input space into convex sets.

Proof. The proof uses the number of affine pieces generated by GroupSort2 activation function, and
the VC dimension of piecewise affine classifiers with convex regions.

First, we need the following lemma.

Lemma 1 (Piecewise affine function). Let H a class of classifiers that are piecewise affine, such
that the pieces form a convex partition of Rn with B pieces (each piece of the partition is a convex
set). Then we have:

V Cdim(H) = O
(
(n+ 1)B2

)
.

The proof of Lemma 1 is detailed below.
Let G(N) be the growth function (Vapnik, 2013) of H. According to Sauer’s lemma (Vapnik,

2013) if it grows polynomially with the number of points, then the degree of the polynomial is an
upper bound on the VC dimension. We will show that is indeed the case by computing a crude
upper bound of the degree. Assume that we are given N points, and N big enough such that Sauer’s
lemma can be applied.

Assume that we can choose freely the convex partition, and then only the affine classifier inside
each piece. In general for neural networks that might not be the case (the boundary between
partitions depends of the affine functions inside it, since neural networks are continuous); however,
we are only interested in an upper bound so we can consider this generalization.

Each piece of the partition is a polytope (León and Ziegler, 2018). Each polytope is characterized
by a set of exactly B − 1 affine inequalities since each polytope is the intersection of B − 1
halfspaces (León and Ziegler, 2018). The whole partition is characterized by B(B−1)

2 affine inequalities.
We divide by two because of the symmetry. Hence there exists an injective map from the set of
convex partitions with B pieces into (Rn+1)

B(B−1)
2 . It is not a bijective map in general, since different

systems might describe the same partition, and some degenerate systems do not correspond to
partitions at all.

We split the problem and consider each one of the B(B−1)
2 inequalities independently. According

to Sauer’s lemma, there is O(Nn+1) ways to place the first hyperplane characterizing the first

halfspace. Idem for the second hyperplane, and so on. Hence, there is at most O((Nn+1)
B(B−1)

2 )
ways to assign the N points to the B convex bodies.

Each convex body (among the B of them) contains atmost N points, on which (still according
to Sauer’s lemma) there is at most O(Nn+1) way to assign them labels +1 or −1, since the classifier
is piecewise affine.

Consequently, we have G(N) = O((Nn+1)
B(B−1)

2 (Nn+1)B) = O((Nn+1)
B(B+1)

2 ) = O((Nn+1)B
2
).

Sauer’s lemma allows us to conclude:

V Cdim(H) = O
(
(n+ 1)B2

)
.
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Proof of the main result. Now, we need to prove that f is piecewise affine and the number
of such pieces is not greater than

∏k
i=1 2

wi
2 =

√
2W , where wi is the number of neurons in layer i.

We proceed by induction on the depth of the neural network. For depth K = 0 we have an affine
function Rn → R which contains only one affine piece by definition (the whole domain), so the result
is true.

Now assume that a neural network Rw1 → R of depth K with widths w2w3 . . . wk has Sk affine
pieces. The enumeration starting at w2 is not a mistake: we pursue the induction for a neural
network Rn → R of depth K+1 and widths w1w2 . . . wk. The composition of affine function is affine,
hence applying an affine transformation Rn → Rw1 preserves the number of pieces. The analysis
falls back to the number of distinct affine pieces created by GroupSort2 activation function. If such
activation function creates S pieces then we have the immediate bound SK+1 ≤ SSk.

Let (Jf)(x) ∈ Rw1×w1 be the Jacobian of the GroupSort2 operation evaluated in x. The cardinal
|{(Jf)(x), x ∈ Rw1}| is the number of distinct affine pieces. For GroupSort2 we have combinations
of wi

2 MinMax gates. Each MinMax gate is defined on R2 and contains two pieces: one on which
the gate behaves like identity and the other one on which the gate behaves like a transposition.
Consequently we have Sk+1 ≤ 2

wk
2 Sk and unrolling the recurrence yields the desired result.

Finally, we just need to apply the Lemma 1 with B =
√
2W .

4.4 Calibration of temperature

The temperature parameter of cross-entropy enjoys a nice interpretation as the strength of an
entropic regularization term. Like any regularization term, it can be optimized on a validation set.
Here, it has the advantage of being understood as a form of calibration, when the noise on the train
set and the set are different. The preliminary work of this section is unpublished.

4.4.1 Regularized predictions functions with entropy penalty

This section takes strong inspiration from the works of Blondel et al. (2019) and Blondel et al.
(2020). We recall below the main tools introduced in these papers. In the following, we consider a
supervised classification task with dataset D consisting of pairs (xi, yi) with xi ∈ X the input data,
and y ∈ Y = �1, . . . ,K� the label, where K is the number of classes. We consider a parametrized
model fθ : X → S producing a score vector s := fθ(x) ∈ S living in score space S ⊆ Rd. Typically
S = RK and the score is used to predict a label f having the maximum score:

f(s) := argmax
i∈�1,...,K�

si. (4.28)

This approach can be generalized to any convex score space S:

f(s) := argmax
y∈S

〈s, y〉. (4.29)

The inner product 〈s, y〉 measures the affinity between the input x and the prediction y, through
the score predictor fθ. We see that Equation 4.28 is actually a particular case of Equation 4.29 when
the score space § is restricted to the canonical basis S = {ei|1 ≤ i ≤ n}.

Definition 15 (Regularized prediction function). We consider the convex-hull of the scores conv(S) :=
{Ep[Y ], p ∈ Δ|S|} where Δ|S| is the probability simplex in dimension |S|. Furthermore we add a
regularization term Ω : Δ|S| → R to obtain the final formulation studied in:
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fΩ(s) ∈ argmax
μ∈conv(S)

〈s, μ〉 − Ω(μ). (4.30)

Importantly, μ is a regularization of the prediction, not of the parameters W . This framework is
very general and allows us to tackle the case of Softmax for example, as detailed in Blondel et al.
(2019).

Exemple 4.7. Softmax as regularized prediction function (Blondel et al., 2019)

Consider Ω(s) = −H(s) + 1{s ∈ Δ} where 1{s ∈ Δ} is indicator function of the probability
simplex of dimension K:

1{s ∈ Δ} :=

{
0 if si ≤ 0 and

∑K
i=1 si = 1,

+∞ otherwise,
(4.31)

and H(s) = −∑K
i=1 pi log pi the celebrated Shannon entropy. Then it can be shown that:

fΩ(s) = softmax(s) =
exp s∑K
i=1 exp si

. (4.32)

The regularization Ω can be used to define a special kind of loss, the Fenchel-Young loss.

Definition 16 (Fenchel-Young losses, Blondel et al. (2019)). The Fenchel-Young loss LΩ : Rd ×
dom(Ω) → R+ generated by Ω is defined as:

LΩ(s, y) := Ω∗(s) + Ω(y)− 〈s, y〉, (4.33)

where
Ω∗(s) := sup

μ∈dom(Ω)
〈s, μ〉 − Ω(μ) (4.34)

is the Fenchel conjugate of Ω. Notably we have:

LΩ(s, y) = Ω(y)− 〈s, y〉 − Ω(fΩ(s)) + 〈s,fΩ(s)〉
= (Ω(y)− Ω(fΩ(s)))− 〈s, y − fΩ(s)〉.

(4.35)

Furthermore the following holds:

fΩ(s) ∈ argmin
μ∈dom(Ω)

LΩ(s, μ). (4.36)

In the case of Softmax, we fall back to the familiar Softmax-Crossentropy loss, as derived in Boyd
and Vandenberghe (2004) and (Blondel et al., 2019).

Exemple 4.8. Fenchel-Young loss from entropic regularization

Assume that ΩCE(s) = −H(s) + 1{s ∈ Δ}. Then:

LΩCE
(s, y) = −sk + log

K∑
i=1

exp si (4.37)

where the ground truth y is the one-hot encoding of the class k.
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Lipschitz network training with entropic regularization

In this section, we apply the previous tools to train LipNet1 with Cross-entropy and temperature
scaling τ . In the following we denote it Lτ

CE := LΩCE
(τs, y) = LΩCE

(τs, y). We assume that the
dataset D = {(x1, y1), . . . , (xn, yn)} is sampled from the joint distribution P⊗n. For a score functions
f : X → S we define the population risk (i.e the “test loss”) as follow:

E(f) := E(x,y)∼P [L
τ
CE(f(x), y)]. (4.38)

Let F ⊆ (X → S) be a set of score functions over a suitable domain. We consider the classical
setting of Empirical Risk Minimization (ERM) where the expectation is taken over the train set D:

M(F , L,D) = arg inf
f∈F

E(x,y)∼D[L(f(x), y)], (4.39)

where M(F , L) ⊂ F is the set of minimizers in function space F and loss Rd×dom(Ω) → R+. Then
we have:

M(Lipτ (X ,S,D), LΩCE
) = M(τLip1(X ,S), LΩCE

)

= arg inf
f∈Lip1(X ,S)

E(x,y)∼D[LΩCE
(τf(x), y)]

= arg inf
f∈Lip1(X ,S)

E(x,y)∼D[L
τ
CE(f(x), y)].

(4.40)

Now, take a closer look at Lτ
CE(f(x), y). Per the temperature scaling property (proposition 2

item 5 of Blondel et al. (2020)) we have:

Lτ
CE(f(x), y) = LΩCE

(τf(x), y)

= τLΩCE/τ (f(x), y)

= τ
(
(Ω(y)− Ω(fΩ/τ (f(x)))/τ)− 〈f(x), y − fΩ/τ (f(x))〉

)
.

(4.41)

Here, τ appears as a common pre-factor that does not depend on (x, y), so it does not change
arg inff∈Lip1(X ,S) and it can be dropped safely. If we assume that y is a deterministic label (as often
in supervised learning), we have Ω(y) = 0. We end-up with:

−Ω(fτΩ(f(x)))/τ − 〈f(x), y − fΩ/τ (f(x))〉. (4.42)

We recall that:
fτΩ(f(x)) = argmax

μ∈Δ|S|

〈f(x), μ〉 − Ω(μ)/τ

= argmax
μ∈Δ|S|

〈τf(x), μ〉 − Ω(μ)

= softmax(τf(x)) ∈ ΔK .

(4.43)

We see that the temperature parameter β := 1/τ plays the role of entropic regularization in the
predictions. Finally, M(Lipτ (X ,S), LΩCE

) expands as:

τ · arg supp
f∈Lip1(X ,S)

E(x,y)∼D[βΩ(fβΩ(f(x))) + 〈f(x), y − fβΩ(f(x))〉]. (4.44)

For the population risk, abusing the notation E(x,y)∼P [·] = P[·], we obtain:

fβ ∈ arg supp
f∈Lip1(X ,S)

P[βΩ(fβΩ(f(x)))− 〈f(x),fβΩ(f(x))〉]︸ ︷︷ ︸
Regularization dependent

+ P[〈f(x), y〉]︸ ︷︷ ︸
Label dependant.

. (4.45)
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Remark 4.2. Asymptotic regimes.

We recognize the asymptotic behavior of cross-entropy loss.
• Case of β → 0. The regularization term vanishes. Therefore fβΩ(f(x)) = ek with
k = argmaxi si the argmax prediction. Finally, only remains the term 〈f(x), y − ek〉
with y − ek which is either 0, either a vector full of zero’s with two coordinates +1 and
−1 respectively. This is the familiar 0-1 loss, equal to the error, piecewise constant, not
differentiable everywhere.

• Case of β → +∞. The regularization term is dominant. As a consequence fβΩ(f(x)) =
(1/n)1. The contribution of the ground truth y vanishes and the optimum degenerates
to the constant classifier of maximum entropy.

We may be interested in the dynamic of the sequence of 1-Lipschitz functions fβ when τ → +∞,
since it mimics the dynamic of the training of an unconstrained network, up to the rescaling factor τ .
We will see in the next section that this regularization allows for a nice interpretation as a train-test
distribution shift, whether noise in the measurements x or label noise y.

4.4.2 Tuning of the temperature on a calibration set

Now that the role of (inverse) temperature τ is understood as (inverse) entropic regularization of the
predictions, a natural question to ask is whether or not it can improve accuracy when noise corrupts
the data. To test this hypothesis, we minimize the risk on train set D, but we measure the risk on a
calibration set T . Importantly, we do not assume that D and T are finite samples from the same
distribution, to take into account distribution shifts.

We propose algorithm 4. In this setting, the optimization is performed on the set of 1-Lipschitz
functions by minimizing the loss on the train set D, and then by minimizing the loss on the set
calibration set T solely with optimization of temperature β. This algorithm shares a similar spirit
with the “stability control loop” studied in the paper Gupta et al. (2022a), where the Lipschitz
constant is updated periodically.

Algorithm 4 Self calibration of Cross-entropy temperature
Input: 1-Lipschitz neural network architecture fβ , initial temperature β0
Input: Train set D, calibration set T
1: repeat
2: Fit the empirical risk minimizer of Cross-Entropy with fixed temperature βt:

ft+1 ∈ arg inf
f∈Lip1(X ,S)

E(x,y)∼D[L
βt

CE(f(x), y)].

3: Fit the temperature βt of Cross-Entropy with fixed predictor ft:

βt+1 ∈ arg inf
β∈R+

E(x,y)∼T [L
βt

CE(f(x), y)].

4: until convergence of βT .
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Exemple 4.9. Temperature calibration on Two Moons dataset.

In this setting we consider the Two Moons dataset in three different scenarios.
1. Clean-Clean scenariio. Here D and T are sampled from the same distribution P , with

very small measurement errors in x position. The two moons supports are disjoint.
2. Noisy-Noisy scenariio. Here D and T are sampled from the same distribution Q, with

huge measurement errors in x position. The two moons strongly overlap.
3. Clean-Noisy scenariio. Here D is sampled from P with small measurement errors, but

T is sampled from Q, with huge measurement errors.
Settings 1 and 2 fall under the ERM paradigm, which has already been handled in section 4.3.
They serve as a “sanity check”. What matters the most is setting 3. In this last setting, the
calibration set T is intended as representative of the (noisy) testing data, and may be scarce.
This third setting is divided into two experiments: in the “control” experiment, conventional
training is applied on D with fixed temperature β, and the loss is computed on the calibration
set T . In the “positive” experiment, we apply algorithm 4.
We optimize both neural networks weights θ and temperature parameter β with Adam. The
training is stopped once the value of β stabilizes. The results are given in Figure 4.8 and the
table below:

Scenario
Loss on

train set D
Loss on

calibration set T Comment

Clean-Clean 0.067× 10−2 0.067× 10−2 ERM, low loss.
Noisy-Noisy 11× 10−2 11× 10−2 ERM, higher loss.

Clean-Noisy “control” 0.23× 10−2 86× 10−2 Distribution shift, high loss.
Clean-Noisy “positive” 14× 10−2 42× 10−2 Distribution shift, lower loss.

The calibration step on β and T changes the whole decision frontier (better seen on figures),
even though the decision frontier parametrized by f is fitted on D. herefore, at test time, the
loss is 42× 10−2 instead of 86× 10−2, which is a factor 2 improvement. Of course, this has
consequences on the train loss (which is now higher). But assuming that the calibration set
T is representative of “test data”, this may improve performance after deployment.

The intricate dynamics of example 9 shade lights on the training of deep conventional networks.
Indeed, as shown in Proposition 4, without regularization, the Lipschitz constant of AllNet models
tends to blow up. This can be understood as temperature regularization β going to zero, making
the Cross-Entropy behave like 0-1 loss. This makes sense: if D is not considered as a finite sample
from some “real data” distribution P , but as P itself, this behavior makes sense. But in practice,
the real-world data P and D are not similar. There are distribution shifts, noise, and various
effects in play that require regularization. Interestingly, the stochasticity of mini-batch sampling,
the stochasticity of dropouts layers (Srivastava et al., 2014), the stochasticity of stochastic depth
layers (Huang et al., 2016a): all these sources of randomness and “surprise”, plays the role of the
calibration set T , at every new batch during training.

4.5 Perspectives

In this section we review the contributions and the possible future works inspired by section 4.4.
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small enough, if the classes are separable, 0% training error is achievable by Hinge and HKR. 
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4.5.1 Future works

Different applications of algorithm 4 can be foreseen such as calibration of predictions (Guo et al.,
2017), a way to make the training of Lipschitz constrained network more efficient, and a way to
handle distribution shifts even when test data are scarce. When T shifts away from P , then β can be
fitted on T (which does not require a lot of resources), and then the whole network can be re-retrain
on D (again!) with a different regularization β. Hopefully, this improves generalization. Why would
this be possible? Because of the bias-variance tradeoff. Tuning the temperature dynamically is like
tuning the bias/variance tradeoff. When D and T are close, it is more advantageous to work in a
low bias regime (low temperature), whereas when their is a shift it is more important to mitigate
variance by increasing temperature.

4.5.2 Conclusion

In this chapter, we challenged the common belief that constraining Lipschitz constant degrades the
classification performance of neural networks. We proved that LipNet1 networks exhibit numerous
attractive properties (see Table 4.1 in summary): they provide robustness radius certificates without
restrictions on their expressive power. They benefit from generalization guarantees. We showed that
the hidden parameters of the loss allow to control the generalization gap and certifiable robustness.

While the question of the LipNet1 architecture is often in the spotlight, the loss is overlooked.
We pointed out that Cross-Entropy is not necessarily the best choice, margin-based losses, such as
hinge or its variant HKR, have appealing properties (table 4.1).

This work aims to be at the intersection between theoretical ML and (empirical) deep learning.
Lipschitz constrained networks allow to directly put in perspective mathematical proofs and we are
confident that this theory can be verified empirically on very large-scale vision datasets (such as
Imagenet (Deng et al., 2009)).

This work also provides a toolbox of results and experiments to serve as a basis for future
works. We aim to open new research directions, including outside the field of robust learning.
AllNet networks could benefit from LipNet1 literature: the absence of control over the Lipschitz
constant of AllNet is mitigated in practice by elements such as mixup or weight decay. Such elements
would be better understood by looking at how they affect the (uncontrolled) Lipschitz constant of
AllNet .

The efficient training over LipNet1 is still an active research area. Moreover, AllNet networks ben-
efits from architectural elements such as skip connections and batch normalization. As LipNet1 networks
get more mature, empirical results will improve, matching theory even more.

Many practices in deep learning entangle the questions of architecture, of generalization, and of
optimization. However, these elements usually have unexpected consequences on the nature of the
optimum and the optimization process. Our work is a first step toward a better separation of these
components and their role.
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Chapter 5

Neural signed distance functions and

applications to One Class classification

This chapter is mostly adapted from the corresponding publication:
Louis Béthune, Paul Novello, Thibaut Boissin, Guillaume Coiffier, Mathieu Serrurier, Quentin

Vincenot, Andres Troya Galvis, Robust One-Class Classification with signed distance function
using 1-Lipschitz neural networks, International Conference on Machine Learning (ICML), 2023.
See Béthune et al. (2023).

One class classification (OCC) is an instance of binary classification where all the points of the
dataset at hand belong to the same (positive) class. The challenge of this task is to construct a
decision boundary without using points from the other (negative) class. It has various safety-critical
applications in anomaly detection, for instance, to detect banking fraud, cyber-intrusion or industrial
defect, in out-of-distribution detection, to prevent wrong decisions of Machine Learning models,
or in Open-Set-Recognition. However, OCC algorithms suffer from limitations such as the lack
of negative data, and robustness issues (Azizmalayeri et al., 2022), the latter being an under-
explored topic in the OCC spectrum. Even though some algorithms do not use negative examples,
many work cope with the lack of negative data with Negative Sampling, either artificially (Sipple,
2020) or using outlier exposure (Han et al., 2022; Fort et al., 2021). However, such samplings are
often biased or heuristic. As for robustness, although some works design robust algorithms (Goyal
et al., 2020; Lo et al., 2022), it is always only empirically demonstrated (Han et al., 2022). Few
works provide theoretical certifications (we only found Bitterwolf et al. (2020) based on interval
bounds propagation). In this work, we leverage the properties of 1-Lipschitz networks to provide
certifications.

In this chapter, we introduce a new framework to perform OCC based on the Signed Distance
Function (SDF), a function traditionally used in computer graphics. Assume the positive samples
are independently and identically obtained from a distribution PX with compact support X ⊂ Rd.
Let ∂X = X/X̊ be the boundary of the distribution. The Signed Distance Function is the function
S : Rd → R:

S(x) =
{
d(x, ∂X ) if x ∈ X ,
−d(x, ∂X ) otherwise,

(5.1)

where d(x, ∂X ) = infz∈∂X ‖x − z‖2. The idea of our algorithm, which we call One Class Signed
Distance Function (OCSDF) is to learn the SDF to the boundary of the positive data distribution and
use it as a normality score. We show that the Hinge Kantorovich-Rubinstein (HKR) loss introduced
by Serrurier et al. (2021) allows provably learning the SDF with a 1-Lipschitz network.
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SDF exhibits desirable properties. First, by implicitly parametrizing the domain X , it allows to
efficiently sample points outside of X and to perform principled Negative Sampling. Second, the SDF
fulfills the Eikonal equation: ‖∇xS(x)‖ = 1. In particular, S is 1-Lipschitz with respect to l2-nom
: ∀x, z ∈ Rd, ‖S(x) − S(z)‖2 ≤ ‖x − z‖2. This property provides exact robustness certificates for
OCSDF in the form of a certified AUROC that can be computed at the same cost as AUROC. This
regularity translates into solid empirical robustness as compared to other OCC baselines. In other
words, OCSDF alleviates the lack of negative data and the robustness issue. We go further
and highlight interesting research perspectives regarding OCSDF. Indeed, we show that learning
the SDF with a 1-Lipschitz network enables a generative procedure that allows visualizing points at
the boundary of X . Moreover, It implicitly parametrizes the shape of X , which connects One-Class
Classification with implicit surface parametrization, intensively used in computer graphics for shape
reconstruction.

Our contributions are as follows. (1) We introduce a new OCC framework based on the Signed
Distance Function to the boundary of the data distribution. We theoretically demonstrate that the
SDF can be learned with a 1-Lipschitz neural net using the Hinge Kantorovich-Rubinstein (HKR)
loss and Negative Sampling; (2) We evaluate the performances of OCSDF on several benchmarks
and show its benefits for theoretical and empirical robustness; and (3) we demonstrate how OCSDF
extends the applications of One Class Classification from traditional OOD detection to generative
visualization and implicit surface parametrization for shape reconstruction from point clouds.
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5.1 Related Work on One Class classification

One Class Classification (OCC) OCC is an instance of binary classification where all the
points of the dataset at hand belong to the same (positive) class. The challenge of this task is to
construct a decision boundary without using points from the other (negative) class. OCC amounts
to finding a domain containing the support of the data distribution. That is why OCC is mainly
used in Out Of Distribution (OOD), anomaly or novelty detection, with positive samples considered
In Distribution (ID) and negative ones as OOD, anomalies or novelties. This task dates back to
Sager (1979); Hartigan (1987) and was popularized for anomaly detection with One-class Support
Vector Machines (OC-SVM) (Schölkopf et al., 1999). Since then, the field of OCC has flourished
with many well-established algorithms such as Local Outlier Factors (Breunig et al., 2000), Isolation
Forests (Liu et al., 2008) and their variants (see Han et al. (2022) for a thorough benchmark). More
recently, since Deep-SVDD Ruff et al. (2018) - followed by several works such as Bergman and
Hoshen (2019); Golan and El-Yaniv (2018); Goyal et al. (2020); Zenati et al. (2018); Sabokrou et al.
(2018) - Deep Learning has emerged as a relevant alternative to perform OCC due to its capacities to
handle large dimensional data. However, methods of this field suffer from their lack of robustness
and certifications, which makes them vulnerable to adversarial attacks. In addition, they always
struggle to cope with the lack of OOD data. In this paper, we tackle these problems with an OCC
algorithm based on approximating the SDF using 1-Lipschitz neural nets. In addition, the SDF
being intensively used in Computer Graphics, our algorithm establishes a new link between OCC
and implicit surface parametrization.

SDF for neural implicit surfaces Historically, signed distance functions have been used in
computer graphics to parametrize a surface as the level set of some function (Novello et al., 2022).
Given an incomplete or unstructured representation of a geometrical object (like a 3D point cloud or
a triangle soup), recent methods aim at representing a smooth shape either as vectors in the latent
space of a generative model (Achlioptas et al., 2018; Ben-Hamu et al., 2018; Groueix et al., 2018;
Chou et al., 2022) or directly as parameters of a neural net (Park et al., 2019; Atzmon and Lipman,
2020). The first method allows for easy shape interpolation, while the latter proved to be a more
robust approach (Davies et al., 2021). Those neural implicit surfaces alleviate both the problems
related to memory requirements of voxel-based representations and the combinatorial nature of
meshes, making them ideally suited for rendering using ray marching (Hart, 1995) and constructive
solid geometry. In those contexts, the constraint ‖∇xf(x)‖ ≤ 1 is necessary to guarantee the validity
of the geometrical query while having ‖∇xf(x)‖ as close as possible to 1 allows for greedier queries
and faster computation times. In practice, training an SDF requires a dataset (p, d) of points
p ∈ R3 with their corresponding signed distance d to the desired surface. Computing those distances
requires the existence and availability of a ground truth, which is not always the case. Moreover,
training tends to be unstable in general, and special care is needed for most computer graphics
applications (Sharp and Jacobson, 2022). Our method can instead be trained to approximate a
surface without prior knowledge of the distances and is provably robust.

Tackling the lack of OOD data The previously mentioned OCC and OOD algorithms, as well
as many others (Hendrycks and Gimpel, 2018; Hsu et al., 2020) are designed to avoid the need for
OOD data. However, some works aim at falling back to classical binary classification by artificially
generating negative samples. The idea of Negative Sampling is not recent and appeared in Forrest
et al. (1994) for detecting computer viruses or to emulate the distinction made by antibodies between
pathogens and body cells (Gonzalez et al., 2002). It has been introduced in anomaly detection by
Ayara et al. (2002) and studied by several works summarized in Jinyin and Dongyong (2011), but
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Figure 5.1: Summary of One Class Signed Distance Function (OCSDF). We star t with 
an uniform negative sampling, then we fit a ! -Lipschitz classifier !0 using the Hinge Kantorovich
Rubinstein loss. We apply the Adaptecl Newton Raphson algorithm l2J to attract the points towards 
the boundary of the domain âX thanks to t he smoothness of .fo, which in addition allows providing 
robustness certificates. 

has lost popularity due to its practical inefficiency ( e.g. compared to One-Class Support Vector 
Machines (OCSVM) QStibor et aq 12005D). Recently, some works revived the idea of using OOD data, 
either by artificial negative sampling QLee et aq l2018bl ISipplêL j2020i !Goya! et aq 12020~ IPourrezaj 
~ 12021D, or by using OOD data from other sources, a procedure called outlier exposure ~ 
let aq l2021l IHendrycks et aq 12019D. However, outlier exposure suffers from bias since OOD data 
does not corne from the same data space. Therefore, we follow the first iclea and sample negative 
data points close to the domain X , thanks to the orthogonal neural nets-based estimation of the 
SDF. 

5.2 Semi-supervised learning of Signed Distance Functions 

This method aims to learn the Signed Distance Function (SDF) by reformulating the one-class 
classification of !Px as a binary classification of !Px against a carefully chosen distribution Q(IF>x ). 
We show that this formulation yields desirable properties, especially when the chosen classifier is a 
1-Lipschitz neural net trained with t he Hinge Kantorovich-Rubinstein (HKR) loss. 

5.2.1 SDF learning formulated as binary classificat ion 

The idea is to learn one class classifier by rcformulating one class learning of !Px as a binary 
classification of lJl>x against a carefully chosen advcrsarial distribution Q(?x) , as defined below. 

D efinit ion 17 (If-:/ Complementary Distribution) . Let IF>x a distribution with compact support 
X C B , with B C ~d a bounded measurable set. Q is said to be (B, <:.) disjoint from IF>x if (i) its 
support supp Q c B is compact (ii) d( s1tpp Q, X) ~ 2E (iii) for all measurable sets M c B such 
that d(Jvl, X) ~ 2E we have Q(Jvl) > O. It defines a symmetric but irrefiexive binary relation denoted 

Q ~€Px. 
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Exemple 5.1. Domain B.

For image space with pixel intensity in [0, 1], we take B = [0, 1]W×H×C . For tabular data, a
hypercube of side length ten times the standard deviation of the data along the axis. A data
point falling outside B is trivially considered anomalous due to aberrant values.

This simple idea had already occurred repeatedly in the related literature (Sabokrou et al., 2018).
Note that Lhkr

m,λ benefits from generalization guarantees as proved in chapter 4: the optimal classifier
on the train set and on the test set are the same in the limit of big samples.

Binary classification between PX and any Q
B,ε∼ PX allows the construction of the optimal signed

distance function, using the Kantorovich-Rubinstein (HKR) Hinge loss (Serrurier et al., 2021), thanks
to the following theorem.

Theorem 2. SDF Learning with HKR loss. Let Lhkr
m,λ(yf(x)) = λmax (0,m− yf(x))− yf(x)

be the Hinge Kantorovich Rubinstein loss, with margin m = ε, regularization λ > 0, prediction f(x)
and label y ∈ {−1, 1}. Let Q be a probability distribution on B. Assume that λ is high enough. Let
Ehkr(f) be the population risk:

Ehkr(f,PX , Q) :=Ex∼PX
[Lhkr

m,λ(f(x))] + Ez∼Q[Lhkr
m,λ(−f(z))]. (5.2)

Let f∗ be the minimizer of population risk, whose existence is guaranteed with Arzelà-Ascoli theorem:

f∗ ∈ arg inf
f∈Lip1(R

n,R)
Ehkr(f,PX , Q), (5.3)

where Lip1(R
n,R) is the set of Lipschitz functions Rd → R of constant 1. Assume that Q

B,ε∼ PX .
Then, f∗ approximates the signed distance function over B:

∀x ∈ X , S(x) = f∗(x)−m,

∀z ∈ supp Q, S(z) = f∗(z)−m.
(5.4)

Moreover, for all x ∈ supp Q ∪ X :

sign(f(x)) = sign(S(x)).

Proof. The results follow from the properties of Lhkr
m,λ loss given in Proposition 2 of Serrurier et al.

(2021). If Q
B,ε∼ PX , then by definition, the two datasets are 2ε separated. Consequently the hinge

part of the loss is null: max (0,m− yf(x)) for all pairs (x,+1) and (z,−1) with x ∼ PX and z ∼ Q.
We deduce that:

∀x ∈ X , f(x) ≥ m, (5.5)

∀z ∈ supp Q, f(z) ≤ −m. (5.6)

In the following we use the notations:

Fz :=
⋃
x∈X

argmin
z0∈supp Q

‖x− z0‖2,

and
Fx :=

⋃
z∈(supp Q)

argmin
x0∈X

‖x0 − z‖2.
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Since m = ε, we must have f(x) = m for all x ∈ Fx, and f(z) = −m for all z ∈ Fz, whereas
S(x) = 0 and S(z) = −2m. Thanks to the 1-Lipschitz property for every x ∈ X we have
f(x) ≤ f(∂x)+‖x−∂x‖ where ∂x = argminx̄∈∂X ‖x−x̄‖ is the projection of x onto the boundary ∂X .
Similarly f(z) ≥ f(∂z)− ‖z − ∂z‖. The −yf(x) term in the Lhkr

m,λ loss (Wasserstein regularization),
incentives to maximize the amplitude |f(x)| so the inequalities are tight. Notice that S(x) =
S(∂x) + ‖x− ∂x‖ and S(z) = S(∂z)− ‖z − ∂z‖. This allows concluding:

∀x ∈ X , S(x)) = f∗(x)−m, (5.7)

∀z ∈ supp Q, S(z) = f∗(z)−m. (5.8)

Remark: the Proposition 2 found in Serrurier et al. (2021) mentions the condition λ ≥ 0 but this
seems to be a mistake. Indeed, when λ = 0 the hinge term does not play a role. By continuity, it seems
unlikely that the result would be true for arbitrary small λ. On the other hand, for λ high enough
and separable classes, it seems reasonable that the hinge part of the loss drops to zero. Therefore, the
proof of this proposition should be fixed if its result is required in the future.

Note that if m = ε � 1, then we have f∗(x) ≈ S(x). In this work, we parametrize f as a
1-Lipschitz neural network, because they fulfil f ∈ Lip1(R

n,R) by definition.
Theorem 2 tells us that if we characterize the complementary distribution Q, we can approximate

the SDF with a 1-Lipschitz neural classifier trained with HKR loss. We now need to find the
complementary distribution Q.

5.2.2 Complementary distribution generation

We propose to seek Q through an alternating optimization process: at every iteration t, a proposal
distribution Qt is used to train a 1-Lipschitz neural net classifier ft against PX by minimizing
empirical HKR loss. Then, the proposal distribution is updated in Qt+1 based on the loss induced by
ft, and the procedure is repeated. We suggest starting from the uniform distribution: Q0 = U(B).

Remark 5.1. Concentration phenomenon

Observe that in high dimension, due to the curse of dimensionality, a sample z ∼ Q0 is
unlikely to satisfy z ∈ X . Indeed the data lies on a low dimensional manifold X for which
the Lebesgue measure is negligible compared to B. Hence, in the limit of small sample size

n � ∞, a sample Zn ∼ Q⊗n
0 fulfills Zn

B,ε∼ PX . This phenomenon is called the Concentration
Phenomenon and has already been leveraged in anomaly detection in Sipple (2020). However,
the curse works both ways and yields a high variance in samples Zn. Consequently, the
variance of the associated minimizers f0 of equation 5.3 will also exhibit a high variance,
which may impede the generalization and convergence speed. Instead, the distribution Qt

must be chosen to produce higher density in the neighborhood of the boundary ∂X .

The true boundary is unknown, but the level set Lt = f−1
t ({−ε}) of the classifier can be

used as a proxy to improve the initial proposal Q0. We start from z0 ∼ Q0 and then look for a
displacement δ ∈ Rd such that z+δ ∈ Lt. To this end, we take inspiration from the multidimensional
Newton-Raphson method and consider a linearization of ft:

ft(z0 + δ) ≈ ft(z0) + 〈∇xft(z0), δ〉. (5.9)

Since 1-Lipschitz neural nets with GroupSort activation function are piecewise affines Tanielian and
Biau (2021), the linearization is locally exact, hence the following property.
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Property 5. Let ft be a 1-Lipschitz neural net with GroupSort activation function. Almost everywhere
on z0 ∈ Rd, there exists δ0 > 0 such that for every ‖δ‖ ≤ δ0, we have:

ft(z0 + δ) = ft(z0) + 〈∇xft(z0), δ〉. (5.10)

Since ft(z0 + δ) ∈ Lt translates into ft(z0 + δ) = −ε,

δ = − ft(z0) + ε

‖∇xft(z0)‖2
∇xft(z0). (5.11)

Properties of Lhkr
m,λ ensure that the optimal displacement follows the direction of the gradient

∇xft(z0), which coincides with the direction of an optimal transportation plan (Serrurier et al.,
2021). The term ‖∇xft(z0)‖ enjoys an interpretation as a Local Lipschitz Constant (see Jordan
and Dimakis (2020)) of ft around z0, which we know fulfills ‖∇xft(z0)‖ ≤ 1 when parametrized
with an 1-Lipschitz neural net. When ft is trained to perfection, the expression for δ simplifies to
δ = −ft(z0)∇xft(z0) thanks to Property 6.

Property 6 (Minimizers of Lhkr
m,λ are Gradient Norm Preserving (Serrurier et al., 2021))). Let f∗t be

the solution of Equation 5.3. Then for almost every z ∈ B we have ‖∇xf
∗
t (z)‖ = 1.

In practice, the exact minimizer f∗t is not always retrieved, but equation 5.11 still applies to
imperfectly fitted classifiers. The final sample z′ ∼ Qt is obtained by generating a sequence of T
small steps to smooth the generation. The procedure is summarized in algorithm 6. In practice, T
can be chosen very low (below 16) without significantly hurting the quality of generated samples.
This has also been observed in the context of Langevin dynamics used for the training of Energy
Based Models (Teh et al., 2003) like noticed in Nijkamp et al. (2019, 2020).

Remark 5.2. behavior when Qt and PX overlap

Consider a sample z ∈ Lt. If z is a false positive (i.e ft(z) > 0 and z /∈ X ), training ft+1

on the pair (z,−1) will incentive ft+1 to fulfill ft+1(z) < 0, which will reduce the volume of
false positive associated to ft+1. If z is a true negative (i.e. ft(z) < 0 and z /∈ X ) it already
exhibits the wanted properties. The case of false negative (i.e ft(z) < 0 and z ∈ X ) is more
tricky: the density of PX around z will play an important role to ensure that ft+1(z) > 0.
This motivates the introduction of assumption 1.

We assume that samples from the target PX are significantly more frequent than the ones
obtained from pure randomness. It is a very reasonable assumption (especially for natural images,
for example), and most distributions from real use cases fall under this setting.

Assumption 1 (PX samples are more frequent than pure randomness (informal)). For any measurable
set M ⊂ X we have PX(M) � U(M), where U is the uniform distribution over B.

To ensure that property (iii) of definition 17 is fulfilled, we also introduce stochasticity in
algorithm 6 by picking a random “learning rate” η ∼ U([0, 1]) for each negative example in the batch.
This ensures they distribute evenly on the path toward the boundary.

The final procedure is depicted in algorithm 5. The procedure also benefits from Property 7,
which ensures that the distribution Qt+1 obtained from Qt across several iterative applications of

Algorithm 6 still fulfills Qt+1 B,ε∼ PX . It guarantees that once the complementary distribution has
been found, the algorithm will continue to produce a sequence of complementary distributions and a
sequence of classifiers ft that approximates S.
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Property 7 (Complementary distributions are fix points). Let Qt be such that Qt B,ε∼ PX . Assume

that Qt+1 is obtained with algorithm 5. Then we have Qt+1 B,ε∼ PX .

Proof. The proof also follows from the properties of Lhkr
m,λ loss given in Proposition 2 of Serrurier

et al. (2021) Since Qt
B,ε∼ PX all examples z ∼ Qt generated fulfill (by definition) d(z,X ) ≥ 2ε ≥ 2m.

Indeed the 1-Lipschitz constraint (in property 6) guarantees that no example zt can “overshoot” the
boundary. Hence for the associated minimizer ft+1 of Lhkr

m,λ loss, the hinge part of the loss is null.
This guarantees that ft+1(z) ≤ −m for z ∼ Q. We see that by applying algorithm 6 the property
is preserved: for all z ∼ Qt+1 we must have ft+1(z) ≤ −m = −ε. Finally notice that because
z0 ∼ U(B) and η ∼ U([0, 1]) the support supp Q covers the whole space B (except the points that

are less than 2ε apart from X ). Hence we have Qt+1
B,ε∼ PX as expected.

Algorithm 5 Alternating Minimization for Signed Distance Function learning
Input: 1-Lipschitz neural network architecture f◦
Input: initial weights θ0, learning rate α
1: repeat
2: ft ← fθt
3: θ̃ ← θt
4: repeat
5: Generate batch z ∼ Qt of negative samples with algorithm 6
6: Sample batch x ∼ PX of positive samples
7: Compute loss on batch L(θ̃) := Ehkr(fθ̃, x, z)

8: Learning step θ̃ ← θ̃ + α∇θL(θ̃)
9: until convergence of θ̃ to θt+1.

10: until convergence of ft to limit f∗.

Algorithm 6 Adapted Newton–Raphson for Complementary Distribution Generation
Input: 1-Lipschitz neural net ft
Parameter: number of steps T
Output: sample z′ ∼ Qt(f)

1: sample learning rate η ∼ U([0, 1])
2: z0 ∼ U(B) � Initial approximation.
3: for each step t = 1 to T do

4: zt+1 ← zt − η
T

∇xf(zt)
‖∇xf(zt)‖22

(f(zt) + ε) � Refining.
5: zt+1 ← ΠB(zt+1) � Stay in feasible set.
6: end for
7: return zT

5.2.3 Lazy variant with amortized optimization

Algorithm 5 solves a MaxMin problem with alternating maximization-minimization. The inner
minimization step (minimization of the loss over 1-Lipschitz function space) can be expensive.
Instead, partial minimization can be performed by doing only a predefined number of gradient
steps. This yields the lazy approach of algorithm 7. This provides a considerable speed up over
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the initial implementation. Moreover, this approach is frequently found in literature, for example,
with GAN (Goodfellow et al., 2014) or WGAN (Arjovsky et al., 2017). This can also be seen as
an instance of amortized optimization (Amos et al., 2023). However, we lose some of the mild
guarantees, such as the one of Proposition 7 or even Theorem 2. Crucially, it can introduce unwanted
oscillations in the training phase that can impede performance and speed. Hence this trick should
be used sparingly.

Algorithm 7 Signed Distance Function learning: lazy approach.
Input: 1-Lipschitz neural net architecture f◦, initial weights θ0, learning rate α, number of parameter
update per time step K
1: repeat
2: θ̃ ← θt
3: Generate batch z ∼ Qt of negative samples with algorithm 6
4: Sample batch x ∼ PX of positive samples
5: for K updates do
6: Compute loss on batch L(θ) := Ehkr(fθ̃, x, z)

7: Learning step θ̃ ← θ̃ + α∇θL(θ̃)
8: end for
9: θt+1 ← θ̃

10: until convergence of ft.

The procedure of algorithm 7 bears numerous similarities with the adversarial training of Madry
et al. (2018). In our case the adversarial examples are obtained by starting from noise U(B) and
relabeled as negative examples. In their case, the adversarial examples are obtained by starting from
PX itself and relabeled as positive examples.

5.2.4 Sampling the potential

Remark 5.3. density of the complementary distribution

In high dimension d � 1, when ‖∇xft(z)‖ = 1 and Vol(B) � Vol(X ) the samples obtained
with algorithm 6 are approximately uniformly distributed on the levels sets of ft. Intuitively,
the level sets of the SDF for some connected set X can be seen as a homeomorphism of a
sphere. Therefore, the volume of the level set (∪t0≤t≤t0+wLt) of (small) width w growths as
O(wtd0), which implies that the density of Q increases exponentially fast (with factor d) with
respect to the value of −|ft(·)|. This mitigates the adverse effects of the curse of dimensionality.
This behavior is quantitatively different from the case where the density is uniform.

This scheme of “generating samples by following gradient in input space” reminds diffusion
models (Ho et al., 2020), feature visualization tools (Olah et al., 2017), or recent advances in
VAE (Kuzina et al., 2022) or Iterative VAEs (Boutin et al., 2020). However, no elaborated
scheme is required for the training of ft: 1-Lipschitz networks exhibit smooth and interpretable
gradients (Serrurier et al., 2023) which allows sampling from X “for free” as illustrated in figure 5.2.
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Figure 5.2: Syntetic examples generated from algorithm ~ with T = 64 and rJ = l. 

Remark 5.4. Langevin dynamics 

A more precise characterization of Qt built with algorithm l2J can be sketched below. Our 
approach bears some similarities witb the spirit of Metropolis-adjusted Langevin algo
rithm QGrenander and Mille1} j19940. ln this method, the samples of p(x) are generated 
by taking the stationary distribution Xt->oo of a continuous Markov chain obtained from the 
stochastic gradient step iterates 

Xt+1 r Xt +(v'x logp(x) + v2(Z (5.12) 

for some distribution p(x) and Z rv N(O, 1). By choosing the level set E = 0, and p(x) oc 
:ll{J(x) ::; O} exp (-r,J2(x)) the score fonct ion Çv x logp(x) is transformed into v' xf(x)lf(x)I 
with ( = ;. Therefore, we see that the density decreases exponentially faster with the squared 
distance to the boundary âX when there are enough steps T » l. In particular when X= {O} 
we recover p(x) as the pdf of a standard Gaussian N(O, 1). Although the similarity is not 
exact (e.g., the diffusion term J2,ijZ is lacking, T is low, r, "" U([O, 1]) is a r. v.), it provides 
interesting complementary însights on the algorithm. 

5.2.5 Alternating minimization for SDF learning 

Each classifier ft cloes not need to be trained from scratch. Instead, the same architecture is kept 
throughout training, and the algorithm produces a sequence of parameters 0t such that ft = fet . 
Each set of parameters 0t îs used as înitialization for the next one 0t+l· Moreover, we only perform a 
low fixed number of parameter updates for each t in a GAN fashion . The final procedure of OCSDF 
is shown in Figure [] 
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5.3 Applications to implicit surface parametrization 

Our approach to learning the SDF cont rasts with the computer graphies literature, whcre SDF is 
used to obtain the distance of a point to a surface (here defined as âX). Incleed, SDFs are usually 
learned in a supervised fashion, requiring the ground truth of l2 distance. This is classically achieved 
using Nearest-Neighbor aJgorithms, which can be cumbersome, especiaJly when the number of points 
is high. Efficient data structures , e.g. , using K-dt rees 0Maneewongvatana and Mountt j1999D or 
Octrees 0:Meaghei} j1980D, can mitigate this effect but do not scale well to high dimensions. Instead, 
OCSDF learns the SDF solely based on p oints contained in the support . vVhile neural network 
t raining is not cheap by any mean, the network approach is advantageous at inference tirne. Indeecl , 
with a dataset of size n, a single forward in the network costs 0(1) (furthermore orthogonalization 
of matrices can be done once for all), while naïve implementations of kNN costs O(n2) , or at least 
O(n log n) for more effiient implementations with trees . 
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(meshes) (2048 points) (ours) (Graphite) (meshes) (2048 points) (ours) (Graphite) 

Figure 5.3: Visualization of the Implicit Surface. First column: grouncl truth meshes. Second 
column: sparse point clouds of size 2048 sampled with Trimesh library. Third column: our 
methocl. Fourth column: a baseline, the SSSR algorithm !Boltcheva and Lév~ Q2017l) that attempts 
to reproduce the meshes solely from a point douci, and distributecl in the package Graphite. The 
SDF exhibits better extrapolation propert ies and provides smooth surfaces . 

Exemple 5.2. implicit surface parametrization on ModclNetlO dataset 

We use models from Princeton 's ModelNetlO dataset ~Vu et al.! Q2015D. We sample n = 2048 
points within each mesh to obtain a 3D point cloud. We fit the SDF on the point douci with the 
same hyperparameters as the tabular experiment . We use Lewiner marching algorithm (}Lewine1i 
jet aq !2003D from scikit-image (!Van der Walt et al.l ~ . on a 200 x 200 x 200 voxelization 
of the input. We plot the mesh reconstructed with Trimesh ODawson-Haggerty et aJ.tj2019D. 
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The results are highlighted in figure 5.3. We chose the first percentile of Ex∼PX
[f(x)] as

the level set of the iso-surface we plot. We compare our results visually against a baseline
from Boltcheva and Lévy (2017) implemented in Graphite Levy (2022) that rebuilds the mesh
solely from the point cloud (without extrapolation). We highlight that n = 2048 is considered
low resolution; hence many details are expected to be lost. Nonetheless, our method recovers
the global aspect of the shape more faithfully, smoothly, and consistently than the other
baseline.

In figure 5.4, we provide additional examples of the use of SDF to reconstruct shapes from point
clouds. We also compare OCSDF with Deep SDF (Park et al., 2019), a standard baseline for neural
implicit surface parametrization, to highlight the practical advantages of our method.

Remark 5.5. Groupsort and compositionality of signed distance functions.

If f and g are the signed distance function of the shapes Sf and Sg respectively, then min f, g
is the SDF of Sf ∪ Sg, and max (see Bálint et al. (2023) for example). Observe that our
1-Lipschitz network relies on GroupSort activation function, composed of min and max gates.
Therefore, each non-linearity in the network is a union or intersection of other shapes. The
linear layers are orthogonal, so together with the bias they define a “rigid transformation”, i.e.
a combination of rotations, symmetries, and translations.

Methods OCSDF (ours) DeepSDF

Target Generate Q
B,ε∼ P Compute S(x) from P

Cost Backward pass Nearest Neighbor search
Loss HKR Lhkr

m,λ ‖f(x)− S(x)‖2
2

Guarantees f is 1-Lipschitz None

Table 5.1: Comparison of our approach against DeepSDF (Park et al., 2019).

Figure 5.4: SDF of 2048 points sampled from the mesh of a 3D CAD model. This task is
particularly challenging due to the number of holes in the surface, that the SDF tends to “fill”.
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5.4 Robust One Class learning

We conclude the experimental part with the initial motivations of the work: robust One Class
classification and anomaly detection.

5.4.1 Certificates against adversarial attacks

The most prominent advantage of 1-Lipschitz neural nets is their ability to produce certificates
against adversarial attacks (Szegedy et al., 2014). Indeed, by definition we have f(x + δ) ∈
[f(x)− ‖δ‖, f(x) + ‖δ‖] for every example x ∈ X and every adversarial attack δ ∈ Rd. This allows
bounding the changes in AUROC score of the classifier for every possible radius ε > 0 of adversarial
attacks.

Proposition 12 (certifiable AUROC). Let F0 be the cumulative distribution function associated with
the negative classifier’s prediction (when f(x) ≤ 0), and p1 the probability density function of the
positive classifier’s prediction (when f(x) > 0). Then, for any attack of radius ε > 0, the AUROC of
the attacked classifier fε can be bounded by

AUROCε(f) =

∫ ∞

−∞
F0(t)p1(t− 2ε)dt. (5.13)

Proof. Let p1 (resp. p−1) be the probability density function (PDF) associated with the classifier’s
positive (resp. negative) predictions. More precisely, p1 (resp. p−1) is the PDF of f�PX (resp. f�Q)
for some adversarial distribution Q, where f�· denotes the pushforward measure operator (Bogachev
and Ruas, 2007) defined by the classifier. The operator f� formalizes the shift between PX (resp.
Q), the ground truth distributions, and p−1 (resp. p1), the imperfectly distribution fitted by f . Let
F−1 and F1 be the associated cumulative distribution functions. For a given classification decision
threshold τ , we can define the True Positive Rate (TPR) F−1(τ), the True Negative Rate (TNR)
1 − F1(τ), and the False Positive Rate (FPR) F1(τ). The ROC curve is then the plot of F−1(τ)
against F1(τ). Hence, setting v = F1(t), we can define the AUROC as:

AUROC(f) =

∫ 1

0
F−1(F

−1
1 (v))dv. (5.14)

And with the change of variable dv = p1(t)dt we get

AUROC(f) =

∫ ∞

−∞
F−1(t)p1(t)dt. (5.15)

We consider a scenario with symmetric attacks: the attack decreases (resp. increases) the
normality score of One Class (resp. Out Of Distribution samples) for decision threshold τ ∈ R.
When the 1-Lipschitz classifier f is under attacks of radius at most ε > 0 we note fε the perturbed
classifier:

fε(x) = min
δ≤ε

(21{f(x) ≥ τ} − 1)f(x+ δ). (5.16)

Note that fε(x) ≤ f(x) + ε when f(x) < τ and fε(x) ≥ f(x) − ε when f(x) ≥ τ thanks to the
1-Lipschitz property. This effectively translates the p.d.f of fε by |ε| atmost.

We obtain a lower bound for the AUROC (i.e a certificate):

AUROC(fε) ≥
∫ ∞

−∞
F−1(t+ ε)p1(t− ε)dt

=

∫ ∞

−∞
F−1(t)p1(t− 2ε)dt.

(5.17)
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Takeaways

The certified AUROC score can be computed analytically without performing the attacks
empirically, solely from score predictions p1(t− 2ε). More importantly, the certificates hold
against any adversarial attack whose l2-norm is bounded by ε, regardless of the algorithm used
to perform such attacks. We emphasize that producing certificates is more challenging than
traditional defence mechanisms (e.g, adversarial training, see Bai et al. (2021) and references
therein) since they do not target defence against a specific attack method. Note that MILP
solvers and branch-and-bound approaches (Tjeng et al., 2019; Wang et al., 2021) can be used
to improve the tightness of certificates, but at a higher cost.

5.4.2 One Class learning on images

We evaluate the performances of OCSDF for OCC, where only samples of the normal class are
supposed to be available. To emulate this setting, we train a classifier on each of the classes
of MNIST and Cifar10, and evaluate it on an independent test set in a one-versus-all fashion.
Note that the out-of-distribution examples are not seen during training, but more importantly,
the in-distribution examples from the test set are not seen either. Hence the task evaluates both
the generalization capacity (new example from the in-distribution) and the discriminative capacity
(against out-of-distribution). This setting is challenging because of the curse of dimensionality.

We compare our method against DeepSVDD (Ruff et al., 2018), OCSVM (Schölkopf et al.,
1999), and Isolation Forests (Liu et al., 2008). The mean AUROC score is reported in table 5.2 and
averaged over 20 runs. It is computed between the 1, 000 test examples of the target class and the
remaining 9, 000 examples from other classes of the test set (both unseen during training). OCSDF
is competitive against other baselines. In addition, it comes with several advantages described in the
following.

Certifiable and empirical robustness

None of the concurrent methods can provide certificates against l2 attacks: in the work of Goyal
et al. (2020) the attacks are performed empirically (no certificates) with l∞ radii. In table 5.2, we
report our certifiable AUROC with various radii ε ∈ {0, 8/25, 16/255, 36/255, 72/255}. In figure 5.5
we report the empirical AUROC against l2-PGD attacks with three random restarts, using stepsize
ζ = 0.025ε like in the default policy of Foolbox (Rauber et al., 2020). These results illustrate our
method’s benefits: not only does it come with robustness certificates that are verified empirically,
but the empirical robustness is also way better than DeepSVDD, especially for Cifar10. Note that for
1-Lipschitz network trained with Lhkr

m,λ loss, all the attacks tend to find the same adversaries (Serrurier
et al., 2021) - hence PGD is also representative of the typical score that would have been obtained
with other attack methods.

Visualization of the support

OCSDF can be seen as a parametric version of kNN, which enables this approach in high dimensions.
As a result, the decision boundary learned by the classifier can be materialized by generating
adversarial examples with algorithm 6. The forward computation graph is a classifier based on
optimal transport, and the backward computation graph is an image generator. Indeed, the back-
propagation through a convolution is a transposed convolution, a popular layer in the generator of
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Figure 5.5: Empirical Mean AUROC on all classes against adversarial attacks of various 
radii in One Class setting) using default parameters of FoolBox IRauber et a!.I Q2020p. 

GANs. Overall, the algorithm behaves like a WGAN QArjovsky et aq j2017l) with a single network 
fulfi lling both roles. T his unexpected featurc opens a path to the explainability of the One Class 
classifier: the support learned can be visualized without complex feature visualiza.t ion tools. In 
particular, it helps identify failure modes. 

5.5 Anomaly detection and nearest neighbors 

One Class (OC) learning and Anomaly Detection (AD) are, technically, two different tasks. The 
former belongs to the supervised learning paradigm (the goal is to learn the support of a distribution 
from samples), while the latter belongs to the unsupervised learning paradigm. In anomaly detection 
the'°'. 

5.5.1 Toy examples 

We use two-dimensional toy examples from the Scikit-Learn library (!Pedregosa et aq 12011D. Results 
are shown in figure j5.6~ The contour of the decision fonction are plotted in resolution 300 x 300 
pixels. The level sets of the classifier are compared against those of One Class SVM QScholkopij 
!et aq l200lbD and Isolation Forest OLiu et al.L 120080. Vve also train a convent ional network with 
Binary Cross Entropy against complementary distribution Qt, and we show it struggles to learn a 
meaningful clecision boundary. Moreover , its Local Lipschitz Constant OJorclan and Dimakisl 120200 
increases uncontrollably, as shown in table ![ID which makes it proue to adversarial attacks. Finally, 
there is no natural interpretation of the prediction of the convent ional network in terms of distance: 
the magnitude 1101 of the preclictions quickly grows above 103, whereas for 1-Lipschitz neural nets, 
it is approximately equal to the signed distance fonction S. 

5.5.2 Anomaly Detection on Tabular datasets 

We tested our algorithm on some of the most prominent anomaly detection benchmarks of ODDS 
library ORayanât 12016D. In this unsupervised setting (like ADBench !Han et al.l a20220) all the 
examples (normal examples and anomalies) are seen during training, but their true label is unknown. 
To apply our methocl, the only hyperparameter needed is the margin m that we select in the range 
[0.01, 0.05, 0.2, 1.]. For each value, the results are averaged over 20 independent runs train/ test splits. 
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MNIST OCSDF OCSDF OCSDF OCSDF OCSDF
OC

SVM
Deep
SVDD

IF

Certificates ε = 0 ε = 8/255 ε = 16/255 ε = 36/255 ε = 72/255 ε = 0 ε = 0 ε = 0
mAUROC 95.5± 0.4 93.2± 2.1 89.9± 3.5 78.4± 6.4 57.5± 7.5 91.3± 0.0 94.8± 0.9 92.3± 0.5

digit 0 99.7± 0.1 99.6± 0.2 99.5± 0.2 99.0± 0.6 96.2± 3.0 98.6± 0.0 98.0± 0.7 98.0± 0.3
digit 1 99.8± 0.0 99.7± 0.0 99.6± 0.1 99.2± 0.3 96.2± 1.6 99.5± 0.0 99.7± 0.1 97.3± 0.4
digit 2 90.6± 2.0 85.3± 1.9 78.2± 2.3 53.1± 5.2 14.1± 4.6 82.5± 0.1 91.7± 0.1 88.6± 0.5
digit 3 93.4± 1.2 90.0± 1.7 85.0± 2.3 66.2± 4.6 26.9± 5.0 88.1± 0.0 91.9± 1.5 89.9± 0.4
digit 4 96.5± 0.9 95.3± 1.2 93.9± 1.7 89.4± 3.6 76.2± 9.8 94.9± 0.0 94.9± 0.8 92.7± 0.6
digit 5 93.9± 2.2 89.0± 3.2 81.6± 4.7 54.0± 8.7 15.6± 6.9 77.1± 0.0 88.5± 0.9 85.5± 0.8
digit 6 98.7± 0.6 98.1± 0.7 97.2± 0.9 93.1± 2.6 74.9± 10.4 96.5± 0.0 98.3± 0.5 95.6± 0.3
digit 7 97.1± 0.6 96.5± 0.5 95.6± 0.6 92.2± 0.8 81.2± 1.7 93.7± 0.0 94.6± 0.9 92.0± 0.4
digit 8 89.4± 2.6 83.3± 5.1 74.7± 9.0 50.3± 15.9 24.4± 14.0 88.9± 0.0 93.9± 1.6 89.9± 0.4
digit 9 96.4± 0.3 95.3± 0.9 93.8± 1.3 87.8± 3.1 68.9± 7.6 93.1± 0.0 96.5± 0.3 93.5± 0.3

CIFAR10 OCSDF OCSDF OCSDF OCSDF OCSDF
OC

SVM
Deep
SVDD

IF

Certificates ε = 0 ε = 8/255 ε = 16/255 ε = 36/255 ε = 72/255 ε = 0 ε = 0 ε = 0
mAUROC 57.4± 2.1 53.1± 2.1 48.8± 2.1 38.4± 1.9 22.5± 1.4 64.8± 8.0 64.8± 6.8 55.4± 8.0
Airplane 68.2± 4.5 64.3± 3.9 60.1± 3.2 49.4± 1.1 31.2± 3.6 61.6± 0.9 61.7± 4.1 60.1± 0.7

Automobile 57.3± 1.7 52.5± 3.0 47.6± 4.2 36.1± 6.8 19.8± 7.8 63.8± 0.6 65.9± 2.1 50.8± 0.6
Bird 51.8± 2.7 47.5± 1.8 43.2± 1.6 33.4± 3.4 19.5± 5.7 50.0± 0.5 50.8± 0.8 49.2± 0.4
Cat 58.8± 1.2 54.6± 0.8 50.3± 0.8 40.0± 1.5 24.4± 2.3 55.9± 1.3 59.1± 1.4 55.1± 0.4
Deer 49.4± 2.4 45.3± 2.1 41.4± 1.9 32.2± 1.5 18.8± 1.4 66.0± 0.7 60.9± 1.1 49.8± 0.4
Dog 56.3± 0.6 51.9± 1.0 47.5± 1.6 36.7± 2.9 20.6± 4.0 62.4± 0.8 65.7± 2.5 58.4± 0.5
Frog 52.6± 1.8 48.7± 1.7 44.9± 1.6 35.8± 1.4 22.4± 1.1 74.7± 0.3 67.7± 2.6 42.9± 0.6
Horse 49.5± 0.9 45.5± 1.0 41.5± 1.2 32.5± 1.5 18.8± 1.6 62.6± 0.6 67.3± 0.9 55.1± 0.7
Ship 68.6± 1.8 64.6± 1.4 60.4± 1.3 49.3± 2.4 29.8± 4.9 74.9± 0.4 75.9± 1.2 74.2± 0.6
Truck 61.3± 3.4 56.5± 2.1 51.5± 1.1 39.0± 3.9 20.0± 7.0 75.9± 0.3 73.1± 1.2 58.9± 0.7

Table 5.2: AUROC score on the test set of MNIST and CIFAR10 in a one versus all fashion,
averaged on 10 runs. We also report the AUROC of DeepSVDD Ruff et al. (2018) for completeness,
along with the other AUROC scores of Isolation Forest (IF) and One-Class SVM (OC-SVM) reported
in Ruff et al. (2018). When the differences between some methods are not statistically significant,
we highlight both. When the confidence intervals overlap, we highlight both. We also show the
certifiable AUROC against l-2 attacks of norms ε ∈ {8/255, 16/255, 36/255}. Concurrent methods
cannot provide certificates for ε > 0.
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Empirical Local 
One Two Two Blob Two 

Cloud Clouds Blobs Cloud Moons 
Lipschitz Constant 

26.66 122.84 1421.41 53.90 258.73 

Table 5.3: Lower bound on the Local Lipschitz Constant (LLC) of conventional network after 
10, 000 training steps for each toy example. It is the maximum of ll 'vxJ(xi)ll2 over the t rain set. 
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(a) One cloud. (b) 'I\vo circles. (c) 'I\vo blobs. (d) Blob & cloud. (e) Two moons. 

Figure 5.6: Toy examples from Scikit -learn. Top row: our method with Lipschitz (LIP) 
1-Lipschitz network and ..C!~\ (HKR) loss. Second row: One Class SVM. Third row: Isolat ion 
Forest. ' 

Following ADBench guiclelines and best practices from the AD community, we only compute the 
AUROC, since this metric is symmetric under label flip. We report the best average in table [[1l 
along baselines from ADBench !Han et ai.l a2022D. As obscrved by !Han et a!.I Q2022D, none of the 
algorithms clearly dominates the others, because what is considered an anomaly (or not) depends 
on the context. Among 14 other methods t estecl, our algorithm ranks 7.1 ± 3.6/ 15, while the best 
(Isolation Forests) ranks 4.5 ± 3.2/15. The experiment shows that our algorithm is competitive with 
respect to other broadly usecl baselincs. Nonetheless, it brings several aclditional advantages . First, 
our algorithm can be seen as a parametric version of kNN for the euclidean distance, wbich leverages 
cleep learning to avoid the costly construct ion of structures like a KDTree IManeewongvatana and! 
!Mountj Q1999D and the quadratic cost of nearest neighbor search, thereby enabling its application in 
high dimensions. Second, it provides robustness cert ificates. 
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Dataset d #no.+an. perc.
OCSDF
(Ours)

Deep
SVDD

OC
SVM

IF PCA kNN SOTA

breastw 9 444+239 35% (#10) 82.6± 5.9 65.7 80.3 98.3 95.1 97.0 99.7 (COPOD)
cardio 21 1,655+176 9.6% (#2) 95.0± 0.1 59.0 93.9 93.2 95.5 76.6 95.5 (PCA)
glass 9 205+9 4.2% (#7) 73.9± 4.1 47.5 35.4 77.1 66.3 82.3 82.9 (CBLOF)

http (KDDCup99) 3 565,287+2,211 0.4% (#11) 67.5± 37 69.0 99.6 99.96 99.7 03.4 99.96 (IF)
Ionosphere 33 225+126 36% (#7) 80.2± 0.1 50.9 75.9 84.5 79.2 88.3 90.7 (CBLOF)

Lymphography 18 142+6 4.1% (#8) 96.1± 4.9 32.3 99.5 99.8 99.8 55.9 99.8 (CBLOF)
mammography 6 10,923+260 2.32% (#6) 86.0± 2.5 57.0 84.9 86.4 88.7 84.5 90.7 (ECOD)

musk 166 2,965+97 3.2% (#8) 92.6± 20. 43.4 80.6 99.99 100.0 69.9 100.0 (PCA)
Optdigits 64 5,066+150 3% (#12) 51.0± 0.9 38.9 54.0 70.9 51.7 41.7 87.5 (CBLOF)

Pima 8 500+268 35% (#12) 60.7± 1.0 51.0 66.9 72.9 70.8 73.4 73.4 (kNN)
satimage-2 36 5,732+71 1.2% (#3) 97.9± 0.4 53.1 97.3 99.2 97.6 92.6 99.8 (CBLOF)

Shuttle 9 45,586+3,511 7% (#4) 99.1± 0.3 52.1 97.4 99.6 98.6 69.6 99.6 (IF)
smtp (KDDCup99) 3 95,126+30 0.03% (#4) 87.1± 3.5 78.2 80.7 89.7 88.4 89.6 89.7 (IF)

speech 400 3,625+61 1.65% (#15) 46.0± 0.2 53.4 50.2 50.7 50.8 51.0 56.0 (COF)
thyroid 6 3,679+93 2.5% (#5) 95.9± 0.0 49.6 87.9 98.3 96.3 95.9 98.3 (IF)

vertebral 6 210+30 12.5% (#4) 48.6± 2.6 36.7 38.0 36.7 37.0 33.8 53.2 (DAGMM)
vowels 12 1,406+50 3.4% (#2) 94.7± 0.7 52.5 61.6 73.9 65.3 97.3 97.3 (kNN)
WBC 30 357+21 5.6% (#10) 93.6± 0.1 55.5 99.0 99.0 98.2 90.6 99.5 (CBLOF)
Wine 13 119+10 7.7% (#5) 81.5± 0.9 59.5 73.1 80.4 84.4 45.0 91.4 (HBOS)

Average Rank among all tasks 7.1± 3.6 11.2 7.5 4.5 5.7 7.8 4.5± 3.2 (IF)

Table 5.4: AUROC score for tabular data, averaged over 20 runs. The dimension of the dataset
is denoted by d. In the Anomaly Detection protocol (AD) we use all the data (normal class and
anomalies) for training, in an unsupervised fashion. The “#no.+an.” column indicates part of normal
(no.) and anomalous (an.) data used during training for each protocol. SOTA denominates the best
score ever reported on the dataset, obtained by crawling relevant literature, or ADBench (Han et al.,
2022) results (table D4 page 37). We report the rank as (#rank) among 14 other methods.
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5.6 Lipschitz Energy-Based-Models

In this section, we explore further the link between SDF learning and Energy Based Models (Teh
et al., 2003; Du and Mordatch, 2019). These preliminary results are unpublished. The goal of
energy-based models is to learn the probability density functions of the data PX . In this setting, the
network fθ parametrizes an energy function Eθ(x) := exp−fθ(x), i.e. an un-normalized probability
distribution. Indeed, the normalization factor

Z =

∫
B
exp−fθ(x)dx (5.18)

is too expensive to compute at each step since it involves an integral over the whole domain B.
Fortunately, it is possible to sample from pθ ∝ Eθ using Langevin Dynamics Grenander and

Miller (1994), as explained in the previous section. The goal is to minimize the negative log-likelihood
of the data L(θ) := Ex∼PX

[− log (pθ(x))], whose gradient simplifies to:

∇θLkr(θ) = Ex∼pθ [∇θEθ(x)]− Ex∼PX
[∇θEθ(x)]. (5.19)

Once again, we recognize the Kantorovich-Rubinstein loss between PX and pθ. This time, there are
no Lipschitz constraints, and like in section 4.2 the problem is not stationary: pθ is always moving.
Intuitively, gradient steps behave as if they are trying the minimize the distance between pθ and
PX . Note that the Langevin dynamics attempts to sample from pθ by following gradient ∇xfθ(x),
whereas Algorithm 6. We highlight below the similarities and differences between the two algorithms.

OC-SDF (ours) EBM (Du and Mordatch, 2019)

Goal Learn SDF S Learn density of PX

Approximator LipNet1 network fθ Energy Eθ(x)
Loss Minimize Lhkr

m,λ Maximize likelihood

Sampling Complementary Q
B,ε∼ PX pθ ≈ PX from potential Eθ

Sampler Newton-Raphson Stochastic Langevin

Remark 5.6. Compositionality rules of SDF and EBM.

Interestingly, both signed distance functions and energy-based models support compositionality:
complex scenes and probability distributions can be modelized as a certain composition of
simpler structure. This permits efficient training of individual components, and then they can
be effortlessly merged. In the context of rendering, this allows one to describe a scene as a set
of objects, each with its own SDF. In the context of data science, this allows one to describe
a dataset as a union of sub-datasets, for which adding, removing or changing data sources is
transparent. Once again, the links between the two approaches deserve to be drawn.

Signed Distance Function Energy Based Models

Target Implicit surface Sf , Sg Distributions pf , pg
Approximators Functions f, g Energies Ef , Eg

Union min (f, g) −LogSumExp(−Ef ,−Eg)
a

Intersection max (f, g) Ef + Eg

Set Difference max (−f, g) −Ef + Eg

In this table we used the common convention of negative sign inside the shape for the SDF,
unlike the beginning of the chapter. The data on EBM come from (Du et al., 2020, 2023).
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(a) Two Circles, conventional network. 

1 
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(c) Four Blobs, conventional network. 

(e) Two Moons , convcntional network. 

(b) Two Circles, Lipschitz network. 

(cl) Four Blobs, Lipschitz network. 

(f) Two Moons, Lipschitz network. 

Figure 5.7: EBM training with a conventional network (left) or 1-Lipschitz network 
(right). The first three panels are points sampled from Langevin dynamics at steps t E [O, 25, 50). 
The fourth panels are the level sets of the log-energy fonction Je- The fifth panel shows the gradient 
field '7 :d0-

Observe that even if !0 is K-Lipschitz, the function exp - f0 is not J<-Lipschitz, and the 
associated probability Pe can vanish exponentially quickly outside of the support of lP x. 
Therefore, Lipschitz constraints on f e are Jess severe than it seems. 

"It is actually a weighted mixture. Controlling the weight requires to know the normaization constants 
Z J, Zg in ad vance, whlch is un tractable. 

Exemple 5.3. Smooth energy-based models wit h Lipschitz functions. 

In Figure [71 we train: 
• a conventional AllN et network. 
• a 1-Lipschitz LipNetl network. 

to learn the energy of the 'l\vo Moons dataset. Experiments are run in Pytorch. The hope is 
that, like for SDF, the Enerby-Based mode! may benefit from the smoothness of the score Je 
to stabilize sampling from Langevin dynamics, and avoid catastrophic divergence. Evaluation 
of EBMs, like may generative models, is not easy, and just "taking a look11 at what have been 
generated is often one of the best (subjective) metrics. Based on this subjective appreciation, 
these preliminary results are encouraging. A more objective measure would be to compute 
the Wasserstein distance between the samples from P0 and lP x. 

The link between implicit surface parametrization and EBM is also studied in the very recent 
work of !Y am au chi et al.j Q2023D. 
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5.7 Perspectives

Despite its performance and appealing properties, the method suffers from some important limitations
we highlight below and that can serve as a basis for future work.

5.7.1 Eikonal networks approximation power

The performance of the algorithm strongly depends on its capacity to properly learn the true
minimizer f∗ of Lhkr

m,λ loss. Per Property 6 such minimizer must fulfill ‖∇xf
∗(x)‖2 = 1 everywhere on

the support of PX and Qt. Hence the performance of the algorithm (and the associated theoretical
guarantees) depends on the capacity of the GNP network to fulfil this property. In the tabular
case, it is easy to do using orthogonal matrices for affine layers and GroupSort/FullSort (Anil et al.,
2019)) activation functions. However, in the image case, designing “orthogonal convolution” is still
an active research area. Several solutions have been proposed, but they come with various drawbacks
in terms of simplicity of implementation, computational cost, or tightness of the constraint. Hence
the average gradient norm on image datasets struggles to exceed 0.3 in practice. Another limitation
stems from low-rank adjoint operators (e.g the last layer of the network): during backpropagation
they do not preserve gradient norm along all directions. The Newton-Raphson trick that uses steps
of size ∇xf(x)

‖∇xf(x)‖22
mitigates partially the issue. This suggests that the algorithm (in its current form)

could benefit from further progress in Gradient Norm Preserving architectures.

5.7.2 Limitations of the Euclidean norm in image space

The algorithm provides metric guarantees in the construction of the Signed Distance Function (SDF)
to the boundary. The l2-norm is not a crucial component of the construction: the proof of 2 and
Proposition 2 of Serrurier et al. (2021) can be applied to any norm. However, in every case, the
Lipschitz constraint |f(x)− f(y)| ≤ ‖x− y‖L on the network architecture must coincide with the
norm ‖ · ‖L used to build the signed distance function. Currently, only networks that are Lipschitz
with respect to l∞ and l2 norms benefit from universal approximation properties (Anil et al., 2019).
Those norms are often meaningful for tabular data, but not for images. Hence, metric guarantees
are less useful in pixel space. The method still benefits from certificates against adversarial attacks,
which is highly desirable for critical systems but lacks semantic interpretation otherwise.

5.7.3 Tuning of the margin

The algorithm is not quite agnostic to the data: the margin m > 0 used in Lhkr
m,λ loss is an important

parameter that serves as prior on the typical distance that separates the One Class support from
the anomalies. This hyper-parameter can be guessed from the final application at hand (very much
like the “scale” parameter of radial basis function kernels), manually with grid search algorithms or
more extensive procedures. Theorem 2 suggests that a small margin m works best. However, the
VC dimension associated with the corresponding set of classifiers increases polynomially with 1

m
(see Proposition 6 of Béthune et al. (2022)). Hence, the algorithm benefits from faster convergence
and more stability during training when m is big. Fortunately, this tradeoff present in most deep
learning-based algorithms is solely controlled by this one-dimensional parameter in our case. Any
heuristic estimation from data or with a one-dimensional line search is feasible, even with a limited
computational budget.
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5.7.4 Conclusion

This work showed the promising approach of applying Lipschitz-constrained neural networks to the
field of computer graphics. Including these Lipschitz constraints, and more specifically the Eikonal
condition ‖∇xf‖ = 1 to signed distance function is currently a hot-topic: we can mention the very
recent works of Ma et al. (2023) or Yang et al. (2023).
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Chapter 6

Lipschitzness with respect to parameters

and application to differential privacy

In this chapter, we show how to derive Lipschitzness w.r.t parameters from Lipschitz bounds on
input. We illustrate these properties in the context of training deep neural networks with differential
privacy guarantees. This chapter is mostly adapted from

Louis Béthune, Thomas Masséna, Thibaut Boissin, Yannick Prudent, Corentin Friedrich, Franck
Mamalet, Aurelien Bellet, Mathieu Serrurier, David Vigouroux, DP-SGD Without Clipping:
the Lipschitz neural network way, preprint, 2023.

Differential privacy allows to develop methods for training models that preserve the privacy
of individual data points in the training set. The field of differential privacy seeks to enable deep
learning on sensitive data, while ensuring that models do not inadvertently memorize or reveal specific
details about individual samples in their weights. This involves incorporating privacy-preserving
mechanisms into the design of deep learning architectures and training algorithms, whose most
popular example is Differentially Private Stochastic Gradient Descent (Abadi et al., 2016).
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6.1 Differential privacy

Differential privacy. Informally, differential privacy (DP) is a definition that bounds how much
the change of a single sample in a dataset affects the range of a stochastic function (here, the training
algorithm). This definition is largely accepted as a strong guarantee against privacy leakages under
various scenarii, including data aggregation or post-processing (Dwork et al., 2006).

In this chapter we focus on supervised learning tasks: we assume that the dataset D is a finite
collection of input/label pairs D = {(x1, y1), . . . ...(xN , yN )}. The definition of DP relies on the
notion of neighboring datasets, i.e datasets that vary by at most one example. We highlight below
the central tools related to the field, inspired from Dwork et al. (2014).

Definition 18 ((ε, δ)-Approximate Differential Privacy). Two datasets D and D′ are said to be
neighboring for the “add/remove-one” relation if they differ by exactly one sample: |D′ � D| = 1
where � denotes the symmetric difference between sets. Let ε and δ be two non-negative scalars. An
algorithm A is (ε, δ)-DP if for any two neighboring datasets D and D′, and for any S ⊆ range(A):

P[A(D) ∈ S] ≤ eε × P[A(D′) ∈ S] + δ. (6.1)

A popular rule of thumb suggests using ε ≤ 10 and δ < 1
N with N the number of records (Pono-

mareva et al., 2023) for mild guarantees. In practice, most classic algorithmic procedures (called
queries in this context) do not readily fulfill the definition for useful values of (ε, δ): in particular,
randomization is mandatory. A general recipe to make a query differentially private is to compute its
sensitivity Δ, and to perturb its output by adding a Gaussian noise of predefined variance ζ2 = Δ2σ2,
where the (ε, δ) guarantees depend on σ, yielding what is called a Gaussian mechanism (Dwork
et al., 2006).

Definition 19 (l2-sensitivity). Let M be a query mapping from the space of the datasets to Rp. Let
N be the set of all possible pairs of neighboring datasets D,D′. The l2 sensitivity of M is defined by:

Δ(M) = sup
D,D′∈N

‖M(D)− M(D′)‖2. (6.2)

This randomization comes at the expense of “utility”, i.e the usefulness of the output for
downstream tasks (Alvim et al., 2012). The goal is then to strike a balance between privacy and
utility, ensuring that the released information remains useful and informative for the intended
purpose while minimizing the risk of privacy breaches. The privacy/utility trade-off yields a Pareto
front, materialized by plotting ε against a measurement of utility, such as validation accuracy for a
classification task.

Differentially Private SGD. The SGD algorithm consists of a sequence of queries that (i) take
the dataset in input, sample a minibatch from it, and return the gradient of the loss evaluated on
the minibatch, before (ii) performing a descent step following the gradient direction. In “add-remove”
neighboring relations, if the gradients are bounded by K > 0, the sensitivity of the gradients averaged
on a minibatch of size b is Δ = K/b. DP-SGD (Abadi et al., 2016) makes each of these queries private
by resorting to the Gaussian mechanism. Crucially, the algorithm requires a bound on gradient norms
‖∇θL(ŷ, y)‖2 ≤ C. This upper bound on gradient norms is generally unknown in advance, which
leads practitioners to clip it to C > 0, in order to bound the sensitivity manually. Unfortunately,
this creates a number of issues: 1. Hyper-parameter search on the broad-range clipping value C is
required to train models with good privacy/utility trade-offs (Papernot and Steinke, 2022), 2. The
computation of per-sample gradients is expensive: DP-SGD is usually slower and consumes more
memory than vanilla SGD, in particular for the large batch sizes often used in private training (Lee
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model = DP_Sequential ([ # step 1: use DP_Sequential to build a model

# step 2: add Lipschitz layers of known sensitivity

DP_BoundedInput(input_shape =(28, 28, 1), upper_bound =20.) ,

DP_SpectralConv2D(filters =16, kernel_size=3, use_bias=False),

DP_GroupSort (2),

DP_Flatten (),

DP_SpectralDense (1)],

dp_parameters=dp_parameters ,

dataset_metadata=dataset_metadata ,

) # step 4: compile the model , and choose any first order optimizer

model.compile(loss=DP_TauBCE(tau =20.) , optimizer=Adam(1e-3))

model.fit( # step 5: train the model and measure the DP guarantees

train_dataset , validation_data=val_dataset ,

epochs=num_epochs , callbacks =[ DP_Accountant ()]

)

Figure 6.1: An example of usage of our framework, illustrating how to create a small
Lipschitz VGG and how to train it under (ε, δ)-DP guarantees while reporting (ε, δ) values.

and Kifer, 2021), 3. Clipping the per-sample gradients biases their average (Chen et al., 2020). This
is problematic as the average direction is mainly driven by misclassified examples.

An unexplored approach: Lipschitz constrained networks. To avoid these issues, we propose
to train neural networks for which the parameter-wise gradients are provably and analytically bounded
during the whole training procedure, in order to get rid of the clipping process. This allows for
efficient training of models without the need for tedious hyper-parameter optimization. The main
reason why this approach has not been experimented much in the past is that upper bounding the
gradient of neural networks is often intractable. However, by leveraging the literature on Lipschitz
constrained networks introduced by Anil et al. (2019), we show that these networks have computable
bounds for their gradient’s norm. This yields tight bounds on the sensitivity of SGD steps, making
their transformation into Gaussian mechanisms inexpensive - hence the name Clipless DP-SGD.

The literature has predominantly focused on investigating the control of Lipschitzness with
respect to the inputs (i.e bounding ∇xf), primarily motivated by concerns of robustness (Szegedy
et al., 2014; Li et al., 2019a; Fazlyab et al., 2019), or improved generalization (Bartlett et al.,
2017; Béthune et al., 2022). However, in this work, we will demonstrate that it is also possible
to control Lipschitzness with respect to parameters (i.e. bounding ∇θf), which is essential for
ensuring privacy. Our first contribution will point out the tight link that exists between those
two quantities. The closest work to ours is Shavit and Gjura (2019), where a Lipschitz network is
used as a general function approximator of bounded sensitivity ‖∇xf(θ, x)‖2, but to this day the
sensitivity of the gradient query x �→ ∇θf(θ, x) itself remains largely unexplored. The idea of using
automatic differentiation to compute sensitivity bounds has also been discussed in Ziller et al. (2021)
and Usynin et al. (2021).

Contributions. While the properties of Lipschitz-constrained networks regarding their inputs are
well explored, the properties with respect to their parameters remain non-trivial. This work provides
a first step to fill this gap: our analysis shows that under appropriate architectural constraints, a
l-Lipschitz network has a tractable, finite Lipschitz constant with respect to its parameters, which
allows for easy estimation of the sensitivity of the gradient computation queries. Our contributions
are the following:
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Figure 6.2: Backpropagation for bounds (Algorithm 8) computes the per-layer sensitivity Δd.
The algorithm mimics backpropagation, with Vector-Jacobian products replaced by Scalar-Scalar
products.

1. We extend the field of applications of Lipschitz-constrained neural networks. We extend the
framework to compute the Lipschitzness with respect to the parameters. This general
framework allows to track layer-wise sensitivities that depend on the loss and the model’s
structure. This is exposed in Section 6.2. We show that SGD training of deep neural networks
can be achieved without per-sample gradient clipping using Lipschitz-constrained layers.

2. We establish connections between Gradient Norm Preserving (GNP) networks and improved
privacy/utility trade-offs (Section 6.3.1). To the best of our knowledge, we are the first
ones to produce neural networks benefiting from both Lipschitz-based robustness
certificates and privacy guarantees.

3. Finally, a Python package companions the project, with pre-computed Lipschitz constants
for each loss and each layer type. This is exposed in Section 6.3.2. It covers widely used
architectures, including VGG, ResNets or MLP Mixers. Our package enables the use of larger
networks and larger batch sizes, as illustrated by our experiments in Section 6.4.

6.2 Clipless DP-SGD with �-Lipschitz networks

Our framework relies on the computation of the maximum gradient norm of a network w.r.t its
parameters to obtain a per-layer sensitivity Δd. It is based on the recursive formulation of the chain
rule involved in backpropagation and requires some natural assumptions that we highlight below.

Requirement 1 (Lipschitz loss.). The loss function ŷ �→ L(ŷ, y) must be L-Lipschitz with respect to
the logits ŷ for all ground truths y ∈ Y. This is notably the case of Categorical Softmax-Crossentropy.

The Lipschitz constants of common supervised losses has been computed and reported in the
appendix.

Requirement 2 (Bounded input). There exists X0 > 0 such that for all x ∈ X we have ‖x‖ ≤ X0.
This is typically the case for images of height H, width W , and channels C. For pixel intensity in
[0, 1] we have that X0 ≤

√
HWC. For tabular data, it is not uncommon to clip the extreme values.

We recall that there exist two families of strategies to enforce Lipschitz constraints:
1. With a differentiable reparametrization Π : Rp → Θ where θ̃ = Π(θ): the weights θ̃ are used

during the forward pass, but the gradients are back-propagated to θ through Π. This turns the
training into an unconstrained optimization problem on the landscape of the loss L ◦ f ◦Π.
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2. With a suitable projection operator Π : Rp → Θ: this is the celebrated Projected Gradient
Descent (PGD) algorithm (Bubeck et al., 2015) applied on the landscape of the loss L ◦ f .

Option 1 requires the analysis of the Lipschitz constant of Π. If Θ is convex, then Π is 1-Lipschitz
w.r.t the projection norm, otherwise the Lipschitz constant is generally unknown. For simplicity,
option 2 will be the focus of this work.

Requirement 3 (Lipschitz projection). The Lipschitz constraints must be enforced with a projection
operator Π : Rp → Θ. This corresponds to Tensorflow constraints and Pytorch hooks. Projection
is a post-processing (Dwork et al., 2006) of private data: it induces no privacy leakage.

To compute the per-layer sensitivities, our framework mimics the backpropagation algorithm,
where Vector-Jacobian products (VJP) are replaced by Scalar-Scalar products of element-wise
bounds. For an arbitrary layer xd �→ fd(θd, xd) := yd the operation is sketched below, as a simple
consequence of Cauchy-Schwartz inequality:

∇xd
L := (∇ydL)

∂fd
∂xd︸ ︷︷ ︸

Vector-Jacobian product: backpropagate gradients

=⇒ ‖∇xd
L‖2 ≤ ‖∇ydL‖2 ×

∥∥∥∥∂fd∂xd

∥∥∥∥
2

.︸ ︷︷ ︸
Scalar-Scalar product: backpropagate bounds

(6.3)

The notation ‖ ·‖2 must be understood as the spectral norm for Jacobian matrices, and the Euclidean
norm for gradient vectors. The scalar-scalar product is inexpensive. For Lipschitz layers, the spectral
norm of the Jacobian ‖∂f

∂x‖ is kept constant during training with projection operator Π. The bound
of the gradient with respect to the parameters takes a simple form:

‖∇θdL‖2 ≤ ‖∇ydL‖2 ×
∥∥∥∥∂fd∂θd

∥∥∥∥
2

. (6.4)

This term can be analytically bounded, as exposed in the following section.

6.2.1 Backpropagation for bounds

The pseudo-code of Clipless DP-SGD is sketched in Algorithm 9. The algorithm avoids per-sample
clipping by computing a per-layer bound on the element-wise gradient norm. The computation of
this per-layer bound is described by Algorithm 8 (graphically explained in Figure 6.2). Crucially,
it requires to compute the spectral norm of the Jacobian of each layer with respect to input and
parameters.

Input bound propagation (line 2). We compute Xd = max‖x‖≤Xd−1
‖fd(x)‖2. For activation

functions it depends on their range. For linear layers, it depends on the spectral norm of the
operator itself. This quantity can be computed through the SVD (Trefethen and Bau, 2022) or
Power Iteration (Miyato et al., 2018), and constrained during training using projection operator Π.
In particular, it covers the case of convolutions, for which tight bounds are known (Singla and Feizi,
2021a). For affine layers, it additionally depends on the magnitude of the bias ‖bd‖.

Remark 6.1. Tighter bounds in literature

Exact estimation of the Lipschitz bound is notoriously an NP-hard problem, as proven
by (Virmaux and Scaman, 2018). Algorithm 9 can be seen as an extension of their AutoLip
algorithm to the case of parameters, while their work focused on Lipschitness with respect to
the input. Note that most methods discussed in section 2.1 can be used as a replacement for
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Algorithm 9. Moreover, hybridizing our method with scalable certification methods can be a
path for future extensions.

Computing maximum gradient norm (line 6). We now present how to bound the Jacobian
∂fd(θd,x)

∂θd
. In neural networks, the parameterized layers f(θ, x) (fully connected, convolutions) are

bilinear operators. Hence, we typically obtain bounds of the form:∥∥∥∥∂fd(θd, x)∂θd

∥∥∥∥
2

≤ K(fd, θd)‖x‖2 ≤ K(fd, θd)Xd−1, (6.5)

where K(fd, θd) is a constant that depends on the nature of the operator. Xd−1 is obtained in line 2
with input bound propagation. Values of K(fd, θd) for popular layers are reported in the appendix.

Backpropagate cotangent vector bounds (line 7). Finally, we bound the Jacobian ∂fd(θd,x)
∂x .

For activation functions, this value can be hard-coded, while for affine layers it is the spectral norm
of the linear operator. Like before, this value is enforced by the projection operator Π.

Algorithm 8 Backpropagation for Bounds(f,X)

Input: Feed-forward architecture f(θ, ·) = fD(θD, ·) ◦ . . . ◦ f1(θ1, ·)
Input: Weights θ = (θ1, θ2, . . . θD), input bound X0

1: for all layers 1 ≤ d ≤ D do
2: Xd ← max

‖x‖≤Xd−1

‖fd(θd, x)‖2. � Input bounds propagation

3: end for
4: G ← L/b. � Lipschitz constant of the (averaged) loss for batchsize b
5: for all layers D ≥ d ≥ 1 do
6: Δd ← G max

‖x‖≤Xd−1

‖∂fd(θd,x)
∂θd

‖2. � Compute sensitivity from gradient norm

7: G ← G max
‖x‖≤Xd−1

‖∂fd(θd,x)
∂x ‖2 = Gld. � Backpropagate cotangent vector bounds

8: end for
9: return sensitivities Δ1,Δ2 . . . ,ΔD

Algorithm 9 Clipless DP-SGD with per-layer sensitivity accounting
Input: Feed-forward architecture f(θ, ·) = fD(θD, ·) ◦ . . . ◦ f1(θ1, ·)
Input: Initial weights θ = (θ1, θ1, . . . θD), learning rate η, noise multiplier σ.
1: repeat
2: Δ1,Δ2 . . .ΔD ← Backpropagation for Bounds(f,X).
3: Sample a batch B = {(x1, y1), (x2, y2), . . . , (xb, yb)}.
4: Compute the averaged gradient for each layer d: gd := 1

b

∑b
i=1 ∇θdL(f(θ, xi), yi)).

5: Sample per-layer noise: ζd ∼ N (0, σΔd).
6: Perform perturbed gradient step: θd ← θd − η(gd + ζd).
7: Enforce Lipschitz constraint with projection: θd ← Π(θd).
8: Compute new (ε, δ)-DP guarantees with privacy accountant.
9: until privacy budget (ε, δ) has been reached.
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Figure 6.3: Accountant for locally enforced differential privacy. (i) The gradient query for
each layer is made private using the Gaussian mechanism Dwork et al. (2014); (ii) their composition
across the layers of the whole network can be seen as a non isotropic Gaussian mechanism, (iii) that
benefits from amplification via sub-sampling Balle et al. (2018); (iv) the train steps are composed
over the course of training.

Privacy accounting of Clipless DP-SGD

We keep track of (ε, δ)-DP values with a privacy accountant (Abadi et al., 2016), by composing
different mechanisms. For a dataset with N records and a batch size b, it relies on two parameters:
the sampling ratio p = b

N and the “noise multiplier” σ defined as the ratio between effective noise
strength ζ and sensitivity Δ. We propose two strategies to keep track of (ε, δ) values as the training
progresses, based on either the “per-layer” sensitivities Δd (composition of Gaussian mechanisms), or

by aggregating them into a “global” sensitivity Δ =
√∑

dΔ
2
d (single isotropic Gaussian mechanism).

The “global” strategy. This strategy simply aggregates the individual sensitivities Δd of each

layer to obtain the global sensitivity of the whole gradient vector Δ =
√∑

dΔ
2
d. The origin of the

clipping-based version of this strategy can be traced back to McMahan et al. (2018). With noise
variance σ2Δ2 we recover the accountant that comes with DP-SGD. It tends to overestimate the
true sensitivity (in particular for deep networks), but its implementation is straightforward with
existing tools.

The “per-layer” strategy. Recall that we are able to characterize the sensitivity Δd of every
layer of the network. Hence, we can apply a different noise to each of the gradients. We dissect the
whole training procedure in Figure 6.3.

1. On each layer, we apply a Gaussian mechanism with noise variance σ2Δ2
d.

2. Their composition yields an other Gaussian mechanism with non isotropic noise.
3. The Gaussian mechanism benefits from privacy amplification via subsampling (Balle et al.,

2018) thanks to the stochasticity in the selection of batches of size b = pN .
4. Finally an epoch is defined as the composition of T = 1

p sub-sampled mechanisms.
At same noise multiplier σ, “per-layer” strategy tends to produce a higher value of ε per epoch
than the “global” strategy, but has the advantage over the latter to add smaller effective noise ζ to
each weight. Different layers exhibit different maximum gradient bounds - and in turn this implies
different sensitivities. This also suggests that different noise multipliers σd can be used for each layer.
This open extensions for future work.
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We rely on the autodp1 library (Wang et al., 2019b; Zhu and Wang, 2019, 2020) as it uses the
Rényi Differential Privacy (RDP) adaptive composition theorem (Mironov, 2017; Mironov et al.,
2019), that ensures tighter bounds than naive DP composition. Following standard practices of
the community (Ponomareva et al., 2023), we used sampling without replacement at each epoch
(by shuffling examples), but we reported ε assuming Poisson sampling to benefit from privacy
amplification (Balle et al., 2018).

6.3 Signal-to-noise ratio analysis

We discuss how the tightness of the bound provided by Algorithm 8 can be controlled.

6.3.1 Theoretical analysis of Clipless DP-SGD

In some cases we can manually derive the bounds across diverse configurations.

Theorem (informal) 1. Gradient Norm of Lipschitz Networks. Assume that every layer fd
is K-Lipschitz, i.e l1 = · · · = lD = K. Assume that every bias is bounded by B. We further assume
that each activation is centered in zero (i.e fd(0) = 0, like ReLU, tanh, GroupSort...). We recall
that θ = [θ1, θ2, . . . θD]. Then the global upper bound of Algorithm 9 can be expanded analytically.

1. If K < 1 we have:

‖∇θL(f(θ, x), y)‖2 = O
(
L
(
KD(X0 +B) + 1

))
. (6.6)

Due to the KD � 1 term this corresponds to a vanishing gradient phenomenon (Pascanu et al.,
2013). The output of the network is essentially independent of its input, and training is nearly
impossible.

2. If K > 1 we have:

‖∇θL(f(θ, x), y)‖2 = O
(
LKD (X0 +B + 1)

)
. (6.7)

Due to the KD � 1 term this corresponds to an exploding gradient phenomenon (Bengio et al.,
1994). The upper bound becomes vacuous for deep networks: the added noise ζ will be too high.

3. If K = 1 we have:

‖∇θL(f(θ, x), y)‖2 = O
(
L
(√

D +X0

√
D +

√
BX0D +BD3/2

))
, (6.8)

which for linear layers without biases further simplify to O(L
√
D(1 +X0)).

The formal statement can be found in appendix. However, setting K = 1 merely ensures that
‖∇xf‖ ≤ 1, and in the worst-case scenario we could have ‖∇xf‖ � 1 almost everywhere. This
results in a situation where the bound of case 3 in Theorem 1 is not tight, leading to an underfitting
regime as in the case K < 1. With Gradient Norm Preserving (GNP) networks, we expect to
mitigate this issue.

1https://github.com/yuxiangw/autodp distributed under Apache License 2.0.
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Controlling K with Gradient Norm Preserving (GNP) networks. GNP (Li et al., 2019a)
networks are 1-Lipschitz neural networks with the additional constraint that the Jacobian of
layers consists of orthogonal matrices. They fulfill the Eikonal equation

∥∥∥∂fd(θd,xd)
∂xd

∥∥∥
2
= 1 for any

intermediate activation fd(θd, xd). As a consequence, the gradient of the loss with respect to the
parameters is bounded by

‖∇θdL‖ ≤ ‖∇yDL‖ ×

∥∥∥∥∥∥
∏

d<i≤D

∂fi(θi, xi)

∂xi

∥∥∥∥∥∥×
∥∥∥∥∂fd(θd, xd)∂θd

∥∥∥∥ = ‖∇yDL‖ ×
∥∥∥∥∂fd(θd, xd)∂θd

∥∥∥∥ , (6.9)

which for weight matrices Wd further simplifies to ‖∇Wd
L‖ ≤ ‖∇yDL‖×‖fd−1(θd−1, xd−1)‖. We see

that this upper bound crucially depends on two terms than can be analyzed separately. On the one
hand, ‖fd−1(θd−1, xd−1)‖ depends on the scale of the input. On the other, ‖∇yDL‖ depends on the
loss, the predictions and the training stage. We show below how to intervene on these two quantities.

Controlling X0 with input pre-processing. The weight gradient norm ‖∇Wd
L‖ indirectly

depends on the norm of the inputs. Multiple strategies are available to keep this norm under control:
projection onto the ball (“norm clipping”), or projection onto the sphere (“normalization”). In the
domain of natural images, this result sheds light on the importance of color space: RGB, HSV, etc.
Empirically, a narrower distribution of input norms would make up for tighter gradient norm bounds.

Controlling L with the hybrid approach: loss gradient clipping As training progresses,
the magnitude of ‖∇fL‖ tends to diminish when approaching local minima, falling below the upper
bound and diminishing the signal to noise ratio. Fortunately, for Lipschitz constrained network,
the norm of the elementwise-gradient remains lower bounded throughout (Béthune et al., 2022).
Since the noise amplitude only depends on the architecture and the loss, and remains fixed during
training, the loss with the best signal-to-noise ratio would be a loss whose gradient norm w.r.t the
logits remains constant during training. For the binary classification case, with labels y ∈ {−1,+1},
this yields the loss LKR(ŷ, y) = −yŷ, that arises in Kantorovich-Rubinstein duality (Villani, 2008):

W1(P,Q) :=
1

�
inf

f∈�-Lip(D,R)
E(x,y)∼D[LKR(f(x), y)], (6.10)

where W1(P,Q) is the Wasserstein-1 distance between the two classes P and Q.
Another way to ensure a high signal-to-noise ratio is to diminish the noise and clip the gradients

of the loss w.r.t the logits. We emphasize that this is different from the clipping of the “parameter
gradient” ∇θL done in DP-SGD. Here, any intermediate gradient ∇fdL can be clipped during
backpropagation. This can be achieved with a special “clipping layer ” that behaves like the identity
function at the forward pass, and clips the gradient during the backward pass. In DP-SGD the
clipping is applied on the element-wise gradient ∇Wd

L of size b× h2 for matrix weight Wd ∈ Rh×h

and batch size b, and clipping it can cause memory issues or slowdowns (Lee and Kifer, 2021). In
our case, ∇yDL is of size b × h: this is far smaller, especially for the last layer. Note that in this
setting the Lipschitz condition does not hold anymore; instead, it obeys the more general “generalized
Lipschitzness” condition introduced in Das et al. (2023). Moreover, this clipping is compatible with
the adaptive clipping introduced by (Andrew et al., 2021): the quantiles of ‖∇yDL‖ can be privately
estimated for a small privacy budget. This allows to effectively reduce the noise while ensuring that
most of the gradients remain unbiased. Furthermore, this bias of this clipping can be characterized.
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Proposition (informal) 1 (Bias of loss gradient clipping in binary classification tasks). Let LBCE

be the binary cross-entropy loss, with sigmoid activation. Assume that the loss gradient (w.r.t the
logits) ∇ŷED[LBCE(ŷ, y)] is clipped to norm at most C > 0. Then there exists C ′ > 0 such that for
all C ≤ C ′ a gradient descent step with the clipped gradient is identical in direction to the gradient
descent step obtained from the loss LKR(ŷ, y) = −ŷy.

As observed in chapter 4 this descent direction yields classifiers with high certifiable robustness,
but lower clean accuracy. Therefore, in practice, we set the adaptive clipping threshold at not less
than the 90%-th quantile to mitigate the bias and avoid utility drop.

6.3.2 Lip-dp library

To foster and spread accessibility, we provide an open source TensorFlow library for Clipless DP-SGD
training, named lip-dp, with Keras API. Its usage is illustrated in Figure 6.1.

The seminal work of Anil et al. (2019) proved that universal approximation in the set of �-
Lipschitz functions was achievable by this family of architectures. In practice, GNP networks are
parametrized with GroupSort activation Anil et al. (2019); Tanielian and Biau (2021), Householder
activation Mhammedi et al. (2017), and orthogonal weight matrices Li et al. (2019a,b).

6.4 Experimental results

We validate our implementation with a speed benchmark against competing approaches, and we
present the privacy/utility Pareto fronts that can be obtained with GNP networks.

6.4.1 Evaluation of privacy, accuracy and robustness

For the comparisons, we leverage the DP-SGD implementation from Opacus. We perform a search
over a broad range of hyper-parameter values: the configuration is given in Appendix B.3. We ignore
the privacy loss that may be induced by this hyper-parameter search, which is a limitation per recent
studies (Papernot and Steinke, 2022). The training is performed on a randomly initialized network,
without data augmentation and without fine-tuning.

Accuracy and Privacy. We validate the performance of our approach on tabular data from
Adbench suite (Han et al., 2022) using an MLP, and report the result in Table 6.4. For MNIST
(Fig. 6.5a) and Fashion-MNIST (Fig. 6.5b) we use a Lipschitz LeNet-like architecture, while the Cifar-
10 experiment (Fig. 6.5c) relies on a combination of VGG, ResNet, and MLP Mixer architectures.

Robustness and Privacy. One of the most prominent advantage of Lipchitz networks is their
ability to provide robustness certificates against adversarial attacks, and was the primary motivation
for their development (Szegedy et al., 2014; Li et al., 2019a; Fazlyab et al., 2019). For a �-Lipschitz
classifier f , with predictions k̄ := argmaxk fk(x) we recall that the decision is invariant under
perturbation of norms smaller than 1

�
√
2
(fk̄(x)− argmaxi �=k̄ fi(x)). Therefore, for each perturbation

radius r we can measure the accuracy of the perturbed network, and we report these results in Fig. 6.6.
The computation of the certificates is straightforward, while methods applicable to conventional
networks (like randomized smoothing (Cohen et al., 2019) or interval propagation, see remark 1), are
expensive. This suggests that robust decisions and privacy are not necessarily antipodal objectives,
contrary to what was observed in Song et al. (2019). The work of Wu et al. (2023) also study the
link between certified robustness and privacy, albeit through the lens of adversarial training (Zhang
et al., 2019).
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vVe benchmarked t he median runt ime per batch of vanilla DP-SGD against the one of Clipless 
DP-SGD, on a CNN architecture and its Lipschitz equivalent respectively. The experiment was 
run on a GPU with 48GB vidco memory. Wc compare against the implementation of t f _privacy, 
opacus and opt ax. In order to allow a fair comparison, when evaluating Opacus, we reported the 
runtime with respect to the logical batch size, while capping the physical batch size to avoid Out 
Of Memory errer (OOM). Although our library does not implement logical batching yet, it is fully 
compatible with this feature. 

An advantage of the projection IT over per-sample gradient clipping is that its cost is independent 
of the batch size. Fig [il validates that our method scales much better than vanilla DP-SGD, and is 
compatible with large ba.tch sizes. It offers several advantages: firstly, a la.rger batch size cont ributes 
to a decrease of the sensitivity b. ex: 1/b, which diminishes the ratio between noise and gradient norm. 
Secondly, as the batch size b increascs, the variance decreases at the parametric rate 0( v'b), aligning 
with expectations. This observation does not apply to DP-SGD: clipping biases the direction of the 
average gradient, as noticed by !Chen et al.j Q2O2OD. 

Corollary 4 . C once ntration of s tochas t ic gradie nt around its m ean. Assume the samples 
(x , y) are i.i.d and sampled from an arbitrary distribution V. We introduce the R. V g = "V 0C(x , y) 
which is a function of the sample (x, y) , and its ex:pectation .9 = IE(x,y)~v["V 0C(x , y)] . Then for all 
u ~ /6 the f ollowing inequality hold: 

(6.11) 

Proof The result is an immediate consequence of Example 6.3 pl67 in !Boucheron et al.j 02O13D. We 
apply the theorem with the centered variable Xi = }(gi - g) that fulfills condition IIXdl ~ % with 
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Influence of Multiple Augmentations on CIFAR-10 Pareto front. 
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Figure 6.8: Pareto front on Cifar-10 with the multiple augmentations trick of !De et al.l 
Q2022D. It appears that the increased diversity of images does not improve the validation accuracy. 
Maybe it is because the network is not in a n un 

Ci= 4
{ since llg,dl ~ K. Then for every t 2::: ~ we have: 

(6.12) 

We conclude with the change of variables u = j< . D 

6.4.3 Compatibility with litterature improvements 

Many method f:rom the state of the art are based on improvement over the DP-SGD baseline. In 
tbis section we will review these improvements and check the compatibil ity with our approach. 

Multiple augmentations We tested adding "mult iple augmentation" introduced by !De et al.! 
a2022D 011 our approach but it d id not yield improvements (see Append ix l6.8D. T his is probably 
due to the fact that we train our architecture from scratch: doing so require an architecture that 
requires a minimmn amount of steps to converge. Such architecture are too small and not able to 
learn an augm ented dataset as t hose are more prone to under-fitt ing. Another reason is that in 
va.nilla DP-SGD the elementwise gradients of ea.ch augmentation can be averaged before the clipping 
operation, which has no consequences on the overall sensitivity of the gradient step. Whereas in our 
case, the average is computed after the loss gradient clipping. 

Fine tuning a pretrained backbone: Clipless DP-SGD can work with a pre-tra.ined backbone, 
howcver the fine tuned layers must be 1-Lipschitz. This can yield two approaches: 

• U sing a !-Lipschitz backbone: We can then fine tune the whole network and benefits f:rom 
pre-training. Unfortunately there is no !-Lipschitz backbone available for the moment. 

• Using an unconstrained backbone : Our approach can work with an unconstrained feature 
extractor using the following protocol: l. the n last layers are dropped and replaced with a 
1-Lipschitz classification network. 2. An input clipping layer is added at the beginning of the 
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Figure 6.9: Finetuning of a MobilenetV2 with Clipless DP-SGD. A Lipschitz MLP (2 layers,
and GroupSort activation) is trained using the backbone as a feature extractor. The backbone is not
fine-tuned as it is not Lipschitz. Therefore a plateau is attained, depending on the quality of the
feature extractor.

classification network to ensure that the inputs are bounded. This approach were tested using
a MobilenetV2 backbone. Results are reported in fig 6.9.

6.5 Conclusion

We discuss here some of the limitations of the method, notably the bias induced by Lipschitz
networks. We also compare Clipless DP-SGD to recent and efficient methods for clipping.

6.5.1 Bias of Clipless DP-SGD

Clipless DP-SGD also exhibits a bias, but this bias takes a different form than the bias induced by
clipping in DP-SGD.

The bias of the optimizer. In DP-SGD (with clipping) the average gradient is biased by the
elementwise clipping. Therefore, the clipping may slow down convergence or lead to sub-optimal
solutions.

The bias of the model in the space in Lipschitz networks. This is a bias of the model, not
of the optimizer. It has been shown that any classification task could be solved with a 1-Lipschitz
classifier (Béthune et al., 2022), and in this sense, the bias induced by the space of 1-Lipschitz
functions is not too severe. Better, this bias is precisely what allows to produce robustness certificates,
see for example Yang et al. (2020).

Finally, there is the implicit bias. It is induced by a given architecture on the optimizer,
which can have strong effects on effective generalization. For neural networks (Lipschitz or not),
this implicit bias is not fully understood yet. But even on large Lipschitz models, it seems that the
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Instantiating
per-sample
gradient

Storing
every
layer’s

gradient

Instantiating
non-DP
gradient

Number
of

back
propagations

Overhead
independent

of
batch size

non-DP � � � 1 �

TF-Privacy, like Abadi et al. (2016) � � � B �

Opacus (Yousefpour et al., 2021) � � � 1 �

FastGradClip (Lee and Kifer, 2021) � � � 2 �

GhostClip (Li et al., 2021; Bu et al., 2022a) � � � 1 �

Book-Keeping (Bu et al., 2023) � � � 1 �

Clipless w/ Lipschitz (ours) � � � 1 �

Clipless w/ GNP (ours) � � � 1 �

Table 6.1: Comparison of DP-SGD against existing techniques of literature. Clipless
DP-SGD is the only technique whose time/memory overhead depends exclusively on weight matrices
but not the batch size.

Time Complexity Overhead Memory Overhead

non-DP 0 0
TF-Privacy, like Abadi et al. (2016) O(BTpd) 0
Opacus (Yousefpour et al., 2021) O(BTpd) O(Bpd)

FastGradClip (Lee and Kifer, 2021) O(BTpd) O(Bpd)
GhostClip (Li et al., 2021; Bu et al., 2022a) O(BTpd+BT 2) O(BT 2)

Book-Keeping (Bu et al., 2023) O(BTpd) O(Bmin(pd, T 2))
Clipless w/ Lipschitz (ours) O(Upd) 0

Clipless w/ GNP (ours) O(Upd+ V pdmin(p, d)) 0

Table 6.2: Time and memory costs for each method for feedforward networks. We assume
weight matrices of shape p× d, and a physical batch size B. For images, T is height×width. U is
the number of iterations in Power Iteration algorithm, and V the number of iterations in Björck
projection. Typically U, V < 15 in practice. The overhead is taken relatively to non-DP training
without clipping. This table is largely inspired from Bu et al. (2023).

Lipschitz constraint biases the network toward better robustness radii but worse clean accuracy, as
frequently observed in the relevant literature.

Therefore, these biases influence the learning process differently, and they constitute two distinct
(not necessarily exclusive) approaches. We illustrate the difference between these paradigms in
Figure 6.10.

6.5.2 Efficiency of gradient clipping

Beyond the conventional implementation of gradient clipping that can be found in Opacus or
Tf-privacy, recent developments proposed more efficient forms of clipping, or to get rid of the clipping
introduced by Abadi et al. (2016) and to use renormalization instead.

In this regard, we can mention the works of Bu et al. (2022b) or Yang et al. (2022) that study
alternative implementations of clipping based on renormalization, which eliminates the need to tune
the clipping value, with convergence guarantees.

Other works study the alternative implementation of elementwise clipping to reduce the compu-
tational cost, like Bu et al. (2022a), Li et al. (2021) He et al. (2022), and Bu et al. (2023). Taking
inspiration from Bu et al. (2023) we summarize each one in Tables 6.1 and 6.2.
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Figure 6.10: Comparison between the bias of DP-SGD with clipping, and Clipless DP-
SGD. One is an instance of optimizer bias, and the other of function space bias.

6.5.3 Limitations

We measure the theoretical bounds with our framework at the start of training in Fig. 6.11a, and at
the end of training in Fig. 6.11b. We see that the last layer benefits from bounds that are quite
tight (around 30% to 50%) whereas the tightness drops for the deeper layers in MLP blocks (less
than 10%). The explanation is that the bound∥∥∥∥∂fd(θd, x)∂θd

∥∥∥∥
2

≤ K(fd, θd)Xd−1, (6.13)

might be overly pessimistic, because of the Xd−1 term, and especially since Cauchy-Schwartz
inequality is a “best-case bound” (i.e assuming that all vector involved in the inner product are
co-linear), and do not account for the possible orthogonality between xd and the cotangent vector.
Nonetheless, with a ratio of 4%, we see that the noise and the gradient norm are of similar amplitude
as soon as the batch size exceed 1/0.04 = 25 examples, which is clearly our case with batch sizes
that easily exceed 2, 500 on Cifar-10.

6.5.4 Future works and broader impact

Our framework offers a novel approach to address differentially private training, but also introduces
new challenges. We primarily rely on GNP networks, where high-performing architectures are quite
different from the usual CNN architectures. This serves as (1) a motivation to further develop
Gradient Norm Preserving architectures. We anticipate that progress in these areas will
greatly enhance the effectiveness of our approach. Additionally, to meet requirement 3, we rely
on projections, necessitating additional efforts to incorporate recent advancements associated with
differentiable reparametrizations Trockman and Kolter (2021); Singla and Feizi (2021b). Finally, as
mentioned in Remark 1, our propagation bound method can be refined.

Beyond the application of Algorithms 8 and 9, our framework provides numerous opportunities
to enhance our understanding of prevalent techniques identified in the literature. An in-depth
exploration of these is beyond the scope of this work, so we focus on giving insights on promising
tracks based on our theoretical analysis. Furthermore, the development of networks with known
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Figure 6.11: Comparison of histograms for different epochs. We see that the ratios between 
empirical gradient norms and their upper bound tend to diminish with time, which is expected as 
the loss decreases toward a minimum. However, the effect remains small: as seen in chapter @I the 
Joss remains lower boundecl above zero for Lipschitz networks. 
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Lipschitz constant with respect to parameters is a question of independent interest, making lip-dp

(2) a useful tool for the study of the optimization dynamics in Lipschitz constrained neural
networks.
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Chapter 7

Gradient of convex potential fields and

neural Monge maps

Lipschitz networks have key connections to optimal transport, thanks to Kantorovich-Rubinstein
duality, and W1 distance. Similarly, convexity constraints arise naturally in the context of W2

distance, which benefits from numerous advantages over W1. Indeed, W2 distance can be formulated
as the following optimization problem (Korotin et al., 2021):

W2(P,Q) = sup
φ∈Convex(X ,R)

Ex∼P [φ(x)] + Ez∼Q[φ
c(z)], (7.1)

where φc is the c-transform of φ defined as φc(x) := miny
1
2‖x− y‖−φ(y). Interestingly, the optimal

Monge map T is guaranteed to be the gradient of some convex function (Gangbo and McCann,
1996):

Tθ(x) := ∇xfθ(x). (7.2)

However, the set of convex functions is much harder to parametrize than Lipschitz functions. In this
chapter, we do a short literature on the field, and we discuss the main challenges it faces.

1. First, we give a general “cookbook” to parametrize convex functions, following the approach
of Amos et al. (2017). We also discuss some of the difficulties of parametrizing convex functions.

2. Then, we discuss the possibility of parametrizing T directly as a gradient without relying on
Autodiff.

3. Next, we illustrate the usage of convex networks in various topics related to optimal transport,
such as center-outward distribution or fairness with counterfactual examples.

4. Finally, we propose a parametric estimator that may be used for multivariate quantile
regression with some statistical guarantees.

The preliminary results of this chapter are mostly unpublished.
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7.1 Parametrization of convex functions

In this section, we discuss the parametrization of convex neural networks.

7.1.1 Input Convex Neural Networks (ICNN)

The training of convex networks (w.r.t the input x, not the parameters) is consistently proven to
be challenging (Korotin et al., 2021). Notably, to date, there is a lack of consensus regarding the
optimal architecture.

Convex networks in literature. All architectures typically stem from the original proposal
of Amos et al. (2017). This seminal work introduces non-negative weights in affine layers and
non-decreasing non-linearities. In Warin (2023) the GroupMax activation is suggested. In Bunne
et al. (2022) the use of a quadratic potential is recommended. The work of Korotin et al. (2021) is
a comprehensive benchmark of the contemporary technique for W2 distance estimation, that also
covers the question of the architecture.

Vanishing gradient issues Convex functions are generally not stable under composition, and
obey instead a set of more restrictive rules (see example 1), which makes their parametrization more
complex than the set of 1-Lipschitz functions.

Exemple 7.1. Non stability of convex functions under composition.

The canonical example is given by f(x) = x2 and g(x) = exp (−x). Both functions can be
easily checked to be convex, but their composition g◦f is obviously not convex since exp (−x2)
yields a “bell curve”. Here, the issue stems from the fact that g is decreasing.

We detail below a set of common tools used for the parametrization of convex functions.

Remark 7.1. Convex Networks Cookbook.

Let (fi : Rd → R)1≤i≤n be a set of n convex functions, and we note f : Rd → [f1(x), . . . , fn(x)]
the vectorized function. The following tools are available:

1. Affine. Let P ∈ Rd′×d be any matrix, and b ∈ Rd′ . Then x �→ Px+ b is convex.
2. Quadratic potential. This component has been proposed in Bunne et al. (2022).

Let M ∈ Rd×d be any positive semi-definite matrix. Then x �→ xTMx is convex. In
particular ‖P (x− b)‖22 is convex w.r.t x. Note that the gradient of a quadratic potential
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is a linear form M(x−m). In particular, the gradient is linear. A single-layer ICNN
built with this potential yields linear Monge maps.

3. Composition. Let g : R → R be a non-decreasing convex function. Then g ◦ fi is
convex. Common choices of non-decreasing functions g are given below.

4. Maximum. Notoriously, the maximum x �→ maxi fi(x) is convex. Indeed, the epigraph
of the maximum function is the intersection of epigraphs of the fi’s, and an intersection
of convex sets is convex.

5. Log-sum-exp, aka “smooth maximum”. The function x �→ τ log
∑

i exp (fi(x)/τ) is
convex. In the limit τ → 0 we retrieve the max function, as above.

6. Affine positive composition. Let W+ ∈ Rn
+ be a matrix with non-negative weights.

Then x �→ W T
+f(x) is convex. Observe that W+

‖W+‖1 is a probability vector.

Property 1 is used for skip connections from input to intermediate layers. Property 2 is usually
used in the first layer. Property 3 is used for activation functions. Properties 4 and 5 are also useful
as non-linearities.

Activation function. The activation function must be non-decreasing. Optionally, we want its
Jacobian to be well conditioned: σmax must not be too big, and the stable rank must be as high as
possible (see the definition in Equation 7.3).

Parametrization of non-negative weights. The literature usually relies on ReLU Π(W ) =
max(0,W ) or Softplus Π(x) = ln 1 + expx to ensure that the re-parametrized weights W̃ = Π(W )
are non negative. This is currently unseen in literature, but absolute Π||(x) = |x| or quadratic
activation Π2(x) = x2 are also possible. Observe that if M is an orthogonal matrix, its elementwise
square Π2(M) is orthostochastic (Brualdi, 2006): not only the elements are positive, the rows and
the columns sum to one. Therefore, the tools presented in Chapter 2 can be used to parametrize
ortho-stochastic matrices.

Remark 7.2. Softplus and straight-through estimator.

One of the approaches consists in finding a diffeomorphism between Rn×n
+ and Rn×n. In this

regard, Softplus with straight through estimator trick (Bengio et al., 2013) enjoys interesting
properties. In the forward pass, Π behaves like Softplus, and in the backward pass, Π behaves
like the identity function. This mitigates the vanishing gradient phenomenon. Furthermore, as
for many diffeomorphisms with straight-through tricks, it is possible to interpret the descent
step as a Riemannian gradient step in some curved space whose geometry depends on Π
(see Niculae (2020) for more details). Taking this curvature into account is precisely what
characterizes order-2 methods, and as such, the straight-through estimator can be a cheap
way to run an order-2 optimization method with order-1 gradients, if the map Π fulfills the
right properties.

7.1.2 Stable rank of positive matrices

The last property 6 is used for affine transformations in intermediate layers. This causes some
difficulties: the spectrum of non-negative matrices may be ill-conditioned (see figures 7.1). High
singular values can elicit exploding gradient phenomenon. This can be avoided with re-normalization
by σmax - however in this case we might face vanishing gradient issues when the other σi’s are too
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small. We propose to measure the behavior of the transformation x �→ f(x) through the stable
rank (Rudelson and Vershynin, 2007) (sometimes called “numerical rank ”) of its Jacobian matrix
evaluated in x:

r(f, x) :=
‖∂xf‖2F
‖∂xf‖22

=
n∑

i=1

(
σi
σmax

)2

≤ rank(∂xf). (7.3)

This metric is an alternative to the algebraic rank and has proven to be more relevant for numerical
applications (Sanyal et al., 2020). Indeed, when a singular value is very close to zero, by all means,
the associated transformation M behaves (numerically) like a rank-deficient transformation. While
the stable rank measures an “average” behavior it is important to also monitor the value of σmax:
this corresponds to a best-case scenario for the gradient norm when it is back-propagated through
successive layers. This single metric is a useful proxy to summarize the “spreadness” of the whole
singular values histogram. The stable rank is even linked to generalization results in deep neural
networks (Bartlett et al., 2017; Neyshabur et al., 2018). The goal is to find parametrizations (and
initializations) that ensure that the singular value spectrum is not degenerated.

Initialization of non-negative weights. Ensuring the good properties of Π derivative is not
sufficient: the initialization of weights W̃ plays an important role. Once again, vanishing and
exploding gradient issues must be avoided. Following guidelines of Glorot and Bengio (2010), the
norm of feature vectors should remain invariant under width scaling. In their seminal work, the
standard deviation of the weights is chosen such that yi ∼ N (0, 1√

n
) for y =Wx. The question of

initialization is also discussed in Bunne et al. (2022) where different strategies are proposed. In the
first one, the Monge map behaves like the identity function, and in the second one like a Monge map
between (mono-modal) Gaussian approximations of P and Q. Both initializations are higher quality
than random, in the sense that the random Monge map T verifies T#P ⊂ (domP ∪ domQ), which
ensures that the problem is not ill-conditionned. However, this does not solve the issues related to
the spectrum of the Jacobians.

Exemple 7.2. Spectrum of positive weights matrices.

In Figure 7.1 we explore the effect of different initialization schemes on the singular values, on
512× 512 matrices. For faithful comparison, every weight matrix W is re-scaled such that
‖W‖2 := σmax = 1. We explore the following settings:

1. Glorot-Uniform Glorot and Bengio (2010) corresponds to x ∼ U([−a, a]) with a =√
6

d1+d2
is the default scheme proposed in deep learning framework. The weights are

not positive: this experience is for comparison only.
2. Softplus log (1 + exp (x)) with x ∼ U([−a, a]), positive with a degenerate spectrum.
3. ReLU max (0, x) with x ∼ U([−a, a]), positive with a degenerate spectrum.
4. Abs ‖x‖ with x ∼ U([−a, a]), positive with a degenerate spectrum. This is equivalent

to sampling in the positive quadrant U([0, a]).
5. Softmax expxi∑

j expxj
with x ∼ U([−a, a]), positive with a somewhat spread spectrum.

Note that the Softmax reduction is performed either on rows or columns, but yields the
same spectrum for square matrices. This yields a left or right stochastic matrix.

6. Huber 1
2x

2
i if |xi| ≤ 1, and |xi| − 1

2 otherwise, with x ∼ U([−a, a]), positive with a
degenerate spectrum.

7. Orthostochastic matrices form a strict subset of the family of bi-stochastic matrices.
It is defined as the elementwise square of an orthogonal matrix. The spectrum is also
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degenerated.
8. Softmax+Orthogonal. Here a softmax transformation is applied to an orthogonal

matrix. The spectrum is even more spread.
We also compute the stable rank r(f, x) at initialization. This confirms that most initializations
yield layers that behave like rank 1, rank 2 or rank 3 matrices. We also report the ratio
between the numerical rank and the maximum possible rank (512).

Initialization r(f, x) r(f, x)/512

Glorot-Uniform 130.8 25.5%
Softplus+Glorot-Uniform 1 0.20%
ReLU+Glorot-Uniform 2.64 0.51%
Abs+Glorot-Uniform 1.33 0.26%

Softmax+Glorot-Uniform 36.8 7.18%
Huber+Glorot-Uniform 1.8 0.35%

Orthostochastic 3.0 0.58%
Softmax+Orthogonal 87.3 17.0%

We see that Glorot-Uniform exhibit the best spectrum (as expected) but fail to fulfill the
basic requirement of positive weights. The second best scheme seems to be the softmax
transformation applied on an orthogonal matrix. Grid-Search over those initializations
revealed that this initialization scheme was the easiest to optimize with, on various W2

estimation tasks. This experiment also reveals that the default choices of literature
(ReLU and softplus) are typically not the best with regard to this criterion.

7.2 Direct parametrization of convex gradients

We are primarily interested in the transportation plan T = ∇xf , where the potential f is only
necessary at training time in certain formulations of the problem, such as in the works of Korotin
et al. (2020, 2021). This has some drawbacks:

• It is necessary to parametrize and optimize over the set of convex functions, which has the
disadvantages presented in the last section.

• This requires the use of Autodiff to retrieve ∇xf which increases runtime and memory
consumption.

7.2.1 Parametrization of gradients

This raises the question of whether or not the gradient of convex functions can be parameterized
directly. A first attempt has been made in the work of Richter-Powell et al. (2021) but it does
not scale to more than 2 layers deep. Parametrizing gradients alone, without relying on Autodiff,
is itself a complicated task. An efficient parametrization would have tremendous consequences
that go beyond optimal transport, and would be of huge interest in the context of ODE solving or
physic-informed neural networks (PINN), see Richter-Powell et al. (2022) for example.

Property 8 (Symmetry of second derivatives.). Per Schwartz’s theorem Widder (2012), if f : Rn →
R is twice differentiable, and if its second derivative is continuous, then the Hessian matrix of f is
symmetric:

(Hxf) = (Hxf)
T . (7.4)
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As a consequence, the differentiable .function T = "v x f fulfills: 

(âT) = (âT)T 
&x âx 

(7.5) 

Property ~ is the motivation behind the regularization term efJ 

(âT0) (âT0)T 
efJ(T0) := IEx,.,_,x [II âx - âx IIF], (7.6) 

typically used in OT auscidda and Cutur~ !2O23D, or for gencralization guarantces GCui et aq 120220. 
U nfortunately, like any regularization, it fails to give the formal guarantee that T = "v xf for some 
f , and it doesn't get rid of the need for nested differentiation "v0efJ(T0) to optimize the parameters 
0. Furtherore, it does not enforce the convexity constraint either. This leads to the question, of 
whether is it possible to parametrize gradient fields without nested autodifferentiation. 

Warning 7.1. Stability of gradie nt fie ld under composition. 

Let f : !Rn -+ !Rn and g : !Rn -+ !Rn be two gradient fields , i.e. f = "v xF and g = "v xG for 
smooth and di:fferentiable scalar fonctions F and G. Then ~ = ~T and !lJJ.. = !lJJ..T _ We fJx fJx fJx éJx 
define h = f o g. Then in general we have 

(7.7) 

that is, gradient fields are not stable uncler composition. There is no H : !Rn -+ lR such that 
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h = ∇xH. This is a direct consequence of the fact that symmetric matrices are not stable
under products.

For two symmetric matrices A = AT and B = BT , their product AB is symmetric if and only if
the matrices commute: AB = BA. Back to our original problem, this implies that the Jacobian ∂f

∂x

and ∂g
∂x of the corresponding functions must commute.

Open question. What are the set of smooth functions F such that for all f ∈ F :

•
(
∂f
∂x

)
=
(
∂f
∂x

)T
, i.e. there exists F such that f = ∇xF .

• for all g ∈ F , with h := f ◦ g, we have
(
∂h
∂x

)
=
(
∂h
∂x

)T
.

This boils down to finding a group of symmetric matrices G that commute. And then to find
all the smooth functions F such that ∂f

∂x ∈ G. The smoothness condition is the most severe. We
perform a first attempt with symmetric circulant matrices.

Exemple 7.3. Symmetric circulant matrices.

Symmetric circulant matrices are matrices of the form (in the case of 5× 5 matrices):

C =

⎡
⎢⎢⎢⎢⎣
a b c b a
b a b c b
c b a b c
b c b a b
a b c b a

⎤
⎥⎥⎥⎥⎦ . (7.8)

They are symmetric by construction. Circulant matrices are commutative. Therefore, sym-
metric circulant matrices form a (commutative) ring, that we note G, under matrix multi-
plication (Chao, 1988; Rojo and Rojo, 2004). This manifold is of dimension  n2 !, which is
extremely low compared to the ambient space of dimension n× n.

Therefore, it is possible to parametrize linear layers as F := {f(x) = Cx+ b|C ∈ G, b ∈ Rn}. It
remains to find smooth activation functions whose Jacobian exhibits such structure. Unfortunately,
enforcing smoothness (and in particular, continuity) with non-linear functions having this structure
is not trivial. And without smoothness, the condition of property 8 do not apply. One way to solve
the issue would be to relax the problem and look for piecewise affine activations, instead of smooth
ones. To this day, this question is still open.

We can mention the works of Araujo et al. (2019, 2018) that studied universal approximation
of functions with circulant matrices, leveraging their computational efficiency, with applications to
video classification. Notably, with ReLU activation, “diagonal circulant networks” of unbounded
width are universal approximators. However, their work does not address the design of activation
functions with circulant matrices. However, it gives some insights: the product of circulant matrices
is typically not full rank, which may be an issue for deep networks. We can also mention the recent
work of Richter-Powell et al. (2022) regarding the neural parametrization of divergence-free fields.
Finally, we can mention the work of Chaudhari et al. (2023) that defines a neural network whose
Jacobian is positive definite, which effectively ensures that the map is the gradient of a convex
function. Unfortunately, the universal approximation theorem does not hold for their construction
(or at least, not trivially), since the network only performs a single linear transformation of the input
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before stacking non-linearities: its expressiveness is reduced.

7.2.2 Gradient of a convex function

Assume that H : Rd → R is a real function whose gradient is 1-Lipschitz. We let

FH(x) :=
1

2
‖x‖22 −H(x). (7.9)

We let h(x) = ∇xH(x) and fh(x) = ∇xFH(x). Then we have

fh(x) = x− h(x) (7.10)

with h : Rd → Rd a 1-Lipschitz function. Then, the function FH is convex, since ∂2FH

∂x2 = I − ∂h
∂x � 0.

Therefore, if it is possible to enforce h to be both 1-Lipschitz and a gradient, then it is possible to
parametrize directly the gradient of a convex function1. Nevertheless, current parametrizations of
1-Lipschitz functions (as the ones exposed in Chapter 2) do not verify the condition ∂h

∂x

T
= ∂h

∂x . This
is arguably a problem harder than the one exposed in the previous section.

7.3 Computation of Monge maps for squared Euclidean cost

In this section, we illustrate the use of convex neural networks in the context of optimal transport.
As mentioned before, convex networks arise naturally in the context of Wasserstein-2 transportation
plan learning. First, we recall briefly the optimization problem studied by González-Sanz et al.
(2022):

González-Sanz, A., De Lara, L., Béthune, L. and Loubes, J.M.. GAN estimation of Lipschitz
optimal transport maps, 2022.

This work relies on Lipschitz constrained generators (and discriminators) to learn optimal
transport maps. My contribution was the implementation of the algorithm in Tensorflow. Then, we
expose a modification of this algorithm that involves non-Lipschitz optimal transportation maps
(unpublished). After, we showcase an application to fairness with counterfactuals. We conclude with
an application to the center-outward map that can be used to generalize quantiles to the multivariate
case.

7.3.1 Lipschitz Monge maps

Given two distributions P and Q living in Rd, with compact support (for simplicity), González-Sanz
et al. (2022) solve:

T λ(P,Q) ∈ argmin
T :Rd→Rd

λW1(T#P,Q) + Ex∼P [‖T (x)− x‖22]. (7.11)

We recall that the Monge problem for squared Euclidean cost is the solution to the following problem:

T ∗(P,Q) ∈ min
T#P=Q

Ex∼P [‖T (x)− x‖22]. (7.12)

Therefore, the problem of Equation 7.11 is a regularized version of Equation 7.12. Since the two
objectives are antagonists, this induces a bias in the solution T λ(P,Q) �= T ∗(P,Q). Fortunately,
if λ → +∞ then T λ → T ∗. The advantage of using neural networks for parametrizing Tθ is

1I would like to thank Edouard Pauwel for this suggestion, which opens interesting perspectives.

124



1.5 
a) b) 

•.. 
o.s 

-o,s 
-o.s 

-1 -o.s O o.s l s -l -0.S O O 5 

() 

,(),'> 

, \ , ., 
,() 

dl 

• Q 
• GrcP 

Figure 7.2: Visualisation of GuP and Q := TopP w it h 10,000 points. P is the uniform 
distribution on [- 1, ljd. The generator is trainecl for 120 gTadient steps. The Figures (a)-(b) 
corresponds to d = 2. The Figures (c)-(d) corresponds to d = 3. ln Figures (a)-(c) , we defined 
To by coordinate-wise application of x H 1.~s ( exp x - 1.18). In Figures (b )-( d), we defined To by 
coordinate-wise application of x H x2sign(x). 

their ability to generalize outside the train set. Indeed, only empirical distributions Pn rv p ®n 
and Qn rv Q®n are available. ln this case, for the empirical estimator T>.(Pn, Qn) to converge to 
T*(P, Q) , the regularization factor Àn must grow to +oo at the "right" speed. Too slow, and the 
push forward constraint T#P = Q might not be fulfilled. Too fast , and T might not minimize the 
squared Euclidean cost. This speed depencls on the way the fonction Te is parametrized. In the 
work, IGonzalez-Sanz et a i.l Q2O22D proposes to rely on a Lipschitz generator, since it gives statistical 
consistency results. See examples in Figure IT]l However, this also induces strong constraints on the 
transportation plans that can be represented. Indeed, even for simple distributions P and Q, the 
Lipschitz constant of the Monge map T* can be high (}Salmona et aq 12O220. Therefore, the algorithm 
of Gonza.lez-Sanz et al. 2022 can fail in situations where T is not Lipschitz, like in Figures j7.3i 
Uscidda and Cuturi 2023 solves the problem of tuning À using a third term - W2(P, T#P) , that 
corrects the bias induced by À. We eau also mention the work of jFan et a l.! Q2023D that studies a 
similar formulation with a dual Lagrange multiplier for the pushforward constraint. Nonetheless, the 
problem studied in IGonza.lez-Sanz et al.! a20220 is interesting since it gives statistical consistency 
results involving the depth and the width of the network, which is uncommon in deep learning. 
In the next section, we study a setting in which we relax the Lipschitness constraint on T (which 
removes the statistical consistency results) to improve the empirical performance. 

7.3.2 Non-Lipschitz Monge maps 

In this section, we propose a different algorithm by relaxing the constraints on T. We do not enforce 
the Lipschitzness of T. Ail the preliminary results in this section and onward are unpublished 
personna.l work. 

Instead of using a Lipschitz generator T , \>Ve parametrize T as Te = V xfe, where Je is a input 
convex neural network, like defined in section !'.[TI And since the samples Pn and Qn are of fini te 
size n E N, we consider À as a hyper-parameter we optimize manually. Therefore we lose some 
statistical guarantees brought by the Lipschitz constraints on T . ln exchange, Te can parametrize 
discontinuities sin ce f e is now allowed to have discontinuous derivatives. For the estimation of 
W1 (T# P, Q) we fit a 1-Lipschitz neural network, and we optimize the Kantorovich-Rubinstein dual 
objective. We obtain a min-max formulation, typical of the GAN framework: 

argmin IEx~P[ll'Vxf(x) - xi@+ À max (IEx~P[p('Vxf(x))] - IEx~Q[p(x)]). 
/ Econvex(JRd,JR) pELiP1 (JRd,JR) 

(7.13) 
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Figure 7.3: Failure cases for squared Eu clidean transportation cost , with non-Lipschitz (even 
non-continuous) optimal Monge maps. We see that the Lipschitz generator G struggles to fulfill the 
push forward constraint G# P = Q. 

Like many min-max formulations , we rely on the amortized optimization framework !Amos et al.! 
020230: we re-use the previous optimum Pt of the t-th step as a high-quality initialization for the 
t + 1-th step. This makes the inner loop cheaper than solving a whole optimization problem from 
scratch. The procedure is sketched in Algorithm [ill 

7 .3.3 Count erfact u al fair ness 

Among applications of optimal transport, fairness stands out. Indeed, if two groups of people, 
modelized by distributions P and Q, receive unfair treatment, for example in accessing a bank 
loan, predicting risks of recidivism, getting hired for a job, etc ... it is possible to fix the issue by 
transporting individuals from the d iscriminated group to the normal group, using transportation 
map T. This pre-processing of data allows to transformation of an unfair classifier f into f o T . This 
is the "counterfactual fairness" solution democratized in !Kusner et a.LI~ and !Black et aJ.! (j2020D. 
This is best explainecl with the words of !De Lara et aJ.! 020210: 

A counterfactual states how the world should be modified so that a given outcome occurs. 
For instance, the statement had you been a woman, you would have gotten half your 
salary is a counterfactual relating the intervention "had you been a woman" to the 
outcome "you would have gotten half your salary" 

Exemple 7.4. Lipton synthetic dataset 

vVe rely on the Lipton synthetic dataset (!Lipton et aJ.t l2018D. In this synthetic dataset, each 
individual is characterized by three features W, H , Y with W the work experience, H the 
hair length, and Y E {O, l} a boolean that indicates whether or not the individual was hired. 
Furthermore, the individuals are split into two g;roups: Male and Female. T his is a hidden 
variable G that has effects on both work experience a.nd hair length. This description is given 
in the seminal paper: 

This clata-generating process has the following key properties: (i) the historical 
hiring process was based solely on the number of years of work experience; (ii) 
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Algorithm 10 GAN learning of Monge map
Input: source distribution P , target distribution Q, regularization parameter λ, Lipschitz
discriminator {Dψ}ψ∈Ψ, input convex neural network fφ, generator {Tφ}φ∈Φ := ∇xfφ, respective
learning rates ηD and ηT , minibatch size m
repeat

repeat
Sample minibatchs: {xi}mi=1 ∼ P , {yi}mi=1 ∼ Q
Define cost function:

WD(ψ) :=
1

m

m∑
i=1

Dψ(Tφ(xi))−
1

m

m∑
i=1

Dψ(yi)

Projected gradient ascent step on discriminator:

ψ ← PΨ (ψ + ηD∇ψWD(ψ))

until convergence of Dψ

Sample minibatch: {x′i}mi=1 ∼ P
Define cost functions:

WT (φ) :=
1

m

m∑
i=1

Dψ(Tφ(x
′
i))

C(φ) := 1

m

m∑
i=1

‖x′i − Tφ(x
′
i)‖2

Projected gradient descent step on generator:

φ ← PΦ (φ− ηT∇φ(C(φ) + λWT (φ)))

until convergence of Gφ

127



Î ' 
} 

. , 

... 
', . 

Figure 7.4: Counterfactuals based on optimal transport on Lipton dataset dLipton et ai.l 
l2O18D, computed with Algorithm lfil The transportation T is highlighted in yellow. Counterfactuals 
are denoted "manly women" in the legend. 

because women ou average have fewer years of work experience thau men (5 years 
vs. 11), men have been hired at a much higher rate than women; and (iii) women 
have longer hair than men, a fac t that was irrelevant to historical hiring practice. 

Since the hair length feature is correlated to the label y, and classifier may procluce unfair 
clecisions based solely on haïr length rather than work experience. We illustrate this below: 

Optimal t ransport can be used to produce counter-factual individuals, as illustratecl in 
Figure IT3J to solve the issue. 

7.3.4 Multivariate Quantiles with Center-Outward distribution 

We illustrate this algorithm on the task of multivariate quantiles estimation, with the so-called 
center-oiitward distribution. The literature around this object is plethora, see for example !del Barriol 
~ ~ ; !Figalli! Q2O18D; !Beirlant et al.! 020200; !Hallin et al.! 020200; !del Barrio et al.! 02O22D; 
!Hallin et al.! Q2O23D. T his tool allows to defime a generalization of quantiles for the mult ivariate case 
y E Y c lRa. The idea is the following: 

1. Define the spherical un~forrn distribution Ud, defined as the product of the uniform over the 
unit sphere S d-I with uniform over the unit interval of distances to the origin. The probability 
density function ud of Uct verifies u (r0) ex 1.lfd, with r E [O, 1] and 0 E JRd with 110112 = 1. We 
note §d the support of Uct . 

2. Compute the Monge map T between Uct and a target distribution P by minimizing squared 
Euclidean cost. T is the center-outward quantile map. 

3. We define the quantile region of order T as: 

T E(O, 1), (7.14) 
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having the central property that:

P(Y ∈ C±(τ)) = τ, (7.15)

justifying the interpretation as a quantile region. Note that C±(0) can be interpreted as a
generalized median. Q contours and quantiles tubes can be defined similarly. See Hallin (2022)
and references therein for more details.

Exemple 7.5. 2D multi-modal distributions.

We illustrate the procedure on 2D mixtures of Gaussians, taking inspiration from the examples
of Hallin et al. (2021). We consider three tasks:

1. Mixture 3
8N (μ0,Σ1) +

3
8N (μ0,Σ2) +

1
4N (μ0,Σ3)

2. Mixture 3
8N (−3μh,Σ1) +

3
8N (3μh,Σ2) +

1
4N (−5

2μv,Σ3)

3. Mixture 3
8N (−8μh,Σ1) +

3
8N (8μh,Σ2) +

1
4N (−5μv,Σ3)

with:

μ0 =

[
0
0

]
μh =

[
1
0

]
μv =

[
0
1

]

Σ1 =

[
5 −4
−4 5

]
Σ2 =

[
5 4
4 5

]
Σ3 =

[
4 0
0 1

]
.

The report the empirical contours from the empirical center-map Tn computed with Algo-
rithm 10, with n = 4, 000. The value of λ is optimized with a grid search. Results are reported
in figure 7.5.

7.4 Parametric Multivariate Quantile Regression

In this chapter, we discuss the possibility of performing multivariate quantile regression with statistical
guarantees, using Lipschitz neural networks and convex neural networks. More precisely, this
procedure takes inspiration from nonparametric multiple-output center-outward Quantile Regression
from del Barrio et al. (2022), conditional Monge maps from Bunne et al. (2022), from the Monge
gap regularizer Uscidda and Cuturi (2023), and 1-Lipschitz neural networks.

7.4.1 The meta-algorithm

Given a dataset of n observations (xi, yi) with xi ∈ X ⊂ Rf and yi ∈ Rd, with d > 1, the goal is to
estimate the quantile region of order τ conditionned by x, defined as:

C±(τ |X = x) := Tx(τSd) τ ∈ (0, 1), (7.16)

with the property that:
P(Y ∈ C±(τ |X = x)) = τ. (7.17)

Refer to del Barrio et al. (2022) and references therein for more details on this construction. We
see that this amounts to estimating a collection of transductive optimal transport maps Tx for each
x ∈ X . Conditional Monge maps have been studied by Bunne et al. (2022) and the recent work
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Figme 7.5: Empirical quant ile contours obtained by computing the Monge map that minimize 
squared Euclidean cost , between the spherical uniform distribution Ud and a mixture of Gaussians 
defined by µo = ( 8), µh = ( 5) , µh = ( Î), E1 = ( !4 5
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of Manupriya et al. (2023). Neural networks offer a natural way to parametrize those conditional
transportation maps.

Definition 20 (Neural Conditional Monge map). We define the conditional Monge map as a
function:

T : X × Y ×Θ → Y (7.18)

where X is the input space, Y the prediction space, and Θ the parameter space. The function will be
typically denoted as Tθ(·|x), or T (·|x) when the parameters θ are obvious from context.

The map T solves the conditional OT problems (Tx)#Ud = P(Y |X = x), and in particular
regresses the “generalized median” C±(0|X = x).

Exemple 7.6. Parametrization of Neural Conditional Monge maps.

Different strategies are possible to parametrize T . We detail below some examples:
1. Multiple inputs strategy: Tθ is the neural network operating on the concatenated

input [x, y].
2. Multiple inputs strategy: Tθ(y|x) = ∇yEθ(y|x) is the gradient of a Partially Input

Convex Neural Network (PICNN) as defined in Amos et al. (2017).
3. Meta-learning strategy: Tθ(y|x) = gfθ(x)(y) where fθ(x) are the parameters of the

network g(·), and fθ is itself a neural network.
These parametrizations leverage different implicit biases and offer different opportunities for
generalization or constraint enforcement.

On most datasets, because of measurement errors and scarcity of data, each xi is unique. In this
setting, each of the individual OT problem (Txi

)#Ud = P(Y |X = xi) is trivial since P(Y |X = xi)
is the Dirac δyi . However, this strategy prevents meaningful generalization outside of the train
set: this cannot be a reliable way to build a statistically consistent estimator. This is where the
parametrization of T comes into play: the constraints on T must be chosen such that fitting the
Diracs is impossible. For example, it is possible:

1. to enforce K-Lipschitz constraint on x �→ T (·|x),
2. to enforce y �→ T (y|x) to be invertible and to be partially measure preserving, taking inspiration

from the normalizing flows literature (Kobyzev et al., 2020) by regularizing the log-determinant
log det(∂T∂y ).

The meta-algorithm is given in Algorithm 11. All the methods discussed in Korotin et al.
(2021), Korotin et al. (2022) or Uscidda and Cuturi (2023) are candidate solutions to solve each
of the conditional OT problems. They often involve complicated min-max formulations or nested
optimization problems. A benchmark is necessary to settle the question. The ingredients necessary
for this algorithm are summarized in Figure 7.6.

Remark 7.3. Instanciation of the meta-algorithm in a practical algorithm.

It is critical for these methods to be sample-efficient, considering the particular nature of the
problem. A few comments can be made on this algorithm 11:

• the parametrization of T plays an important role in the implicit bias,
• the loss L depends on the algorithm chosen. It involves only two samples: one from
P(Y |X = xi) and one from the spherical uniform Ud.

Item 2 is to ensure that the runtime costs increase linearly with the batch size and the dataset
size. This is to remain compliant with the paradigm of deep learning (discussed in chapter 1)
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Figure 7.6: Illustration of the proposed "meta-algorithm" for neural multivariate quantile 
regression. Embedded graphies corne from JBrilhault et aJ.1 ~; Bercu et al. 2023 ; jBunne et al.l 
02O22D; IManupriya et al.l ~i !Evans and Hughes! 02O13D; el Barrio et al. 2022 . The resulting 
sketched in Algorithm ~ leverages tools from clifferent fields. 

and ensure that the algorithm can be applied to enormous clatasets. Identifying the best .C 
and 'T is a research project on its own, currently ongoing. 

Algorithm 11 Multivariate Quantile Regression with Neural Conditional Monge maps 
Input: Neural Conditional Monge maps Te(-1·) 
Input: Dataset TJ = (xi, yi) 
Input: Loss .C : 0 x X x Y x Y --+ IR, learning rate 'T/ 

1: for each mini-batch B from TJ do 
2: Sample a mini-batch 'll - Ufb. 
3: 
4: Perform a gradient step 0t+l ~ 0t - rJV 0wi I:t=l .C(Te, Xi, Y·i, ui) . 
5: end for 
6: return To(-1 ·) 

7.5 Perspectives 

Here, we discuss the links of multivariate quantile regression with Conforma! prediction (CP), and 
the possible future works. 

7.5.1 Links with Conforma! Prediction 

The field of conformai prediction aspires to provide statistical guarantees in various precliction tasks 
with minimal hypotheses on the underlying algorithm. Vanilla conformai prediction typicaJly requires 
a lot of training rounds, or leave-one out estimators like Jacknife and its variants (see !Fontana et al.l 
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(2020) and references therein). In practice, a calibration set (in the spirit of temperature calibration
studied in section 4.4) is often used to estimate the confidence intervals. We see that our approach is
different: the uncertainty is at train time, and this is the “intrinsic” uncertainty of the task (i.e. the
noise ε in the observations Y := f̂(X) + ε where f̂(X) is the ground truth, and E[ε|X] = 0 the noise
of the observations). The intervals given by our algorithm are sensitive to some hyper-parameters
like the Lipschitz constant K of the map x �→ Tx(z) and don’t provide guarantees. Nonetheless, the
two approaches can be combined, and maybe it is possible to leverage some properties of the Center
Outward map to improve the confidence intervals, in the same spirit of Conformal Gaussian Process
Regression (Papadopoulos, 2023). This is an example of future work.

7.5.2 Conclusion

This chapter presented openings and future works on the topic of constraints in deep learning, and
their link with optimal transport. More specifically it focused on convexity constraints, and their
link with optimal transport with quadratic Euclidean cost. We showed that optimizing convex
input neural networks was harder than conventional networks due to the degenerated spectrum of
the weight matrices. Moreover, we discussed the possibility of a direct parametrization of gradients,
without relying on
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Chapter 8

Conclusion

In this last chapter, we take a step back on some of the topics explored in the thesis, and we attempt
to replace them in a broader context. We hope that these high-level remarks can serve as a basis for
future research directions.

1. First, we discuss the ever-lasting debate of constraints versus regularization, in the light of
Lipschitz networks.

2. Then, taking inspiration from chapter 6, we perform a short literature review of some algorithms
inspired by back-propagation. We also discuss what could be the future extension of this
framework.

3. After, we discuss an understudied framework for generalization: the Kolmogorov complexity
and some variants (Minimum Description length, ν-information...). We show how it may
address some shortcomings of existing frameworks that theorize generalization.

4. Finally, we attempt to define AGI1 such as commonly understood in the media, and what are
the current obstacles to its existence.

These sections, and the chapter 7 as a whole, are also intended as draft of research statement for
future works. The tone is less rigorous and precise than the rest of the manuscript on purpose, as
excessive rigor may negate creativity on ill-defined questions.
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8.1 Which future for Lipschitz networks?

In this section, we take a step back and discuss the limitations of Lipschitz networks. We identify
here the main obstacles to their success.

8.1.1 Bias of the function space

In the context of classification, chapter 4 largely addresses this and concludes that this function space
is not limited. However, for other tasks like regression, representation learning, object detection, and
segmentation, this is less obvious. Segmentation is akin to a multi-label classification task, with as
many labels as input pixels. Object detection is similar to segmentation, with the additional difficulty
of regressing the position and dimensions of boxes. Regression tasks are the most challenging: the
Mean Square Error can only be minimized if the target function has the same Lipschitz constant
as the Lipschitz network. When the observations y = f(x) + ε are noisy with E[ε|x] = 0, priors
on the true Lipschitz constant L(f) can be used as a regularization to the regressed function f̂ .
This shares a similar spirit to Gaussian processes, for which the prior takes the form of a kernel
function k(·, ·). For all these topics, it is not clear if the Lipschitz constraints are beneficial. As the
training progresses the Lipschitz constant increases (see Chapter 4), which in practice is not only
the augmentation of the leading singular value σmax, but the whole singular values spectrum σi.
This suggests that constraints based on singular values clipping like in Ebrahimpour-Boroojeny et al.
(2023) can mitigate the phenomenon: the mapping σi �→ σi/σmaxC is replaced with σi �→ min(σi, C),
where C is the maximum singular value.

Arguably, the hardest theoretical task is not quantifying the expressiveness of the function
space (since Lipschitz functions in general are widely used and studied in the learning theory), but
characterizing the implicit bias induced by a given parametrization. Below, we discuss a popular tool
used to characterize the implicit bias of SGD in neural network training: the Neural Tangent Kernel.

8.1.2 Is there a Lipschitz neural tangent kernel?

The concept of “Neural Tangent Kernel” (NTK) has been introduced by Jacot et al. (2018). It was
intended as a tool to understand the implicit bias of SGD in deep (and more importantly, wide)
neural networks. More precisely, this work connects the neural networks training (which is highly
non-convex) with kernel methods, and more specifically kernel regression, that are convex. They
study the training into function space ft rather than parameter space θt. It happens that the cost is
convex in function space, which facilitates the analysis. The work stems from the observation that
at initialization, a random neural network defines a valid (positive definite) kernel. This was already
known in previous work like Neal (2012) or Lee et al. (2018a).

Gaussian Processes with Lipschitz constraints. The first remark of outermost importance is
that there are no Gaussian Processes P(m, k) and no value K > 0 such that for all f ∼ GP(m, k)
the function f is K-Lipschitz. The GP prior enforces some smoothness with high probability, but
in general, the posteriors of the GP can exhibit arbitrarily high Lipschitz constant2. Therefore, it
seems unlikely that kernel methods could marry well with Lipschitz constraints.

2I would like to thank François Bachoc for these insights.
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Initialization in the Neural Tangent Kernel. The whole NTK construction relies on the
hypothesis that the network defines a well-behaved kernel at initialization. The importance of
initialization in neural networks is often overlooked3. Crucially, the NTK framework assumes the
following definition of neural network:

h0(x) := x, zl+1(x) :=
1√
nl
Wlhl(x) + βbl,

hl(x) := σ(zl(x)), f([W0,W1, . . .], x) := zL(x).

(8.1)

where β > 0 is some hyper-parameter and Wt ∈ Rnl+1×nl . Here, 1√
nl

is a rescaling factor. It is
introduced to define the behavior of W in the infinite width limit nl → +∞. Finally, it is assumed
that W ∼ N (0, 1), i.e. the entries are random iid Gaussians. The singular values of W follow the
Marchenko-Pastur distribution (Marchenko and Pastur, 1967). And according to Rudelson and
Vershynin (2010), the maximum singular value of Wl will grow as

E[σmax(Wl)] ∼
√
nl+1 +

√
nl. (8.2)

Therefore we have

E[σmax(
1√
nl
W )] ∼ 1 +

√
nl+1

nl
. (8.3)

However, these results hold with probability 1 only asymptotically, by taking the limits n1, n2, . . . nD →
+∞ sequentially. Remember that n0 describes the dimension of the input data, and therefore, n0
remains fixed throughout the training. We see that the Lipschitz constant of 1√

n0
W0 growths as

Θ(
√
n1). Because the limits n1, n2, . . . , nD → +∞ are taken sequentially, it suggests that further

layers will suffer from the issue too. It may be tempting to fix the issue by replacing the factor 1√
nl

with 1√
nl+

√
nl+1

. This resembles the Glorot initialization, which uses the rule
√
6√

nl+nl+1
instead. It is

worth noticing that:
|√nl+1 − √

nl| ≤
√
nl+1 + nl ≤

√
nl+1 +

√
nl, (8.4)

and that E[σmin(Wl)] ∼ |√nl+1 −
√
nl| (Rudelson and Vershynin, 2010). From a high-level overview,

it appears that the factor
√
nl+1 + nl corresponds more to an “average” behavior of ‖Wlx‖2

‖x‖ under
Wl ∼ N (0, 1), whereas Lipschitz certification is interested in the worst case behavior

√
nl+1 +

√
nl.

Warning 8.1. Worst case vs average case?

From an epistemic point of view, certifying the worst-case behavior is often significantly harder
than certifying the average behavior. This is notably the case in complexity theory, where
it is easy to exhibit algorithms with low expected runtime (e.g. quick sort with a random
pivot), but harder to come up with an algorithm that behaves correctly in the worst case
(quick-sort with efficient computation of the median). This is also the case in robustness
certification: randomized smoothing (Cohen et al., 2019) creates a deterministic classifier
f̂(x) := Eε∼N (0,I)[f(x+εδ)] with a larger certifiable robustness radius than using the Lipschitz
constant of f alone (Delattre et al., 2023a), but when it is evaluated from a finite sample we
obtain a random prediction f̂n(x) :=

1
n

∑n
i=1[f(x+ εiδ)] and there is a non-zero probability

to produce a wrong certificate.

3We can probably blame Glorot and Bengio (2010) and LeCun et al. (2002) for this, which did a too good of a job.
As a result, most practitioners today are unaware of the importance of the initialization on the training.
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If we apply the factor 1√
nl+

√
nl+1

and if we apply the inductive reasoning in Proposition 1 of Jacot
et al. (2018), by taking the sequential limit n1, n2, . . . , nD → +∞, we obtain that the output of the
first layer is a centered Gaussian process with covariance

Σ(1)(x, x′) =
1

n0 + n1
xTx′ + β2. (8.5)

When n1 → +∞ this covariance matrix collapses to zero, which is a degenerated GP. By induction,
further layers are Gaussian process with zero mean and covariance matrix independant of the input.
This is, once again, an example of “vanishing gradient” phenomenon. We see that, this phenomenon
has little to do with gradients themselves (which eliminates the relevance of using tricks during
back-propagation, like upscaling). The vanishing gradient phenomenon is more a consequence of the
output being independent of the input, that is more an issue of the network during the forward pass,
than an issue of the network during the backward pass.

Interpolating phenomenon. Finally, one of the motivations behind the NTK was to study
the “interpolating” regime, in which the over-parametrized network f̂ fits exactly each observation
f̂(xi) ≈ f(xi) + εi, and generalizes well anyway. The interpolating regime arises as a hypothesis in
some stochastic optimization methods like SGD with Armijo line search (Vaswani et al., 2019). It
is qualitatively different from the classical learning theory, in which a bias is introduced to reduce
the variance of the estimator, which leads to non-zero residuals ‖yi − f̂(xi)‖. For regression tasks,
Lipschitz leans more toward the classical regime than the interpolating one. In this sense, they can
be considered closer to the classical learning theory than the theory of deep learning.

This does not preclude completely the possibility of applying NTK theory to Lipschitz-constrained
networks, but it shows that significant obstacles must be overcome.

8.1.3 Reproducing Kernel Banach Spaces of Lipschitz functions

Kernels are a powerful tool, and but also arguably a very constrained one, because they correspond
to an inner product in some infinite-dimensional function space. This blessing brings the representer
theorem (Schölkopf et al., 2001a) and its variants, numerous generalization guarantees, and makes
the learning procedure amenable to convex optimization. This blessing has a cost: not all similarity
measures can be converted to a valid kernel. Similarly, not all complexity measures correspond to a
Hilbert norm. In this section, we explore another direction: we explore Lipschitz through the lens of
Reproducible Banach space (RKBS).

In an RKBS, instead of considering a Hilbert space with an inner product, we consider a Banach
space (B, ‖ · ‖B) with a non-Hilbertian norm. Here, we chose the Lipschitz constant as the complexity
measure:

∀f ∈ B, ‖f‖B = Lip(f). (8.6)

We assume that f : X → R with X ⊂ Rd being a compact domain (for simplicity). Note that this
does not define a valid norm (yet): all constant functions have null Lipschitz constant, violating the
positive definitiveness property. The solution is easy: it is sufficient to choose an arbitrary anchor
point x0 ∈ B and enforce f(x0) = 0 for all f ∈ B. This defined a “pointed” space, with x0 the
distinguished point. This strategy has been used in the seminal work of von Luxburg and Bousquet
(2004).

Now, we can attempt to apply the theory of Reproducing Kernel Banach Space (RKBS) and see
what sticks. In this regard the work of Micchelli and Pontil (2004), Zhang et al. (2009), and Lin et al.
(2022) are particularly relevant. Another obstacle on the way is that defining a norm is not sufficient:
“A normed vector space B is called a Banach space of functions on Ω if it is a Banach space whose
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elements are functions on Ω, and for each f ∈ Ω, ‖f‖B vanishes if and only if f , as function, vanishes
everywhere on Ω” (Zhang et al., 2009). These additional properties need to be checked carefully.

Is it possible to create a Hilbert space? That seems unlikely. One of the issues is that the
Lipschitz constant is fundamentally a global property, a supremum over the domain of the function.
We saw that it could be used to define a norm, but alas, not all norms correspond to an inner
product.

Remark 8.1. Banach or hidden Hilbert?

The parallelogram identity is a necessary and sufficient condition for a norm to be Hilbertian:

‖f + g‖2B + ‖f − g‖2B = 2(‖f‖2B + ‖g‖2B). (8.7)

In this case the inner product takes the form

〈f, g〉H :=
1

2
(‖f + g‖2B − ‖f‖2B − ‖g‖2B). (8.8)

However, it is possible to create a Hilbert space with an inner product using a measure related
to the Lipschitz constant.

Exemple 8.1. Dirichlet energy.

For example, 〈f, g〉H =
∫
Ω〈∇xf(x),∇xg(x)〉dx is a good candidate. The associated norm

‖f‖H =
∫
Ω ‖∇xf(x)‖22dx is the Dirichlet Energy, that was recently studied in the deep

learning context (Dherin et al., 2022). Care must be taken of functions f �= g for which
‖f − g‖H = 0, i.e. functions that are different but have the same gradient almost everywhere
w.r.t the Lebesgue measure. Quotienting this space (i.e. taking a “representer” for each class
of equivalence) might be necessary to ensure it defines a valid RKHS.
In general, every positive definite bilinear form can be used as a basis to create a RKHS, from
quantities related to the original function (e.g. the function itself, its gradient, or higher order
derivatives), providing that the right quotient space is chosen.

8.2 Back-propagation and its variants

The root of the algorithm presented in chapter 6 is a variant of back-propagation, that backpropagates
bounds instead of cotangent vectors. In general, back-propagation is an algorithm that traverses a
computation graph to perform computations. This general principle can be applied to other topics.
For example, certification methods based on abstract interpretation or bounding boxes (see Xu et al.
(2020) and Fazlyab et al. (2019)) act on the forward computation graph. Derivatives can be computed
in forward or backward mode. In literature, Klaus et al. (2022) compute convexity certificates from
the Hessian. In Srinivasan and Todorov (2015) and Roulet et al. (2022) the computation graph
is traversed to extract higher-order derivatives in order-2 optimization methods. In Roulet and
Harchaoui (2019), the framework is used to compute the local smoothness of the functional cost by
operating on the computation graph. Finally, in Roulet and Harchaoui (2021) the framework is used
to make a non-smooth computation graph amenable to smooth optimization techniques.
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Remark 8.2. How much do we owe to software?

The content of this section is subjective on purpose and intended as a discussion.
The success of modern deep learning can largely be attributed to the back-propagation
algorithm in its implementation in various libraries like Autograd, Caffee, Theano, Pytorch,
Tensorflow, and Jax. Similarly, the impact of scikit-learn project on the whole machine
learning community cannot be overstateda. The flexibility of these frameworks fostered
adaptability, exploration, and discoveries. The tools available to the researchers are largely
responsible for the productive output of these researchers. Firstly, because pursuing an
academic career requires a careful risk and time management policy, which biases research
toward incremental contributions based on existing tools, and further away from exploratory
projects that involve huge software engineering as a first step. Secondly, mastering a complex
tool that has required years of development poses a challenge if the tool is not available as a
package, as months of work may be required. This “entrance ticket price” can hinder cross-field
contributions (for example, machine learning and health).
Since research contribution will primarily rely on readily available tools and much less on the
ones that do not exist yet, it is absolutely essential for the community to produce new tools and
abstractions and avoid being stuck in a “local optima” induced by obsolete packages. Creating
and maintaining a framework is a significant amount of work that often goes beyond the
individual contribution of a single researcher, which implies it must be either the responsibility
of an institution, of a private company, or a shared responsibility through OpenSource. This
also explains why the availability of the source code in the publication is a matter that goes
beyond the reproducibility crisis: in computer science, the code is a contribution at least as
much as the research itselfb.

aTo echo the words of the recent public praise of scikit-learn by François Chollet (creator of Keras).
bIn this regard, the DEEL project (Delseny et al., 2021) that hosts and maintains the libraries Deel-

Lip (Lipschitz networks), Xplique (Explainability tools for deep learning), OODEEL (Out Of Distribution
detection), puncc (conformal prediction), influenciae (influence functions for deep learning) is part of this
process.

Exemple 8.2. The new guy in town: Jax.

In this regard, Jax appears as a promising framework that puts emphasis on the explicit control
of Autodiff in forward and backward mode. Some of these innovations like jacrev, jacfwd,
or vmap were brought to Pytorch 2.0. This increased flexibility helped recent developments
like the "automatic implicit differentiation" of Jaxopt library. We can also mention Neural
ODE (Kidger, 2021), differentiable physical engines (Freeman et al., 2021), or differentiable
rendering , which were made possible (or at least facilitated) by Autodiff.

In light of these observations, it appears that the community must pursue the efforts in this
direction. In the long term, if researchers want to take advantage of certification methods, or
higher-order optimization methods, then it might be worth creating a new “generalized” Autodiff
framework, whose purpose would not be confined to the computation of derivatives, but that could
be transparently extended to other objectives. Below, is a sketch of what could be the API:

import computation_graph as cg

import computation_graph.numpy as cnp

import computation_graph.certify as cert
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def f(x, y):

xy = cnp.stack([x, y])

c = cnp.array ([1, 2])

return cg.nn.relu(cnp.dot(xy, c)) - 2

# Examples of usage:

f.local_l2_lipschitz_constant(x=cert.l2ball(x0 , radius =2.),

y=cert.l0ball(y0, radius =0.5))

# convexity certificates from hessians:

f.is_convex_on(x0=whole_domain (), y0=21.)

# classical back -propagation:

_, f_grad = f.vjp(x0, y0)

dloss_dx = f_grad(dloss)

# graph transformation: ReLU -> softplus

f_smooth = f.smooth_relaxation(smoothness_factor =0.75)

# certificates of smoothness

f_smooth.is_differentiable_on(x0=whole_domain (),

y0=whole_domain ()) # yes!

Of course, this is a work that leverages the findings of several research projects for every method
to be speed or memory-efficient. Every elementary operation (like add, sub, matrix-vector product,
concatenate, etc... ) could exhibit an interface with the following structure. This project would
combine research and engineering practices. It could have the potential to be the basic tool in every
toolbox for robust deep learning with formal guarantees - a bit like languages suited for formal
verification in old fashion4 software like Haskell (Vazou, 2016), Ocaml (Charguéraud et al., 2019) or
Coq (Chlipala, 2022). The applications of this framework have been foreseen in previous chapters:
robustness certification, training with privacy guarantees, or optimization with guarantees.

8.3 Selected pieces in learning theory

In this chapter, we perform a brief review of generalization theorems that exist in literature and
perform a first attempt at classifying them. We place ourselves in the setting of Chapter 1:

• D ∼ μ⊗n the dataset: a finite sample of size n from the true distribution μ of support X .
• a class of functions F .
• L(f, z) a loss that depends on the predictor f and the example z. For example, in a supervised

learning task with input-target pair z = (x, y), the loss takes the form L(fθ(x), y) with fθ a
neural network.

The define the empirical risk as:

R(f,D) := Ez∼D[L(f, z)] =
1

n

n∑
i=1

L(f, zi). (8.9)

Note that f̂(D) is a random variable as D is itself a random variable. We define the population risk
defined as

R(f, μ) := Ez∼D[L(f, z)], (8.10)
4The new fashion being deep learning.
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which is not a random variable. The generalization error is the random variable

gen(f,D, μ) := |R(f,D)− R(f, μ)|. (8.11)

We will consider the simplest case of the Empirical Risk Minimizer (ERM):

f∗(D) ∈ arg inf
f∈F

R(f,D)

genERM(D, μ) := gen(f∗(D),D, μ).
(8.12)

We will also consider the case where we have A : X n × S → F an algorithm that takes the
dataset D and a random seed s ∈ § in input, and that returns some f̃ ∈ F after a finite time T 5.

f̃(D) ∼ A(D, s) with s ∼ U([0, 1])
genA(D, μ) := gen(f̃(D),D, μ)

(8.13)

Finally, we will discuss a sometimes overlooked aspect of these formulations: the domain X of μ
and on which the elements of F are defined.

8.3.1 Generalization results based on function class

The typical strategy to show generalization is to show the statistical consistency of the class of
functions FL := {L ◦ f, f ∈ F}, akin to the work done in chapter 4. If FL is shown to be Glivenko-
Cantelli (A.W. van der vaart, 1996) then the empirical risk minimizer generalizes. Furthermore,
if this class is shown to be Donsker (once again, refer to A.W. van der vaart (1996)), rates can
be given on the speed at which gen(f∗(D),D, μ) approaches zero when n → +infty. Note that in
general, little can be said about the sequence f∗(D) itself since the empirical risk minimizers are
generally not unique.

All these techniques rely on the same strategy: showing that the function class F ′ is not “too big”
for a well-chosen complexity measure. In the book A.W. van der vaart (1996) a large class of such
complexity measures are presented. For example, the VC-dimension (see definition 13 in chapter 4)
measures the largest set on which the function can fit arbitrary boolean assignments. Since it is
measured as “the largest set” it is the worst case scenario for the variance (and the best-case for bias!)
over all datasets D ∼ μ⊗n. Covering numbers and fat-shattering sets are a similar construction for
other classes of functions that do not take values in {0, 1}.6

Similarly to VC dimension, the Rademacher complexity (Koltchinskii and Panchenko, 2000)
averages over random boolean assignments (using the Rademacher distribution, which is uniform
over {−1, 1}), but with the advantage of also taking the expectation over D ∼ μ⊗n. Therefore it is
more flexible as it characterizes an average case, not the worst case.

PAC Bayesian framework (Shawe-Taylor and Williamson, 1997; McAllester, 1998; Dziugaite and
Roy, 2017) builds upon the previous tools and adds another layer of flexibility by considering a
prior over F . This results in bounds that are very tight. According to Alquier (2021) the mutual
information bounds presented in the next section are a re-discovery of previous techniques developed
for PAC Bayesian learning.

5Contrary to most textbooks, we won’t enforce any constraint on stopping time T . It can be a random variable
that depends on D and s, and its expectation is allowed to grow faster than a polynomial in sample size n.

6In this regard, some theoretical results of Chapter 4 are straightforward and naive. The singularity is that I
re-discovered them before realizing a theoretical framework already existed. They will serve as a testament to my
growth in this area.
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8.3.2 Generalization results based on algorithms

The framework of algorithmic stability introduced by Bousquet and Elisseeff (2002) focuses not on
the function class F , but rather on the property of the algorithm A when its input is perturbed:
what would have been the output of A on a dataset D′ = D − {zi}+ {z′i} where a single element
differs? If so the output of A does not change too much, then A generalizes. This is very similar
to the sensitivity introduced in Definition 19, which suggests that algorithms trained with DP
guarantees must generalize - and this is indeed the case as proven in Wang et al. (2016); Jung et al.
(2019). Similarly, the robustness of the algorithmic procedure implies generalization (Kawaguchi
et al., 2022).

As mentioned before, in recent years, a new family of results dubbed Mutual information Bounds
provides bounds that link the mutual information between the output hypothesis f ∼ A with the
input dataset D. Intuitively, if this mutual information is not too high, that means that the output
of A is somewhat decorrelated from D, which prevents overfitting and yields generalization. This is
covered in the work of Xu and Raginsky (2017) and Bu et al. (2020).

8.3.3 Generalization in countable discrete spaces for combinatorial problems

In my view, there is an issue shared by the common frameworks that theorize generalization. Most
theorems assume some strong properties of the support of X of μ, on which the functions F are
defined, either directly or indirectly. Typically, X will be assumed to be compact or bounded -
which is reasonably the case for computer vision tasks, signal/speech processing, and tabular data.
This hypothesis is often necessary: for example, the set of K-Lipschitz functions over X is not
Glivenko-Cantelli on Rd, unless we assume that X is also compact. Also frequently, the hypothesis
that X is bounded will be dropped and replaced with the weaker assumption that μ is sub-gaussian.
Essentially, even if the support of μ is now infinite, most of its mass will be concentrated in a small
domain.

The intuition between most of the arguments is that the empirical measure 1
n

∑n
i=1 δzi will “fill”

the space X fast enough, and that by interpolating on this empirical we will interpolate over the
population μ. If X is allowed to be unbounded, and if μ is heavy-tailed, either a lot of theorems don’t
apply, or the right-hand side becomes vacuous. There exist some works attempting to tackle the
heavy-tail regime, like Simsekli et al. (2020), but in restrictive cases like just assuming heavy-tailed
gradient in SGD.

Do we care about the heavy tail regime? Yes, because the bounded/sub-gaussian regime
doesn’t capture properly an important class of problems: the ones operating on discrete countable
spaces. This covers all the tasks given to a Large Language Model, which operate on variable length
sequences defined over a discrete alphabet Σ. Better, all the tasks traditionally studied in complexity
and calculability theory depart from decision problems7 defined over the infinite countable space Σ∗.
This covers all the problems we often care about, for example solving combinatorial tasks, finding
the shortest path, finding new theorems, designing a new plane wing, finding an optimal strategy for
a game, etc.

All these tasks occupy a large part of the tertiary sector of our society. Reasoning tasks fall
within the framework of Proof complexity. For example, showing the existence of a propositional
proof system that admits polynomial size proofs for all tautologies is still an open problem. This
implies that reasoning (aka finding a proof) is a hard task. This is the kind of task that some

7Which can be seen as a binary classification task.
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practitioners have been trying to teach to LLM, with the “chain-of-thoughts” reasoning introduced
in Wang et al. (2022a), see also Creswell et al. (2022); Wei et al. (2022); Pei et al. (2023).

But LLM don’t operate on the discrete sequence. Don’t they map the tokens in a feature
space Rd? Indeed. But the tokenizer (Vaswani et al., 2017) maps a single token to a feature
vector, which is different from mapping the whole sequence. To apply the classical generalization
frameworks, we need to embed every word w ∈ Σ∗ into X ⊂ Rd. Two strategies can be distinguished:

1. Ensure that each encoding φ(w) ∈ Rd is at least ε-apart from φ(w). Therefore, this requires
an ε-covering of X . The number of balls required typically grows as ∝ (1ε )

dVol(X ) (neglecting
various multiplicative factors), while the number of words in Σl growths as |Σl+1|−1. Therefore,
solving (1ε )

dVol(X ) ≥ |Σl+1| − 1 yields that Vol(X ) ≈ εd|Σl|. The volume of X grows quickly.
For example, if X is chosen to be a ball, then its radius growths as d

√
Vol(X ) ≈ ε|Σ|l/d.

Impossible to enforce the boundedness of X without restricting the hypothesis space on
sequences of finite lengths l. allowing infinite growth of X with sub-gaussian constraint on μ
would be equivalent to assigning a very small probability of very small words of Σ∗.

2. The second strategy is to choose a compact support X . Per the previous argument, the
encodings φ(w) must be arbitrarily close to each other. Therefore, the function space must
contain hypotheses able to distinguish between vectors of Rd that are arbitrarily close to each
other. This seriously threatens the smoothness properties that are required to “bound” the
expressiveness of F .

Therefore, either the support is infinite with heavy-tailed μ, making classical results inapplicable
or typical bounds vacuous. Either a bounded support, but in this case the function class should
be extremely expressive and distinguish between vectors that are arbitrarily close to each other,
necessitating for example high Lipschitz constant, making the function space “too big” for Glivenko-
Cantelli theorem to apply (variance too high). Finally, the last possibility is to enforce the huge
constraint on F anyway, in which case the hypothesis f ∈ F might not to able to distinguish between
some words. This makes the function space incapable of answering some decision problems whose
input word w ∈ Σ∗ is too long (bias too high). Even if the error e induced by this bias is low, this
small value of e can be misleading on what’s happening, since this effectively translates into the
incapacity to solve a countable infinite number of instances. Indeed

∑
w∈|Σ∗| p(w) = 18 regardless of

the ordering, and the same can be said about
∑

w∈|Σ∗| 1f(x)=yp(w) = 1− e the probability of the
hypothesis f ∈ F to be correct. This is not a desirable property: for the shortest-path problem, for
example, after showing a few solved instances to a computer science student, every professor expects
him to implement Dijkstra’s algorithm, which can be then run on instances of arbitrary sizes.

Remark 8.3. No free lunch for the embedding of discrete sequences?

This question of the encoding of real numbers is ubiquitous in complexity theory. The difficulty
to represent and operate on real numbers is not only a limitation of Turing machines but
actually, a general property that applies to more exotic computation systems. For example,
the General Purpose Analog Computer (GPAC) widely discussed in Pouly (2015) corresponds
to ODE of the form:

y′(t) = p(y(t)) (8.14)

with pi : R
d → R polynomial functions, and y : R → Rd the solution of the ODE for initial

value y(0) = y0. These systems are Turing-complete, as they can simulate a Turing machine.

8Sums of positive elements are absolutely convergent.
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The recent work of Bournez et al. (2017) shows that problems of the class P corresponded to
curves of polynomial length in the GPAC. Similarly, the recent work of Bournez et al. (2023)
shows that the problems of the class PSPACE correspond to curves in the GPAC that are
bounded by a polynomial. If we think to the amplitude of these curves as energy (e.g the
electric current in the computation system). A careful examination of the proofs involved in
these papers shows the question of the encoding φ(w) arising as a central component.

In this next section, we present an alternative framework that may circumvent existing issues.

8.3.4 Kolmogorov complexity and Levin universal search

Kolmogorov complexity (Chaitin, 1977) can be interpreted as the formal counterpart of the “Occam
razor” principle that states that the best explanation or hypothesis is often the simplest. This also
echoes a saying attributed to Einstein: “Everything should be made as simple as possible, but not
simpler.”. The Kolmogorov complexity K(sn) of the sequence sn ∈ Σn of length n is the length of
the shortest program P that output sn. We recall below some interesting properties.

Exemple 8.3. Kolmogorov complexity of a few sequences.

The sequence [0, 2, 4, 6, 8, 10, 12], is produced by the simple for loop that output 2i for
i ∈ [0, 6]. Similarly, [1, 2, 4, 8, 16, 32, 64, ...] is a for loop that outputs 2i. Even the sequence
[3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, ...] is structured: the elements can be produced by a program com-
puting the digits of π. These infinite sequences admit a finite description as a program.

The notion of “shortest” program implies a choice of a particular machine (e.g Turing machine,
Python, C++?). But since every Turing complete system can simulate any other, all these quantities
are related up to a constant. For example, if K(sn) is the Kolmogorov complexity of sn in C++,
if K′(sn) is the Kolmogorov complexity of sn in Python, and if C(K,K′) is the length of a Python
interpreter described in C++, then the inequality K(sn) ≤ K′(sn) + C(K,K′) holds: it is enough to
simulate Python in C++ and use the shortest program available for Python. The reverse inequality
K′(sn) ≤ K(sn)+C(K′,K) holds (remember that C(·, ·) has no reason to be symmetric). A sequence
sn will be qualified as random if K(sn) growths as O(n). As C(·, ·) does not depend on n, when n
grows to +∞, its value becomes negligible. Therefore, if a sequence is random for a given computation
model K(·), it is for every model. Randomness is an intrinsic property of the sequence, a fundamental
lack of structure that prevents it from being accurately captured by programs. Conversely, this
suggests that “structure” is a universal notion, which motivated a “algorithmic theory of everything”
based on this unifying principle (Schmidhuber, 2000).

A related terminology, while being a bit less precise, is the minimum description length princi-
ple (Grünwald, 2007). While most generalization theory takes the statistical viewpoint of “inter-
polation”, by filling the space X with the empirical measure, the Kolmogorov complexity opens a
path towards “extrapolation” by considering sequences of arbitrary length, and by assuming that
the sequences are highly structured. This last hypothesis is not easily translatable in hypothesis on
the measure μ, which may explain why the current framework struggles to capture this property.
Maybe we are asking too much from our machine learning algorithms, and maybe we don’t about
generalizing for arbitrary measures μ: maybe all we care about is generalizing arbitrarily well for
some specific measures μ.

These ideas have been repeatedly studied in deep learning, starting with Pearlmutter and
Rosenfeld (1990) and Schmidhuber (1997), and got a surge of interest in the recent years, for example
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with the works of Blier and Ollivier (2018) and Lee et al. (2022).
The Kolmogorov complexity has an issue: it is not computable (in the sense of Turing). Therefore,

while appealing, this tool has no practical interest. However, a small modification yields a related
quantity, which is computable. Inspired by the Levin universal search algorithm (Levin, 1973, 1984),
this quantity regularized the length of the program by the associated runtime (Li et al., 2008):

Kt(sn) := min
P :sn∼P

l(P ) + log t(P ), (8.15)

where P is a program that output sn, t(P ) is the time needed to run P , and l(P ) the length of P .
By regularizing with computation time, it is possible to run multiple programs in parallel and stop
whichever output sn first. The runtime is a reasonable penalty, as a short program that takes forever
to finish is of little practical use.

This idea of computational constraint also appeared in another context, to define a generalization
of the Shannon entropy: the ν-information (Xu et al., 2019). It has been applied to characterize
the complexity of a dataset, in a scheme that reminds of Kolmogorov complexity (Ethayarajh
et al., 2022). Unlike Shannon entropy, which only depends on the joint distribution of variables,
ν-information assumes that the decoder has limited decoding capabilities, and may be unable to
distinguish between some messages. The opportunity is too good not to cite Levin (2003): “From
time immemorial, humanity has got frequent, often cruel, reminders that many things are easier
to do than to reverse. When the foundations of mathematics started to be seriously analyzed, this
experience immediately found a formal expression”. These one-way functions, often used in modern
cryptography, are invertible functions for which computing the forward map x �→ h(x) = y is “easy”
(runtime polynomially bounded) but reversing them as y �→ h−1(y) = x is “hard” (no better algorithm
that enumerating every x and performing the forward). For these functions the ν-mutual information
is written as Iν(X → Y ). In this case, when ν represent the computation capabilities of the decoder,
and if ν is reasonably bounded, one should expect that Iν(X → h(X)) � Iν(h(X) → X) since
encoding with h is easier than decoding. In my opinion, these concepts offer a fruitful point of view
to theorize generalization in these discrete spaces.

8.4 So, when is AGI coming, then?

In this section, we attempt to define the contours of Artificial General Intelligence (AGI), as often
discussed in the media. We will review different possible definitions. We will conclude on the
practical feasibility of these definitions.

8.4.1 What is AGI?

At the time of writing (2023), there is a general consensus in the population and scientific community
that generative models, and especially Large Language Models, are what we have closest to an AGI.
As chatbots, they take into account the context, they handle uncertainties and ambiguities in human
language. They can also reason on some hypotheses (even if they are sometimes wrong). They
succeed as many evaluations created for humans and are considered challenging (e.g the bar exam as
shown in Katz et al. (2023)). They shine in translation tasks, sometimes being able to translate
idioms or explain jokes. They are also good at summarizing content or analyzing emotions and tone
(positive, negative). Yet, they are not considered as AGI yet. They are still hallucinating (Ji et al.,
2023), and are not capable (yet) of self-improvement on new tasks.

In some literature, AGI is understood as some sort of entity with almost infinite computation
power, which could be fed any problem, and provide in few seconds meaningful answers and solutions.
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Such a system would be similar to Laplace’s demon, as described in “We may regard the present
state of the universe as the effect of its past and the cause of its future. An intellect which at a
certain moment would know all forces that set nature in motion, and all positions of all items of
which nature is composed, if this intellect were also vast enough to submit these data to analysis, it
would embrace in a single formula the movements of the greatest bodies of the universe and those of
the tiniest atom; for such an intellect nothing would be uncertain and the future just like the past
could be present before its eyes.” (Laplace, 1835).

In other more pragmatic literature, AGI is understood as a system with capabilities similar to
humans, or superior, but of a similar nature anyway. The system would adapt itself to new situations
in record times (with low sample complexity), be able to perform complex reasoning, distinguish
truth from hallucinations, and take initiative.

We extrapolate below the requirements of these two systems.

8.4.2 The unreasonable energy requirements of “god-level” AGI

This form of AGI is unlikely to exist ever since it would violate several laws of the complexity theory
and thermodynamics.

Complexity theory. states that some tasks cannot be solved exactly, or even approximately,
without a lower bound on the computation time and the memory requirements. For example, if
P �= NP it is likely that solving exactly some instances of NP-hard problems would require an
exponential amount of computations. And a lot of problems are actually harder than NP-complete:
finding the optimal strategy in a deterministic two-player game is already PSPACE-complete.
Deciding if the computation of a system halts after k steps is EXPTIME-complete. Deciding if two
regular expressions are equivalent is EXPSPACE-complete. All these rather artificial problems are
abstractions of more frequent problems that can be encountered by an intelligent system. Even in
the very optimistic case where P = NP = PSPACE, it is already known that P � EXPTIME
and PSPACE � EXPSPACE: the complexity classes do not collapse (Arora and Barak, 2009).
All these considerations would be a theorist problem if it wasn’t for the Landauer’s principle.

Landauer’s principle. Landauer’s principle (Landauer, 1961) states that the minimum energy
needed to erase one bit of information is proportional to the temperature at which the system is
operating. This reads as

E ≥ kBT ln (2), (8.16)

with E the energy loss per bit erased, kB the Boltzmann constant, and T the temperature. This
inequality arises a solution to Maxwell’s demon paradox (Thomson, 1875): an entity that could be
able to predict the position and the velocity of every particle in two rooms connected, could selectively
open and close the doors between the rooms to concentrate cold particles on one side, and warm
particles to the other. In appearance, this would violate the second principle of thermodynamics,
by transforming a system with two rooms at equal temperatures, into one with two different
temperatures, from which work could be extracted. The paradox is solved because such a demon
would need to process information, and information processing is generally a non-reversible operation,
and non-reversible transformation must dissipate energy.

Exemple 8.4. Practical example.

We assume we have at our disposal an infinitely efficient computer, operating at the temperature
of cosmological background (3 Kelvins), which costs about 10−23 Joules per bit erased. We
assume that we are trying to solve some hard instance of EXPTIME complete problem that
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requires rewriting 10n bits for an instance of size n. We assume that the total energy produced
on earth (including electricity, oil engines, etc.) in 2022 is fed to this efficient computer, which
is about 3,112 million tons of equivalent petrol, which is about 1020 Joules in total. This
computer can erase about 1043 bits before running out of energy. This effectively limits the
maximum size of an instance to n = log (1043) = . . . 43. Of course, this neglects the additional
energy required to evacuate the heat and maintain the system at 3 Kelvins.

The Landauer’s limit can be avoided with reversible computations, which arises in quantum
circuits for example (Aaronson, 2013). Unfortunately, this implies that the size of the system
must grow with its memory since no information can be lost. The energy of a system is directly
proportional to its energy, and we fall back to the previous issue: either the system dissipates
enormous amounts of energy to re-use memory slots (by erasing and rewriting), either the system
greedily consumes mass and energy to store information and ensures reversibility of the computation.

Plancks limits. In some theory the universe admits a minimal measurable length: the Planck
length. Similarly, it admits a maximum energy density. As energy and information are linked, the
universe admits a maximum information density. The Bremermann’s limit (Bremermann et al.,
1962) is the maximum rate of computation achievable per a physical system, and its value is around
1050 bits per second per kilogram.

Overall, these different results suggest that implementing a “god level” AGI that can reason fast,
discover theorems, and solve complex combinatorics problems is an ill-posed problem, that will never
be physically possible, and we should lower our expectations9.

8.4.3 The more reasonable AGI: human look-alike

In this setting, we lower our expectations to an AGI whose learning capabilities are on par with
humans, with similar creativity, able to recognize new situations, and learn “efficiently” (with low
sample complexity) new tasks, on rich multimodal inputs. What is lacking for this AGI to exist?
Probably:

1. a memory and a variable-length computation mechanism.
2. “embodiment”: the rich sensorial and multimodal input of a body that interacts with the world.
Here, we focus the discussion on memory and variable-length computation mechanisms.

Memory in LLM

Today, in LLM two memories co-exist.
1. The first memory is embedded in the weights θ of the network. It compresses most of the

knowledge contained in the training corpus10. The issue with this memory is that it is static:
it cannot be updated easily when the agent interacts with the world. Updating this knowledge
would typically require fine-tuning and tools from continual learning field (Parisi et al., 2019),
since neural networks are known to suffer from catastrophic forgetting (Kirkpatrick et al., 2017):
by learning new tasks if one if not careful, previous tasks may be forgotten, even when the

9Complexity theory has always been a horribly depressing field, and neural networks cannot change that.
10To some extent, intelligence is compression. If you have a minute or two to kill, I happily suggest that you

take a look at https://www.youtube.com/watch?v=ubNF9QNEQLA. The phenomenon of this video is often presented
as related to awareness. I propose an alternative hypothesis: the scene understanding is compressed by the brain.
Visually, the two scenes are identical if we use textual description as a compression: a detective, policeman, three
suspects, a dead, a carpet, old fashion mansion decoration. The differences are not spotted because the visual input is
compressed into the same description.
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support X of these tasks is disjoint. Therefore, the weights θ of the network are typically kept
frozen during interactions with the user. Overall, this is akin to the long-term memory of
humans and similar to the role of a hard drive in computers.

2. The second memory is provided by the context : the history of previous interactions by the user.
This is what allows chain of thoughts reasoning in LLM. The size of this memory is limited
by the number of tokens that the model can support. Overall, this is akin to the “short-term
memory” of humans and similar to the role of RAM in computers. Note that even in Vision
Transformer, the transformers benefit from additional tokens to carry-out computations, as
suggested in the recent work of Darcet et al. (2023).

It seems that a third form of memory is required for the system to be complete. In the current
state, there is no way to integrate the results of short-term memory into long memory. However,
it has been known since the Von Neumann architecture (Von Neumann, 1945) that allowing the
program (here the neural network architecture) and the data (here, the context tokens) to co-exist
in the place allows the treat instructions as data. This opens the path to self-improvement of the
system, which can operate on its own source code, and is the basis for compilers or computer viruses.

Furthermore, complexity theory suggests, that for hard tasks the amount of memory should be
allowed to grow arbitrarily high, which requires unbounded contexts, or the capacity to query an
external memory for reads and writes. This additional property makes the LLM truly Turing-complete,
as argued in Schuurmans (2023).

Variable-length computation mechanisms

Complexity theory also shows that complex tasks require a computation budget that must scale
with the difficulty of the task, where “difficulty” encompasses both the nature of the problem and
the size of the instance. Therefore, future learning will need to implement a “while loop” mechanism.
The sampler in LLM is an example of a solution: at each step, the LLM assigns a probability to the
new token, among which a special STOP token11 stops the production of the answer.

Self-modifying capabilities based on previous computations, and arbitrarily long computation
times, are central tools for self-improvement, which is the basis of intelligence.

8.5 Conclusion to the conclusion

Lipschitz networks are a fascinating lens through which to analyze and understand the dynamics
of learning in neural networks. They show promises for robust and safe learning. Here, robustness
is better understood in a broad sense that covers robustness against adversarial attacks, with
privacy guarantees, and with generalization guarantees. Some of the works drafted suggest that
they offer tools for calibration, or reliability for neural signed distance functions rendering. Their
construction and their training rely entirely on a careful examination of the computation graph
and back-propagation algorithm, which emphasizes the importance of the deep learning paradigm.
Finally, it appears that Lipschitz constraints alone are probably insufficient to reach AGI and scale
neural network to complex combinatorial tasks that requires long chains of reasoning, but may be
worth taking into consideration to design stable training algorithms.

11This is a “break” statement in programming languages.
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Appendix A

Optimization as a layer

A.1 Differentiable invertible transformation on images coordinates

The content of this section is unpublished.

Chain rule can be applied to a lot of transformations - including the ones arising in data
augmentation itself. This allows us to compute the derivative of the loss w.r.t hyper-parameters of
the data augmentation itself. Below, we illustrate this approach on 2D images, and more specifically
on the “angle” parameter of rotations. Let f̂ : [|0, n− 1|]2 → [0, 1] be the original image that assigns
luminosity to each integer coordinates (i, j). Equivalently, f̂ can be seen as an element of [0, 1]n×n

From discrete domain images to infinite continuous world

We define f : R2 → [0, 1] as the centered interpolation of f̂ on the whole space, such that f(−1,−1) =

f̂(0, 0) and f(1, 1) = f̂(n− 1, n− 1), i.e for integer coordinates (i, j) we have x(i) = 2i−(n−1)
n−1 and

y(j) = 2j−(n−1)
n−1 . And for continuous coordinates x, y we have i(x) = "g(x)! and j(y) = "g(y)! we

have:
g(x) =

n− 1

2
(x+ 1).

The function g assigns to each continuous pair of coordinates (x, y) the value of the nearest pixel.

Exemple A.1. Zero padding.

With zero padding, we chose f(x, y) = 0 whenever ‖(x, y)‖∞ ≥ 1. We introduce the notations
ī(x) =  g(x)!, i

¯
(x) = "g(x)#, j̄(y) =  g(y)! and j

¯
(y) = "g(y)# for clarity. Then for linear

interpolation we have:

f(x, y) =
[̄
i(x)− g(x) g(x)− i

¯
(x)

] [f̂(i
¯
(x), j

¯
(y)) f̂(i

¯
(x), j̄(y))

f̂ (̄i(x), j
¯
(y)) f̂ (̄i(x), j̄(y))

] [
j̄(y)− g(y)
g(y)− j

¯
(y)

]
.

Other cases of padding (such as nearest) or interpolation (such as cubic) can be handled
similarly but it can be a bit cumbersome to write it down here.

Invertible transformation in R2

Assume that the transformed image s : R2 → [0, 1] is given by:
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s(x, y) = f(M−1
θ (x, y)),

where Mθ : R2 → R2 is an invertible mapping parametrized by θ ∈ Rd, that characterizes the
transformation of pixel coordinates.

Exemple A.2. Isometries.

The case of isometries (combination of rotation of angle θ1 and translation [θ2, θ3]) can be
handled a follow:

Mθ(x, y) =
(
x y

)( cos θ1 sin θ1
− sin θ1 cos θ1

)
+
(
θ2 θ3

)
.

Note that here we have:

M−1
θ (x, y) =

((
x y

)
−
(
θ2 θ3

))( cos−θ1 sin−θ1
− sin−θ1 cos−θ1

)

=
(
x y

)(cos θ1 − sin θ1
sin θ1 cos θ1

)
−
(
θ2 cos θ1 − θ3 sin θ1 −θ2 sin θ1 + θ3 cos θ1

) (A.1)

Notice that the inverse mapping M−1 is itself an isometry. This will be of particular interest
in the following sections.

Recover discrete image from continuous world

The final image ŝ : [|0, n− 1|]2 → [0, 1] is defined as ŝ(i, j) = s(x(i), y(j)). Once again the function ŝ
is better understood as an element of [0, 1]n×n which verifies ŝi,j = ŝ(i, j) = s(x(i), y(j)).

Gradient of the loss L with respect to parameters θ

We are interested in the Jacobian Jθŝ ∈ R(n2)×d since ŝ ∈ Rn×n and θ ∈ Rd. Note that this Jacobian
can be estimated either row-by-row (backward autodiff) by computing ∇θŝi,j ∈ Rd for all (i, j),
either column-by-column (forward autodiff) by computing ∂ŝ

∂θk
∈ Rn2

for all 1 ≤ k ≤ d.

Derivative of continuous s with respect to transformation parameter θ

We focus on the former case since back-propagation is the most popular algorithm. In this case:

∇θs(x, y) = ∇(x,y)f(M
−1
θ (x, y))

(
JθM

−1
θ (x, y)

)
.

Note that JθM−1
θ (x, y) ∈ R2×d where the Jacobian of M−1

θ (x, y) is taken with respect to vector
θ while the variables (x, y) are held constant. Note that ∇(x,y)f(M

−1
θ (x, y)) ∈ R2 corresponds to

image derivative evaluated in (x, y) in continuous domain. It can be computed from the interpolation
directly (which is derivable almost everywhere with respect to x and y). Or it can be estimated in
discrete domain f̂(i(x̂), j(ŷ)) by applying Sobel filter in both directions on coordinates:(

x̂
ŷ

)
=M−1

θ (x, y).

Interestingly, in the case of linear interpolation for f , the image derivative ∇(x,y)s end up being
equal to the discrete gradient computed by Sobel filter on s (proof left as an exercise for reader).

180



Derivative of discrete ŝ with respect to transformation parameter θ

The final expression for ŝi,j yields:

∇θŝi,j = ∇(x,y)f(M
−1
θ (x(i), y(j)))

(
JθM

−1
θ (x(i), y(j))

)
.

Applied to the whole vector ŝ we get:

Jθŝ =
[
∇(x,y)f(M

−1
θ (x(i), y(j)))

(
JθM

−1
θ (x(i), y(j))

)]
0≤i,j≤n−1

.

The notation [·]0≤i,j≤n−1 creates a vector of shape n2 × S from a set of n2 vectors · of shape S,
indexed by pairs (i, j). The reader can check that Jθŝ has the expected dimension n2 × d. However
computing it this way would be rather inefficient.

Vector Jacobian product (VJP) for efficient back-propagation

To leverage the advantage of backpropagation we take a step back to the problem of interest:
computing ∇θL(θ). Examples of such loss L : Rd → R are given in the next section.

The chain rule gives:
∇θL(θ) = ∇ŝL(ŝ)Jθŝ.

The computation of v = ∇ŝL(ŝ) ∈ Rn2
(the derivative of the loss with respect to transformed image)

is usually handled by backward Autodiff transparently. Then, we factorize the VJP in the following
way:

vJθŝ = v(Jx,y [s(x(i), y(j))]0≤i,j≤n−1)� (Jθ
[
M−1

θ (x(i), y(j))
]
0≤i,j≤n−1

). (A.2)

Remark A.1. Interpretations of terms.

Observe that Jx,y [s(x(i), y(j))]0≤i,j≤n−1 ∈ Rn2×2 is the spatial derivative of the transformed
image s in continuous domain. The first (resp. second) “column” (actually a 2D array if
the image is unflatten) of the Jacobian corresponds to spatial derivative Dx ∈ Rn2

(resp.
Dy ∈ Rn2

) taken in direction x (resp. y), as computed by Sobel filters. For clarity we will write
[Dx, Dy] = Jx,y [s(x(i), y(j))]0≤i,j≤n−1. Note that Jθ

[
M−1

θ (x(i), y(j))
]
0≤i,j≤n−1

∈ Rn2×2×d

are the derivatives of the n2 × 2 continuous coordinates with respect to θ. Here � denotes
a batched vector-matrix product, where the batch dimension is of size n2 and involves n2

simultaneous vector-matrix products between vectors of size 2 and matrices of size 2× d.

A.1.1 VJP for invertible affine transformations

We now focus on the case where Mθ : R2 → R2 is an affine mapping. In this case it well known
that if Mθ(u) = uLθ + Bθ for matrix Lθ ∈ R2×2 and vector Bθ ∈ R2, then the inverse function
M−1

θ (u) = uL−1
θ −BθL

−1
θ is itself an affine mapping. Let [X,Y ] = [x(i), y(j)]1≤i,j≤n−1 ∈ Rn2×2 be

the n2 × 2 matrix of continuous coordinates. Then we have:

Jθ
[
M−1

θ (x(i), y(j))
]
0≤i,j≤n−1

= Jθ([X,Y ]L−1
θ − 1n2 ⊗BθL

−1
θ ).

The operation [X,Y ]L−1
θ ∈ Rn2×2 is a vectorized matrix-vector product, which end up being

formulated as a matrix-matrix product. Broadcasting is used on L−1
θ Bθ ∈ R2 using outer product ⊗

with 1n2 ∈ Rn2×1 to ensure the difference is taken on objects of the same shape.
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VJP for rotations

In the case of rotation matrices without translation we have Bθ = 0 and L−1
θ = LT

θ so the above
formula simplifies in:

Jθ
[
M−1

θ (x(i), y(j))
]
0≤i,j≤n−1

= Jθ([X,Y ]LT
θ ).

In this case this simplifies to:

Jθ([X,Y ]LT
θ ) = [X,Y ](JθL

T
θ ).

Notice that (JθL
T
θ ) ∈ R2×2×d so the product with [X,Y ] ∈ Rn2×2 is well defined and yields

[X,Y ](JθL
T
θ ) ∈ Rn2×2×d as expected. As a rotation is characterized by a single angle we have d = 1

which allows further simplifications.
Finally we get:

∇θL(θ) = vJθŝ = v
(
[Dx, Dy]�

(
[X,Y ](JθL

T
θ )
))
, (A.3)

where:
• ∇θL(θ) ∈ Rd is the tangent vector of interest, that we want to compute with a query to

‘tape.gradient‘.
• v = ∇ŝL(ŝ) ∈ Rn2

is a cotangent vector, corresponding to the ‘dy‘ (or ‘upstream)‘ variable in
‘tf.custom_gradient‘ decorated functions. This is the gradient of the loss with respect to the
transformed image.

• [Dx, Dy] ∈ Rn2×2 are the spatial derivatives obtained by applying Sobel filters Gx, Gy on the
transformed image ŝ. We have Dx = Gx� ŝ and Dy = Gy � ŝ where � denotes the convolution
operation.

• [X,Y ] ∈ [−1, 1]n
2×2 is the set of continuous coordinates obtained from integer indexes 1 ≤

i, j ≤ n− 1. This vector is constant during training.
• (JθL

T
θ ) ∈ R2×2×d is the Jacobian of rotation matrix. Since d = 1 it has the same size as the

matrix itself, but it is not a rotation matrix in general.
• the special structure of the problem allows to use batched vector-matrix products � between
[Dx, Dy] and [X,Y ](JθL

T
θ ), which yields a matrix of shape n2 × d.

Exemple A.3. Batch of images and multiple channels.

We consider the case where we apply the transformation simultaneously on b images having c
channels each (in ‘channel first‘ convention). The previous formula remains valid:

∇θL(θ) = vJθŝ = v
(
[Dx, Dy]�

(
1b ⊗ 1c ⊗ [X,Y ](JθL

T
θ )
))
. (A.4)

With the following difference:
• v = ∇ŝL(ŝ) ∈ Rb×c×n2

is the gradient of the loss with respect to a batch of multiple
channels images.

• [Dx, Dy] ∈ Rb×c×n2×2 are the stacked image derivatives of ŝ, computed in parallel on
whole batch and all the channels. Notice that it can be done in a single Tensorflow
operation using ‘ tf.nn.conv2d ‘ and a custom (nontrainable) kernel that contains the
Sobel filter (Sobel et al., 1968) coefficients.

• 1b ⊗ 1c ∈ Rb×c is a broadcasting operation, used to make 1b ⊗ 1c ⊗ [X,Y ](JθL
T
θ ) a tensor

of shape b× c× n2 × 2× d by duplicating bc times the tensor [X,Y ](JθL
T
θ ).

• the batched vector-matrix product � is now batched over b× c× n2 dimensions.
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A.1.2 Practical implementation

There is three ways to implement the computation of ∇θL(θ).
• Let Autodiff handle the whole thing by defining ŝ with differentiable operations. This is

actually the case for ŝ = [f(M−1
θ (x(i), y(j)))]0≤i,j≤n−1. However the function f must be

defined cleverly to keep the precision and the runtime reasonable.
• Compute ∇θL(θ) “by-hand” using the above formula, which is easy to code using ‘tf.einsum‘

and ‘tf.nn.conv2d‘. Higher order derivatives (with respect to model weights w) will be computed
cheaply since v is the only vector that depends of neural network weights.

• Use a combination of both ideas by creating a ‘tf.custom_gradient‘ decorator for the rotation
operation.
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Appendix B

Lipschitzness with respect to parameters

B.1 Proofs of the main result

The informal Theorem 1 requires some tools that we introduce below.
Additionnal hypothesis for GNP networks. We introduce convenient assumptions for the

purpose of obtaining tight bounds in Algorithm 9.

Assumption 2 (Bounded biases). We assume there exists B > 0 such that that for all biases bd we
have ‖bd‖ ≤ B. Observe that the ball {‖b‖2 ≤ B} of radius B is a convex set.

Assumption 3 (Zero preserving activation). We assume that the activation fulfills σ(0) = 0.
When σ is S-Lipschitz this implies ‖σ(x)‖ ≤ S‖x‖ for all x. Examples of activations fulfilling this
constraints are ReLU, Groupsort, GeLU, ELU, tanh. However it does not work with sigmoid or
softplus.

We also propose the assumption 4 for convenience and exhaustivity.

Assumption 4 (Bounded activation). We assume it exists G > 0 such that for every x ∈ X and
every 1 ≤ d ≤ D + 1 we have:

‖hd‖ ≤ G and ‖zd‖ ≤ G. (B.1)

Note that this assumption is implied by requirement 2, assumption 2-3, as illustrated in proposition 13.

In practice assumption 4 can be fulfilled with the use of input clipping and bias clipping, bounded
activation functions, or layer normalization. This assumption can be used as a “shortcut” in the
proof of the main theorem, to avoid the “propagation of input bounds” step.

B.1.1 Main result

We rephrase in a rigorous manner the informal theorem of section 6.3.1. In order to simplify the
notations, we use X := X0 in the following.

Proposition 13. Norm of intermediate activations. Under requirement 2, assumptions 2-3 we
have:

‖ht‖ ≤ S‖zt‖ ≤

⎧⎨
⎩(US)t

(
X − SB

1−SU

)
+ SB

1−SU if US �= 1,

SX + tSB otherwise.
(B.2)

In particular if there are no biases, i.e if B = 0, then ‖ht‖ ≤ S‖zt‖ ≤ SX .
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Proposition 13 can be used to replace assumption 4.

Proposition 14. Lipschitz constant of dense Lipschitz networks with respect to parame-
ters. Let f(·, ·) be a Lipschitz neural network. Under requirement 2, assumptions 2-3 we have for
every 1 ≤ t ≤ T + 1:

‖∂f(θ, x)
∂bt

‖2 ≤ (SU)T+1−t, (B.3)

‖∂f(θ, x)
∂Wt

‖2 ≤ (SU)T+1−t‖ht−1‖. (B.4)

In particular, for every x ∈ X , the function θ �→ f(θ, x) is Lipschitz bounded.

Proposition 14 suggests that the scale of the activation ‖ht‖ must be kept under control for the
gradient scales to distribute evenly along the computation graph. It can be easily extended to a
general result on the per sample gradient of the loss, in theorem 3.

Theorem 3. Bounded loss gradient for dense Lipschitz networks. Assume the predictions
are given by a Lipschitz neural network f :

ŷ := f(θ, x). (B.5)

Under requirements 1-2, assumptions 2-3, there exists a K > 0 for all (x, y, θ) ∈ X × Y ×Θ the loss
gradient is bounded:

‖∇θL(ŷ, y)‖2 ≤ K. (B.6)

Let α = SU be the maximum spectral norm of the Jacobian between two consecutive layers.

If α = 1 then we have:

K = O
(
LX + L

√
T + LSX

√
T + L

√
BXST + LBST

3/2
)
. (B.7)

The case S = 1 is of particular interest since it covers most activation function (i.e ReLU, GroupSort):

K = O
(
L
√
T + LX

√
T + L

√
BXT + LBT

3/2
)
. (B.8)

Further simplification is possible if we assume B = 0, i.e a network without biases:

K = O
(
L
√
T (1 +X)

)
. (B.9)

If α > 1 then we have:

‖∇θL(ŷ, y)‖2 = O
(
L

αT

α− 1

(√
T (αX + SB) +

α(SB + α)√
α2 − 1

))
. (B.10)

Once again B = 0 (network with no bias) leads to useful simplifications:

‖∇θL(ŷ, y)‖2 = O
(
L
αT+1

α− 1

(√
TX +

α√
α2 − 1

))
. (B.11)

We notice that when α � 1 there is an exploding gradient phenomenon where the upper bound
become vacuous.
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If α < 1 then we have:

‖∇θL(ŷ, y)‖2 = O
(
LαT

(
X

√
T +

1

(1− α2)

(√
XSB

αT
+

SB√
(1− α)

))
+

L

(1− α)
√
1− α

)
.

(B.12)

For network without biases we get:

‖∇θL(ŷ, y)‖2 = O
(
LαTX

√
T +

L√
(1− α)3

)
. (B.13)

The case α � 1 is a vanishing gradient phenomenon where ‖∇θL(ŷ, y)‖2 is now independent
of the depth T and of the input scale X.

Proof. The control of gradient implicitly depend on the scale of the output of the network at every
layer, hence it is crucial to control the norm of each activation.

Lemma 2 (Bounded activations). If US �= 1 for every 1 ≤ t ≤ T + 1 we have:

‖zt‖ ≤ U tSt−1

(
X − SB

1− SU

)
+

B

1− SU
. (B.14)

If US = 1 we have:
‖zt‖ ≤ X + tB. (B.15)

In every case we have ‖ht‖ ≤ S‖zt‖.

Lemma proof. From assumption 3, if we assume that σ is S-Lipschitz, we have:

‖ht‖ = ‖σ(zt)‖ = ‖σ(zt)− σ(0)‖ ≤ S‖zt‖. (B.16)

Now, observe that:

‖zt+1‖ = ‖Wt+1ht + bt+1‖ ≤ ‖Wt+1‖‖ht‖+ ‖bt+1‖ ≤ US‖zt‖+B. (B.17)

Let u1 = UX +B and ut+1 = SUut +B be a linear recurrence relation. The translated sequence
ut − B

1−SU is a geometric progression of ratio SU , hence ut = (SU)t−1(UX + B − B
1−SU ) +

B
1−SU .

Finally we conclude that by construction ‖zt‖ ≤ ut. �

The activation jacobians can be bounded by applying the chainrule. The recurrence relation
obtained is the one automatically computed with back-propagation.

Lemma 3 (Bounded activation derivatives). For every T + 1 ≥ s ≥ t ≥ 1 we have:

‖∂zs
∂zt

‖ ≤ (SU)s−t. (B.18)

Lemma proof. The chain rule expands as:

∂zs
∂zt

=
∂zs
∂hs−1

∂hs−1

∂zs−1

∂zs−1

∂zt
. (B.19)

From Cauchy-Schwartz inequality we get:

‖∂zs
∂zt

‖ ≤ ‖ ∂zs
∂hs−1

‖ · ‖∂hs−1

∂zs−1
‖ · ‖∂zs−1

∂zt
‖. (B.20)
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Since σ is S-Lipschitz, and ‖Ws‖ ≤ U , and by observing that ‖∂zt
∂zt

‖ = 1 we obtain by induction that:

‖∂hs
∂ht

‖ ≤ (SU)s−t. (B.21)

�

The derivatives of the biases are a textbook application of the chainrule.

Lemma 4 (Bounded bias derivatives). For every t we have:

‖∇btL(ŷ, y)‖ ≤ L(SU)T+1−t. (B.22)

Lemma proof. The chain rule yields:

∇btL(ŷ, y) = (∇ŷL(ŷ, y))
∂zT+1

∂zt

∂zt
∂bt

. (B.23)

Hence we have:
‖∇btL(ŷ, y)‖ = ‖∇ŷL(ŷ, y)‖ · ‖∂zT+1

∂zt
‖ · ‖∂zt

∂bt
‖. (B.24)

We conclude with Lemma 3 that states ‖∂zT+1

∂zt
‖ ≤ (US)T+1−t, with requirement 1 that states

‖∇ŷL(ŷ, y)‖ ≤ L and by observaing that ‖∂zt
∂bt

‖ = 1. �

We can now bound the derivative of the affine weights:

Lemma 5 (Bounded weight derivatives). For every T + 1 ≥ t ≥ 2 we have:

‖∇WtL(ŷ, y)‖ ≤ L(SU)T
(
X − SB

1− SU

)
+ L(SU)T+1−t SB

1− SU
when SU �= 1, (B.25)

‖∇WtL(ŷ, y)‖ ≤ LS (X + (t− 1)B) when SU = 1. (B.26)

(B.27)

In every case:
‖∇W1L(ŷ, y)‖ ≤ L(SU)TX. (B.28)

Lemma proof. We proceed like in the proof of Lemma 4 and we get:

‖∇WtL(ŷ, y)‖ ≤ ‖∇ŷL(ŷ, y)‖ · ‖∂zT+1

∂zt
‖ · ‖ ∂zt

∂Wt
‖. (B.29)

Which then yields:

‖∇WtL(ŷ, y)‖ ≤ L(SU)T+1−t · ‖ ∂zt
∂Wt

‖. (B.30)

Now, for T + 1 ≥ t ≥ 1, according to Lemma 2 we either have:

‖ ∂zt
∂Wt

‖ ≤ ‖ht−1‖ ≤ S‖zt−1‖ = (SU)t−1

(
X − SB

1− SU

)
+

SB

1− SU
, (B.31)

or, when US = 1:

‖ ∂zt
∂Wt

‖ ≤ ‖ht−1‖ = S‖zt−1‖ = SX + (t− 1)SB if t ≥ 2, (B.32)

‖ ∂zt
∂Wt

‖ ≤ X otherwise. (B.33)

�
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Now, the derivatives of the loss with respect to each type of parameter (i.e Wt or bt) are know,
and they can be combined to retrieve the overall gradient vector.

θ = {(W1, b1), (W2, b2), . . . (WT+1, bT+1)}. (B.34)

We introduce α = SU .

Case α = 1. The resulting norm is given by the series:

‖∇θL(ŷ, y)‖22 =
T+1∑
t=1

‖∇btL(ŷ, y)‖22 + ‖∇WtL(ŷ, y)‖22 (B.35)

≤ L2

(
(1 +X2) +

T+1∑
t=2

(1 + (SX + (t− 1)SB)2)

)
(B.36)

≤ L2

(
1 +X2 +

T∑
u=1

(1 + (SX + uSB)2)

)
(B.37)

≤ L2

(
1 +X2 +

T∑
u=1

(1 + S2(X2 ++2uBX + u2B2))

)
(B.38)

≤ L2

(
1 +X2 + T (1 + S2X2) + S2BXT (T + 1) + S2B2T (T + 1)(2T + 1)

6

)
.

(B.39)

Finally:

‖∇θL(ŷ, y)‖2 = O(L
√
X2 + T + TS2X2 +BS2XT 2 +B2S2T 3) (B.40)

= O
(
LX + L

√
T + LSX

√
T + L

√
BXST + LBST

3/2
)
. (B.41)

This upper bound depends (asymptotically) linearly of L,X, S,B, T 3/2, when other factors are kept
fixed to non zero value.

Case α �= 1. We introduce β = SB
1−α .

‖∇θL(ŷ, y)‖22 =
T+1∑
t=1

‖∇btL(ŷ, y)‖22 + ‖∇WtL(ŷ, y)‖22 (B.42)

≤ L2

(
α2T

T+1∑
t=1

(((X − β) + α1−tβ)2 + α2−2t)

)
(B.43)

≤ L2α2T

(
T∑

u=0

(((X − β)2 + 2(X − β)α−uβ + α−2uβ2) + α−2u)

)
(B.44)

≤ L2α2T

(
(T + 1)(X − β)2 + 2(X − β)β

T∑
u=0

α−u + (β2 + 1)
T∑

u=0

α−2u

)
(B.45)

≤ L2α2T

(
(T + 1)(X − β)2 + 2(X − β)β

α− ( 1α)
T

α− 1
+ (β2 + 1)

α2 − ( 1
α2 )

T

α2 − 1

)
. (B.46)
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Finally:

‖∇θL(ŷ, y)‖2 ≤ LαT

√
(T + 1)(X − β)2 + 2(X − β)β

α− ( 1α)
T

α− 1
+ (β2 + 1)

α2 − ( 1
α2 )T

α2 − 1
. (B.47)

Now, the situation is a bit different for α < 1 and α > 1. One case corresponds to exploding gradient,
and the other to vanishing gradient.

When α < 1 we necessarily have β > 0, hence we obtain a crude upper-bound:

‖∇θL(ŷ, y)‖2 = O
(
LαT

(
X

√
T +

1

(1− α2)

(√
XSB

αT
+

SB√
(1− α)

))
+

L

(1− α)
√
1− α

)
.

(B.48)

Once again B = 0 (network with no bias) leads to useful simplifications:

‖∇θL(ŷ, y)‖2 = O
(
LαTX

√
T +

L√
(1− α)3

)
. (B.49)

This is a typical case of vanishing gradient since when T � 1 the upper bound does not depend on
the input scale X anymore.

Similarly, we can perform the analysis for α > 1, which implies β < 0, yielding another bound:

‖∇θL(ŷ, y)‖2 = O
(
L

αT

α− 1

(√
T (αX + SB) +

α(SB + α)√
α2 − 1

))
. (B.50)

Without biases we get:

‖∇θL(ŷ, y)‖2 = O
(
L
αT+1

α− 1

(√
TX +

α√
α2 − 1

))
. (B.51)

We recognize an exploding gradient phenomenon due to the αT term.

Propositions 13 and 14 were introduced for clarity. They are a simple consequence of the
Lemmas 2-4-5 used in the proof of Theorem 3.

The informal theorem of section 6.3.1 is based on the bounds of theorem 3, that have been
simplified. Note that the definition of network differs slightly: in definition 6 the activations and the
affines layers are considered independent and indexed differently, while the theoretical framework
merge them into zt and ht respectively, sharing the same index t. This is without consequences once
we realize that if K = U = S and 2T = D then (US)2 = α2 = K2 leads to α2T = KD. The leading
constant factors based on α value have been replaced by 1 since they do not affect the asymptotic
behavior.

B.2 Spectral bounds of layers

B.2.1 Lipschitz constants of common loss functions

This section contains the proofs related to the content of Table B.1. Our framework wraps over some
losses found in deel-lip library, that are wrapped by our framework to provide Lipschitz constant
automatically during backpropagation for bounds.
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Loss Hyper-parameters L(ŷ, y) Lipschitz bound L

Softmax Cross-entropy temperature τ > 0 yT log softmax(ŷ/τ)
√
2/τ

Cosine Similarity bound Xmin > 0 yT ŷ
max(‖ŷ‖,Xmin

1/Xmin

Multiclass Hinge margin m > 0 {max(0, m2 − ŷi.yi)}1≤i≤K 1
Kantorovich-Rubenstein N/A {ŷ, y} 1

Hinge Kantorovich-Rubenstein
margin m > 0

regularization α > 0
α.LMH(ŷ, y) + LMKR(ŷ, y) 1 + α

Table B.1: Lipschitz constant of common supervised classification losses used for the training of
Lipschitz neural networks with k classes. Proofs in Section B.2.1.

Multiclass Hinge This loss, with min margin m is computed in the following manner for a one-hot
encoded ground truth vector y and a logit prediction ŷ :

LMH(ŷ, y) = {max(0,
m

2
− ŷ1.y1), ...,max(0,

m

2
− ŷk.yk)}.

And ‖ ∂
∂yLMH(ŷ, y)‖2 ≤ ‖ŷ‖2. Therefore LH = 1.

Multiclass Kantorovich Rubenstein This loss, is computed in a one-versus all manner, for a
one-hot encoded ground truth vector y and a logit prediction ŷ :

LMKR(ŷ, y) = {ŷ1 − y1, . . . , ŷk − yk)}.
Therefore, by differentiating, we also get LKR = 1.

Multiclass Hinge - Kantorovitch Rubenstein This loss, is computed in the following manner
for a one-hot encoded ground truth vector y and a logit prediction ŷ :

LMHKR(ŷ, y) = αLMH(ŷ, y) + LMKR(ŷ, y).

By linearity we get LHKR = α+ 1.

Cosine Similarity Cosine Similarity is defined in the following manner element-wise :

LCS(ŷ, y) =
ŷT y

‖ŷ‖2‖y‖2
.

And y is one-hot encoded, therefore LCS(ŷ, y) =
ŷi

‖ŷ‖2 . Therefore, the Lipschitz constant of this
loss is dependant on the minimum value of ŷ. A reasonable assumption would be ∀x ∈ D :
Xmin ≤ ‖x‖2 ≤ Xmax. Furthermore, if the networks are Norm Preserving with factor K, we ensure
that:

KXmin ≤ ‖ŷ‖2 ≤ KXmax.

Which yields: LCS = 1
KXmin

. The issue is that the exact value of K is never known in advance
since Lipschitz networks are rarely purely Norm Preserving in practice due to various effects (lack of
tightness in convolutions, or rectangular matrices that can not be perfectly orthogonal).
Realistically, we propose the following loss function in replacement:

LK−CS(ŷ, y) =
ŷi

max(KXmin, ‖ŷ‖2)
.
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Layer
Hyper

parameters
‖∂ft(θt,x)

∂θt
‖2

1-Lipschitz dense none 1
Convolution window s

√
s

RKO convolution
window s

image size H ×W

√
1/((1− (h−1)

2H )(1− (w−1)
2W ))

Table B.2: Lipschitz constant with respect to parameters in common Lipschitz layers. We report
only the multiplicative factor that appears in front of the input norm ‖x‖2.

Where K is an input given by the user, therefore enforcing LK−CS = 1
KXmin

.

Categorical Cross-entropy from logits The logits are mapped into the probability simplex
with the Softmax function RK → (0, 1)K . We also introduce a temperature parameter τ > 0, which
hold signifance importance in the accuracy/robustness tradeoff for Lipschitz networks as observed
by Béthune et al. (2022). We assume the labels are discrete, or one-hot encoded: we do not cover
the case of label smoothing.

Sj =
exp(τ ŷj)∑
i
exp(τ ŷi)

. (B.52)

We denote the prediction associated to the true label j+ as Sj+ . The loss is written as:

L(ŷ) = − log(Sj+). (B.53)

Its gradient with respect to the logits is:

∇ŷL =

{
τ(Sj+ − 1) if j = j+,
τSj otherwise

(B.54)

The temperature factor τ is a multiplication factor than can be included in the loss itself, by
using 1

τL instead of L. This formulation has the advantage of facilitating the tuning of the learning
rate: this is the default implementation found in deel-lip library. The gradient can be written in
vectorized form:

∇ŷL = S − 1{j=j+}.

By definition of Softmax we have
∑

j �=j+ S
2
j ≤ 1. Now, observe that Sj ∈ (0, 1), and as a consequence

(Sj+ − 1)2 ≤ 1. Therefore ‖∇ŷL‖22 =
∑

j �=j+ S
2
j + (Sj+ − 1)2 ≤ 2. Finally ‖∇ŷL‖2 =

√
2 and

LCCE =
√
2.

B.2.2 Layer bounds

The Lipschitz constant (with respect to input) of each layer of interest is summarized in table B.3,
while the Lipschitz constant with respect to parameters is given in table B.2.

Dense layers

Below, we illustrate the basic properties of Lipschitz constraints and their consequences for gradient
bounds computations. While for dense layers the proof is straightforward, the main ideas can be
re-used for all linear operations which includes the convolutions and the layer centering.
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Layer
Hyper

parameters
‖∂ft(θt,x)

∂x ‖2

Add bias none 1
1-Lipschitz dense none 1
RKO convolution none 1

Layer centering none 1

Residual block none 2

ReLU, GroupSort
softplus, sigmoid, tanh

none 1

Table B.3: Lipschitz constant with respect to intermediate activations.

Property 9. Gradients for dense Lipschitz networks. Let x ∈ RC be a data-point in space
of dimensions C ∈ N. Let W ∈ RC×F be the weights of a dense layer with F features outputs. We
bound the spectral norm of the Jacobian as∥∥∥∥∂(W Tx)

∂W

∥∥∥∥
2

≤ ‖x‖2. (B.55)

Proof. Since W �→ W Tx is a linear operator, its Lipschitz constant is exactly the spectral radius:

‖W Tx−W ′Tx‖2
‖W −W ′‖2

=
‖(W −W ′)Tx‖2

‖W −W ′‖2
≤ ‖W −W ′‖2‖x‖2

‖W −W ′‖2
= ‖x‖2.

Finally, observe that the linear operation x �→ W Tx is differentiable, hence the spectral norm of its
Jacobian is equal to its Lipschitz constant with respect to l2 norm.

Convolutions

Property 10. Gradients for convolutional Lipschitz networks. Let x ∈ RS×C be an data-point
with channels C ∈ N and spatial dimensions S ∈ N. In the case of a time serie S is the length of the
sequence, for an image S = HW is the number of pixels, and for a video S = HWN is the number
of pixels times the number of frames. Let Ψ ∈ Rs×C×F be the weights of a convolution with:

• window size s ∈ N (e.g s = hw in 2D or s = hwn in 3D),

• with C input channels,

• with F ∈ N output channels.

• we don’t assume anything about the value of strides. Our bound is typically tighter for strides=1,
and looser for larger strides.

We denote the convolution operation as (Ψ ∗ ·) : RS×C → RS×F with either zero padding, either
circular padding, such that the spatial dimensions are preserved. Then the Jacobian of convolution
operation with respect to parameters is bounded:

‖∂(Ψ ∗ x)
∂Ψ

‖2 ≤
√
s‖x‖2. (B.56)
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Proof. Let y = Ψ∗x ∈ RS×F be the output of the convolution operator. Note that y can be uniquely
decomposed as sum of output feature maps y =

∑F
f=1 y

f where yf ∈ RS×F is defined as:{
(yf )if = yif for all 1 ≤ i ≤ S,

(yf )ij = 0 if j �= f.

Observe that (yf )T yf
′
= 0 whenever f �= f ′. As a consequence Pythagorean theorem yields

‖y‖22 =
∑F

f=1 ‖yf‖22. Similarly we can decompose each output feature map as a sum of pixels
yf =

∑S
p=1 y

pf . where ypf ∈ RS×F fulfill:{
(ypf )ij = 0 if i �= p, j �= f,

(ypf )pf = ypf otherwise.

Once again Pythagorean theorem yields ‖yf‖22 =
∑S

p=1 ‖ypf‖22. It remains to bound ypf appropriately.
Observe that by definition:

ypf = (Ψ ∗ x)pf = (Ψf )Txp[s].

where Ψf ∈ Rs×C is a slice of Ψ corresponding to output feature map f , and xp[s] ∈ Rs×C denotes
the patch of size s centered around input element p. For example, in the case of images with s = 3×3,
p are the coordinates of a pixel, and xp[s] are the input feature maps of 3× 3 pixels around it. We
apply Cauchy-Schwartz:

‖ypf‖22 ≤ ‖Ψf‖22 × ‖xp[s]‖22.
By summing over pixels we obtain:

‖yf‖22 ≤ ‖Ψf‖22
S∑

p=1

‖xp[s]‖22, (B.57)

=⇒ ‖y‖22 ≤ (

F∑
f=1

‖Ψf‖22)(
S∑

p=1

‖xp[s]‖22), (B.58)

=⇒ ‖y‖22 ≤ ‖Ψ‖22 ×

⎛
⎝ S∑

p=1

‖xp[s]‖22

⎞
⎠ . (B.59)

The quantity of interest is
∑S

p=1 ‖xp[s]‖22 whose squared norm is the squared norm of all the patches
used in the computation. With zero or circular padding, the norm of the patches cannot exceed
those of input image. Note that each pixel belongs to atmost s patches, and even exactly s patches
when circular padding is used:

S∑
p=1

‖xp[s]‖22 ≤ s

S∑
p=1

‖xp‖22 = s‖x‖22.

Note that when strides>1 the leading multiplicative constant is typically smaller than s, so this
analysis can be improved in future work to take into account strided convolutions. Since Ψ is a
linear operator, its Lipschitz constant is exactly its spectral radius:

‖(Ψ ∗ x)− (Ψ′ ∗ x)‖2
‖Ψ−Ψ′‖2

=
‖(Ψ−Ψ′) ∗ x‖2

‖Ψ−Ψ′‖2
≤

√
s‖Ψ−Ψ′‖2‖x‖2
‖Ψ−Ψ′‖2

=
√
s‖x‖2.
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Finally, observe that the convolution operation Ψ ∗ x is differentiable, hence the spectral norm of its
Jacobian is equal to its Lipschitz constant with respect to l2 norm:

‖∂(Ψ ∗ x)
∂Ψ

‖2 ≤
√
s‖x‖2.

An important case of interest are the convolutions based on Reshaped Kernel Orthogonalization
(RKO) method introduced by Li et al. (2019a). The kernel Ψ is reshaped into 2D matrix of dimensions
(sC × F ) and this matrix is orthogonalised. This is not sufficient to ensure that the operation
x �→ Ψ ∗ x is orthogonal - however it is 1-Lipschitz and only approximately orthogonal under suitable
re-scaling by N > 0.

Corollary 5 (Loss gradient for RKO convolutions.). For RKO methods in 2D used in Serrurier
et al. (2021), the convolution kernel is given by Φ = NΨ where Ψ is an orthogonal matrix (under
RKO) and N > 0 a factor ensuring that x �→ Φ ∗ x is a 1-Lipschitz operation. Then, for RKO
convolutions without strides we have:

‖∂(Ψ ∗ x)
∂Ψ

‖2 ≤
√

1

(1− (h−1)
2H )(1− (w−1)

2W )
‖x‖2. (B.60)

where (H,W ) are image dimensions and (h,w) the window dimensions. For large images with small
receptive field (as it is often the case), the Taylor expansion in h � H and w � W yields a factor

of magnitude 1 + (h−1)
4H + (w−1)

4W +O( (w−1)(h−1)
8HW ) ≈ 1.

Layer normalizations

Property 3. Bounded loss gradient for layer centering. Layer centering is defined as
f(x) = x− ( 1n

∑n
i=1 xi)1 where 1 is a vector full of ones and acts as a “centering” operation along

some channels (or all channels). Then the singular values of this linear operation are:

σ1 = 0, and σ2 = σ3 = . . . = σn = 1. (2.7)

In particular ‖∂f
∂x‖2 ≤ 1.

Proof. It is clear that layer normalization is an affine layer. Hence the spectral norm of its Jacobian
coincides with its Lipschitz constant with respect to the input, which itself coincides with the
spectral norm of f . The matrice M associated to f is symmetric and diagonally dominant since
|n−1

n | ≥ ∑n−1
i=1 |−1

n |. It follows that M is semi-definite positive. In particular all its eigenvalues
λ1 ≤ . . . ≤ λn are non negative. Furthermore they coincide with its singular values: σi = λi. Observe
that for all r ∈ R we have f(r1) = 0, i.e the operation is null on constant vectors. Hence λ1 = 0.
Consider the matrix M − I: its kernel is the eigenspace associated to eigenvalue 1. But the matrix
M − I = −1

n 11T is a rank-one matrix. Hence its kernel is of dimension n− 1, from which it follows
that λ2 = . . . = λn = σ2 . . . = σn = 1.

MLP Mixer architecture

The MLP-mixer architecture introduced in Tolstikhin et al. (2021) consists of operations named
Token mixing and Channel mixing respectively. For token mixing, the input feature is split in disjoint
patches on which the same linear opration is applied. It corresponds to a convolution with a stride
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Dataset Samples Featuresδ
Validation AUROC ↑ Wallclock Runtime (s) ↓
DP-SGD

Clipless
DP-SGD

DP-SGD
Clipless
DP-SGD

ALOI 39,627 27 10−5 56.5 56.2 159.1 11.3
campaign32,950 62 10−5 90.0 82.2 155.6 11.8
celeba 162,079 39 10−6 96.6 96.5 41.1 34.6
census 239,428 500 10−6 93.3 92.5 820.0 79.8
donors 495,460 10 10−6 100.0 100.0 257.9 90.2
magic 15,216 10 10−5 90.7 89.7 89.9 56.0
shuttle 39,277 9 10−5 98.3 99.4 11.1 6.8
skin 196,045 3 10−6 100.0 99.8 54.2 40.2
yeast 1,187 8 10−4 66.8 75.1 22.1 5.6

Table B.4: Best validation AUROC values (in %) for models trained under (ε, δ)-DP privacy with
ε = 1, with DP-SGD and Clipless DP-SGD, on binary classification tasks of tabular data from
Adbench datasets Han et al. (2022). We use a random 80/20% stratified split into train/val.

equal to the kernel size. convolutions on a reshaped input, where patches of pixels are “collapsed”
in channel dimensions. Since the same linear transformation is applied on each patch, this can be
interpreted as a block diagonal matrix whose diagonal consists of W repeated multiple times. More
formally the output of Token mixing takes the form of f(x) := [W Tx1,W

Tx2, . . .W
Txn] where

x = [x1, x2, . . . , xn] is the input, and the xi’s are the patches (composed of multiple pixels). Note
that ‖f(x)‖22 ≤ ∑n

i=1 ‖W‖22‖xi‖22 = ‖W‖22
∑n

i=1 ‖xi‖22 = ‖W‖22‖x‖22. If ‖W‖2 = 1 then the layer is
1-Lipschitz - it is even norm preserving. Same reasoning apply for Channel mixing. Therefore the
MLP_Mixer architecture is 1-Lipchitz and the weight sensitivity is proportional to ‖x‖.

Lipschitz MLP mixer: We adapted the original architecture in order to have an efficient 1-
Lipschitz version with the following changes:

• Relu activations were replaced with GroupSort, allowing a better gradient norm preservation,
• Dense layers were replaced with their GNP equivalent,
• Skip connections are available (adding a 0.5 factor to the output in order to ensure 1-lipschitz

condition) but architecture perform as well without these.
Finally the architecture parameters were selected as following:
1. The number of layer is reduced to a small value (between 1 and 4) to take advantage of the

theoretical sensitivity bound.
2. The patch size and hidden dimension are selected to achieve a sufficiently expressive network

(a patch size between 2 and 4 achieves sufficient accuracy without over-fitting, and a hidden
dimension of 128-512 unlocks allows batch size).

3. The channel dim and token dimensions are chosen such that weight matrices are square matrices
(exact gradient norm preservation property requires square matrices).

B.3 Experimental settings

B.3.1 Tabular data

The results are given in Table B.4.
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Hyperparameter
Tuning

Influence on utility Influence on privacy
leakage per step

Increasing Batch Size Beneficial: decreases the sensitiv-
ity.

Detrimental: reduces the pri-
vacy amplification by subsam-
pling.

Loss Gradient Clip-
ping

Beneficial: tighter sensitivity
bounds.
Detrimental: biases the direction
of the gradient.

No influence

Clipping Input
Norms

Detrimental: destroy information,
but may increases generalization

No influence

Figure B.1: Hyperparameter table: Here, we give insights on the influence of some hyper-
parameters on utility and privacy.

B.3.2 Pareto fronts

We rely on Bayesian optimization Snoek et al. (2012) with Hyper-band Li et al. (2017) heuristic for
early stopping. The influence of some hyperparameters has to be highlighted to facilitate training
with our framework, therefore we provide a table that provides insights into the effects of principal
hyperparameters in Figure B.1. Most hyper-parameters extend over different scales (such as the
learning rate), so they are sampled according to log-uniform distribution, to ensure fair covering of
the search space. Additionnaly, the importance of the softmax cross-entropy temperature τ has been
demonstrated in previous work Béthune et al. (2022).

The sweeps have been done on various architectures such as Lipschitz VGGs, Lipschitz ResNets
and Lipschitz MLP_Mixer. We can also break down the results per architecture, in figure B.2. The
MLP_Mixer architecture seems to yield the best results. This architecture is exactly GNP since
the orthogonal linear transformations are applied on disjoint patches. To the contrary, VGG and
Resnets are based on RKO convolutions which are not exactly GNP. Hence those preliminary results
are compatible with our hypothesis that GNP layers should improve performance. Note that these
results are expected to change as the architectures are further improved. It is also dependant of the
range chosen for hyper-parameters. We do not advocate for the use of an architecture over another,
and we believe many other innovations found in literature should be included before settling the
question definitively.

For the vanilla implementation of DP-SGD we rely on Opacus library. We use the default
configuration from the official tutorial on Cifar-10.

B.3.3 Configuration of the “speed” experiment

We detail below the environment version of each experiment, together with Cuda and Cudnn versions.
We rely on a machine with 32GB RAM and a NVIDIA Quadro GTX 8000 graphic card with 48GB
memory. The GPU uses driver version 495.29.05, cuda 11.5 (October 2021) and cudnn 8.2 (June 7,
2021). We use Python 3.8 environment.

• For Jax, we used jax 0.3.17 (Aug 31, 2022) with jaxlib 0.3.15 (July 23, 2022), flax 0.6.0 (Aug
17, 2022) and optax 1.4.0 (Nov 21, 2022).

• For Tensorflow, we used tensorflow 2.12 (March 22, 2023) with tensorflow_privacy 0.7.3
(September 1, 2021).

• For Pytorch, we used Opacus 1.4.0 (March 24, 2023) with Pytorch (March 15, 2023).
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• Chen et al. (2020) 

+ 
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E at 6 = le-5 

Figure B.2: Accuracy / P rivacy tradeoff on Cifar-10, split down per architecture used. 
While some architectures seems to perform better than others, we don't advocate for the use of one 
over another. The results ma.y not transla te to all datasets, and may be highly dependant on the 
range chosen for hyper-parameters. While t his fig1ue provides valuable insights, identifying the best 
architecture is left for future works. 

• For lip-dp we used deel-lip 1.4.0 (January 10, 2023) on Tensorflow 2.8 (May 23, 2022). 
For this benchmark, we used among the most recent packages on pypi. However the latest version 

of tensorfiow privacy could not be forced wi th pip due to broken dependencies. This issue arise in 
clean environments such as the one available in google colaboratory. 

B.3.4 Drop-in replacement with Lipschitz networks in vanilla DP-SGD 

To highlight the importance of the t ight sensit ivity bounds 6.d obtained by oux framework, we 
perfonn an ablation study by optimizing GNP networks using "vanilla" DP-SGD (with clipping) , in 
Figure ~ and ~ 

Thanks to the gradient clipping of DP-SGD (see Algorit lun ~ , Lipschitz networks can be readily 
integrated in t radit ional DP-SGD algorithm with gradient clipping. The PGD algorithm is not 
mandatory: the back-propagation can be performed within the computation graph through iterations 
of Bjërck algorithm (used in RKO convolutions) . This does not benefit from any part icular speed-up 
over convent ional networks - quite to the contrary there is an additional cost incurred by enforcing 
Lipschitz constraints in the graph. Sorne layers of deel-lip library have been recoded in Jax/ Flax, 
and the experiment was run in Jax, since Tensorflow was too slow. 

V./e use use the Total Amount of Noise (TAN) heuristic introduced in !Sander et al.j ~ to 
heuristically tune hyper-parameters jointly. This ensures fair covering of the Pareto front. 

B.3.5 Extended limitations 

The main wealmess of our approach is t hat it crucially rely on accurate computation of the 
sensit ivity 6.. This task faces many challenges in the context of differential privacy: floating point 
arithmetic is not associative, and summation order can a have dramatic consequences regarding 
numerical stability jGoldber~ al991D. T his is further amplified on the GPUs, where some operations 
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Algorithm 12 Differentially Private Stochastic Gradient Descent : DP-SGD 
Input: Neural network architecture f(· , ·) 
Input: Init ial weights 0o , learning rate scheduling T/t , number of steps N , noise mult iplier CJ, 12 
clipping value C . 

1: repeat 
2: for all 1 :S t :S N - 1 do 
3: Sample a batch 

Bt = (x1 , Y1), (x2 , y2) , ... , (xb, Yb) -

4: Create microbatches, compute and clip the per-sample gradient of cost fonction: 

- . . (C Il " r (· )Il)" C(fh,Yi) 
.9t,i ·=mm , v01 1..,Y-i,Yi v01 ll'v C(' · ·)Il ' 

0t Yi,, Yi 

5: Perturb each microbatch with carefully chosen noise distribution b "'N(O, CJC) : 

9l,i t- 9l ,i + bi . 

6: Perform projected gradient step: 

0t+1 f- II( 0t - T/t9t,i) . 

7: end for 
8: until privacy budget ( €, o) has been reached. 

Utlllty/Privacy tradeotf on MNIST 
1.00 

Utility/Privacy tradeoff on CIFAR-10 

>, 

1.00 
0.95 
0.90 

0.80 

0.70 

~ 0,60 
::, 

~ 0.50 

1,1 0.40 
F 

0.30 

0,20 

0,1 

.. 

- OPSGD for GNP: Pareto front 
• Abadl et al, (2016) 

Papernot et al. (2021) 

0,5 1.0 1,5 2.0 2.5 
C at6= 10-> 

(a) 
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>, 

~ 0.60 
::, 

~ 0.50 
..: 
~ 0.40 
F 
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0.10 

0,00 

- DPSGD for GNP: Pareto front .. Abadi et al. (2016) 

• Papernot et al, (2021) 
X Klause et al. (20211 • • De et al . (2022) • 4 • le 

+ 

• 

0.5 1.0 2.0 4,0 
e at 6 = 10-5 

(b) 

• • ... , 
• 

8,0 

Figure B.3: Privacy / utility trade-off for Gradient Norm Preserving networks trained 
under ''vanilla" DP-SGD (with gradient clipping). Each green dot corresponds to a single 
epoch of one of the runs. Trajectories that end abruptly are due to the automatic early stopping of 
unpromising runs. Note that clipping + orthogonalization have a high runtime cost, which severely 
limits the number of epochs reported. 
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are intrinsically non deterministic Jooybar et al. (2013). This well known issue is already present in
vanilla DP-SGD algorithm. Our framework adds an additional point of failure: the upper bound of
spectral Jacobian must be computed accurately. Hence Power Iteration must be run with sufficiently
high number of iterations to ensure that the projection operator Π works properly. The (ε, δ)-DP
certificates only hold under the hypothesis that all computations are correct, as numerical errors can
induce privacy leakages. Hence we check empirically the effective norm of the gradient in the training
loop at the end of each epoch. No certificate violations were reported during ours experiments, which
suggests that the numerical errors can be kept under control.
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Appendix C

Differentiable Gaussian Processes on

Distributions

We let P(Ω) be the set of probability measures over some compact space Ω ⊂ Rd. The goal is to
address the “distribution regression problem” where the inputs are probability distributions and the
output a real-valued observation:

Yi = f∗i (μi) + ε, (C.1)

for i = 1, . . . , n where μi ∈ P(Ω). The pairs (μi, Yi) are i.i.d, f∗i (μi) modelizes the conditional
expectation of Yi given μi, or equivalently E[εi|μi] = 0. The goal is to learn the function f∗.

Warning C.1. Two-stage sampling.

There are two sources of randomness in the task. The first source, as often in learning,
comes from the first stage sampling (μ1, μ2, . . . , μn) ∼ P(Rd)⊗n itself. However, in many
practical applications, the distributions μi are never observed directly. Rather, only empirical
distribution Pi ∼ μ⊗N

i are observed, with Pi = {Xi,1, Xi,2, . . . Xi,N}. This motivates the
terminology two-stage sampling, with the first stage consisting of (μ1, μ2, . . . , μn) and the
second one the sampling of {Xi,1, Xi,2, . . . Xi,N} for each μi.

For more details on the theoretical framework, the reader should refer to Bachoc et al. (2023a)
and Bachoc et al. (2023b).
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C.1 Distribution Regression with Optimal Transport

In this section, we detail how to solve the distribution regression problem with a new Gaussian
process whose kernel relies on regularized optimal transport.

C.1.1 Regularized optimal transport

For two distributions P,Q ∈ P(Ω) we note Π(P,Q) the set of probability measures over Rd×Rd with
marginals P and Q respectively. We consider optimal transport problem with squared Euclidean
cost c(x, y) = ‖x − y‖22. We consider optimal transport problem with entropic regularization, as
in Cuturi (2013):

Sε(P,Q) = min
π∈Π(P,Q)

∫
Ω×Ω

1

2
‖x− y‖2dπ(x, y) + εH(π|P ⊗Q) (C.2)

with
H(α|β) =

∫
Ω

dα

dβ
(x)dα(x) (C.3)

the relative entropy, and P ⊗Q the product measure.
The entropic regularization term modifies the linear term in OT (here a quadratic cost) into a

strictly convex function. The minimization of Equation C.2 is achieved with Sinkhorn algorithm
(see Peyré et al. (2017) and references therein). These properties ensure that a valid positive definite
kernel can be built upon the solution of this OT problem. More precisely, we will rely on the dual
formulation given by Genevay et al. (2018):

Sε(P,Q) = sup
f∈L1(P ),g∈∈L1(Q)

Pf +Qg − εEx∼P,y∼Q[exp
1

ε
(f(x) + g(y)− 1

2
‖x− y‖22)] + ε. (C.4)

This problem is itself a convex relaxation of the original’s dual OT problem. The optimal potentials
f and g are unique up to a (common) constant. They verify the optimality conditions :

∀x ∈ Ω, Ey∼Q[exp
1

ε
(f(x) + g(y)− 1

2
‖x− y‖22)] = 1, (C.5)

∀y ∈ Ω, Ex∼P [exp
1

ε
(f(x) + g(y)− 1

2
‖x− y‖22)] = 1. (C.6)

C.1.2 Building a PSD kernel with a reference measure

We consider a reference measure U on Ω. The idea is to solve the regularized OT problem between
each P and U , and to use the dual potential gPu as an embedding of the distribution P . Regardless
of the support of P (discrete, continuous) the dual potential gPu only depends on the support of
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U . For arbitrary distributions U , gPu is q function. Typically, the Hilbertian embeddings P �→ gPu
considered theoretically are valued in infinite-dimensional Hilbert spaces. On the other hand, the
numerical implementations of these embeddings map distributions to vectors. We shall refer to the
dimensions of these vectors as the embeddings’ dimensions. In our case, we will choose a discrete
measure U =

∑|u|
i=1wiδxi

with 1Tw = 1, w ≥ 0 and δx the Dirac measure in x. In this case, the
potential is a finite-dimensional vector gPu ∈ Rq.

Finally, a kernel is built from these Hilbertian embeddings:

KU (P,Q) := F (‖gPu − gQu ‖), (C.7)

where F is q function with some monotonicity constraints, which includes the well-known square
exponential, power exponential and Matérn covariance functions (see Bachoc et al. (2020) and
references therein). In the experiments we chose

KU (P,Q) := σ2 exp−‖gPu − gQu ‖
2l

, (C.8)

with length scale l > 0 and variance σ > 0. The method to build the kernel is illustrated below.

Remark C.1. Properties of the kernel.

The function KU (P,Q) inherits several good properties from the regularized OT problem.
1. KU (P,Q) is a valid Positive Definite kernel. It corresponds to an inner product

in Hilbertian space. It can be used for kernel methods, including Support Vector
Machines () or Gaussian Processes ().

2. It is universal. Said otherwise, the linear combinations

P �→
n∑

i=1

αiKU (P, Pi) (C.9)

are dense in the set of real continuous functions P(Ω) → R over distributions (for some
topology). Therefore, this kernel is expressive enough for practical purposes.

3. It is statistically consistent, a key property when dealing with two-stage sampling.
That means that the empirical kernel KU (Pn, Qn) converges to the population kernel
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KU (P,Q) as n → +∞.

C.1.3 Gaussian Processes on distribution

We recall below the framework of Gaussian Process (GP) modeling, for more details, the reader
should refer to Rasmussen and Williams (2006). A GP indexed by E is a stochastic process entirely
defined by its mean m(x) and covariance function k(x, x′). In a GP, each of the observations follows
a normal distribution conditioned to the other observations and parameters.

m(x) = E[f(x)], (C.10)

k(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′)], (C.11)

and the GP is written as
f(x) ∼ GP(m(x), k(x, x′)). (C.12)

The GP defines a posterior probability over functions given observations X:

p(f |x) ∝ p(x|f)p(f), (C.13)

where we recognize the prior p(f) and likelihood p(x|f). The marginal likelihood of the observation
y given data X is given by

p(y|X) =

∫
p(y|f,X)p(f |X)df (C.14)

where the term “marginal” refers to the marginalization over functions f . For GP we have f |X ∼
N (0, k) so we get

log p(f |X) = −1

2
fTK−1f − 1

2
log |K| − 2

n
log 2π. (C.15)

Finally, the likelihood verifies y|f ∼ (0,K + σ2I), so we get

log p(y|X) = −1

2
yT (K + σ2I)−1y − 1

2
log |K + σ2I| − 2

n
log 2π. (C.16)

Here we consider a covariance function defined by the kernel KU (P,Q). We hyper-parameters θ of
the kernel are optimized by maximizing the log marginal likelihood log p(y|X), with a gradient-based
method. The derivative admits a closed form

∂ log pθ(y|X)

∂θ
= −1

2
yTK−1

θ

∂Kθ

∂θ
K−1

θ y − 1

2
Tr(K−1

θ

∂Kθ

∂θ
). (C.17)

This can be implemented in Jax with automatic support for Autodiff. In our case, the parameters
θ are the triplet (u, σ, l). The inverted matrix K−1

θ does not need to be computed. Instead, the
operators z1 �→ Kθz1 can be used in indirect methods to solve the linear systems Kθz1 = y and
Kθz2 =

∂Kθ

∂θ z1, with the placeholders variables z1, z2 verify z1 := K−1
θ y and z2 = K−1

θ
∂Kθ

∂θ z1.

C.2 Autodiff for fine-tuning of the reference measure

In this section, we detail how we parametrize in practice the reference measure U so it can be
optimized like any other hyper-parameter of the Gaussian Process, by maximizing the log marginal
likelihood of the observations. Importantly, this requires computing the derivatives of the log
marginal likelihood by back-propagating through the GP kernel, and the Sinkhorn algorithm.
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Algorithm 13 Learn Kernel parameters. 

1: input (~, Y·ih-Si-SN : dataset of distributions. 
2: input 00 = (u0, a 0,lo): initial parameters. 
3: repeat 
4: for all Pi do 
5: Solve regularized OT problem between Pi, u. 
6: Compute Sinkhorn dual potentia l g{:i . 
7: end for 

p i p j 2 

8: Build Kernel K i.i := a 2 exp - ll9u ~gu Il 
9: Compute log marginal likelihood .C(u ,a, l ,K ,y). 

10: Compute gradients V (u ,a,t) L with Auto-Diff. 
11: Perform one step of L-BFGS on (u, a, l). 
12: until convergence of (u , a, l). 
13: return optimal parameters (u., a., l*). 
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Figure C.l: Toy example. Left: 50 point clouds of the t rain set, with color scale depending on 
the random field Z. The trajectories of the points Xi of u are depicted in different colors. Center: 
evolution of the weights w of u during training. Right: evolution of the negat ive log marginal 
likelihood during training. 
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Task embedding dimension m Ours Bachoc et al. (2020)

Toy example 6 30 0.997 0.81

Table C.1: Explained Variance Score (EVS) on the test set for regression tasks, with train
set of size n = 50 in dimension d=2. |u|: dimension of the embedding. m: cloud size.

C.2.1 Parametrization of the Reference Measure U
We choose a suitable machine representation for U as a weighted sum of Diracs:

U =

|u|∑
i=1

wiδ(xi) with
|u|∑
i=1

wi = 1, wi ≥ 0,xi ∈ Rd.

We denote by |u| the embedding dimension. In this form U is not absolutely continuous w.r.t.
Lebesgue measure, but this is not an issue. The parameters u for U gather w1, . . . , wq,x1, . . . ,xq.
The procedure for the estimation of u,θ is sketched in Algorithm 13.

Other Numerical Aspects. For u, the point coordinates are parameterized as x = S tanh (x̃)
with S ∈ R to ensure they remain bounded, the weights are parametrized as w = softmax(w̃) to
ensure they represent a valid probability distribution. The dual variables gPu computed at each
time step during the optimization of u are cached to speed up Sinkhorn iterations: this strategy is
reasonable since when u and u′ are close then the dual variables gPu and gPu′ are close too.

C.2.2 Gradient Computations

We will use the L-BFGS method for optimization Liu and Nocedal (1989). This requires the gradients
of the likelihood function in regression and classification w.r.t. θ and u. The derivatives of relevant
quantities w.r.t. θ can be found in the literature, see for instance Rasmussen and Williams (2006). A
specificity of u is that for some measures P,Q, we need to differentiate ‖gPu − gQu ‖L2(U) w.r.t. u, that
is we need to differentiate regularized OT plans. This is possible either by back-propagating through
unrolled Sinkhorn iterations Genevay et al. (2018) or by using implicit differentiation Eisenberger
et al. (2022). In practice, we noticed that, while being slower, unrolling Sinkhorn iterates was more
stable numerically.

C.2.3 Computational Cost of u-Sinkhorn Kernels.

For another point cloud of size n, according to Altschuler et al. (2017); Dvurechensky et al. (2018)
the time complexity of the Sinkhorn algorithm is O(n|u| log (n|u|)

ε2
) to reach precision ε, while the

complexity of the MMD kernel is O(n2). It follows that for a reference measure with |u| � n the
runtime cost of Sinkhorn u-kernel becomes competitive. Runtimes against MMD are reported in
Table C.3 (in the Appendix), with a speed-up of up to 100 for our method.

Once u is chosen, the embeddings gPu can be pre-computed once for all for each point cloud
P1, . . . ,Pn and used as a low dimension embedding of P(Ω) into R|u|. The distribution support |u|
needs to be big enough to capture the similarities between the Pis up to the precision required by
the task, but does not need to be bigger (see Section C.3.2).
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Figure C.2: Role of u in quality of embeddings when lui = 2 for the exarnple of Section IC.3.2i 
Each dot is the 20 embedding of a Gaussian where the col or depends on the random field Z . Left: 
optimal choice for u that ensures the task can be solved. Center: sub-optimal choice for u. Right: 
bad choice of u that prevents learning. 

C.3 Experiments 

In this section, we illustrate the algorithm on toy examples, and on 2015 US census data to predict 
the results of the 2016 election. 

C.3.1 lmplementation 

For automatic support of autodifferentiation, we use the Jax framework QBradbury et aq ~ 
with the libraries GP Jax (}Pinder and Doddt 120220 to implement GP regression , OTT-Jax GCuturil 
~ 12022D for differentiable Sinkhorn algorithm, a.nd Jaxopt 0B!ondel et aq 12022D for optimization 
with Limited Memory Broyden- Fletcher- Goldfarb- Shanno algorithm (L-BFGS) , which is an order 2 
method, to enjoy faster convergence than order-1 methods such as Gradient Descent. The dominant 
cost of the algorithm is induced by the size of the support u and by the dimension of the points 
Xi E JRd since ( o-, l) E JR2. The total dimension of search space is hence nd + 2. We select the optimal 
stepsize at each iteration with a zoom line search (Algorithm 3.6 of!Nocedal and Wright! 01999D, 
pg. 59-61. Tries cubic, quadratic, and bisection methods of zooming). The computation of inverse 
covariance matrices is done efficiently using Cholesky decomposition QPress et al.l 12007!) , which 
allows efficient computation of matrix inverse-vector products without materializing the inverse in 
memory. The computations are performed in float32 arithmetic and take advantage of GPU for 
matrix operations, which are the bottleneck of the algorithm. 

C.3.2 Regression on Toy Example 

In this section we re-use the example introduced in Section 5.3 of !Bachoc et al.l 02020D. We simulate 
100 random two-dimensional isotropie Gaussian distributions. The means are sampled uniformly 
from [-0.3, 0.3]2, and the variance uniformly from [0.012

, 0.022
] . The value of the random field 

induced by a Gaussian of means (m1, m2) and variance a 2 is Z = (mi+0.5îf;2 + 0-5)
2
). Gaussians are 

approximated by point clouds of size 30 sampled from the distribution. The dataset is splitted into 
train (50 clouds) and test (50 clouds). The u-measure consists of 6 points on the ball of radius 0.5. 
Their position xi and weight Wi are trained for 30 iterat ions jointly with kernel parameters. The 
results are highlighted in Figure IQ] and Table IQ::n The role of u is investigated in Figure IQ]I with 
lui = 2: the position of the xi's makes t he embedding more or less sui table for the downstream task, 
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Figure C.3: Optimization of u on Mnist "4" versus "6" task with lul = 6. An image from the 
train set is displayed on the backgTOund to better grasp the scale of u . 

as illustrated by the Explained Variance Score (EVS). The EVS of our method is higher than that 
of jBachoc et al .j 02020D. 

C.3.3 B inary Classification on Mnist and Fashion-Mnist. 

vVe perform binary classification on Mnist by learning to separate digits "4" and "6". The dataset 
consists of 200 train images, and 1000 test images. Each 28 x 28 images is centered crop to 24 x 24 
to generate a cloud of size 576 matching pixel coordinates. The normalized pixel intensity is used 
as a weight in OT. The likelihood is modeled with Bernoulli distributions (not Gaussian, see the 
Appendix on GP classification) , and the log marginal likelihood is maximized using maximum a 
posteriori (MAP) estimates. We tested different sizes for lui E [4, 5, 6]. The training is depicted in 
Figure [Q]I. The experiment is repcated 10 time with random splits. It shows that Mnist images can 
be ernbedded in a space of small dimension that preserves most information about labels, achieving 
a compression rate of R = !~l E !0.006, 0.013] tailored for the learning task. We also perform binary 
classification on Fashion-Mnist. We use a train set of size n = 200 in dimension d=2 with clouds of 
size m = 24 x 24 = 576. We report the average over 25 runs. 

Task 1 embedding dimension Ours RBF 

"4" VS "6" 4 94.2 ± 1.2 X 
"4" VS "6" 5 95.5 ± 1.0 X 
"4" vs "6" 6 95.0 ± 0.6 98.8 ± 0.2 

"shirt" vs "sandals" 12 99.5 ± 0.2 99.7 ± 0.2 
"sneakers" vs "sandals" 12 88.6 ± 1.8 91.9 ± 1.2 

It is approxjmately similar to the accuracy of a Radial Basis Function (RBF) kernel (also called 
squared exponential) applied to the "vectorized" images (see Section jD.1.lD. Remark that the RBF 
kernel cannot be applied to general point clouds, while our Sinkhorn kernel is designed for this. On 
Mnist and Fashion-Mnist, the MMD kernel couic! not provide comparable accuracy as Sinkhorn and 
RBF, due to its higher computational cost, see also Table [Q]I. 
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Dataset u-Sinkhorn (ours) RBF
Sliced Wasserstein

(as reported by Kolouri et al. (2016))

UIUC Textures 87.2 87.3 88± 1

Mnist (1300 examples) 92.50 92.46 N/A

Table C.2: Validation accuracy of C-SVM with different kernels on GLCM embeddings of
UIUC texture dataset Lazebnik et al. (2005), and 1300 example of Mnist (10 classes), with 5 folds
cross-validation.

C.3.4 Texture Classification with C-SVM

We report here the results of classification with C-SVM on the University of Illinois Urbana Champaign
(UIUC) texture dataset (Lazebnik et al., 2005), using the same protocol as Kolouri et al. (2016).
Samples are shown in Figure C.4a. The dataset contains 25 different classes of texture on a total of
1000 images (only 40 images per class). We transform the images into two-dimensional probability
distributions by computing the gray-level co-occurence matrices (GLCM) (Haralick et al., 1973). The
Gray Level Co-occurrences Matrices (GLCM) are computed with the Scikit-image library (Van der
Walt et al., 2014). The images are illustrated in Figure C.4b. The parameter γ of the SVM is
obtained by following the “scale” policy of Scikit-learn library, applied on normalized features. We
apply a grid search in logspace on the parameter C of SVM, ranging from 10−1 to 103. The optimal
parameter is selected by the highest average accuracy in 5-fold cross-validation.

Remark C.2. Why PSD kernels

Solving C-SVM is a quadratic programming problem. The PSD property of the kernel ensures
that the problem is convex, and this convexity guarantees that the algorithm will converge to
a global minimum. This is one of the major advantages of SVM over non-convex methods like
neural networks.

We compare the result against the RBF kernel applied to the raw (unprocessed) pixels. The
results are reported in Table C.2. We see that the RBF kernel and our kernel have similar accuracies.
We note that our implementation of the RBF kernel provides an higher accuracy for it than the one
reported in Kolouri et al. (2016). Our kernel matches the performances of Kolouri et al. (2016) on
the same experimental protocol, in Table C.2.

C.3.5 Runtime cost against MMD

We choose the MMD distance with RBF as inner kernel:

MMD2(P,Q) = EP(KRBF(X,X
′)) + EQ(KRBF(Y,Y

′))− 2EP,Q(KRBF(X,Y)), (C.18)

with X,X′ ∼ P, Y,Y′ ∼ Q, with X, X′ Y, Y′ independent.
The MMD distance is turned into a kernel with an additional parameter σ:

KMMD(P,Q) = σ2 exp (−MMD2(P,Q)). (C.19)

The kernel in (C.19) is universal (see Theorem 2.2 of Christmann and Steinwart (2010) for
example).
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• • i, • • tl'I • • ... <il) 

(a) Random samples from the UIUC t exture 
dat aset QLazebnik et aq l2005p. 

(b) Gray Level Co-occurrences Matrix 
(GLCM) , normalized into 2D distributions. 

J Number of clouds Cloud size I Sinkhorn with lu i = 6 Sinkhorn with lu l = 12 MMD 

n = 50 m = 100 0.009s (x0.l) 0.001s ( xl) 0.001s 
n= 100 m= 100 0.013s (x0.4) 0.011s ( x0.5) 0.005s 
n = 100 m =400 0.007s (x 7.9) 0.021s (x2.6) 0.055s 
n = 400 m=400 0.018s ( x37.9) Ü.059s ( X 11.6) 0.683s 
n = 400 m = 625 0.026s (x 64.7) 0.088s ( X 19.1) 1.681s 
n= 1000 m= 625 0.064s (x l69) 0.147s (x73.7) 10.834s 
n = 1000 m = 1000 0.090s (x l57) 0.158s (x 89.9) 14.207s 

Table C.3: Runtime cost of Sinkhorn u-Kerne l (ours) against MMD. The cost reported 
corresponds to the overall process: computation of regularized OT plan and of the kernel for Sinkhorn 
u , and computation of MMD distance for MMD. Clouds are in dimension d = 2. 

For a fair comparison the Sinkhorn u-I<ernel and MMD kernel are benchmarked on the same 
hardware under '@jax.jit' compiled code to benefit from GPU accelerat ion. We report runtime 
results in Table IC.3i The clouds ail share the sa.me coordinates (but not the same weights) . The 
pairwise distances between points of the douds are pre-computed to speed-up both MMD and 
Sinkhorn iterations. We notice that Sinkhorn takes advantage of pre-computing the low dimension 
embeddings in dimension lu i = 6, independent of the cloud size. We chose t = 10-2 as regularizat ion 
parameter. T he points u are sampled uniformly in the square [0, 1]2 , while points from the clouds Pi 
are a discretization of the square [0, 1]2 with equally spaced coordinates. Our Sirùd10rn u-kernel 
shows a speecl-up of up to a factor 100 compared to the MMD one. 

C.4 Kernel r idge regression 

In this section, we illustrate this novel kernel U in the context of kernel ridge regression, which is 
simpler than GP modeling. For a data.set (x1, x2, . .. Xn) with targets (Y1 , Y2, ... Yn) the prediction 
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f(x) at a new measurement x takes the form:

f(P ) =

n∑
i=1

αiK(Pi, P ) (C.20)

with the coefficients α given by:
α = (K+ λI)−1Y, (C.21)

where (K)ij = KU (Pi,Qj) is the kernel matrix of pairwise similarity measures. Nonetheless, this is
similar to GP modeling in the sense that the maximum a posteriori (MAP) estimate of the GP is
the same as ridge regression when the kernel is the same. In this new setting, however, we do not
care about the likelihood or the variance estimates. The hyper-parameters are typically estimated
with cross-validation instead of log marginal likelihood maximization.

C.4.1 Other kernels on distributions

In this section, we compare KU with other kernels, the mean embedding, the Random Fourier
Features (RFF) (Rahimi and Recht, 2007), and Sliced Wasserstein (Kolouri et al., 2016).

For the embedding based on the Sinkhorn distance. The embedding dimension is thus simply
the number of points. These points of the reference measure U are randomly sampled. We set the
entropic regularization to ε = 0.1.

Consider finally the embedding based on the sliced Wasserstein distance as in Kolouri et al. (2016).
Standard implementations of kernel methods for this embedding involve pairwise computations of
one-dimensional optimal transport problems, with random directions. For instance, this is the case
for the Python Optimal Transport (POT) toolbox (Flamary and Courty, 2017). Instead, we provide
a Numpy implementation where we compute separately the embeddings xμN

i
, with the definition

xμ(θ, t) = F−1
μθ

(t), with (θ, t) ∈ Sd−1 × [0, 1], see also Meunier et al. (2022a, Prop. 5), with F−1
μθ

the
c.d.f of measure μθ, and μθ is the measure of the random variable XT θ when X ∼ μ, for θ some
column vector. The numerically implemented embeddings are the values of F−1

μθ
(t) on a discretization

of Sd−1 × [0, 1]. The embedding dimension is thus the size of the discretization, which plays the
same role as the number of random directions discussed above. Once the embeddings are computed
(with a cost linear in n), we compute the n× n covariance matrix of the kernel values at (μNi )ni=1.
In Figure D.7, we check numerically the validity of our implementation, by comparing it with the
numerical results from POT, for a toy example in dimension d = 2.

C.4.2 Convergence speed

In Bachoc et al. (2023b) new rates are given for kernel distribution regression with two-stage sampling.
Under suitable assumptions, all kernel presented previously exhibit rates of the same form, that
depends on some hyper-parameters a, b that are kernel-dependant. Therefore, on some tasks, some
kernels converge faster than others. We study this on a synthetic task.

Exemple C.1. Regressing the number of modes of Gaussian mixtures

We illustrate the impact of n and N numerically, on the problem of regressing the number
of modes of Gaussian mixtures. This use case was introduced by Oliva et al. (2014), and
we consider the settings of Meunier et al. (2022a). The random (μi)

n
i=1 are generated as

follows. In dimension d, the number of modes p is uniformly sampled in {1, . . . , C}, where
C ∈ N is a setting parameter. Then for each component b ∈ {1, . . . , p} of the mixture, the
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Figme C.5: Examples of G aussia n mixture models used in the exp eriment of Section IC.4.2l 
in dimension d = 2 with at most C = 10 components per mi,'Cture. 

mean vector is sampled as m b rv U([-5, 5]d), and its associated covariance matrix is sampled 
as Eb = abAbAJ + Bb, where ab rv U((l , 4]) , Ab is a d x d matrix with ent ries sampled 
independently from U([-1, 1]) and Bb is a diagonal matrix with entries sampled independently 
from U([O, l]) . Therefore we set µi = i E~=l N (mb, ~b) and l'i= p to define the i-th element 
of the clataset. We sample N points from each mixture µi . We illustrate the resulting dataset 
in Figme [Q]I. 
We split each dataset into a train set containing 50% of the mixtures, and we evaluate the 
explained variance score on the test set composed of the remaining 50% mixtures. 
T he regularizat ion parameter >. is selected in {10- 2, 10- 1 , 1, 10, 102 } with cross validation on 
the train set. Furthermore, each "experiment" (that is each quintuple (C,d,n,N ,>. ), and there 
are 1 280 of them) is repeated 5 t imes, and the results are averagecl, which adds up to 19 200 
kernel ridge regressions in total. The averaged explained variance score as fonction of ( n, N) 
is plot ted in Figure IQ]l 

This experiment proves that the kernel pla.ys the sa.me role as the inductive bias of neural 
networks. Like neural networks, Reproducible Kernel Hilbert Spaces (RKHS), are universal approxi
mators. However, like neural networks, thcy will rcquire more or less samplcs to achieve meaningful 
generalization 
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Figme C.6: Explained variance score for different embeddings of distributions, from the 
synthetic mode experiment described in sect ion ~ as function of the total number of distributions 
n, a.nd the number of samples N per mixture. We plot the value of the explained variance score 
using the color, and the standard deviation with ± symbol. The dimension of the ambient space is 
denoted by d, and the maximum numbcr of modes in the task is denoted by C. 
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Hilbertian
embedding

Dim.

Hilbertian
embedding
runtime

(↓ is better)

Ridge
regression
runtime

(↓ is better)

Explained variance
score in %

(↑ is better)

Mean absolute
error in %

(↓ is better)

Democrat Republican Democrat Republican

Constant baseline 0 00m00s 0.00s 0. 0. 12.4± 0.4 12.7± 0.4
Mean embedding (linear) 3899 02m30s 1.80s 27.4± 12 03.7± 6.2 10.0± 1.0 13.1± 5.0

Mean embedding (Fourier) 4096 09m33s 0.76s 82.1± 5.7 83.1± 2.3 4.4± 0.5 5.0± 0.3

Sliced-Wasserstein 1024 03m34s 0.32s 70.2± 5.6 72.74± 4.1 6.1± 0.5 6.2± 0.4
Sliced-Wasserstein 4096 03m44s 0.68s 75.9± 6.8 75.1± 3.3 5.3± 0.3 6.2± 0.3

Sinkhorn 16 26m49s 0.16s 50.6± 8.2 48.8± 5.1 7.9± 0.5 8.3± 0.5
Sinkhorn 32 28m27s 0.16s 67.1± 4.6 66.0± 4.4 6.6± 0.3 6.9± 0.2
Sinkhorn 64 30m42s 0.23s 61.7± 3.0 59.8± 4.0 7.1± 0.3 7.6± 0.3

Table C.4: We perform distribution regression to predict percentages of Democrat and
Republican vote for the 2016 US presidential election, from socio-economics features extracted
from 2015 US census data. We report the explained variance score and the mean absolute error over
the test set, averaged over 5 random train/test splits of sizes 80% / 20% respectively. We also report
the runtime required to compute the Hilbertian embeddings and to perform ridge regression on the
embeddings. Best scores per column are in bold font.

C.4.3 Ecological regression

We showcase an application of distribution regression to ecological inference, inspired by the seminal
work of Flaxman et al. (2015).

Exemple C.2. Predicting results of 2016 US presidential election.

We use 2015 US census data, covering 2 490 616 individuals Xi,j (0.75% of the 2015 US
population), and totalling 3 899 features each (with one-hot encoding of categorical ones),
covering characteristics like gender, age, race, occupation, schooling degree or personal income.
This yields a fine-grained dataset of US demographics over n = 979 regions μi, spanning the
50 American states (20 regions per state on average, and N = 2500 individuals Xi,j ∼ μi
per region on average). We consider three targets Yi ∈ [0, 1] from the results of the 2016
presidential election: percentages of Republican vote, Democrat vote, and "Other" vote. We
perform distribution regression by adapting the pummeler package of Flaxman et al. (2015,
2016) to compute the Hilbertian embeddings.

Table C.4 highlights global properties, and also specific benefits and drawbacks of each method.
In Figure C.7, we provide a graphical example of successful distribution regression, for predicting
the Democrat votes. We use the mean embedding with random Fourier features (having the best
accuracy in Table C.4). It appears that the ecological inference is successful, as the structure of
the Democrat vote is preserved between reality and prediction. In particular, the Democrat vote is
well predicted in major cities of California and the Northeast. Among the rare exceptions to this
accurate prediction, one can notice the extreme south of Florida, where the Democrat vote is strongly
under-estimated. Indeed, at the time of the survey, Florida was a Democrat state. Interestingly,
Florida is considered a “swing state”, and during mid-term elections in 2022, the Republican vote
came on top.
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(a) Democrat vote in the 2016 US presidential (b) Distribution regression from socio-
election. economics features: 4.4% of mean error. 
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Figure C.7: Predicted and actual Democrat vote, in the 2016 US presidential election, in 
each of the 975 regions (Hawaii and Alaska. excludcd from the plot) . The surface of the markers is 
proportional to the number of individuals in the 2015 US census data, totaling 2 490 616 individuals 
over the USA. The Democrat vote is successfully recovered from the socio-economics features. 

C.5 Conclusion 

In this chapter, we showed how regularized transport can be used to create kernels on distributions. 
The main idea is to transport every empirical measure Pi towards a common reference measure U and 
use the dual vaJfable of the corresponding optimization problem as a finite-climensional embeclding 
of each distribution. Intuitively, each dual variable corresponds to a point in the support of U , and 
measures how much mass from ~ is transported towards it . Therefore, U is an important hyper
parameter of the algorithm. By relying on Sinkhorn's algorithm, and by analyzing the Jikelihood 
fonction of the Gaus:,ian process, we show that the algorithm can be made differentiable end-to-end. 
This allows to optimize U efficiently. 
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Appendix D

Differentiable Gaussian Processes on

Distributions: annexes

D.1 Gaussian Process

D.1.1 Algorithmic details

All the experiments were run on the publicly available GPU Colab hardware.
The code can be found on the repository: https://github.com/Algue-Rythme/SinkhornMuGP.

Kernel

We use the kernel:

K(P,Q) = σ2 exp

(
−‖gPu − gQu ‖2

2l2

)
. (D.1)

Here the parameters are the tuple θ = (l, σ) where l > 0 is the length scale and σ > 0 the scalar
variance. For simplicity we only train a Gaussian process with zero mean function. This does not
prevent the GP to reach satisfying levels of EVS/accuracy as illustrated in the experiments. The
RBF kernel uses a similar form:

KRBF(x,y) = σ2 exp

(
−‖x− y‖2

2l2

)
. (D.2)

Hence the RBF kernel can be applied to vectors (or matrices representing images), but cannot
handle general point clouds.

D.1.2 Sinkhorn’s algorithm

Sinkhorn’s algorithm is an iterative algorithm that takes advantage of approximately good solutions.
Hence, the dual variables are re-used from one optimization step to the other. Using small steps
guarantees that the initialization is not far away from the optimum. It allows the algorithm to
benefit from a significant speed-up.
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Figure D.l: V izua lization of dual variables gP and gQ. For P we sample 30 points from 
N([-2, -2],0.4) and for Q we sample 50 points from N([-1 , lj,0.3). We chose for u a fin ite sample 
of size 120 from the unit ball lIB(O, 1). 

D .1.3 D ependance on reference measure 

Visu a lizing dual varia bles In Figure m we introduce an example with two distributions P 
and Q obtained by taking finite samples from isotropie Gaussians. For P we sample 30 points from 
N([- 2, -2], 0.4) and for Q we sample 50 points from 1V([- l, l ], 0.3). We choose for u a finite sample 
of size 120 from the uni t ball lffi(O, 1) . We plot both t he distributions and the values taken by l'' 
and gQ respectively, by sorting dual variables arbitrarily by increasing error of lgf - gf 1-

D ep endence on dime nsion 

In figure mJ we illustrate the dependence of the dimension of ambient space d on the convergence 
speed. The refcrence measure u is chosen to be 128 points samplccl uniformly in unit ball. The 
task consists of m,...., U([lOO; 200]) sampled at random from a Gaussian whose center is also sampled 
uniformly at random in range µ i "" U([- 10, 101). The regression task is the prediction of the mean 
Y; = µi of each Gaussian from the finite sample. We use a Support Vector Regression machine (SVR) 
to perform the task. We report the Normalized mean Square Error by dividing by the dimension d 
to allow fair comparison on the same scale. We see that convergence specd is similar. 

Toy d ataset Ail clouds are centered and rescaled so the overall dataset ( obtained by merging all 
clouds) has zero mean and unit variance across all dimensions. vVe study a discretization of u in 
the experiment of Section jC .3.2~ We choose u to be a d iscretization of t he input space [O, 1]2 as 
a 50 x 50 grid . The density is chosen uniform over t his discretization of 2500 points. Bence each 
regularized optimal transportation p lan is between a Gaussian and an uniform measure over the 
square [O, 1]2 . In this case the dual variable g~ can be visualized as an image in definition 50 x 50. 
For 20 train examples, we p lot t he images g~ in Figure jD.3~ We see that a il those images appear 
"blurry", which shows the role of regularization in OT . Moreover those images seem to correspond to 
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Figure D.2: Normalized Mean Square Error as fonction of dimension d and train set size n 
for the synthetic task of preclicting the mean J-li,...., 1!.J([-10, 10]) of a Gaussian from finite sample of 
size m E [100; 200]. 

a "blob" whose coorclinates correspond to the ones of the doucis P ,i . This figure helps to understand 
what the dual variables exactly look like in toy examples. 

D.1.4 Mnist and Fashion-Mnist datasets 

For RBF kernel, the images are normalized so that the pixel intensity lies in [O, 1] range. Figure IQ] 
illustrates the evolution of xi's and wï's for u in the case of an image of shoe from Fashion-Mnist. 

Sens ivity to random affine transformations 

In Figure § we plot a set of Mnist images on which random affine transformations have been 
applied. We follow the protocol of!Meunier et al.! Q2022a0 and we sample a translation uniformly at 
random in range [-6, 6] pixels, and a rotation uniformly at random in range [-J, J] rads. 

In Figure IQ]] we study the influence of random affine transformations in dual variable space 
g~ , versus pixel space. In this experiment the reference measure u is chosen to have full support in 
dimension 28 x 28 = 784. The reference measure is chosen uniform on the pixel space. The images 
are processed as clouds of 28 x 28 = 784 pixels in dimension 2. The rcgularization factor is chosen 
to be E = 10-2. We see that dual variables are less sensitive to translations than pixels. In the third 
row of Figure [I] the dual variables are modified in a way that hints the direction and amplitude of 
translation, whereas in the fourth row the translation in pixel space has major consequences on the 
image and exhibits a huge Euclidean norm. This shows that µ Sinkhorn dual variables are better 
tailored to handle translates than conventional Euclidean metrics, thanks to the properties of OT in 
translations. 
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row: Dual variables of translated images g(x). Third row: pixel-wise difference between the 
dual variables of original (non modifiecl) image and translated images g(x ) - g(x) . Fourth row: 
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that any translation has major impact in the pixel space, but only mild consequences in the dual 
variables space. Moreover the map g(x) - g(x) hints the nature of the translation, whereas x - xis 
harder to interpret. 
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µ = N([0, 0], [ ~ ~ ] ) and v = N([4, 2], [ -~.8 - ~-8 ] ) . The results from POT are stochastic because 
of the random directions. For our deterministic result, we use a discretization of the half-circle 
with 25 directions of the form (2\ - ½)7!' with k = 1, ... , 25, and a discretization of [0, 1] with 100 
equidistant points. In bath cases, we compute a finitc-dimensional version of Sliced-Wasserstein 
kernel SW(µ, v). 

D.1.5 C-SVM results 

Mnist C-SVM Vve choose a measure u with full support as in Section ~ We select 1300 
examples at random in the Mnist train set from all 10 classes, and we apply the protocol of 
Section ign The results of the best estimator found with 5 fold cross-validation are reported on 
an independent test set of size 1000 in Table !Q]. Again, we have similar results as the RBF kernel. 

D.2 Kernel ridge 

D .2.1 Convergence speed 

We give the details of Section IQ1]. 
Recall that the explained variance is one minus the ratio of the empirical variance of the errors 

Yï - Y; on the test set, divided by the empirical variance of the data Y; on the same test set. 
We test the Mean Emdebbing, Sliced Wasserstein, and Ku on each different combination of 

valuesforC E {2,10},dE {2,10} and {n,N} c {16,32, ... , 1024,2048}. 
For the mean embedding, we only consider the linear kernel. For the sliced Wasserstein embedding, 

we use a discretization of s d- l with 10 random directions, and a discretization of [0, 1] with 10 
eqtùspaced points. For the embedding based on the Sinkhorn distance, we define the reference 
distribution U by sampling 100 points uniformly in the unit ball. 

D.2.2 Ecological regression 

For the Sinkhorn distance, we consider the support sizes 16, 32 and 64 for the reference distribution 
U. For the generation of the points of U , the numerical variables are sampled from the standard 
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normal distribution, while the categorical variables are sampled from a discrete distribution.
For the mean embedding, we consider the linear kernel k, for an embedding in dimension 3 899,

and the embedding based on random Fourier features in dimension 4 096. For the sliced Wasserstein
distance, we study the values 1,024 and 4,096 for the embedding dimensions, i.e. the number of
discretization points. We find that directly regressing the probabilities Yi ∈ [0, 1] yields consistently
better results than regressing their logarithms. Therefore we only report results involving the direct
regression of these probabilities. We also standardize the features to improve the numerical stability
of the computations. Finally, we enforce a default regularization parameter λ = 10−3.

In Table C.4, we report the mean accuracies of the methods, averaged over 5 random train/set
splits of sizes 80% (783 regions) / 20% (196 regions) respectively, together with the empirical variance
with respect to the random seed. For interpretation purposes, we report the results achieved by the
constant baseline prediction given by the empirical mean. We also report the runtime required to
compute the embeddings from the raw US census data, and the runtime required to perform kernel
ridge regression, given the embeddings.

The sliced Wasserstein embedding in dimension 1 024 is the fastest to compute (setting aside the
linear mean embedding) and provides accuracies relatively close to the optimal one (with random
Fourier features), for a significantly smaller embedding dimension (1 024 against 4 096). This is
beneficial for dataset compression purposes. Hence, overall, the sliced Wasserstein embeddings
provide an interesting tradeoff between runtime and final performance.

Overall, the accuracy and computation time increases with the embedding dimension. The mean
embedding with the linear kernel yields the fastest embedding computation but also the lowest
prediction accuracy. Hence, despite the high ambient dimension (3 899), a linear embedding is too
restrictive. In contrast, the (non-linear) mean embedding with the random Fourier features yields
the highest accuracy.

Finally, the Sinkhorn embeddings provide accuracies that are below those of the sliced Wasserstein
ones and the mean embedding ones with Fourier features. On the other hand, the benefit of the
Sinkhorn embeddings is that the embedding dimension is much smaller (a maximum of 64, against
1 024 to 4 096 for the other ones). Again, this is beneficial for dataset compression purposes and
opens a non-linear dimension reduction prospect.

In Figure C.7, we use the mean embedding with random Fourier features (having the best
accuracy in Table C.4). We split the dataset into 5 disjoint folds of sizes 195 or 196 each, we fit a
kernel ridge regressor on four of the splits, and display its predictions on the fifth one, thus preventing
overfitting.
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