
HAL Id: tel-04690416
https://theses.hal.science/tel-04690416

Submitted on 6 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Model-Driven Engineering and Software Product Line
Approach to Support Interoperability in Systems of

Information Systems.
Boubou Thiam Niang

To cite this version:
Boubou Thiam Niang. A Model-Driven Engineering and Software Product Line Approach to Support
 Interoperability in Systems of Information Systems.. Other [cs.OH]. Université Lumière - Lyon II,
2024. English. �NNT : 2024LYO20005�. �tel-04690416�

https://theses.hal.science/tel-04690416
https://hal.archives-ouvertes.fr

N° d’ordre NNT : 2024LYO20005

THÈSE de DOCTORAT DE L’UNIVERSITÉ LUMIÈRE
LYON 2

École Doctorale : ED 512

Informatique et Mathématiques

Discipline : Informatique

Soutenue publiquement le 28 mars 2024 par :

Boubou Thiam NIANG

A Model-Driven Engineering and Software Product

Line Approach to Support Interoperability in

Systems of Information Systems.

Devant le jury composé de :

Christophe DANJOU, Professeur, École Polytechnique de Montréal, Président

Christelle URTADO, Professeure, IMT Mines Alès, Rapporteuse

Abdelhak-Djamel SERIAI, Maître de conférences HDR, Université Montpellier, Rapporteur

Yacine OUZROUT, Professeur, Université Lumière Lyon 2, Examinateur

Jessie GALASSO-CARBONNEL, Professeure Adjointe, McGill University, Examinatrice

Giacomo KAHN, Maître de conférences, Université Lumière Lyon 2, Examinateur

Amel BENNACEUR, Directrice de recherche, The Open University, Examinatrice

Jannik LAVAL, Maître de conférences HDR, Université Lumière Lyon 2, Directeur de thèse

Contrat de diffusion

Ce document est diffusé sous le contrat Creative Commons « Paternité – pas de

modification » : vous êtes libre de le reproduire, de le distribuer et de le communiquer au

public à condition d’en mentionner le nom de l’auteur et de ne pas le modifier, le transformer

ni l’adapter.

THÈSE de DOCTORAT DE L’UNIVERSITÉ DE LYON
Opérée au sein de :

l’Université Lumière Lyon 2

Ecole Doctorale ED512
Informatique et Mathématiques

Discipline : Informatique

Soutenue publiquement le 28 mars 2024, par :

Boubou Thiam Niang

A Model-Driven Engineering and
Software Product Line Approach to
Support Interoperability in Evolving

Systems of Information Systems

Devant le jury composé de :

Mme Chritelle Urtado Rapporteure

Professeure, IMT Mines Alès

M. Abdelhak-Djamel Seriai Rapporteur

Maître de conférences, HDR, Université de Montpellier

M. Christophe Danjou Examinateur

Professeur, Polytechnique Montréal

Mme. Amel Bennaceur Examinatrice

Director of Research, Associate Professor in Computing, The Open University

Mme. Jessie Galasso-Carbonnel Examinatrice

Professeur adjointe, McGill University

M. Jannik Laval Directeur de thèse

Maître de conférences, HDR, Université Lumière Lyon 2

M. Giacomo Kahn Co-Encadrant de thèse

Maître de conférences, Université Lumière Lyon 2

M. Yacine ouzrout Co-Encadrant de thèse

Professeur, Université Lumière Lyon 2

M. Christope Bortolaso Invité

Responsable de la recherche chez Berger-Levrault, Berger-Levrault

ABSTRACT

Modern information systems consist of various components that require seam-
less communication and coordination. Organizations face difficulties adapting to dy-
namic changes while engaging with diverse industry partners. The challenge arises
from the fact that interoperability mechanisms are often created manually and in
an ad hoc manner. These mechanisms must be reusable to avoid time-consuming
and error-prone processes in an ever-changing environment. The lack of reusability
is because interoperability mechanisms are often integrated into business logic com-
ponents, which creates a strong coupling between components, making maintenance
difficult without affecting the overall operation of the system.

Berger-Levrault, our industrial partner, primarily serves public institutions.
The company actively maintains interoperability, especially in the context of fre-
quent reforms in the local public sector. In addition, companies have grown through
acquisitions, resulting in a diverse range of legacy applications with variations in lan-
guage, architecture, norms, and industry standards. The primary goal is to create an
adaptable interoperability solution that facilitates seamless communication between
the components of the information system and the external environment. Challenges
include adapting to changing rules and standards, managing variable data volumes,
and integrating connected objects within public institutions.

This thesis examines data exchange flows between constituents and systems,
analyzes their characteristics and requirements, and proposes cost-effective approaches
for implementing and evolving interoperability mechanisms while minimizing the im-
pact on overall information system operations. The methodology adopted begins
with a reified vision of interoperability mechanisms, where exchange mechanisms are
extracted from the business logic constituents and considered first-class constituents
called interoperability connectors. To achieve this, reverse engineering extracts func-
tionality from existing interoperability mechanisms and reifies it as a tangible con-
stituent, the connector, within the information system. For the analysis, we create a
repository comprising projects selected transparently, guaranteeing a minimal number
of projects and covering all the Enterprise Integration Patterns from different sources.
The proposed metamodel confirms and validates this reification regarding complete-
ness and extensibility. The completeness of the connector metamodel is validated
through a well-defined process, while another process guarantees the metamodel’s ex-
tensibility. The extensible metamodel reveals connectors as common entities, leading
to the ConPL approach, a software product line framework adapted to connectors.
The PhaDOP tool was utilized to implement this approach, and a proof-of-concept
was demonstrated with a specific use case. Performance tests were conducted on
the proposed connector representation structure. The ConPL framework is validated
through an industrial use case.

Keywords: Interoperability, Model-driven Engineering, Software Product
Line, System-of-System, Software generation.

ii

RÉSUMÉ

Les systèmes d’information modernes requièrent une communication et une
coordination sans faille entre leurs composants. Les organisations ont du mal à
s’adapter aux changements fréquents lors de leurs engagements avec divers parte-
naires industriels en raison de la création manuelle et au cas par cas des mécanismes
d’interopérabilité. Ces mécanismes doivent être les réutilisables pour éviter des
processus chronophages et sujets aux erreurs dans un environnement en constante
évolution. Leur manque de réutilisation résulte de leur intégration fréquente dans
des composants de logique métier, créant un couplage fort et rendant la maintenance
complexe sans altérer le fonctionnement global du système.

Berger-Levrault est éditeur de logiciels, fournit principalement les institu-
tions publiques, maintenant activement l’interopérabilité pour s’ajuster aux réformes
fréquentes du secteur public local. La croissance par acquisitions d’entreprises en-
trâıne une diversité d’applications héritées, avec des variations dans le langage, l’archi-
tecture, et les normes. L’objectif principal est de créer une solution d’interopérabilité
adaptable facilitant l’interaction entre les composants du système d’information et les
systèmes externes. Les défis incluent l’adaptation aux règles changeantes, la gestion
de volumes de données variables, et l’intégration de nouveaux composants dans les
institutions publiques.

Cette thèse analyse les flux d’échange de données entre composants et systèmes,
propose une approche pour implémenter et faire évoluer les mécanismes d’interopér-
abilité, minimisant l’impact sur les opérations du système d’information. La méthodo-
logie démarre par une vision réifiée des mécanismes d’interopérabilité, extrayant les
mécanismes d’échange des constituants de la logique d’entreprise pour les considérer
comme des connecteurs d’interopérabilité de première classe.

Pour ce faire, on procède par rétro-ingénierie pour extraire les fonctionnalités
des mécanismes d’interopérabilité existants et les réifie sous la forme d’un composant
tangible, le connecteur, au sein du système d’information. L’analyse, s’appuie sur
référentiel créé, comprenant des projets sélectionnés de manière transparente, garan-
tissant un nombre minimal de projets et couvrant tous les modèles d’intégration
d’entreprise provenant de différentes sources. Le métamodèle proposé confirme et
valide cette réification en termes de complétude et d’extensibilité. La complétude du
métamodèle de connecteur est validée par un processus bien défini, tandis qu’un autre
processus garantit l’extensibilité du métamodèle. Le métamodèle extensible révèle
que les connecteurs sont des entités communes, ce qui conduit à l’approche ConPL,
un cadre de ligne de produits logiciels adapté aux connecteurs. L’outil PhaDOP a été
utilisé pour mettre en œuvre cette approche, et une preuve de concept a été démontrée
avec un cas d’utilisation spécifique. Des tests de performance ont été effectués sur la
structure de représentation des connecteurs proposée. Le cadre ConPL est validé par
un cas d’utilisation industriel.

Mots clés: Interopérabilité, Ingenierie Dirigée par le Modèle, Lignes de Pro-
duit Logiciel, Système de système, Génération de logiciel.

iii

iv

Acknowledgements

First and foremost, I express my deep gratitude to my thesis supervisor, Jannik
Laval, for giving me the precious opportunity to embark on this fascinating journey. I
am equally thankful to my two laboratory co-supervisors, Giacomo Kahn and Yacine
Ouzrout, for their constant support and encouragement during moments of doubt.

I would like to thank Christophe Bortolaso and Nawel Amokrane for their
supervision, bridging the gap between the company’s needs and the laboratory’s re-
quirements effortlessly.

I would like to express my gratitude to Abdelhak Djamel Seriai and Christelle
Urtado for agreeing to act as rapporteurs for my thesis. I would also like to thank
Amel Bennaceur, Jassie Galasso-Carbonnel, and Christophe Danjour for agreeing to
act as examiners on the jury.

I thank Lilia Gzara for her dedicated support as an internal member of my
thesis committee over the past three years.

My warmest thanks to all the staff at IUT Lumière Lyon 2; teaching alongside
you has been a privilege and I’m grateful for the opportunities you’ve given me. Spe-
cial thanks to Cyrille Dolce for the teaching administration process, for his support,
and for the memorable tickets to the OL matches.

I thank my colleagues at the company, in particular Anas Shatnawi, for the
past discussion on software reuse and Nicolas Hlad, for their contributions during
the weekly discussion sessions, which helped me significantly to progress towards the
conclusion of the thesis. I thank Benoit Verhaeghe, a team member with whom I
shared experiences from Vaise to Limonest.

Recognizing that a PhD student’s journey can be difficult in isolation, I’m
grateful to my fellow PhD students at the Limonest site - Clément, Elodie, Mehdi,
and others - for the moments shared. Greetings to the other PhD students on the GL
team Quentin, Gabriel, and Ikram and a special mention to our non-DRIT neighbors,
Sébastien, Jean Michel, Youssef, Thierry, and Eleric.

My warmest thanks go to my laboratory colleagues, especially Bilgesu and
Baddredine, my classmates Randa and Meirem, and all the PhD students at the
Limonest site. My thanks also go to Vincent Chautet, the laboratory director, and
Guy, our IT manager.

Of course, I want to salute the woman of my life, my home thesis supervisor,
Aissata’s mom, for her unfailing support. My gratitude goes to my daughter, Honey,
for the joy she has brought me over the last few months.

I thank my French family - Barbara, Christelle, Mohamed, Pablo Clara - and
I salute the memory of Hubert Jourdain, a remarkable person.

I honor the memory of my grandparents, who instilled in me a passion for
teaching. Salutations to my family in Mali—my mother, aunts, and uncles—for their
enduring support throughout this journey.

v

Table of Contents

ABSTRACT . ii

RÉSUMÉ . iii

Acknowledgements . v

Table of Contents . xii

List of Figures . xiii

List of Tables . xvii

Chapter 1. Introduction . 1

1.1 Research context . 2

1.2 Defining fundamental Concepts and positioning 5

1.2.1 Interoperability: Levels, Layers, and Vision 5

1.2.2 Distinguishing Interoperability, Integration, and Align-
ment . 5

1.3 Research Motivations and Objectives 6

1.4 Structure of the manuscript 8

vi

Chapter 2. State of the Art . 10

2.1 Introduction . 10

2.2 Exploration of Key terminology in Describing Interoperability
Mechanisms . 10

2.2.1 Middleware . 11

2.2.2 Mediator . 11

2.2.3 Adaptor . 12

2.2.4 Wrapper . 12

2.2.5 Application Programming Interface (API) 13

2.2.6 Software connector . 14

2.2.7 Summary of terminologies 14

2.3 Industrial practice/architecture for interoperability 15

2.3.1 Point-to-Point architecture 16

2.3.2 Hub-Spoke architecture 17

2.3.3 Message-Oriented Middleware (MOM) 17

2.3.4 Service-Oriented Architecture (SOA) 18

2.3.5 Enterprise Service Bus (ESB) 18

2.3.6 Summarize of the architectural style 19

2.4 Survey of Standard for interoperability 20

2.5 Interoperability mechanisms implementation approach 22

vii

2.5.1 Connector as first-class entity 23

2.5.2 Dynamic or runtime reconfiguration 24

2.5.3 Automatic synthesis 25

2.5.4 Model-driven approaches 26

2.5.5 Exploiting variability and code generation 27

2.6 Summary . 28

Chapter 3. Reifying Interoperability Mechanism: An Extensi-
ble Metamodel for Software Connectors 30

3.1 Motivation for Reifying Interoperability Mechanisms 30

3.2 Methodology for the Reification of Interoperability Connectors 34

3.2.1 Building a Repository for Analyzing Interoperability Mech-
anisms . 35

3.2.2 Concretization of the Reification: Metamodel for the
Messaging Connector 39

3.2.3 The Importance of Using a Metamodel to Represent the
Reified Messaging Connector 40

3.3 Introducing the Metamodel of the Messaging Connector 41

3.3.1 Detailed presentation of the metamodel: 42

3.3.2 Revealing the Concrete Connector: A Comprehensive
Overview . 49

3.4 Summary . 52

viii

Chapter 4. Validating the Completeness and Extensibility of
the Messaging Connector Metamodel and Conducting perfor-
mance tests on the Reified Messaging Connector 54

4.1 Assessing the Scope of Connector Metamodel Coverage 54

4.1.1 Validation of the connector repository building process 55

4.1.2 Comparison of Compliance with the metamodel through
illustrative examples 64

4.1.3 Validation of Metamodel Expandability 75

4.2 Discussion and Conclusion . 76

Chapter 5. ConPL: Unveiling the Connector Product Lines
Framework . 78

5.1 Introduction . 78

5.2 Foundational Concepts . 79

5.2.1 Software Product Line Engineering 79

5.2.2 Differentiating Reuse Strategies: Comparative Analy-
sis of Software Product Line (SPL), Component-Based
Software Engineering (CBSE), and Software Ecosystem
(SECO) . 80

5.2.3 Delta-Oriented Programming principle 81

5.3 Motivation for Adopting a Software Product Line approach . . 82

5.4 Why should connectors be considered as a product line? . . . 85

5.5 ConPL: Model-Based Connector Product Line Framework . . 88

ix

5.5.1 Analysis of Commonalities and Variabilities in Connectors 90

5.5.2 Modeling Variability in Connectors 92

5.5.3 Implementing the Connector Product Line within the
Solution Space . 95

5.5.4 Mapping Guidelines: Feature Model to Model-Level Prod-
uct Line Architecture 98

5.5.5 Application Engineering through Model-Driven Engi-
neering . 101

5.6 Practical Application Scenario 102

5.7 Summary . 106

Chapter 6. Tooling Support for Implementing Software Prod-
uct Lines: The PhaDOP Framework 108

6.1 Surveying Tools for Software Product Line landscape 108

6.2 PhaDOP: A Pharo Framework for Implementing Software Prod-
uct Lines using Delta-Oriented Programming and Model-Based
Engineering . 111

6.2.1 The PhaDOP Framework: Overview and Internal Mech-
anism . 111

6.3 Experimentation and Evaluation 117

6.3.1 Initializing the Delta Project 121

6.3.2 A Truth Table-Based Methodology to Identifying Entity
and Method-Level Granularity Delta Modules 124

6.3.3 Delta Module Implementation 127

x

6.3.4 Visualize Delta Modules 136

6.3.5 Apply Delta Modules - Product derivation 138

6.3.6 Generation of Product Source Code - Application Engi-
neering . 142

6.4 Discussion . 146

6.5 Threats to Validity . 146

6.6 Conclusions . 147

Chapter 7. Experimentation on Software Connector Genera-
tion from the Connector Product Line 148

7.1 Incremental Feature Analysis and Identification 149

7.2 Implementation Connector Product Line 154

7.2.1 Metamodel of the Reduced Experimental Connector . . 154

7.2.2 Reusable artifact at the method-level granularity . . . 159

7.2.3 Product Derivation - Basic Producer Code Generation: 162

7.3 Conclusion . 163

Chapter 8. Conclusion . 164

8.1 Summary . 164

8.2 Contribution . 164

8.3 Future work . 165

xi

LIST OF PUBLICATIONS . 172

References . 173

xii

List of Figures

3.1 Scenario showing interoperability between constituents of two sys-
tems through interoperability mechanisms embedded in business
constituent . 32

3.2 Scenario showing interoperability constituents of two systems through
reified called Interoperability connector 33

3.3 Overview of Messaging Data Collection Process for Building a Con-
nector Repository . 38

3.4 Metamodel Overview: Core Entities Shared Among All Messaging
Connectors . 42

3.5 Messaging Connectors: A Comprehensive Overview Focused on
Message Entities . 43

3.6 Messaging Connectors: A Comprehensive Overview Focused on
OutputEndpoint Entities . 45

3.7 Messaging Connectors: A Comprehensive Overview Focused on
InputEndpoint Entities . 46

3.8 Messaging Connectors: A Comprehensive Overview Focused on
Channel Entities . 48

3.9 Messaging Connectors: A Comprehensive Overview Focused on
Router Entities . 49

3.10 Messaging Connectors: A Comprehensive Overview Focused on
Transformer Entities . 50

3.11 A Holistic View of the Refied messaging connector 52

4.1 Connector repository creation process for ensuring the representa-
tiveness of entities in the reified metamodel 56

4.2 Number of new patterns added when transitioning from one use
case to another, considering the 33 use cases from the connector
repository. 64

xiii

4.3 Number of added patterns when transitioning between use cases,
taking into account only those from the connector repository that
have not been covered in the current iteration. 65

4.4 Overview of the message flow for the first use case 67

4.5 Object model of the connector for the first use case 68

4.6 Overview of the message flow for the second use case 70

4.7 Object model of the connector for the second use case 71

4.8 Overview of the message flow for the third use case 3 72

4.9 Object model of the connector for the first use case 73

4.10 Overview of the message flow for the fourth use case 74

4.11 Overview of the object diagram for the fourth use case 74

4.12 The Evolution of the Connector Metamodel: Integrating a New
Project with Interoperability Mechanisms 77

5.1 Overview of the Software Product Line Engineering process 79

5.2 Understanding the DOP Principle: A Snapshot 81

5.3 Illustration of the ad-hoc, Clone-and-Owns (C&O) approach . . . 83

5.4 Overview of the current industry practices compared to the pro-
posed approach based on SPL. The upper section outlines the pro-
cess that employs the BL-MOM library without SPL, while the
lower section delineates the process that incorporates SPL. 86

5.5 Overview of the ConPL Framework 90

5.6 Illustrating the process of commonalities and variability analysis
based on the connector metamodel 92

5.7 Feature Model Encompassing All Potential Connectors Emanated
from the Established Connector repository 94

5.8 Comprehensive Overview of the Solution Space for the Connector
Product Line in Domain Engineering: Leveraging DOP Paradigms 98

5.9 Metamodel organizing the Repository of Reusable Artifacts 99

xiv

5.10 Transformation Process: Feature Model to Model-Level Core Product101

5.11 Enabling fundamental Publish-Subscribe exchange with RabbitMQ 103

5.12 Enabling Publish-Subscribe Fanout Exchange Pattern with Rab-
bitMQ . 104

5.13 Enabling Publish-Subscribe Direct Exchange Pattern with Rab-
bitMQ . 104

5.14 Enabling Publish-Subscribe Topic Exchange Pattern with RabbitMQ105

5.15 Enabling publish-subscribe RPC communication with RabbitMQ 105

5.16 Enabling asynchronous Request-Reply Exchange via Java Messag-
ing Service (JMS) . 106

6.1 Overview of the PhaDOP Framework: Main Components and Steps111

6.2 Overview of the PhaDOP starting interface 112

6.3 Overview of the PhaDOP Framework Database Structure 115

6.4 Feature model of the Expression Product Line (EPL) 118

6.5 Initializing the Delta Project with User-Provided Data 121

6.6 Sequence Diagram: Initialization Process of the Delta Project . . 124

6.7 Core model of the EPL . 130

6.8 Target variant metamodel of when applying the DLitAdd delta
model on the EPL core module 131

6.9 The EPL Delta Module: DEvalLitAdd 132

6.10 The EPL Delta Module: DEvalLitNeg 134

6.11 Reusable Artifacts of the Delta Module DEvalLitNeg in the EPL
Artifacts . 135

6.12 Sequence Diagram for Delta Module Creation 137

6.13 Delta Modules dependencies visualization 138

6.14 Delta Module application GUI . 139

6.15 Sequence diagram for Delta Module creation 141

xv

6.16 Graphical User Interface (GUI) for Model Generation 141

6.17 Transformation from Model to Code - EPL Variant Code Genera-
tion from the Core Delta Module 142

7.1 Identified Features for Basic Publish-Subscribe Producer 150

7.2 Feature Model of the Experimental Connector Following the Initial
Iteration . 151

7.3 Identified Features for Fanout through Exchange Publish-Subscribe
Producer . 152

7.4 Feature Model of the Experimental Connector Following the Sec-
ond Iteration . 153

7.5 Reduced Metamodel of the Connector, Focusing on the Producer
Constituent . 155

7.6 Metamodel Variant for the Basic Publish Producer Utilizing a Queue158

7.7 Metamodel Variant for the Basic Publish Producer Utilizing a
Queue Through a Fanout Exchange 159

8.1 Sequential Combination of Class, Sequence, and State Chart Dia-
grams for Code Generation . 168

8.2 The Concept of Utilizing AI for Configuring Software Product Lines169

8.3 The Concept of Utilizing AI for Configuring Software Product Lines169

xvi

List of Tables

1.1 highlights the differences between interoperability, integration, and
alignment . 6

2.1 Overview of different concepts used in interoperability and integra-
tion . 15

2.2 Difference analysis commonly used concepts in interoperability and
integration . 16

2.3 Difference analysis commonly used concepts in interoperability and
integration . 20

3.1 Summarizing variants of the Message entity 44

3.2 Summarizing variants of the OutputEndpoint entity 45

3.3 Summarizing variants of the InputEndpoint entity 47

3.4 Summarizing variants of the Channel entity 48

3.5 Summarizing variants of the Router entity 50

3.6 Summarizing variants of the Transformer entity 51

4.1 Table of results of use case search on endpoint patterns 58

4.2 Table of results of use case search on channel patterns 59

4.3 Table of results of use case search on router patterns 60

4.4 Table of results of use case search on transformer patterns 60

4.5 Table of results of use case search on message constructs patterns 61

4.6 Table of results of use case search on system management patterns 61

4.7 The four use cases retained for metamodel compliance validation. 66

4.8 Metamodel compliance validation for the first use case 69

4.9 Metamodel compliance validation for the second use case 70

xvii

4.10 Metamodel compliance validation for the first use case 72

4.11 Metamodel compliance validation for the fourth use case 74

5.1 Comparative Analysis of Software Reuse Alternative: SPL, CBSE,
and SECO . 81

5.2 Table of illustration of the ad hoc Clone-and-Owns (C&O) approach 84

5.3 Git metrics analysis for all connector projects of our industrial
partner . 87

5.4 Analysis of Commonalities within the Highly Diverse Connector
Subset from the Connector repository 89

5.5 Summarized software product line implementation paradigms . . . 96

5.6 Rule for transforming the feature model into a class diagram . . . 100

6.1 Truth Table for the complete EPL 126

6.2 Possible Delta Modules for Adding and Removing Entities and
Methods in the EPL . 127

6.3 Possible entity-level add and remove Delta Module for the EPL . 128

6.4 Possible entity-level add and remove Delta Module for the EPL . 129

6.5 Table showing what can be generated and what is done manually 145

7.1 First Iteration of the Incremental Feature Table 151

7.2 Second Iteration of the Incremental Feature Table 153

7.3 Second Iteration of the Incremental Feature Table 158

xviii

Chapter 1. Introduction

Humans are social creatures who flourish in families, friends, and col-
leagues’ communities. In the TV show ”The Walking Dead”, people unite to
create communities to survive in the long run. However, building a commu-
nity requires working together to achieve common goals, which is only possible
through various forms of interaction. In the past, people used to send letters
to take news from distant relatives, which took days or even weeks to receive a
response. Similarly, traveling on horseback was another interaction that took sev-
eral days, leaving the point of departure a source of worry. While these methods
were acceptable in the past, they would be intolerable in urgent situations, such
as waiting to hear from a sick family member. These examples illustrate how
interaction involves both the means of communication and the ability to express
oneself effectively, whether through signs, writing, or speech.

Furthermore, in some cases, effective interaction requires more than just
expression. For example, when dealing with people from different cultures and
languages professionally, adopting a common language is crucial for mutual un-
derstanding. English has become the language of global business, making commu-
nication between people from different countries and cultures possible. Without a
common language, people would need to learn several languages to interact with
individuals from different linguistic backgrounds, which could be time-consuming
and impractical. Using interpreters is one solution to make communication pos-
sible, but even with a shared language, misunderstandings can still occur due to
cultural differences. Different cultures have distinct customs and practices that
can affect the interpretation of interaction. For instance, bowing one’s head is a
sign of respect in some cultures, while it is regarded as disrespectful in others if
you’re talking to someone older.

Thus, interaction involves both the means of communication and the abil-
ity to express oneself effectively, as well as an understanding of cultural differ-
ences. These factors can make interaction complex, especially when dealing with
individuals from distant or different cultural backgrounds.

In the digital world, individuals are represented as software entities and
communities as software systems. This software and systems may be located any-
where in the world, but they need to be able to interact to accomplish complex

1

tasks. This need for interaction between software components has led to software
interoperability, which is essential because few software components work in iso-
lation, and the notion of a system would be meaningless without interoperability.
The challenges addressed in this thesis aim to understand the current mechanisms
enabling interoperability and explore possible solutions to facilitate the implemen-
tation of interoperability solutions in a context where the world is increasingly
connected, with constant changes disrupting our established practices.

This introductory chapter presents a context that shows the need for inter-
operability and clarifies the various terminologies used in the field. We will high-
light the difficulties in implementing interoperability solutions within distributed
and evolving information systems in a software-industrial context.

1.1 Research context

In today’s business environment, companies need to work with partners
from different industries, which requires them to adapt to various technical and
organizational changes such as mergers, acquisitions, or upgrades in technol-
ogy. Companies’ information systems have become complex and dispersed across
servers and clouds worldwide. Even though these components are different, they
must work together seamlessly to provide customers with the required solutions.

Besides, companies must evolve from a technical and organizational point
of view through mergers, acquisitions of subsidiaries, or technological migrations.
Nowadays, information systems are distributed and consist of various independent
components spread across servers and clouds worldwide. Despite their design
and development independence, frequent changes, heterogeneity, and location,
all components must work together to provide solutions to customers. It is also
essential to ensure interaction with third-party information systems. Therefore,
it is necessary to enable interoperability between information systems and their
sub-components.

Interoperability between information systems and their constituent is es-
sential for interaction with third-party systems.

Interoperability is a commonly used term, yet its interpretation can vary
depending on the context. Nevertheless, ensuring seamless interaction between
different systems remains crucial [SPE17]. Numerous definitions exist in the lit-
erature, providing a diverse understanding of this concept.

2

Broader Definition: Interoperability is the ability of diverse organizational en-
tities to collaborate, encompassing both technical and business aspects [LLA+20].
This inclusive definition spans global technical and human considerations.

To delve into a more Information and Communications Technology (ICT)
[SL99] focused perspective, let’s explore a definition provided by the European
Union Commission:

ICT Focus Definition: interoperability is ”the ability of various organizations
to work together towards common goals by sharing information and knowledge
through their respective ICT systems. Organizations referred to in this definition
include public administration units, any entity acting on their behalf, or EU
institutions or bodies 1.

In contrast to the broader definition, the European Union Commission em-
phasizes technical considerations, such as data exchange, while acknowledging the
significance of organizational and business process levels. Developing a software
engineering-centric vision of interoperability based on these diverse viewpoints is
crucial. Considering a standards-based definition is essential in the context of
software engineering:

Software Engineering focus Definition: Within the domain of software en-
gineering, the standard ISO/IEC TR 15944-14:2020 2 defines interoperability as
”the capability to communicate, run programs, and transfer data among differ-
ent functional units with minimal need for users to understand the unique traits
of these units”. Additionally, following a software-centric viewpoint, Wegner’s
definition in [Weg96] characterizes interoperability as the ability for software to
cooperate despite differences in language, interface, or execution platform”.

The standard and Wegner definitions emphasize the technical aspect of
interoperability while neglecting the human aspect. This allows us to focus on
the part of the systems we consider in this thesis.

Regarding systems, it is essential to note that the scope and challenges
of interoperability vary among different types of systems. These include do-
mains such as the Internet of Things (IoT) [NAG19], Cyber-Physical Systems
(CPS) [GA18], Digital twins (DT) [Pir21], and Information Systems (IS) [MDCB17].

1https://commission.europa.eu/system/files/2022-11/other_staff_working_

paper_en_v4.pdf
2https://www.iso.org/obp/ui/#iso:std:iso-iec:tr:15944:-14:ed-1:v1:en:term:

3.28

3

This manuscript primarily delves into interoperability within the realm of infor-
mation systems.

According to De Coursy [DC92], an information system (IS) is ”a struc-
tured set of resources, including hardware, software, personnel, data, and proce-
dures, used to collect, process, and distribute information about a specific envi-
ronment. This definition emphasizes the merging of technical and social elements
within an information system and points to the broader interoperability consider-
ations”.

In addition, modern information systems are increasingly distributed and
consist of independent software components located worldwide. An information
system is ”a set of ICT, such as computers, software, and databases, used to
perform specific tasks and to interact with and inform different actors in differ-
ent organizational or social contexts” [BCK15]. This definition emphasizes the
complete autonomy of each component within the IS, such as a System-of-System
paradigm.

System of Information Systems (SoIS)[MMHA15], a subset of System-of-
Systems[KRU+03], connects multiple information systems to create significant
organizational value. In this context, redefining interoperability for information
systems emphasizes the ability of systems and their components to exchange data
and use functionality in a complementary manner. This ensures the independent
functioning of each component even when the system is disassembled, emphasizing
the autonomy of each component within an information system.

With this in mind, let’s revisit the definition of interoperability for a SoIS:

Proposed Definition of Interoperability: Interoperability represents a qual-
ity within information systems and their constituent components to exchange data
and use their functionalities complementary. This quality ensures that each IS
component operates independently, even if the system is disassembled.

Indeed, despite the diversity and complexity of available interoperability
mechanisms, they require regular updates to adapt to the evolution and diversity
of contemporary information systems. In this thesis, interoperability mechanisms
refers to the implemented source code enabling communication and coordination
between systems and their constituent elements. When these mechanisms are up-
dated, there is an inherent risk of work interruption within the company [BVT22].
This underscores the interdependence among system constituents, indicating a
strong coupling between them.

4

1.2 Defining fundamental Concepts and positioning

Expanding the definition of interoperability in ICT considerations marks
our first step in positioning this manuscript. However, it is crucial to understand
the multifaceted aspects of interoperability by considering its different levels and
layer [LLA+20].

1.2.1 Interoperability: Levels, Layers, and Vision

Interoperability includes data, service, process, and business [CD06, BEF+07].
Each level is subdivided into technical, syntactic, semantic, and organizational
layers [GON19]. These layers delineate seamless data exchange, coordination be-
tween functionalities, service sequence for business needs, and inter-organizational
interactions.

The technical layer emphasizes interoperability capabilities like data trans-
portation using protocols, while the syntactic layer manages the structure of ex-
changed information. The semantic layer concerns the meaning of exchanged
information, and the organizational layer involves defining business objects and
structures.

In addition to level and layer of interoperability, it is possible to enable in-
teroperability from a vision that allows you to frame some terminologies [MMP00].
Communication between systems and their constituents is of interest for data ex-
change. Coordination is employed for interoperating at the service level through
functionalities. Interoperability between two systems at the process level falls
under the cooperation vision, while collaboration terminology is employed for the
organizational level.

This thesis centers on interoperability at the data and service levels, fram-
ing this work within the scope of interoperability. Each of the three layers is
considered, viewing interoperability through the lenses of communication and co-
ordination.

1.2.2 Distinguishing Interoperability, Integration, and Alignment

The terms interoperability and integration, less frequently alignment, might
be interchangeably used despite differences in their meanings. This section aims
to elucidate the significance of each term and outline their practical distinctions.

Table 1.1 summarizes the nuances among interoperability, integration, and
alignment across various aspects, including their definitions, focuses, objectives,
scopes, dependencies, and examples.

5

Aspect Interoperability Integration Alignment

Definition
The ability of different systems or
devices to connect and communi-
cate with each other

The process of bringing different
systems, applications, or compo-
nents together to function as a uni-
fied whole

The process of ensuring that the
goals, strategies, and actions of
various entities are harmonized to
achieve a common objective

Focus
Focuses on the ability of systems
to exchange and interpret data

Focuses on merging or combining
separate systems into a cohesive
unit

Focuses on synchronizing ob-
jectives, strategies, and actions
among different entities within an
organization

Objective
Enables different systems to work
together seamlessly.

Aims to create a unified, often
seamless, user experience by com-
bining functionalities of multiple
systems

Aims to ensure consistency, coher-
ence, and mutual support among
various entities’ goals and strate-
gies

Scope
Primarily concerned with commu-
nication and data exchange be-
tween systems

Encompasses a broader range of
activities, including data sharing,
process coordination, and func-
tionality merging

Encompasses strategic, opera-
tional, and cultural aspects to
align different entities toward
shared goals

Dependency

Doesn’t necessarily require a deep
integration of systems but empha-
sizes the ability to communicate
and exchange information effec-
tively

Often requires a more profound
connection between systems,
potentially involving shared
databases, APIs, or middleware

Involves creating shared values,
objectives, and practices among
different entities, potentially in-
fluencing decision-making and re-
source allocation

Example

Ensuring that a mobile app can re-
trieve data from various backend
systems, even if they use different
protocols or technologies

Combining the functionalities of
an e-commerce platform with a
customer relationship manage-
ment (CRM) system to provide
a unified view of customers and
transactions

Harmonizing the marketing, sales,
and product development depart-
ments to work towards a unified
customer-centric approach

Table 1.1: highlights the differences between interoperability, integration, and align-
ment

Interoperability focuses on facilitating communication and data exchange
between systems, integration involves merging systems into a cohesive unit, and
alignment concentrates on ensuring that different entities within an organization
work harmoniously toward shared goals.

1.3 Research Motivations and Objectives

This thesis project was conducted in collaboration with Berger-Levrault,
a company specializing in software solutions primarily for the public sector. The
project addresses the pressing need for efficient information sharing and exchange
within ongoing reforms in the local public sector. These reforms include restruc-
turing local authorities, the implementation of legislation such as the NOTRE
law, the establishment of Territorial Hospital Groups in 2016, and the Digital
Republic initiative. To address these changes, an adaptable interoperability solu-
tion must be developed to facilitate streamlined data exchanges between software
applications and the external environment.

6

Throughout these transformations, Berger-Levrault’s applications need to
adjust to evolving rules and standards while advancing the integration of pub-
lic service digitization. These changes have a substantial impact on established
data exchanges. Consequently, there is a need for flexible exchange architectures
capable of accommodating diverse data volumes and types, particularly during
peak periods. For instance, millions of payslips are edited and exchanged between
various system constituents at the end of each month.

Through collaborative research with Berger-Levrault and the DISP labo-
ratory, critical challenges were identified:

These transformations involve a substantial volume of exchanged data,
subject to variations, especially during ’peak periods’ like electronic voting during
elections. The nature of these exchanges may also be affected, especially in the
realm of connected objects. Public institutions increasingly utilize such objects
for managing city equipment or user services. The increased volume of exchanged
data necessitates exchange architectures capable of supporting this load and the
variability in data production types and frequencies. This requires distributed,
adaptable, or even self-adaptable architectures to ensure system fault tolerance
while preventing potential congestion.

Research conducted in partnership with Berger-Levrault and the DISP
laboratory has revealed certain hurdles:

Lack of visibility into existing interoperability exchanges: Most current
exchanges lack traceability, and monitoring mechanisms mainly focus on low-level
technical information without correlation to business information. Few methods
focus on evaluating effective data interoperability post-implementation, and fewer
still are equipped with suitable tools.

Complexity in maintaining exchanges: The lack of traceability and evolv-
ing exchange configurations present challenges in identifying faults, hindering
effective alert systems’ implementation. Additionally, the lack to capitalize on
information complicates maintenance.

Manual development of exchange system modules: This approach is
costly and does not meet the reactivity requirements of business areas subject to
frequent change, requiring the development of adaptable exchange systems using
dynamic interoperability pivots. This leads to considerable delays, for example,
when migrating existing applications.

7

This thesis aims to develop a comprehensive approach to the lifecycle of
interoperability mechanisms, improving the reliability and resilience of exchange
systems to ensure interoperability. The thesis statement is that:

Any information system can be transformed into a System of Informa-
tion Systems by maximizing the separation between business logic computation
and communication and coordination. By doing so, we can automatically gener-
ate connectors between business logic constituents, making them loosely coupled
and reifying communication-specific instructions regardless of their characteris-
tics. Subsequent changes to communication specifications will only affect the con-
nectors, leaving the constituents responsible for the core business logic unaffected.

The proposed solution intends to streamline all application exchanges and
services, optimizing software and infrastructure resources within public institu-
tions.

1.4 Structure of the manuscript

The manuscript is structured in the following manner:

• Chapter 2 provides an in-depth examination of general interoperability con-
cepts and proposed solutions for implementing interoperability mechanisms.

• Chapter 3 introduces an extensible metamodel that depicts reified interop-
erability mechanisms derived from existing systems. It provides a compre-
hensive view of the connector, presenting its constituents at a high level for
better understanding by both technical and non-technical stakeholders.

• Chapter 4 explains the methodology used to evaluate the completeness and
extensibility of the connector’s metamodel through a heuristic process. Ad-
ditionally, experiments were conducted to assess the performance of the rei-
fied messaging connector and compare it with interoperability mechanisms
based on the messaging style.

• Chapter 5 presents the ConPL framework, a software product line ap-
proach designed to implement interoperability connectors. The framework
utilizes Model-Driven Engineering and Delta-Oriented Programming in this
context.

• Chapter 6 proposes the PhaDOP framework and demonstrates its practical
application in implementing Software Product Lines. Emphasizes the uti-
lization of Delta-Oriented Programming at the model level to execute the
ConPL framework through a fundamental use case.

8

• Chapter 7 involves the implementation of an industrial use case following
the ConPL framework and utilizing the PhaDOP framework.

• Chapter 8 provides an overarching perspective on the research conducted,
offers insights into future research directions on evolving interoperability
mechanisms in System-of-Information Systems, and concludes the manuscript.

9

Chapter 2. State of the Art

2.1 Introduction

Chapter 1 establishes the core concepts of the thesis, defines fundamen-
tal terminologies, and contextualizes the present work within the realm of in-
teroperability concerning System of Information Systems (SoIS), specifically fo-
cusing on the ICT dimension of Information Systems. Our primary objective
revolves around addressing interoperability in line with the System-of-System re-
quirements. This pursuit leads us to elevate interoperability mechanisms into
primary system entities called connectors. However, the literature often utilizes
various terms to describe these connectors, disregarding SoS considerations. The
initial segment of this chapter surveys to analyze frequently used terms for inter-
operability mechanisms, emphasizing their distinctions. Subsequently, we delve
into current industrial practices in the second section. The third part explores
prevalent standards adopted in pursuing interoperability, while the final section
scrutinizes diverse approaches employed for implementing efficient interoperabil-
ity solutions.

2.2 Exploration of Key terminology in Describing Interoperability Mech-
anisms

Our exploration of the interoperability literature has revealed various terms
used to describe interoperability mechanisms. These terms often attempt to char-
acterize both the type of interoperability challenge and the role played by the
mechanism implemented. However, there is considerable variation; different terms
may refer to identical concepts. The work of [MMP00] introduced a taxonomy
of software connectors derived from analyzing interactions between existing com-
ponents. This taxonomy classifies software connectors according to service and
interaction types. This section endeavors to clearly define the most commonly
used terminologies and to emphasize their differences. This helps position the
concept of connector used in this manuscript by clarifying why we use this term
and not others.

10

2.2.1 Middleware

The main difference is that using the middleware terminology more gener-
ally goes beyond application layer consideration by considering the infrastructure
layer [SMR+12]. While the application level is limited to the application level,
The infrastructure layer includes another non-functional level covering (security,
logging service, and transaction), runtime level management level (lifecycle or
binding), and kernel level.

Middleware [CBB+00] is a technology that acts as a bridge between ser-
vice providers and requesters. It provides standardized mechanisms for commu-
nication, data exchange, and type marshaling. It uses higher abstraction than
messaging, making it easier to build interoperable applications.

The term middleware has been used in software engineering since the late
1960s, and it can refer to a wide range of modern software components. Mediators,
connectors, and APIs are examples of interoperability mechanisms that can be
categorized as middleware, focusing on application layer interoperability.

2.2.2 Mediator

The concept of a mediator was first introduced in the paper by [Wie92] to
solve the problem of integrating heterogeneous data sources in distributed infor-
mation systems. This paper defines the mediator as a software module utilizing
specific data sets or subsets of knowledge to generate information for higher-level
applications. Initially, the definition was framed in a vertical architecture vision
with several layers, but this changed over time.

Three years later, the concept of mediator emerged as a design pattern
in the book on best-known design patterns by [Bec95], which was classified as a
behavioral pattern. This perspective as a behavioral pattern was reinforced in
another paper by [SI10], who used the term mediating connector or mediator
and defined it as one or a collection of components responsible for overseeing
and reconciling behavioral mismatches. The mediator forwards interaction mes-
sages between components, facilitating protocol translation or adaptation when
necessary.

The definition of [SI10] underscores that a mediator is a component, and
combinations of mediators can be formed. It encompasses the information ex-
changed, spanning data and service-level interoperability, and addresses technical
layers through protocol conversion. s.

Furthermore, the Ph.D. thesis by [Ben13] delineates the mediator as in-
termediary software that facilitates the collaboration of functionally compatible

11

components without requiring modifications. This underscores the role of the
mediator in addressing various concerns, including coordinating component be-
haviors to prevent issues like deadlocks, translating data for meaningful exchanges
between components, and managing communication among distributed compo-
nents to navigate network-related challenges like concurrency and fault tolerance.

While Bouloukakis in [BGNI19] refers to the term ”mediator adapter”,
retaining its definition and role, Gio in [Gio12] aligns himself with the work above
regarding the meaning of mediators, but emphasizes semantic matching. However,
for this discussion, we will ignore this reduction in the role of mediators.

A mediator can facilitate behavior matching, data exchange, and protocol
conversion.

2.2.3 Adaptor

According to [YS94], an adapter is code that acts as an intermediary be-
tween two components, designed to mitigate the disparities between their inter-
faces. The software adapter can reconcile the gap between an application and
functionally compatible but incompatible interfaces. For interaction between two
components, their interfaces must be exposed, usually defined by method signa-
tures. Then, a limited set of rules specifies the correspondence between these
interfaces.

As for the mediator, [Bec95] presents an adaptor as a design pattern,
precisely a structural architectural pattern. Its role is to convert an interface of
a class into another interface that clients expect. So, the adaptor permits classes
to work together even if their interfaces are incompatible.

One difference between a mediator and an adaptor is that the adaptor is a
supplementary thing added to a component to glue it together, not an independent
entity.

However, [Bec95] affirms that an adaptor is a wrapper. However, the
current literature shows some differences between the two terminologies.

2.2.4 Wrapper

A wrapper, or an interface wrapper, encapsulates or contains an object
or functionality, providing a simplified or modified interface to interact with that
object. It acts as a protective layer around an object, allowing controlled access
or modification to its functionalities. According to [CBB+00], a wrapper consists
of two parts: an adapter that provides additional functionality for an application
program at essential external interfaces and an encapsulation mechanism that

12

binds the adapter to the application and protects the combined components. The
software adapter is part of the wrapper. It intercepts all invocations to provide ad-
ditional functionalities such as synchronization between the local and distributed
object, transaction control, events monitoring, and exception handling.

Wrapping is an approach to protecting legacy software systems and com-
mercial off-the-shelf software products that require no modification of those prod-
ucts. In summary, wrappers and software adapters share similarities but serve
different purposes within a system.

Like a wrapper, a software adapter mediates interactions between compo-
nents or systems by compensating for differences in their interfaces. However,
an adapter specifically focuses on facilitating interoperability between different
systems or components with distinct interfaces. It acts as a bridge, enabling com-
munication and interaction between disparate elements by translating or trans-
forming data and method calls to ensure compatibility and seamless operation.

While wrappers and software adapters involve encapsulation and interface
modification, a wrapper primarily focuses on providing a modified interface for an
object. In contrast, a software adapter enables interoperability between diverse
systems or components.

Concerning the difference between a mediator and an adaptor, [Men07]
states that the mediator is an independent component that manages interactions
and communication between components. At the same time, a wrapper concen-
trates on encapsulating and providing controlled access to an object’s functional-
ities.

2.2.5 Application Programming Interface (API)

API stands for Application Programming Interface. APIs are software
tools that facilitate the communication between two computer applications. APIs
can connect entirely different products and services by providing a standard layer.
It refers to a specific set of rules and guidelines that a software program can follow
to access and utilize the resources and services that another software program
implements that API [Sch05]. According to [BC19], APIs are a set of protocols
that determine how software components communicate.

It’s important to note that APIs differ from adapters. While an API defines
how systems can interact, an adapter helps to connect systems or components that
wouldn’t naturally work together due to interface differences.

The wrapper concept differs from the API. A wrapper wraps the original
API with an additional layer, simplifying its usage.

13

Mediators, on the other hand, complement APIs in designing modular,
maintainable, and scalable systems. While an API focuses on defining the in-
terface and communication protocols, a mediator focuses on managing and facil-
itating communication and interaction between different components or objects
within a system.

2.2.6 Software connector

Following the literature, [MMP00] states that connectors are to be explicit
and tangible elements of the system. In other words, it is a fundamental element
at the architectural and implementation level of the system. [YS94] discuss
connectors as first-class system entities in the related work. Their connectors
are first-class, reusable components in their own right and can support n-party
interactions. Connectors are polymorphic in that any component’s port whose
protocol is compatible with a given connector’s role can be plugged into that role.

The mediator focuses on the object, while the connector focuses on the
system. Knowing the SoS context component is also a system.

According to the literature, [MMP00] emphasizes that connectors should
be explicit and tangible elements of a system. This means that connectors should
be visible and present at the architectural and implementation levels of the sys-
tem. Yellin [YS94] also discusses connectors as first-class entities in the related
work. Their connectors are reusable components that can support multiple inter-
actions. Connectors are polymorphic, meaning that any component’s port whose
protocol is compatible with a given connector’s role can be plugged into that role.

It is important to note that the mediator focuses on the object, while
the connector focuses on the system. In a System of Systems (SoS) context,
components should also be considered part of the more extensive system.

2.2.7 Summary of terminologies

We have made two summary tables to recapitulate the findings of our
survey on diverse terminologies. The first table, Table 2.1, focuses on the crucial
aspects of using each terminology. The second table, called Table 2.2, highlights
the similarities and differences between the terminologies used. This allows us to
draw a more comprehensive conclusion for each concept.

In this comparative analysis of commonly used terminologies in software
development, integration, and interoperability, we classify them based on their
categories, subcategories, and primary roles. Upon comparing them based on
primary roles, we observe that middleware provides general communication ser-

14

Terminology Category Subcategory Role

Middleware Integration
Integration Sup-
port

Provides services for communication, data
management, messaging, security, and trans-
actions between different software systems.

Connector Interoperability Interoperability

Establish connections between disparate sys-
tems or components, managing data trans-
formation, protocol translation, or interface
adaptation for interaction.

Mediator Design Pattern
Behavioral Design
Patterns

encapsulate interaction logic between objects,
promote loose coupling, and manage interac-
tions through a mediator object.

Adapter Design Pattern
Structural Design
pattern (Interface
Compatibility)

Facilitates interaction between entities with
incompatible interfaces by converting one in-
terface into another expected by clients.

Wrapper Extension
Functionality Ex-
tension

Encapsulates and delegates existing class/-
component functionalities, allowing modifica-
tion or extension of behavior without altering
its original structure.

API Interface
Interface Specifi-
cation

Defines protocols, tools, and routines for soft-
ware interaction, serving as an intermediary
for communication between different software
components.

Table 2.1: Overview of different concepts used in interoperability and integration

vices, which include security and transactions. On the other hand, connectors
or software mediators facilitate interaction between different systems and compo-
nents, enabling data transformation, protocol translation, or interface adaptation.
The software connector solves the problem of interface adaptation that a medi-
ator, adaptor, or wrapper addresses. Mediator and adaptor are design patterns
where the mediator encapsulates the interaction between objects, and the adap-
tor proposes interface adaptation if required for interaction with other interfaces.
Wrapper adds a layer of abstraction instead of offering several interfaces, as in
the adapter case. Lastly, APIs serve as an intermediary for communication be-
tween service or microservice software components, not between objects like the
mediator or adaptor.

While software development and integration use distinct concepts, some
functionality overlaps, connectors, and APIs might be included in middleware
services. Still, each concept plays a unique role in system design, integration, and
interaction.

2.3 Industrial practice/architecture for interoperability

Now that we have summarized and clarified the different terminologies for
designing interoperability mechanisms, we propose surveying different industry
architectures.

15

Terminology Purpose/Role Commonality Difference

Middleware
Facilitates com-
munication be-
tween systems

Provides services
for software inte-
gration

Differs in the range of services offered, includ-
ing APIs, connectors, and more for system
communication

Connector
Establishes
connections be-
tween systems

Enables interoper-
ability

Differs from other concepts by focusing specif-
ically on connecting disparate systems

Mediator

Manages inter-
action between
objects/compo-
nents

Promotes loose
coupling and
manages interac-
tions

Differs by specifically managing interaction
and communication among objects

Adapter

Facilitates
interaction
between in-
compatible
interfaces

Allows entities
with different
interfaces to work
together

Differs by converting interfaces to enable in-
teraction between incompatible entities

Wrapper
Encapsulates
and extends
functionalities

Adds new func-
tionalities without
altering the origi-
nal structure

Differs by encapsulating and delegating func-
tionalities to modify behavior

API
Defines proto-
cols for software
interaction

acts as an inter-
mediary for differ-
ent software com-
ponents to com-
municate

Differs by specifying rules for software inter-
action and system communication

Table 2.2: Difference analysis commonly used concepts in interoperability and inte-
gration

2.3.1 Point-to-Point architecture

Point-to-Point architecture is commonly used to achieve ad-hoc interop-
erability between software components [ABG+19]. This architecture is acciden-
tal [Boo06], meaning it is not a planned strategy but the result of combining
several ad hoc interaction flows. It is often used when there is no clear strategy
because it is relatively easy to set up, especially for small-scale systems. However,
it is a risky choice because the scale of a system can rarely be predicted for years
to come.

In Point-to-Point interaction, systems and components interact directly
with each other. While setting up a small-scale system is easy, this approach
has disadvantages. For instance, if a component needs to interact with multiple
applications, it must ensure that all integration logic is implemented for each
of them. This includes protocol conversions, data transformation, transfer, and
more.

As time passes, multiple individual interfaces must be changed simulta-
neously, leading to an ongoing maintenance burden for keeping the interfaces
up-to-date. The result is a highly complex system that can become difficult to
manage, leading to performance issues and management problems [Sch05]. Ad-

16

ditionally, it becomes challenging to impose standards, and adding a new link is
always problematic, requiring new developments and adapted infrastructures.

2.3.2 Hub-Spoke architecture

The Hub-and-Spoke architecture is a popular choice for software prac-
titioners who want to avoid the complexity that can arise with point-to-point
architectures [Sch05]. This architecture allows multiple systems to be integrated
using a central hub to facilitate communication. The hub provides a uniform
interface to all participating systems, making it easier to maintain due to fewer
dependencies.

In a Hub-and-Spoke architecture, the central hub is an intermediary be-
tween the different systems or ”spokes”. The applications communicate through
the hub, using interfaces based on the Hub/Spoke architecture. The central hub
is responsible for routing messages to the various systems and applications, which
includes tasks like translation, transformation, and message redirection.

Compared to point-to-point interaction, the number of connections is sig-
nificantly smaller for hub-and-spoke, making it easier to manage and [Ris07]. The
spokes in the architecture are also decoupled from each other, which strengthens
their connection with the hub instead of relying on multiple communication chan-
nels with other applications.

While the Hub-and-Spoke architecture solves the problems of point-to-
point communication and offers advantages such as decoupling, there are also
some disadvantages. One disadvantage is that there is a single point of failure
- if the central system fails, all communication stops. Additionally, since all
communication passes through the central hub, it can lead to overloading and
bottlenecks.

2.3.3 Message-Oriented Middleware (MOM)

Message-Oriented Middleware (MOM) [YQC+19] is a middleware archi-
tecture that promotes system communication by enabling asynchronous message
passing. Its main objective is to facilitate the reliable exchange of messages be-
tween applications or components. MOM enables systems to communicate with-
out requiring both parties to be available simultaneously, thus ensuring reliable
message delivery through features such as queuing or guaranteed delivery.

The main difference between MOM and Hub-and-Spoke architecture is
that MOM primarily focuses on reliable asynchronous messaging. In contrast,

17

Hub-and-Spoke architecture emphasizes using a centralized hub for managing
and orchestrating communication flow among multiple systems.

2.3.4 Service-Oriented Architecture (SOA)

Service-Oriented Architecture (SOA) is an architectural approach for build-
ing and integrating enterprise applications [LL09]. It utilizes reusable and inter-
operable services, known as software interfaces, for distributed computing. This
enables remote system interaction and seamless data exchange, facilitating loose
coupling among services that communicate and cooperate across diverse technol-
ogy or platform foundations.

SOA provides advantages such as flexibility, reusability, and scalability.
However, studies have identified challenges [PED19], particularly with interoper-
ability when integrating legacy systems or constituents not initially aligned with
SOA principles. It relies on standards, making it more suitable for systems or
constituents adhering to them.

Another challenge is managing the proliferation of services, interactions,
and dependencies as the system expands. This growth can foster a point-to-point
integration style, resulting in a convoluted, spaghetti-like architecture.

Nevertheless, SOA offers superior reusability, scalability, and governance
compared to point-to-point integrations, especially in intricate environments re-
quiring multifaceted system communication. Its structured and systematic ap-
proach contrasts with the ad-hoc nature of point-to-point integrations, often lead-
ing to maintenance challenges as the system evolves and expands.

2.3.5 Enterprise Service Bus (ESB)

Enterprise Service Bus (ESB) represents a middleware architecture de-
signed to enable interoperability among diverse applications or services within
an enterprise [Cha04]. As a central hub, ESB facilitates communication between
multiple applications or services.

It is essential to understand that ESB is often seen as a tool supporting
the implementation of Service-Oriented Architecture (SOA) principles rather than
serving as a direct alternative to SOA [Men07]. ESB indirectly connects applica-
tions through its centralized structure rather than establishing direct connections.
This central hub incorporates essential logic to facilitate interaction and integra-
tion among systems. It empowers functionalities like routing, invocation, and
mediation, ensuring secure and reliable interaction among disparate distributed
applications and services. Mediation, a core aspect of ESB, encompasses trans-

18

formations or translations across various resources, including transport protocols,
message formats, and content.

In contrast, Message-Oriented Middleware (MOM) provides reliable asyn-
chronous messaging between systems, focusing primarily on message-based com-
munication and dependable message delivery.

Choosing between ESB and MOM hinges on specific integration needs
and the complexity of an organization’s architecture. ESB offers a comprehen-
sive integration platform with broader capabilities than MOM. In some cases,
these technologies can complement each other within an organization’s integra-
tion strategy, each serving distinct purposes based on the requirements of the
enterprise architecture.

2.3.6 Summarize of the architectural style

After examining various industry architectures for interoperability, it be-
comes evident that each architecture offers a unique approach with advantages
and challenges.

Point-to-point architecture [ABG+19], despite being easy to set up, poses
risks and complexities as systems scale over time. Its ad-hoc nature leads to
increased maintenance burdens and challenges in enforcing standards.

Hub-and-spoke architecture [Sch05] addresses some of these issues by cen-
tralizing communication, reducing complexity, and minimizing the number of
connections. However, it introduces single points of failure and potential bottle-
necks.

Message-oriented middleware (MOM) [YQC+19] focuses on reliable asyn-
chronous messaging, ensuring dependable message delivery between applications
without requiring simultaneous availability.

Service-oriented architecture (SOA) [LL09] emphasizes reusable and inter-
operable services for distributed computing, offering scalability and reusability.
However, it faces challenges with legacy integration and managing proliferating
services and dependencies.

Enterprise Service Bus (ESB) [Cha04] is a comprehensive integration plat-
form that indirectly connects applications through a centralized hub. It facilitates
system interaction and integration while providing functionalities like routing,
mediation, and secure interaction among distributed applications.

Choosing the appropriate architecture requires carefully evaluating spe-
cific integration needs, scalability, reliability requirements, and the complexity
of the enterprise’s architecture. Each architecture presents a trade-off between

19

Architecture Key Features Advantages Challenges

Point-to-
Point

Ad-hoc, direct
interaction,
multiple indi-
vidual inter-
faces

Easy setup for
small-scale sys-
tems

Increased maintenance, scalability challenges,
complexity

Hub-and-
Spoke

Central hub,
uniform in-
terface, fewer
connections

Reduced complex-
ity, easier mainte-
nance

Single point of failure, potential bottlenecks

Message-
Oriented
Middleware

Asynchronous
messaging, re-
liable message
passing

Dependable mes-
sage delivery,
no simultaneous
availability

Focused primarily on message-based commu-
nication

Service-
Oriented
Architecture

Reusable, in-
teroperable
services, loose
coupling

Flexibility,
reusability, scala-
bility

require standard adoption, legacy integration
issues, managing proliferation of services

Enterprise
Service Bus

Centralized
hub, mediation,
comprehensive
integration

Facilitates in-
teraction and
integration among
systems

Indirectly connects applications, requires
careful evaluation

Table 2.3: Difference analysis commonly used concepts in interoperability and inte-
gration

advantages and challenges, emphasizing the importance of aligning these factors
with the enterprise’s objectives to achieve optimal interoperability and scalability
while managing inherent complexities.

Table 2.3 highlights the distinctive features, advantages, and challenges
associated with each architecture, providing a quick comparative view for better
understanding and evaluation based on specific needs and priorities within an
enterprise.

2.4 Survey of Standard for interoperability

Various standards help interoperability between different devices and sys-
tems in different industries. This section highlights some of the most notable
ones.

Hyper Text Transfer Protocol (HTTP) [FGM+97], and its secure version
HyperText Transfer Protocol Secure (HTTPS) [Dan09] are widely used protocols
for web communication and data transfer over the internet.

Message Queuing Telemetry Transport (MQTT) [SM17] is primarily used
in IoT (Internet of Things) applications because of its efficiency and lightweight
messaging system for machine-to-machine communication. MQTT for Wireless
Sensor Networks (MQTT-S) [HTSC08] is a wireless network sensor extension

20

designed to be run on low-end, battery-operated sensor/actuator devices and op-
erate over bandwidth-constrained WSNs such as ZigBee-based networks. MQTT
for sensor network (MQTT-SN) [SCT13] is another extension designed to be as
close as possible to MQTT but adapted to the peculiarities of a wireless commu-
nication environment like low bandwidth, high link failures, short message length,
etc. It is also optimized for implementing low-cost, battery-operated devices with
limited processing and storage resources.

Advanced Message Queuing Protocol (AMQP) [Pra21] is designed for
message-oriented middleware and is helpful in scenarios where reliability and in-
teroperability are crucial in communication between applications. AMQP is an
open standard for enterprise messaging designed to support messaging for almost
any distributed and business application.

Constrained Application Protocol (CoAP) [BCS12] is a protocol specif-
ically tailored for constrained devices and is designed for low-power and low-
bandwidth networks. CoAP provides a RESTful protocol for communication,
enabling interoperability in IoT environments.

Open Platform Communications Unified Architecture (OPC UA) [PTD+19]
is a machine-to-machine communication protocol that is widely used in industrial
automation. It is defined in the IEC specification 62541. In OPC-UA, every node
in the server’s address space is described. This information can be queried and
used by a client along with the received data.

Data Distribution Service (DDS) [SPCF04] is a middleware that enables
highly dynamic distributed systems to publish and subscribe to data in a data-
centric way [PTD+19]. It is standardized by the Object Management Group
(OMG) 1. Compared to OPC-UA, DDS is more focused on data. In DDS, data is
published into the DDS domain, and subscribers can subscribe to data from that
domain without knowing where the information came from or how it is structured,
as the information package already describes itself.

Digital Imaging and Communications in Medicine (DICOM) [MDG08] is
a standard designed for healthcare to ensure interoperability between medical
imaging devices and systems. DICOM facilitates the exchange of medical images
and related information.

Health Level Seven International (HL7) [DAB+01] is a standard in health-
care that aims to facilitate the sharing, integration, exchange, and retrieval of
electronic health information between different healthcare systems. There are
various versions of HL7, including v1, v2, and v3. The most recent version is
HL7-FHIR [Sar19], where FHIR stands for Fast Healthcare Interoperability Re-

1https://www.dds-foundation.org/

21

source. HL7-FHIR is a newer standard developed by HL7 to address some of
the limitations and complexities of previous versions. FHIR is designed to be
lighter, more flexible, and more developer-friendly than earlier HL7 standards.
It leverages modern web standards like RESTful APIs (Representational State
Transfer) [Pat17] and uses a resource-based model, making it easier for different
systems to understand and exchange healthcare information.

ISO 20022 [MM20] is a global standard for financial messaging. It stan-
dardizes the format and structure of financial messages, enhancing interoperabil-
ity and communication within the financial industry.

JavaScript Object Notation (JSON) [PRS+16] is a lightweight data-interchange
format that transmits data between a server and a web application. Its simplicity
and readability enhance interoperability.

Specific standards exist in various industries and domains to ensure com-
patibility, seamless communication, and interoperability between systems, appli-
cations, and devices. Other standards may also be necessary to facilitate efficient
data exchange and communication depending on the context and requirements.

This chapter provides an overview of some of the used interoperability
standards. The primary aim of this section is to demonstrate that these standards
are constantly evolving. For instance, the shift from HTTP to HTTPS involves
the addition of SSL or TLS [SL+16]. MQTT has several variations that can be
used for energy conservation, while HL7-FHIR is used to integrate Restful APIs.
These updates highlight the challenges involved in maintaining interoperability
for legacy systems. Nonetheless, certain standards like OPC UA for machine-
to-machine communication in the industrial sector and HL7 for healthcare are
specific to particular domains. As a result, it is crucial to combine standards since
domain stakeholders may need to interact with counterparts from other domains.
While standards are helpful, they do not solve all interoperability issues.

2.5 Interoperability mechanisms implementation approach

This section will review the approaches proposed in the scientific litera-
ture for enabling efficient interoperability solutions. These approaches primarily
focus on establishing effective interoperability between systems and their con-
stituents. The proposed approaches include (1) first-class connectors, (2) recon-
figuration capabilities - including runtime considerations, (3) automatic synthesis,
(4) model-driven adaptation, and (5) variability management.

22

2.5.1 Connector as first-class entity

The concept of an exogenous connector emphasizes the separation of con-
cerns between computational and communication-oriented code, leading to the
system-of-systems concept. Communication-oriented codes are code-specific for
business logic, and communication-oriented codes are codes specific to interaction
between components. Achieving independence among constituents necessitates
the externalization of all dependencies between them. In this context, dependen-
cies refer to source code within a constituent that relies on another to function. By
eliminating these dependencies, strong coupling between constituents is avoided.
The primary approach going in this line is mentioned in this section.

ArchJava, as presented in [ACN02], stands as an early proposal that delin-
eates the distinction between components and connections. ArchJava introduces
the concepts of components, connections, and ports as a language extending the
object-oriented programming paradigm’s class notion. Its fundamental empha-
sis lies in ensuring communication integrity. This is established by restricting a
component’s direct invocation of methods from other components, allowing such
access solely along designated connections between ports. This stringent control
ensures that a component can only initiate calls to authorized counterparts. How-
ever, ArchJava confronts limitations primarily centered around system evolution
challenges, mainly when dealing with smaller-scale applications. Its applicability
is confined to programs written in a single language and running on a Java Virtual
Machine (JVM).

The notion of an exogenous connector in [LEW05, AL17] promoted the
separation of entities that play a purely functional role from components that im-
plement communications. This decoupling allows flexibility and scalability since
acting on the connector without impacting the business logic is possible.

Lau et al. in [LEW05] limitation. Implemented in Java. Using hierarchy
pair to pair connector

[AL17] (difference with X-MAN) approach focuses on SOA systems. For
this reason, unlike X-MAN, our approach is distributed (i.e., multi-process), so
services are mapped onto different network addresses, and the control flow is
distributed over a network (copy/Past)

In [BVT22] Towards an intelligent connector for dynamic interoperabil-
ity in an agile enterprise. For now, conceptual framework. Implementation is
ongoing. Target industries 4.0

23

2.5.2 Dynamic or runtime reconfiguration

The second aspect is about implementing connectors dynamically by re-
configuring component orchestration. Several studies, such as those by [SMR+12,
IRHBJ16, RBVL18, RBVL18], present approaches that simplify connector de-
velopment and address design-time or runtime reconfiguration to change inter-
actions between entities. These approaches tackle interoperability solutions by
focusing on two fundamental combination paradigms: choreography and orches-
tration [Pel03]. The approaches presented in this study offer features such as
reflexive component support, which allows configuration changes of the assem-
bly at runtime using a script. These approaches can make the system dynamic
through static configuration and even at runtime. This will enable developers to
focus solely on the business logic, mixing services based on different technologies.

Seinturier et al. [SMR+12] propose FraSCAti, an open-source platform that
aims to simplify the development of service-oriented architecture (SOA) [LL09]
based on the Service Component Architecture (SCA) [CZ13] standard. With
FraSCAti, developers can focus on the business logic, mixing services based on
different technologies such as Bundle, Java, script, and BPEl. The platform offers
features like reflexive component support, which allows configuration changes of
the assembly at runtime using a script. To expose services on the web via the
SCA standard, developers need to specify them in an XML file. However, FraS-
CAti is limited to Java technologies, and it does not support all the languages
and protocols specified for SCA. This means that the possibility of interactions
is limited. FraSCAti is specific to service orchestration, where the connector is
centralized, and it cannot implement a connector based on event-driven commu-
nication. Moreover, connectors are not considered to be first-class entities of the
system, and generation is not addressed.

Ibañez et al. is also interested in the dynamic reconfiguration of interac-
tions between services based on service orchestration in [IRHBJ16]. The authors
propose reconfiguring applications using the GCMScript language [BHR15]. The
Grid Component Model (GCM) [BCD+09] exposes control interfaces that allow
changes of components at runtime and structure of services. This allows adding
or removing components or links at runtime and makes dynamic reconfiguration
possible. However, as explained by FraSCAti, this approach focuses on the or-
chestration of services where the notion of connector is implicit. Furthermore, it
is essential to know the cost of adding a new component: the number of possible
new connectors it generates or the impact of the number of combinations to be
tested.

24

Ciatto et al. [CMO+18] proposes the ReSpecTX language, toolchain, and
standard library for programming the coordination of multi-agent systems and
distributed applications in general. The ReSpecTX standard library is designed
as a constantly evolving collection of interaction mechanisms providing a reference
library of reusable and composable interaction patterns.

The ReSpecTX [DNO98], is based on the ReSpecT language inheriting and
extending its semantics while pushing it beyond the limits of other coordination
languages through features such as modularity, composability, and tools. How-
ever, the shortcoming of ReSpecTX is that the set of ready-to-use composable
coordination mechanisms provided by its standard library needs to be constantly
extended to cope with an increasing number of application scenarios and their
typical interaction patterns.

2.5.3 Automatic synthesis

There are a lot of papers that are interested in the automatic synthesis
of connectors. Bulej et al. [BB03] was one of the first works to deal with the
generation of connectors. In this paper, the authors propose the basic ideas for
connector generation and specify the data structures and interfaces necessary
for generation in a platform-independent language CORBA interface description
language (CORBA IDL) [CFP+01]. The proposed model follows the top-down
approach of software design allows for defining different types of connections.
Although this approach was pioneering in this field, it does not go as far as the
generation of connectors.

Inverardi et al. [IT13] propose a method for automatically synthesizing
modular connectors, a composition of independent mediators. The mediators are
primitive sub-connectors that perform a mediation pattern corresponding to the
solution of a recurrent interoperability mismatch. However, the approach assumes
that a network system (NS) is accompanied by an AI-based specification of its
interaction mechanisms. This may be considered for internal interoperability, but
it isn’t easy to require from a customer. The interaction mechanisms of an NS
express the order in which input and output actions are executed when the NS
interacts with the environment. This approach allows for greater modularity but
is only design time according to [BN17]. The number of possible primitive sub-
connectors limits the modularity. In addition, this approach is specific to peer-
to-peer communication. Namely, the interactions between peers constitute the
network system called the choreography. For example, an event-driven connector
cannot be created.

25

Autili et al. [AIT18] propose a formal approach to the application of chore-
ography realizability through the automatic synthesis of distributed Coordination
Delegate (CD). The CDs are additional software entities for the participants in
the choreography. The process takes as input a choreography specification in
the form of a state machine and automatically generates a set of Coordination
Delegates (CDs). Furthermore, another limitation of this approach is that it is
choreography-specific, as connectors develop peer-to-peer connections. We seek
more flexibility, such as generating a connector for event-driven communication.

Bencomo et al. [BBG+13] focuses on automatically generating connectors
on the fly. This approach combines machine learning techniques and ontologies to
discover the component’s functionalities with which to interact and automatically
create a mediation software component.

Bennaceur et al. [BI14] the authors present an approach based on ontolog-
ical reasoning and constraint programming to infer mappings between component
interfaces automatically. This approach requires the exposure of the signatures
of the different features. Then, machine learning techniques are combined with
the domain ontologies of the two services to explore the behaviors of the two
functions to generate the computed mediator. The weakness of this approach is
that it requires domain ontologies that are not easy to obtain from clients for
an information system composed of several applications from different applica-
tion domains. In addition, the discovery algorithm can be time-consuming and
resource-intensive for an interface containing many function signatures.

2.5.4 Model-driven approaches

The fourth aspect concerns approaches that aim to make connectors more
modular and promote reuse and scalability. In [ADSG+18b], the authors define
an approach to the automatic synthesis of service adapters using Enterprise Inte-
gration Patterns (EIPs) [HW04]. The approach proposes a Service-Role Adapter,
a metamodel used to represent the component matching. Moreover, the Adapter
Component Metamodel [ADSG+18a] represents the structure of an adapter as a
chain of adapter components implementing the considered EIPs. Each of these
is realized as an appropriate composition of adaptation primitives. The authors
of [BGNI19] introduce a solution for the automated synthesis of mediators that
ensure the interoperability of heterogeneous things, the Data exchange (DeX)
connector model. The objective is to devise a generic connector that comprehen-
sively abstracts and represents the semantics of the various middleware protocols.
Works in [AIS+19] define a model-based framework for mediators and an auto-

26

mated approach to mediator synthesis. The objective is to devise a generic con-
nector that comprehensively abstracts and represents the semantics of the various
middleware protocols. The interaction abstraction step consists of taking as input
an interaction process, a choreography specification, and its ontology to produce
a coordination delegate.

2.5.5 Exploiting variability and code generation

The fourth group of work has focused on reusability and variability man-
agement to facilitate the implementation of connectors.

Jongmans et al. [JSS+12] propose Reo, a graphical and exogenous coordi-
nation language for compositional construction of Web services using constraint
automata. The framework takes the behavioral description of the services as in-
put in the form of constraint automata, the WSDL interfaces, and the description
of their interaction in Reo. It generates all the Java code needed to orchestrate
the services in practice. A proxy is automatically generated for each web service
to manage the communication between this service and the Reo circuit. This is
interesting for direct communications between web services but is not variable to
allow the implementation of other types of connectors, such as file transfer, shared
database, or event-driven. Furthermore, it lacks variability and abstraction from
the target language since the connector cannot be generated in Java.

Reo is improved in Jongmans et al. [JSS+14], but the approach still present
some limitation. The machine-readable interface definition for the web services
supported by its current tools is WSDL with RPC-literal bindings, as specified
in the WS-I base profile. The current technical implementation of Reo excludes
circuits with channels that modify the data passing through them. This confirms
that Reo focuses on a relatively low level of interoperability, such as communica-
tion protocol mismatch. The syntactic aspect, which concerns the data format,
and the semantic aspect, which affects the meaning given to the information, are
not addressed. In addition, Reo focuses on choreography and does not cover other
types of connectors, such as file transfer.

Autili et al. [ADSG+18c] describe a model-driven approach to manage the
evolution of choreographies through variability. The approach consists of syn-
thesizing coordination and adaptation software entities to represent and control
the interactions of the services participating in the choreography. The use of
model-driven provides the opportunity to evolve the coordination logic to allow
for a modular evolution of the choreography in response to possible changes in

27

context. At the design stage, a BPMN2 modeler will allow variation points to be
specified directly in the choreography diagrams.

It defines a new version of coordination delegates, namely, evolvable co-
ordination delegates (eCDs) presented above in [AIT18], which will manage the
evolution of the choreography in response to changes in context. However, only
one variation can be enabled at runtime, and the execution of a variation is treated
as atomic by the CDs. Use the meta-class to solve the BPMN2 lake to represent
variability. To do this, the variation point metamodel must present a part of the
BPMN2 metamodel, which the authors have extended to support the specifica-
tion of variation points and variants of the choreography. It will be beneficial
to use the feature model and the metamodel to present variability and manage
variability to create other types of variability, not only for choreography.

2.6 Summary

After reviewing the state of the art, we have identified several limitations
that may restrict open and evolving interoperability.

Approaches that allow the dynamic reconfiguration of services, while in-
teresting, are specific to orchestration, where the connector is centralized. These
solutions are not designed to exploit variability to generate several types of con-
nectors for event-driven architectures. Also, these approaches do not consider
the exogenous connector, making it difficult to change a single connector without
affecting other combinations.

Approaches that address automatic connector synthesis, mainly focus on
choreography, which involves several peer-to-peer communications to create a
network system. However, these connectors are not preferable when dealing with
many services, as they can create a spaghetti code that is difficult to maintain.
Moreover, these approaches do not allow the generalization of other types of
connectors, such as asynchronous event-driven communication through a single
broker.

Some approaches require resources that a client may be unable to provide,
such as a domain ontology or a state machine specification. It can be limiting for
partners who need help providing these resources.

While a model-driven approach takes a big step towards scalable and main-
tainable connectors, some are only interested in low-level interoperability or re-
quire predefined scenarios. Also, the variability is not sufficiently exploited to
facilitate scalability further, even if the abstraction effort is made.

28

Our proposal is to confirm that the connector is an independent compo-
nent. We will do this by proposing a connector model that covers the different
possible connectors while remaining extensible for future evolutions. We also want
to exploit the commonalities of the connectors to facilitate the development of
specific connectors through model-driven engineering.

29

Chapter 3. Reifying Interoperability Mechanism: An
Extensible Metamodel for Software Connectors

This chapter centers on interoperability mechanisms as a tangible con-
stituent of information systems. We begin by presenting two basic examples
of interoperability mechanisms implemented ad hoc or using independent con-
stituents. We will then guide you through analyzing and modeling reified connec-
tors. We will show how we built a repository of projects involving interoperability
mechanisms for our study. Ultimately, interoperability mechanisms will no longer
be considered merely source code scattered throughout business applications but
as integral system components, bringing us closer to a System of System infor-
mation system. This study focuses on asynchronous interaction.

3.1 Motivation for Reifying Interoperability Mechanisms

Reification, originating from philosophy and social theory, involves at-
tributing real and tangible characteristics to abstract concepts or ideas. Vanden-
berghe in [Van01] defines the reification as ”the process of transforming human
properties, relations, processes, actions, and concepts into things”. It encom-
passes the transformation of the theoretical into the physical, highlighting the
inclination to treat abstract notions as independently existing entities.

In software engineering, reification involves translating abstract concepts
or ideas into tangible manifestations within a software system [BC10]. This pro-
cess requires converting abstract notions, such as higher-level concepts or ideas,
into implementable code or models. Reification is commonly used to design soft-
ware models or systems representing real-world entities or abstract concepts. By
representing these concepts as classes, objects, data structures, or interfaces, soft-
ware engineers can manipulate and use them within the software.

In Object-Oriented Programming, reification is achieved by representing
abstract concepts or entities as classes and objects [EKLG+03]. This approach
enables developers to model real-world concepts in software by transforming ab-
stract ideas into manipulable entities within the code. This practice significantly

30

enhances code organization, readability, and maintainability by aligning the soft-
ware structure with the conceptual model of the problem domain.

For instance, consider the abstract concept of a vehicle. A class named
Vehicle can be crafted through reification to encapsulate shared properties and
behaviors among all vehicles. This class serves as a blueprint for creating spe-
cific instances or objects representing individual vehicles, such as cars, trucks, or
motorcycles. Developers can interact with these entities using specific methods,
properties, and behaviors defined within the software.

This chapter focuses on the concrete manifestation of interoperability mech-
anisms. Typically, interoperability is achieved by embedding interaction mech-
anisms in business logic code in an ad-hoc manner. Although these embedded
mechanisms allow disparate systems to communicate and coordinate, they require
significant effort to modify or update. Here, the concept of Reification seeks to
transform these embedded interoperability mechanisms within business code into
tangible system components.

These scenarios highlight the need to minimize human intervention in com-
ponent interactions. Achieving interoperability in such evolving environments is
challenging and requires adaptive interoperability mechanisms. In addition, these
mechanisms must accommodate legacy applications that rely on outdated tech-
nologies and ensure their compatibility with updated components.

Reifying interoperability mechanisms means recognizing their explicit and
complex role within the system. For example, in today’s digital landscape,
two prevalent contexts-ubiquitous computing and system-of-systems (SoS)-shed
light on this complexity. Ubiquitous computing involves components distributed
across multiple platforms, enabling spontaneous interactions without prior famil-
iarity [LY02]. Conversely, an SoS consists of independent constituent systems
that self-manage, operate, and evolve, resulting in emergent behavior directed
toward specific goals [BS06]. The reification process emphasizes interoperabil-
ity mechanisms through dedicated constituents called Interoperability connectors.
Each connector operates independently, allowing modeling, deployment, genera-
tion, and monitoring to separate from the business logic constituents.

Definition of Connector An interoperability connector is a primary compo-
nent that plays a critical role in enabling interoperability between the system’s
business constituents or other connectors. Its primary function is to enable com-
munication and coordination despite potential differences in technical, syntactical,
and semantic specifications between the interconnected constituents.

31

This definition shows that connectors are constituents like any other, with
the difference that they only include functions relating to communication and co-
ordination. Connectors can be combined to create other connectors for emergent
behavior.

Figure 3.1 illustrates a scenario where components from two systems need
to communicate or coordinate utilizing interoperability mechanisms embedded
within the business logic constituent. Conversely, in Figure 3.2, interoperability
between constituents of the two systems is facilitated through the reified concept
of the Connector.

C1
1 2

4

C2

C3
2

4

7
8

9

5

Ca
a b

c

Cb

Cc
l

j

g
f

i

h

3

10

d

e

k

6

S1 S1

Figure 3.1: Scenario showing interoperability between constituents of two systems
through interoperability mechanisms embedded in business constituent

Figure 3.1 illustrates a scenario where components from two systems need
to communicate or coordinate utilizing interoperability mechanisms embedded
within the business logic constituent. Conversely, in Figure 3.2, interoperability
between constituents of the two systems is facilitated through the reified concept
of the Connector.

32

1

2

4

6

8 7

9

l

c

h

f
i

10

e

k

d

f

C1

C2

c3

Ca

Cb

Cc

C4

S1 S2

Figure 3.2: Scenario showing interoperability constituents of two systems through
reified called Interoperability connector

In Figure 3.1, there are two systems, S1 and S2, each containing several
business logic constituents—C1, C2, and C3 for system S1, and Ca, Cb, and Cc for

33

system S2. In contrast, Figure 3.2 depicts systems S1 and S2, each encompassing
multiple business logic constituents—C1, C2, C3, and C4 for system S1, and Ca,
Cb, and Cc for system S2.

Both Figure 3.2 and Figure 3.1 depict constituents that embed sets of in-
teroperability mechanisms that are source code snippets. These mechanisms, rep-
resented by different geometric shapes, colors, and numbers, denote code blocks,
programming languages, and identifiers. Different shapes indicate different code
blocks, sizes within the same shape indicate similar codes of different lengths, and
identical shapes but different shapes indicate the same code block in a different
language. Mechanisms with no incoming and outgoing forms represent dead code.

In comparing the two scenarios, the differences in connector usage are
apparent.

Figure 3.1 embeds interoperability mechanisms within the business logic
code, while Figure 3.2 externalizes these mechanisms within the reified connector.
Another difference is that in scenarios with a reified connector, interoperability
exists once in the connector instead of duplicated across constituents when the
connector is not reified.

In addition, when considering a scenario with a reified connector and focus-
ing on constituent C4, updates only require adding missing existing interoperabil-
ity mechanisms without introducing new ones. Conversely, a scenario without a
reified connector might require an update to component C4, potentially impacting
the overall functionality of system S1.

Furthermore, reified connectors allow the removal of dead code without
affecting the constituent. However, removing interoperability mechanisms would
require updating and deploying the respective constituent for non-reified con-
nectors. Additionally, a scenario with a reified connector aligns with the char-
acteristics required for a System-of-System, ensuring technical, managerial, and
geographic independence.

3.2 Methodology for the Reification of Interoperability Connectors

In our context, reifying interoperability mechanisms involves extracting
the source code related to interactions and separating it from the business logic
code, creating a distinct entity known as a connector.

The process of specifying interoperability mechanisms involves several steps.
First, identifying interoperability mechanisms involves analyzing implemented use
cases to create a repository, including conceptual and implementation elements.
Conceptual components include specifications, hypotheses, and interaction-related

34

principles, while implementation components are model entities or code snippets
scattered throughout the source code.

Next, understanding existing interoperability mechanisms involves extract-
ing information related to the interaction from the repository without business
logic. This step helps to identify different concepts and their characteristics in
terms of entities and their properties.

The next step is the classification of interoperability concepts, where rules
are established to classify each idea into concepts such as message endpoint, rout-
ing concept, and data transformation. Subcategories can be created based on
interoperability requirements such as frequency, maximum document size, and
synchronous or asynchronous communication types.

The subsequent step is the classification of interoperability concepts, where
rules are established to classify each idea into concepts like message endpoint,
routing concept, and data transformation.

Finally, interoperability mechanisms are materialized by considering them
as first-class constituents within the systems. This results in reified interoperabil-
ity mechanisms, called connectors, which emerge from studying recurring patterns
in system interactions. Connectors represent the concretization of interoperability
mechanisms. In addition, a metamodel is introduced to outline key interoperabil-
ity specifications, using insights from existing solutions found in the literature,
vendor offerings, and industry practices.

Together, these steps contribute to a comprehensive understanding of in-
teroperability mechanisms and the creation of tangible connectors through meta-
models.

3.2.1 Building a Repository for Analyzing Interoperability Mech-
anisms

Interoperability remains a pivotal aspect of software engineering because
software systems must interact to accomplish various tasks [AIS+19]. Despite its
importance, no established repository of interoperability mechanisms or connec-
tors exists. This absence is primarily due to the ad hoc development of most inter-
operability mechanisms, often implicit and hidden in the business logic. Propos-
ing a common interoperability solution would require sharing a portion of an
organization’s business source code, a prospect generally met with reluctance by
industry stakeholders. Furthermore, identifying these mechanisms is challenging
due to their implicit nature, and proposing a repository is equally complex.

35

The book Enterprise Integration Patterns (EIP) by Hohpe and Woolf
[HW04] serves as a comprehensive guide to messaging patterns relevant to the
implementation of interoperability solutions. Focusing primarily on messaging
for asynchronous interaction, EIP presents sixty-five patterns categorized and
identified by specific names, visual representations, or icons. These patterns can
potentially form a connector metamodel that includes a set of relevant entities
and their relationships.

The reification introduced in this chapter extends the concepts of EIP
but with a difference in granularity. While EIP encapsulates a set of partially
reified concepts, our metamodel serves as a reified connector. From a Unified
Modeling Language (UML) [MG00] class diagram perspective, EIP can be seen
as a collection of entities, while the reified connector is an aggregation of these
entities represented in the form of a metamodel.

The entity representing the reified connector in the metamodel incorpo-
rates the properties described by EIP and supplements them with properties
derived from industry or literature, considering that EIP dates back to 2003.

Analyzing and Collecting Data on Messaging-Based Interactions: The
initial data is sourced from Enterprise Integration Patterns (EIP), which includes
various concepts essential for achieving interoperability. EIP provides messaging
patterns designed to address common interoperability challenges within enter-
prise software systems, offering a consistent approach and terminology to design
scalable and maintainable interoperability solutions.

Although EIPs do not explicitly present the concept of connectors proposed
in this thesis, they lay the foundations for potential connector functionalities.
However, the current research emphasizes reification at the connector level rather
than solely on its constitutive functions. In this context, the connector itself is
considered the system, and the representation of EIP pattern entities is feasible,
albeit not encompassing all connector system constituents.

It is crucial to recognize that the list of presented patterns serves as a
starting point. While the EIP may not fully cover specific needs, solution vendors
can implement new patterns in their industrial solutions, contributing to the
enrichment of the dataset. The dataset aims to encompass various models from
different origins, including vendor-neutral, vendor-specific, and industrial-specific
solutions.

Vendor-neutral solutions: are interoperability solutions and patterns not tied
to any specific vendor’s products or technologies. These solutions operate inde-

36

pendently and harmonize seamlessly with diverse vendors’ systems or platforms,
ensuring adaptability and compatibility across varying environments. Examples
of such solutions include Apache Camel, Spring Cloud Data Flow, and Spring
Integration.

Apache Camel is an open-source integration framework facilitating seam-
less integration across diverse systems, applications, and protocols. It offers a
versatile platform for implementing intricate routing and mediation rules in nu-
merous integration scenarios [Cam21].

Spring Integration extends the Spring framework to enable the creation of
enterprise integration solutions. It enables the development of messaging solutions
and facilitates integration between disparate systems or applications [Pan15].

Spring Cloud Data Flow is a framework that streamlines the development
and orchestration of data processing pipelines and microservices on modern run-
time platforms [GG21].

Vendor-specific solutions: are designed to be interoperable with a specific
vendor’s technologies, products, or services. These solutions are typically cus-
tomized to take advantage of specific features, functionalities, or proprietary as-
pects of a particular vendor’s ecosystem, providing deeper integration but po-
tentially limiting interoperability across multiple platforms. Examples include
Microsoft BizTalk Server and MuleSoft Anypoint Platform [MMS19, AMS22].

Microsoft BizTalk Server is an integration server product developed by
Microsoft that provides a platform for building and managing integration solu-
tions that facilitate communication and data exchange between disparate sys-
tems. Microsoft BizTalk Server requires Windows Server OS and Microsoft SQL
Server[PR22], with proper licensing essential for compliance with Microsoft poli-
cies [Dau22].

MuleSoft Anypoint Platform 1 is an integration platform that enables busi-
nesses to connect applications, data, and devices across on-premises, cloud, and
hybrid environments. Anypoint Studio is required as the development environ-
ment, along with proper licensing or subscription plans based on intended usage
and capacity within the platform.

Industrial-specific solutions: refer to proprietary interoperability solutions
that are specialized or prevalent interoperability solutions within a particular
company. These solutions address industry-specific challenges, requirements, or

1https://www.mulesoft.com/

37

standards, ensuring effective communication and compatibility within that spe-
cific industrial need. For instance, BL-MOM used in [ALL+20, LATN+23], is
an example of such a solution. It has been developed by the Berger-Levrault
company 2. BL-MOM is a messaging-based library that aims to support the im-
plementation of a new connector based on the publish-subscribe communication
pattern. It is based on the RabbitMQ broker [Tos15].

Figure 3.3 summarizes the data collection process for building the connec-
tor repository toward reification.

Relevent
messaging

patterns

EIP book
Messaging
Patterns

Industrial-
speicific data

Individual and open
organismes
projects

Vendor-specific
and vendor
neutral data

Partners
privates Projects

Remove
composed

pattern

Connector
repository

Market
solutions

Request
utilizing

Keywords

Filter

Filter

Filter

Filter

Figure 3.3: Overview of Messaging Data Collection Process for Building a Connector
Repository

The data collection process involves simplifying the Enterprise Integration
Patterns (EIP) by eliminating complex patterns, especially those that can be
achieved by combining other patterns. For example, patterns such as the normal-
izer can be created by combining a router and a set of transformers to translate

2https://www.berger-levrault.com/fr/

38

messages into a unified format, resulting in a focus on basic patterns 3. Data col-
lection is initiated by requesting information from various projects and existing
solutions using keywords such as connector, mediator, middleware, interoperabil-
ity, integration, and specific project names such as Apache Camel, RabbitMQ,
Apache Kafka, Spring Cloud Data Flow, and Spring Integration.

To gather information, we explore both organizational and individual open
projects on GitHub 4, while private interoperability projects from our industry
partner, Berger-Levrault, are accessed through the company’s private GitLab 5.
Additional market solutions are identified on SourceForge 6. The results obtained
from the requests are refined based on expert knowledge, which includes removing
non-relevant projects (e.g., empty projects). The connector repository is built
once relevant data is collected from these various sources.

3.2.2 Concretization of the Reification: Metamodel for the Mes-
saging Connector

In the previous subsection, we focused on collecting data about the interop-
erability of constituents and systems, particularly regarding messaging interaction
styles. Our analysis was EIPs, vendor-specific solutions, vendor-neutral solutions,
and industrial-specific solutions, which showed that interaction can be achieved
effectively through a reified system constructed from reified entities derived from
EIPs. This study highlighted the crucial importance of the messaging connector
as a primary entity in the system.

This section proposes a metamodel that precisely defines the reified mes-
saging connector. The metamodel outlines the characteristics and relationships
among the entities that constitute the messaging connector.

As defined by Garcia [GMFFGS09], a metamodel is an abstract repre-
sentation that encapsulates a software system’s structure, entities, relationships,
and constraints. The proposed metamodel captures the essential components,
relationships, and rules that govern the structure of the messaging connector.

In Model-Driven Engineering (MDE) [S+06], the metamodel holds sig-
nificant importance by formally describing elements, their interconnections, and
properties within a modeling language or framework.

3https://www.enterpriseintegrationpatterns.com/patterns/messaging/
4https://github.com/
5https://about.gitlab.com/
6https://sourceforge.net/

39

Before introducing the metamodel for the reified messaging connector, it
is crucial to address the rationale behind choosing a metamodel to represent the
messaging connector effectively and discuss the potential benefits of leveraging
model-driven engineering to its full realization.

3.2.3 The Importance of Using a Metamodel to Represent the Rei-
fied Messaging Connector

Connectors undergo reification, transforming into visible components within
the system, as shown in Figure 3.11. Their tangible forms may include represen-
tations such as classes, black boxes, or other visualizations. However, this thesis
focuses on using and reusing the connector and its functionalities as integral ele-
ments. Several scenarios can be envisioned to achieve this goal.

Challenges Associated with Implementing a Universal Mega-Connec-
tor for Exchange Flows in Programming: The concept of a mega-connector
designed to handle all possible interactions is intriguing but presents several chal-
lenges. Firstly, it requires predetermined technological decisions, such as building
the mega-connector in a specific programming language like Java. Secondly, this
solution may be disproportionate to most exchange flows. Maintaining extensive
code can be cumbersome, primarily when only a fraction is used for each flow.
The complexity of flows increases the risk of regression, where changes in one
flow affect others that remain unchanged. Additionally, identifying and rectify-
ing issues reactively between components within such a complex system can be
challenging. Onboarding new developers may also face obstacles due to the high
learning curve and associated costs. Moreover, relying on a single mega-connector
creates a single point of failure, which could disrupt the exchange flow if the server
hosting the mega-connector crashes.

Challenges in Utilizing a Catalog of Pre-Built Connectors Developed
in Programming: Although pre-built connectors developed in programming
may be appropriate in a static environment, they face challenges in scalability
and maintainability within the dynamism of contemporary systems. Handling
multiple pre-built connectors at the code level, each tailored to a specific lan-
guage requires the maintenance of numerous connectors similar to catalog items.
Customizing connectors to meet specific requirements, such as adapting them
to languages like C++ or Java, presents significant challenges. For example,
transitioning from File Transfer Protocol (FTP) to Secure File Transfer Protocol

40

(sFTP) due to the introduction of Secure Shell (SSH) [Coh02] requires updating
all catalog connectors and adjusting unit tests across multiple projects.

In the context of the continuous evolution of systems and their constituents,
both scenarios have notable limitations. The constraints posed by specific tech-
nologies, complexities in maintenance, scalability concerns regarding adaptability,
and the inherently static nature of these approaches collectively suggest using a
metamodel.

3.3 Introducing the Metamodel of the Messaging Connector

This section introduces the messaging connector metamodel developed
based on the connector repository built from EIP and existing interoperability
solutions.

Figure 3.4 presents the messaging connector metamodel class diagram.
The presented metamodel provides a comprehensive exploration of a con-

nector, affirming the proposed reification for interoperability mechanisms. It em-
phasizes achieving interoperability through a messaging style, particularly asyn-
chronous communication. The overarching Connector entity within the system
is a composite that integrates diverse entities through composition relationships,
covering all common elements. Within the composite Connector class, various
component classes, including Message, InputEndpoint, OutputEndpoint, Chan-
nel, Transformer, and Router are intrinsically connected to the connector. Their
existence is contingent on the connector itself, dictated by the nature of the com-
position relationship.

Following the entity overview, a thorough exploration of the relationships
among the main entities is provided. The OutputEndpoint, serving as the sender,
can publish messages across multiple messages Channels, while the InputEndpoint,
functioning as the receiver, can subscribe to one or several messages Channels.
The OutputEndpoint can produce messages across multiple Message Channels,
while a given recipient may consume varying numbers of messages, occasionally
none, based on immediate needs.

A message Channel, facilitated by the message Queue, can handle zero or
more Messages. In contrast, message Routers can receive data from zero or more
Channels and direct this data to zero or more output Channels.

Message Transformers are designed to take one message from an input
message Channel and provide one or more Messages to an output message Chan-
nel. They are not confined to specific input or output message Channels, message
Transformers can connect to multiple input and output Message Channels.

41

Connector

Channel

Queue

Router

[1..*]
[0..*]

inputchannel

[0..*]
outputchannel

TrasactionJournal

Message
[0..*]

[0..*] outputMessage

[0..*] inputMessage

[0..*] Transformer
[0..*]

[1..1] inputMessage

[1..1] ouputMessage

[0..*]

[0..*]

Body Header

InputEndpoint

OutputEndpoint

[1..*]

[1..*]

[0..*] consumedMessage

[0..*] producedMessage

[0..*]
subcribeChannel

[0..*] publishChannel

BindingExchange [1..1] [1..1]

FormatIndicatorMessageHistory [0..1] [1..1]

[1..1] [1..1]

[0..*]

[1..*]

Figure 3.4: Metamodel Overview: Core Entities Shared Among All Messaging Con-
nectors

In addition to this overview, it is necessary to examine the metamodel in
detail to understand the capacity of the entities and the metamodel itself.

3.3.1 Detailed presentation of the metamodel:

The entities represented in the metamodel 3.4 can take different forms
based on communication and coordination needs, allowing for creating different
types of connectors. This observation emphasizes that connectors share common
entities that can be adapted to specific interaction requirements.

42

This statement reveals that the reified messaging connector is as a Software
Product Line (SPL)[CN02]. A detailed exploration of this concept is undertaken
in chapter5. Before delving into the specifics, the details of each component class
within the composite class Connector will be presented for clarity, focusing on
one entity at a time.

Message: A message consists of two parts: the header and the body. The
header contains essential technical information such as the format indicator for
identifying the version and document format, a timestamp, a correlation identifier
for grouping, a return address, an expiration timestamp, and a priority level. On
the other hand, the body contains the essence content of the message that contains
data or instructions for processing by the receiving system.

Figure 3.5 provides a detailed view of the metamodel, zooming in on the
specifics of the message entity.

Connector

Message
[0..*]

Body
Body: String

Header
timestamp: long
correalationId: long
returnAdress: int
message_expiration: int
priority: short

FormatIndicator
doc_format: String
version_num: String

MessageHistory
componentList: String

[0..1] [1..1]

[1..1] [1..1]
Event

Command

Document

Sequencer
sequence_id: long
size: int
end_indicator: String

Test

Text
textMessage: String

Request

Query

Document

Reply

Figure 3.5: Messaging Connectors: A Comprehensive Overview Focused on Message
Entities

43

Table 3.1 describes the different variants of the message entity, with some
example 7. It provides a clear overview of each message variant and its distinctive
characteristics, aiding in understanding the metamodel entities.

Message type Description Example

Document
Facilitate the transfer of a data structure between constituents without explicitly
instructing the receiver on handling the data.

Product

Event
Notifies occurrences with event details and a reference, emphasizing timing and
content distinctions from document messages.

UserUpdated

Command
Contains precise instructions for a specific recipient, promoting sender-receiver
coupling but maintaining decoupling through message Queues.

ConfirmOrder

Request
An inquiry for specific action or information, allowing negotiation and distinct
from commands in terms of politeness and compliance expectation.

PostUser

Query
This is a specific request for information retrieval. It involves posing questions
or searches to a system or database without commanding an action.

SelectUserById

Reply Responds to previous queries, commands, or requests. UserReply

Text
Short written messages exchanged between system constituents. These messages
are often informal and used for quick communication.

Hello

Sequencer
Divides large amounts of data into message sequences for partial transfer, re-
quiring identifiers for order and size.

Hello ”sequenced”
in H — e — l — l
— o

Test
Serves for system testing can be of various types, such as Events, Commands, or
Documents.

Abcd1efg0

Table 3.1: Summarizing variants of the Message entity

OutputEndpoints: is a specialized endpoints that send messages to other con-
stituents or systems within a connector. While a connector typically includes at
least one OutputEndpoint, scenarios may demand more. For instance, a dedi-
cated OutputEndpoint can be crucial for internal communication within the same
system, while another can transmit data to external systems.

An OutputEndpoint can transmit messages directly to a message Channel
or through an Exchange. The Exchange is a constituent, receives messages from
producers, and forwards them based on routing criteria to Queues or other Ex-
changes. It can be Direct (dedicated to a specific Queue), Fanout (broadcasting
to all Queues), or Topic (matching specific criteria).

Figure 3.6 illustrates the metamodel, highlighting OutgoingEndpoints and
variant entities.

The descriptions of OutputEndpoint variants are listed in Table 3.2.

7https://thehonestcoder.com/types-of-messages-in-message-driven-systems/

44

Connector

Channel

Queue

[1..*]

[0..*]

OutputEndpoint

[1..*]
[0..*] publishChannel

Binding
routing_key: String

Exchange
name: String

[1..1] [1..1]

Requester

Producer

PublisherConfirm

TransactionalClient
transaction_id: int
sequence_num: type
epoch: long
auto_commit: boolean
enable_idempotence: boolean
isolation_level: String

Direct Topic Fanout

Figure 3.6: Messaging Connectors: A Comprehensive Overview Focused on Outpu-
tEndpoint Entities

Output End-
point Type

Description

Requester
Dispatches one-to-one requests to a message queue within a Message channel. Messages sent by
a Requester are directed to a single Replier, which acknowledges reception. Its primary use is for
asynchronous implementation of Request-Reply patterns.

Producer

Publishes Event messages utilizing or not an Exchange within a Publish-Subscribe channel, a type of
Channel that delivers a copy of a particular event to each, targeted, or set of subscribed receiver.
This process adheres to the fire-and-forget principle, where messages are dispatched without waiting
for or expecting a reply.

Publish Con-
firms

Publishes Event messages to multiple recipients, expecting asynchronous responses. This is a
variant of Producer.

Transactional
Client

Enables clients to set transactional boundaries during interactions with the messaging system.
Both the sender and receiver can operate within these transactions. Messages are not instantly
added to the Message channel upon sending; they wait until the sender commits the transaction.
Similarly, they persist in the channel until the receiver commits the transaction.

Table 3.2: Summarizing variants of the OutputEndpoint entity

45

InputEndpoint: is a specialized endpoint intended for receiving messages from
other systems or constituents. A connector includes at least one Input End-
point, although some scenarios may necessitate multiple instances. A dedicated
InputEndpoint may be essential for internal communication within the same net-
work, while another can be reserved for receiving data from external systems.
This serves as the entry point of the system, reinforced with necessary protection
against external threats.

Figure 3.7 provides an overview of the metamodel, emphasizing InputEnd-
points and their variant entities.

Connector

Channel

[1..*]

InputEndpoint

[1..*]

[0..*]
subcribeChannel

CompetingConsumer SelectiveConsumer IdempotentReceiverPollingConsumer

Consumer DurableSubscriber

ReplierMessageDspatcher
selector: String

ServiceActivator

ChannelAdapter

ChannelPurger

MessageStore

Poller
fixed_rate: long
cron: String

Figure 3.7: Messaging Connectors: A Comprehensive Overview Focused on Inpu-
tEndpoint Entities

Table 3.3 provides a concise overview of the various InputEndpoint types
and their respective functionalities within the messaging system.

Channel: A connector includes at least one Channel, sometimes referred to as
a Destination. The Message Channel serves as a conduit for transmitting mes-
sages between systems. When system constituents exchange data, they utilize a
Channel to facilitate communication. Even without knowing the exact recipient,
the sending application sends data through a message Channel, expecting the

46

Input Endpoint
Type

Description

Replier
Responsible for receiving requests or queries and asynchronously sending one-to-one replies to a specific
message Queue within a message Channel.

Consumer
Subscribes to Event messages from one or multiple message Queues within a message Channel, adhering
to the Publish-Subscribe pattern.

Competing con-
sumer

Dedicated to processing messages from a single message Queue, essential for concurrent task handling.

Selective consumer
Exclusively retrieves messages from a specified Topic (Exchange adhering to a particular pattern, con-
trasting a general event Consumer.

Polling consumer
Actively seeks to receive a message when prepared, useful when preserving messages in the Queue is
more efficient.

Durable subscriber
Capable of directing the messaging system to store published messages while the subscriber remains
disconnected.

Idempotent receiver Receiver capable of handling duplicate messages

Message dispatcher
Consumes messages from a message Channel and internally distributes them to processors handling
input and output messages.

Service activator
Connects messages within the message Channel to the appropriate service, operating in one-way or
two-way mode.

Channel adapter
Links constituents of the system to the messaging system, facilitating message transmission and recep-
tion based on data.

Channel purger Clears undesired messages from a Channel, ensuring the restoration of the system to a stable state.

Message store
Stores details of every message in a central database-like repository, primarily for business analytics
and auditing.

Table 3.3: Summarizing variants of the InputEndpoint entity

receiver to search for the specific data type within it. This approach enables con-
stituent producers of shared data to interact with those intending to consume it.
Messages in Message Channels are stored in separate Queues, providing isolation.
These Message channels can consist of one or more multiple Queues, each holding
messages awaiting consumption.

Figure 3.8 provides an overview of the metamodel, emphasizing Channel
and their variant entities.

Table 3.4 provides a concise overview of the various Channel types and
their respective functionalities within the messaging system.

These Channels are commonly implemented using popular brokers and
messaging systems like Java Messaging service JMS [HBS+02], OpenMQ [ABKM06],
Apache Kafka [Gar13], RabbitMQ [Tos15], ActiveMQ [CC19], ZeroMQ [S+15].

Router: In the connector, multiple messages Routers direct messages from
senders to specific receivers, reading from diverse source channels and deliver-
ing to target channels based on predefined criteria. This enables flexible and
adaptable message routing within a system, which is crucial for building resilient

47

Connector

Channel

Queue

[1..*]

TrasactionJournal

[0..*] [1..*]

PublishSubscribe

PointToPoint

MessageBridge

[1..1]
[1..*]

DeadLetter Invalidmessage

ControlBus

GuaranteedDelivery

DataType

DiskStore
soure_storage_adress: String
target_storage_adress: type
+ field: type

[2..2]

Figure 3.8: Messaging Connectors: A Comprehensive Overview Focused on Channel
Entities

Channel Type Description

Point-to-Point Handle one message simultaneously, from a single sender to a sole consumer.

Publish-Subscribe
Enable communication between multiple senders and receivers. Support multiple queues, behaving like
a Point-to-Point channel with several queues. Receivers consume messages based on subscriptions to
specific queues, with Exchange types such as Direct-, Header-, Topic-, and Fanout-Type.

Data Type
Similar to Point-to-Point channels but exclusively accepts data of a specific type (e.g., invoice, order,
medical prescription).

Invalid message Contains messages that do not match the expected data type and are therefore rejected.

Dead Letter olds messages that expire and become irrelevant after a specified time.

Guaranteed delivery
specialized Point-to-Point channel with persistence capabilities, ensuring message delivery even in case
of message Channel failure. Uses disk storage at both sender and receiver ends.

Message Bridge
Facilitates seamless communication between different systems or channels by serving as an intermediary
that bridges the gap between them.

Control Bus
Dedicated to transmitting data relevant to managing components involved in the message flow, such as
the monitoring system.

Table 3.4: Summarizing variants of the Channel entity

and easily maintainable messaging systems without directly impacting senders or
receivers.

Figure 3.9 provides an overview of the metamodel, emphasizing Router
and their variant entities.

48

Connector
Router[0..*]

ContentBasedRouter
routing_criteria: String

Filter
filter_criteria: String

Splitter
filter_criteria: String

RecipientList

Resequencer
buffer: String
strategy: String

Aggregator
correlation_id: int
strategy: String

WireTrap

DynamicRouter
routing_criteria: String

RuleBase
participant_preference: String[1..*]

Figure 3.9: Messaging Connectors: A Comprehensive Overview Focused on Router
Entities

Table 3.5 provides a concise overview of the various Router types and their
respective functionalities within the messaging system.

Transformer: The connector can includes message Transformer to convert
data from one format to another. This is necessary when the sender and receiver
use different message formats and versions or employ distinct fields within the
message structure.

Figure 3.9 provides an overview of the metamodel, emphasizing Router
and their variant entities.

Table 3.6 provides a concise overview of the various Router types and their
respective functionalities within the messaging system.

3.3.2 Revealing the Concrete Connector: A Comprehensive Overview

The process of utilizing data from various interoperability mechanisms
leads to the formation of a tangible connector. This concept is supported by
different metamodels discussed in Section 3.3. These models challenge the idea
of connectors being solely embedded mechanisms within business logic code. In-

49

Router Type Description

Content-Based
Router

Directs messages based on their content by evaluating predefined conditions or criteria and dynamically
routing them to specific message Channels based on their content characteristics.

Dynamic Router
Directs messages based on rules within a dynamic rule base, allowing flexible routing. Updated actively
by consumers, enabling directives for relaying messages to specified message Channels.

Filter

Selectively processes or allows the passage of messages based on predefined criteria or conditions. It
screens incoming messages, permitting only those that meet specific criteria to proceed, providing a
mechanism for refining and directing the data flow within a system. For example, let pass only those
that are ordered and block invoices.

Aggregator

Merges messages from a channel into a single output message using aggregation strategies. Correlation
and completeness conditions are employed to organize messages into the correct order after aggregation.
Popular strategies include wait for all, time out, first best, and time out with override, catering to specific
scenarios.

Splitter
Break down a message into smaller sub-messages that can be processed individually. Each component
is then directed to its respective output message channel.

Resequencer
Manages potentially out-of-order messages, reordering and publishing them while maintaining order.
Requires order preservation in the output channel.

Recipent list

Identifies the intended recipients of an incoming message and transmits it to all associated message
Channels. It relies on a list of recipients instead of message content and requires explicit subscription.
This differs from Publish-Subscribe patterns, which involve no recipient information published in a
queue.

Wiretap
Variant of Recipient list pattern with dual output Channels. Broadcasts messages from input Message

channels for duplication on the Control bus channel 3.5.

Table 3.5: Summarizing variants of the Router entity

Connector
Transformer

[0..*]
Translator

Wrapper ContentFilter ContentEnricher

External_data_source
data_source_uri: String

[1..*]

Figure 3.10: Messaging Connectors: A Comprehensive Overview Focused on Trans-
former Entities

stead, the concrete Connector is viewed as an actual constituent of the system,
modeled to showcase its physical existence.

50

Transformer Type Description

Message Translator
Reads data from a source messageMessage channel and converts it to a different format for an output
Message channel. For instance, this may include data serialization from JSON to XML and vice versa.

Content Filter
Rremoves some original data, useful for scenarios like eliminating unnecessary information from a file,
keeping the payload, removing sensitive information, or simplifying a message tree structure.

Content Enricher
Differs from the Content Filter by inputting a basic message and accessing an external data source to
append missing information and augment the message.

Envelope Wrapper

Packages data in a messaging-compliant envelope, addressing scenarios where some constituents may
require surplus header information for proper interpretation. Internally used by the connector for
routing messages correctly to suitable Message channels. A Wrapper with essential processing details
can be utilized, and an Unwrap transformer unpacks the message for receiver consumption.

Table 3.6: Summarizing variants of the Transformer entity

This section presents the internal constituents of a real connector to en-
hance technical and non-technical stakeholders’ understanding of the connector
concept.

Figure 3.11 depicts a holistic view of the reified messaging Connector. It
highlights its complexity as a comprehensive system rather than just a part of a
business component.

The Messaging Connector comprises several constituents, each serving dis-
tinct functions. The presented perspective emphasizes the connector’s capabili-
ties, including Endpoint, Channel, Router, Transformer, and Message features. It
is important to note that these functionalities, including Data Type Channel and
Dead Letter, can be customized to meet specific requirements. This section intro-
duces variants, such as point-to-point channels, which are publish and subscribe
channels.

We can view the connector as a software product line by identifying com-
monalities and variants in the metamodel. This global representation illustrates
the messaging connector as a tangible entity, with each high-level component
aligning with a corresponding class of the messaging connector metamodel in a
broader context.

51

D C
E

A B
1 2 3

Message Common

Constituent 1

Router common

Publish-Subscrib channel

C
ha

nn
el

 c
om

m
on

DataType

P-to-P

Dead Letter

Invalid Message

P-to-P channel

Endpoint Common

D C
E

A B
1 2 3

Message Common

Endpoint Common

Transfomer common

Constituent 2

Connector
possibles

fonctionalities

Publish-Subscrib channel

Channel common

D
ataType

P-to-P

D
ead Letter

Invalid M
essage

Publish-Subscribe channel

P-to-P channel

Figure 3.11: A Holistic View of the Refied messaging connector

3.4 Summary

In this chapter, we explore the idea that interoperability mechanisms
should be seen as tangible components of a system rather than embedded source
code in business logic. This approach is called reification. To verify the reifi-
cation of interoperability mechanisms, we collected data from various projects
that use messaging-style (asynchronous) interactions. We established a connector
repository, which serves as a reference as interoperability mechanisms currently
lack one. We collected data from various stakeholders, including vendor-specific,
vendor-neutral, and industrial-specific projects and Enterprise Integration Pat-
terns (EIP). Based on this data, we proposed a metamodel to represent interop-
erability mechanisms. The metamodel details reveal that messaging connectors
have several common entities that can take different variants based on interaction

52

requirements, resulting in several variabilities. This finding leads us to explore
Software Product Line Engineering in Chapter 5. We presented a holistic view of
the reified connector to make it understandable for technical and non-technical
stakeholders. The next step is to finalize a concrete use case for experimentation
purposes. This experiment will enable us to compare the proposed connector to
existing solutions not based on messaging style. The experimental phase will en-
compass performance and load tests, focusing on a use case from Berger-Levrault.

53

Chapter 4. Validating the Completeness and Extensibility
of the Messaging Connector Metamodel and Conducting
performance tests on the Reified Messaging Connector

The validation process for the reified connector is a crucial step. This
chapter focuses on three main aspects: assessing the completeness of the con-
structed metamodel designed for interoperability connectors regarding coverage
within the connector repository, affirming its extensibility capabilities, and sub-
jecting the reified connector to a load test for validation.

The objectives of the evaluation are threefold. According to the connector
repository, the proposed metamodel must include specifications for every poten-
tial connector to enable messaging interactions. It is also indispensable to ensure
that the metamodel can integrate new connectors and is extensible. Finally, it is
crucial to validate the proposed connector to ensure it can support critical sce-
narios from industry partners when many messages are exchanged in a short time
interval. This scenario involves comparing the performance with interoperability
mechanisms that do not rely on messaging style with another mechanism.

4.1 Assessing the Scope of Connector Metamodel Coverage

In the previous Chapter 3, we presented a reified metamodel for messaging
connectors. This metamodel is initially derived from the enterprise integration
patterns (EIP) [HW04], complemented by specific interoperability solutions, in-
cluding vendor-specific, vendor-neutral, and industrial-specific approaches.

It has become increasingly important to explore additional sources of EIP,
first introduced in 2003 to address integration challenges in enterprise scenar-
ios. With the emergence of new practices and challenges such as IoT, ubiquitous
environments, and cloud computing, it is necessary to update interoperability
requirements continuously. The development of a new version of EIP has been
ongoing since 2006 [Hoh06], with the latest update released in January 2017 1.
This underlines the importance of continuously updating interoperability specifi-
cations.

1urlhttps://www.enterpriseintegrationpatterns.com/patterns/conversation/

54

To validate the current version of the metamodel, a two-step procedure
is used. The first step involves examining the connector repository created in
Chapter 3, as shown in Figure 3.3. This examination ensures that the process used
during the repository construction guarantees the diversity and representativeness
of entities within the metamodel.

Next, it is necessary to evaluate each subset of connectors based on the
established metamodel. This evaluation closely examines their compliance with
specific criteria to ensure alignment.

4.1.1 Validation of the connector repository building process

To create the messaging connector repository, we queried search engines,
including Google Search, Github, Gitlab, and SourceForge. We utilized Google
to obtain implementation examples of interoperability patterns represented in
the metamodel available on individual blogs or vendor websites such as SAP 2,
Microsoft 3, and IBM 4 for pedagogical purposes or to showcase their expertise.
Google has also facilitated access to additional implementation examples on blog
sites or tutorials, such as Baeldung 5, which provide concrete implementation
examples. Research on Google complements other search systems we use. For
example, a demonstration of an implementation available on GitHub may also be
located on the RabbitMQ 6 site.

Conversely, GitHub provides users with the ability to discover open-source
solutions developed by various contributors, including Confluent.io, a provider of
data streaming solutions based on Apache Kafka technology, Apache Camel, an
open project offering implementations of numerous enterprise integration models
in Java or DSL, and Spring.io, which features several projects aiding in software
integration, such as Spring Cloud Stream, Stream Integration, and Spring Cloud
Data Flow. GitLab is predominantly used to access proprietary industrial solu-
tions from partners willing to share their source code. SourceForge is a centralized
platform for managing open-source software projects and identifying keywords for
further research on vendor sites like MuleSoft and Boomi.

2https://learning.sap.com/learning-journeys/developing-with-sap-integration-suite/

using-integration-patterns_fdd8f683-da3d-4abe-a29d-a6f6fd06cc14
3https://learn.microsoft.com/en-us/azure/architecture/patterns/

competing-consumers
4https://www.ibm.com/docs/en/integration-bus/10.0?topic=

solutions-developing-integration-by-using-patterns
5https://www.baeldung.com/
6https://rabbitmq.com/

55

In addition to online research, we actively seek specific examples of imple-
menting the use cases proposed in the EIP book in physical and digital formats.
Exploring the websites of messaging technologies has enabled us to uncover im-
plementation examples related to the technologies under consideration, such as
RabbitMQ, Apache Kafka, ActiveMQ, and Java Messaging System (JMS) and its
broker version, OpenMQ. A reference to the specific website is pending.

A search is conducted for use cases involving the entities listed in ta-
bles 3.1, 3.2, 3.2, 3.4, 3.5, and 3.6 on each system, including Google Search,
Github, Gitlab, and SourceForge. The tables contain entity names based on the
first column of each table. The selection criteria for the connector repository
include clear flow diagrams and source code, the ability to compile and run the
code, an understandable specification, and a minimum threshold of code quality.
If multiple projects meet these criteria, additional factors are considered in the
final selection, with expert visual analysis playing a crucial role in the decision-
making process.

Figure 4.1 illustrates the process used to build the connector repository.

Init entity name
array

Select first entity
name

Search exemple for
first entity name in

the table

Array of entty
name empty

Select a project
among the serach

result

Add project in the
connector
repository

Remove entity
name at first index

from the table

Array of entty
name empty

NO

YES

YES

NO

Figure 4.1: Connector repository creation process for ensuring the representativeness
of entities in the reified metamodel

Each query should return an instance of a project containing at least the
model corresponding to the metamodel entity under investigation. If the example
contains multiple patterns, it is preferable to include them. The primary goal of
any query is to identify the most appropriate example for the current pattern
search. While including other patterns is not mandatory, their presence may be
influential in cases where we must choose among several suitable results. Con-
versely, selecting multiple examples for a single pattern is possible, especially if
they are all relevant. Similarly, a single example may be selected for multiple
patterns.

56

After identifying the project’s example that involves the most suitable
connectors for a specific model, they are added to the connector repository, and
the studied models are removed from the list. However, it is impractical to collect
all the connectors in the repository due to time constraints and limited access to
them worldwide. Therefore, ensuring complete coverage is challenging. It is
crucial to have a diverse range of project patterns. Using a smaller set of varied
connectors is more valuable than having many similar ones.

The process aims to create a collection of projects that include connectors
covering all patterns. The projects collected through the process outlined in
Figure 4.1 are presented in several tables for easy comprehension. Specifically,
tables 4.1, 4.2, 4.3, 4.5, 4.4, and 4.6 contain projects resulting from research
that considers the list of patterns corresponding to entities such as endpoint
type, channel type, router type, message type, transformer type, and system
management type.

System management type patterns may be part of one of the possible
pattern types but are specific to system management needs. For instance, Con-
trol Bus is categorized under the channel type but is dedicated to transmitting
data relevant to managing components involved in the message flow, such as the
monitoring system.s

The tables are read from left to right and contain seven columns. The
first column is the Request Identifier corresponding to a number that increments
with each search for a new pattern based on the process outlined in Figure 4.1.
The second column presents the patterns for which we selected the search result.
The third column displays the origin of each example, which may be a website,
book, or blog. The fourth column specifies the type of resource utilized, such as
source code, data flow schemes, or specification documentation. The fifth column
indicates the number of languages in which the use case is implemented, referring
to cases where an end-to-end example is available in multiple languages rather
than a mixture of messages. The sixth column lists the messaging systems used,
including Apache Kafka, RabbitMQ, ActiveMQ, JMS, and the OpenMQ platform.
The presented information includes all relevant patterns covered by the example.
If a use case fits multiple searched patterns, both cases are considered and noted
in a single row if the patterns are in the same category. The first column, Request
Identifier, lists all researched patterns that produced the result, separated by
commas. The second column will contain a list of searched patterns separated
by commas in the same order to allow identification of which request corresponds
to which research pattern. The line is duplicated in the second case, where the
searched patterns do not belong to the same category.

57

The algorithm for selecting the relevant use case, presented in Algorithm 1,
will consider this duplication.

Table 4.1 presents the results of the case research examples for the end-
point patterns described in Tables 3.3 and 3.2. The table is well-organized and
provides detailed data, indicating appropriate endpoint examples, each accom-
panied by accessible source code. Two sets of requests share the same optimal
example: requests 1 and 5 and requests 2 and 6. Although not always applicable,
a Requester usually aligns with a Replier, while an Event consumer corresponds
with an Event producer.

Request
Id

Searched pat-
terns

Use case
origin

Artefact
type

Languages
Messaging
technol-
ogy

Includes patterns

1, 5
Requester,
Replier

EIP
book

Source
code

Java,
C#

JMS
Requestor, Replier, P-to-P Channel Invalid
message, Correlation Id, Return Address,
Document Message.

2, 6
Event pro-
ducer, Event
consumer

Partner
GitLab

Source
code

Java RabbitMQ
Event producer, Event consumer, Publish-
Subscribe Channel.

3
Publisher
confirms

RabbitMQ
official
site

Source
code

Java,
C#,
PHP

RabbitMQ
Publisher confirms, Event consumer, Publish-
Subscribe Channel.

4
Transactional
client (Pro-
ducer)

Baeldung
Source
code

Java
Apache
Kafka

Transactional producer, Transactional con-
sumer

7
Competing
consumers

Microsoft
Learn

Source
code

C#
Azure
Service
Bus

Event producer, Competing consumer,
Publish-Subscribe Channel

8
Selective con-
sumer

Partner
GitLab

Source
code

Java RabbitMQ
Event producer, Selective consumer, Publish-
Subscribe Channel.

9
Polling con-
sumer

RedHat
docu-
menta-
tion

Source
code

Java,
Apache
Camel
DSL

JMS
Event producer, Publish-Subscribe Channel,
Polling consumer.

10
Durable sub-
scriber

Novell
docu-
menta-
tion

Source
code

Java JMS Event producer, Durable subscriber.

11
Idempotent
receiver

GitHub
Source
code

C#
Apache
Kafka

Event producer, Publish-Subscribe Channel,
Idempotent receiver.

12
Message dis-
patcher

RedHat
docu-
menta-
tion

Source
code

Apache
Camel
DSL

ActiveMQ Dispatcher, Publish-Subscribe Channel.

13
Service Acti-
vator

GitHb
Source
code

Java,
Spring
integra-
tion

RabbitMQ
Service activator, Event Consumer, Event
Producer, P-to-P channel

Table 4.1: Table of results of use case search on endpoint patterns

Table 4.2 presents the research findings forMessage channel patterns. Like
the endpoint patterns, the channel research patterns do not contain any empty

58

data, and there is at least one example of a use case with available source code.
Three requests share the same best results: 14 and 16 and 15 and 21. Additionally,
requests 14 and 16 align with requests 1 and 5 in Table 4.1. Likewise, request 19
corresponds to requests 2 and 6 in Table 4.1.

Request
Id

Searched pat-
terns

Use case
origin

Artefact
type

Languages
Messaging
technol-
ogy

Included patterns

14, 16
(same
1, 5)

Point-to-
Point chan-
nel, Invalid
Message

EIP
book

Source
code

Java,
C#

JMS
Requestor, Replier, P-to-P Channel Invalid
message, Correlation Id, Return Address,
Document Message.

15, 21
DataType
channel, Mes-
sage Bridge

Baeldung
Source
code

Java,
Spring
integra-
tion

RabbitMQ

Point-to-Point channel, file sender (Pub-
lisher), file handler (Consumer), Document
Message, Message bridge, service activa-
tor, Channel Adapter, DataType channel,
Publish-Subscribe channel.

17 Dead letter
RabbitMQ
official
site

Source
code

Java RabbitMQ
Dead Letter, Event producer, Publish-
Subscribe Channel

18
Guaranteed
Delivery

Medium
Source
code

Spring
Integra-
tion

RabbitMQ
Guaranteed Delivery, Message store, Event
producer, event consumer

19
(same
2, 6)

Publish-
Subscribe
Channel

RabbitMQ
official
site

Source
code

List 1 RabbitMQ
Event producer, Event consumer, Publish-
Subscribe Channel.

20
Channel
adapter

Spring
official
site

Source
code

Java,
Spring
integra-
tion

RabbitMQ
Channel adaptor, service activator, Point-to-
Point channel

Table 4.2: Table of results of use case search on channel patterns

Tables 4.3 and 4.4 present research findings on the use cases for router and
transformer patterns. Each example is unique, and all entries contain relevant
data without any gaps. Comprehensive source codes are also available for each
exemplar.

Table 4.5 presents the results of the use case research for message con-
structs. Requests 35, 36, and 37 share the same best example. Furthermore,
some requests share the best results with patterns from other tables, such as
request 34 with requests 2 and 6 in Table 4.1, and request 19 in Table 4.2. Fur-
thermore, request 39 corresponds to the best result in Table 4.4. In contrast to
the previous tables, Table 4.5 presents patterns with source code implementation
examples. Therefore, there is only one request with empty data.

Table 4.6 presents the results for the request on system management pat-
terns. Although system management includes transversal patterns that could be
represented in different tables, we chose to search for the use case for its patterns
and classified them in a separate table. We encountered missing data regarding

59

Request
Id

Searched pat-
terns

Use case
origin

Artefact
type

Languages
Messaging
technol-
ogy

Included patterns

22
Content-
Based router

Java In
Use

Source
code

Java,
Apache
camel
DSL

JMS
Content-Based Router, Datatype channel,
Splitter, Document message.

23
Dynamic
router

Java In
Use

Source
code

Java,
Apache
camel
DSL

JMS
Content-Based Router, Dynamic router,
Datatype channel, Splitter, Document mes-
sage.

24
Message Fil-
ter

GitHub
Source
code

Java RabbitMQ

Event Message, Message filter, P-to-P chan-
nel, Publish-Subscribe channel, Splitter, Doc-
ument message, Event producer, Event con-
sumer

25 Splitter
Java In
Use

Source
code

Java,
Apache
camel
DSL

JMS Splitter, P-to-P channel

26 Aggregator
EIP
book

Source
code

Python
Amazone
SQS

Aggregator, Publish-Subscribe channel, P-to-
P channel, return address

27
Recipient
List

Spring
official
site

Source
code

Java,
Spring
integra-
tion

JMS Splitter, P-to-P channel, Recipient List

28 Resequencer

Huihoo
docu-
menta-
tion

Source
code

Java JMS Point-to-Point channel, Resequencer

Table 4.3: Table of results of use case search on router patterns

Request
Id

Searched pat-
terns

Use case
origin

Artefact
type

Languages
Messaging
technol-
ogy

Included patterns

29 Translator
Java In
Use

Source
code

Java ActiveMQ
Translator, Datatype channel, Document mes-
sage, format indicator.

30
Envelope
Wrapper

Codetrics
Source
code

C++
Google
Protocol
Buffers

Event Producer, Document message, P-to-P
channel, Envelope Wrapper.

31
Content En-
richer

GitHub
Source
code

Python
Amazone
Bridge
pipe

P-to-P channel, Event Producer, event con-
sumer, Content Enricher

32 Content filter
Apache
camel
page

Source
code

Java,
Apache
camel
DSL

JMS Aggregator, P-to-P channel, Content filter

Table 4.4: Table of results of use case search on transformer patterns

the search for message construct patterns, with two examples lacking implemented
source code.

The table above provides insights from a thorough connector analysis based
on expert knowledge. We use a well-defined process, illustrated in Figure 4.1, to
build the connector repository. This process ensures comprehensive coverage of

60

Request
Id

Searched pat-
terns

Use case
origin

Artefact
type

Languages
Messaging
technol-
ogy

Included patterns

33
Document
Message

Java In
Use

Source
code

Java,
Apache
camel
DSL

JMS
Content-Based Router, Datatype channel,
Splitter, Document message.

34
(same
2, 6,
19)

Event mes-
sage

RabbitMQ
official
site

Source
code

List 1 RabbitMQ
Event producer, Event consumer, Publish-
Subscribe Channel.

35, 36,
37

Command
Message,
Correlation
id, return
address

Rabbit
MQ offi-
cial site

Source
code

List 2 RabbitMQ
Requestor, Replier, P-to-P channel, Correla-
tion id, return address, Command Message

38
Message Ex-
piration

Rabbit
MQ offi-
cial site

Source
code

Java RabbitMQ
Event Message, Publish-Subscribe channel,
Event producer, Message expiration

39
(same
29)

Format indi-
cator

Java In
Use

Source
code

Java ActiveMQ
Translator, Datatype channel, Document mes-
sage, format indicator.

40
Message Se-
quence

EIP
book

DocumentationNC NC Message sequence, Point-to-Point channel

Table 4.5: Table of results of use case search on message constructs patterns

Request
Id

Searched pat-
terns

Use case
origin

Artefact
type

Languages
Messaging
technol-
ogy

Included patterns

41
Control bus
channel

Spring
official
site

Source
code

Java,
Spring
integra-
tion

RabbitMQ Control bus channel, P-to-P channel

42 Wire Tap GitHub
Source
code

Java,
Apache
camel
DSL

JMS
Wire Tap, Event producer, Event message, P-
to-P channel, Control bus channel

43
Message His-
tory

EIP
book

documentationNC NC NC

44 Message store
Spring
official
site

Source
code

Java,
Spring
integra-
tion

RabbitMQ
SMessage store, P-to-P channel, Service acti-
vator

45
Channel
purger

EIP
book

documentationNC NC P-to-P channel, Channel Purger

46 Test message
EIP
book

Source
code

C# MSMQ
Test message, Content enricher, Recipient list,
Aggregator, Translator, Return Address, For-
mat indicator

Table 4.6: Table of results of use case search on system management patterns

all Enterprise Integration Patterns (EIPs). A persistent repository containing the

61

connector corpus can be accessed at this location7. Using the information in the
table, we can calculate the probability percentage of the presence of each pattern.

Validation of the metamodel using the established corpus requires demon-
strating that all connector models conform to the metamodel. However, due to
the large number of use cases, validation will be performed selectively in spe-
cific scenarios. The challenge is to identify applicable use cases and quantify
their number. To address this challenge, we present an algorithm to evaluate all
patterns.

Algorithm for Use Cases Selection Algorithm 1 constitutes the list of use
cases for validation. This allows us to have a reduced list of use cases that covers
all the patterns at least once.

Algorithm 1 Algorithm for building pertinent use case list for validation

listAddedUseCase← ∅

listAddedPatterns← ∅

listUseCase← useCases

listUseCaseSize← length(listUseCase)
while listUseCaseSize ̸= 0 do

useCase← getF irst(listAddedUseCase)
listCurrentPatterns← getPatterns(useCase)
if (listAddedPatterns ∩ listCurrentPatterns) is ∅ then

listAddedPatterns← concat(listAddedUseCase, listCurrentPatterns)
listAddedUseCase← concat(listAddedUseCase, useCase)

else(listCurrentPatterns not ⊂ listAddedPatterns) is true
intersection← listAddedPatterns ∩ listCurrentPatterns

patternsForAdd← listCurrentPatterns - intersection
listAddedPatterns← concat(listAddedUseCase, patternsForAdd)
listAddedUseCase← concat(listAddedUseCase, useCase)

end if

listUseCase← removeF irst(listUseCase)
end while

The algorithm will initially eliminate pattern requests that contain missing
data. Locating a valuable implementation or specification example that includes
the patterns is unnecessary. We will remove duplicate examples across table cat-
egories and within the same categories. Following the use case research process

7https://zenodo.org/

62

from the patterns list corresponding to the metamodel entities names in Fig-
ure 4.1, we have 33 out of 46 examples to consider. Ten are duplicate use cases,
and three requests contain empty data. A duplicated example refers to the same
use case selected for search from two or more patterns. The remaining use cases
are then sorted based on the number of patterns covered. At this stage, we have
only non-duplicated use cases classified by pattern size in descending order. Pat-
tern size refers to the number of distinct patterns that appear in the use case
being considered. In cases of equality, the order is determined by the chrono-
logical number of requests through the ’Request Id’, with older requests taking
priority. The list of use cases for validation is initialized, and the list of added
patterns is currently empty. The first use case that contains the most different
patterns or has the smallest request number in case of equality is considered as
the element of the shortened list. The iteration on the list of use cases continues
until it is empty. The intersection between each use case and the list of added
patterns is calculated for each use case.

• If the intersection is equal to the empty set, no patterns of the use case
are in the list of added. So, we add all the use case patterns to the list of
added patterns. This scenario happens at the first iteration when the list
of added patterns is initialized to empty. So, the use case is added to the
list of retained use cases for validation.

• If the intersection is not an empty set, some patterns of the use case are
already in the list of added patterns. So, we need to evaluate two cases.

– If the list of patterns of the use case is included in the list of added
patterns, i.e., the intersection between the two lists is equal to the list
of the use case patterns, We do nothing. The use case is not added to
the list of retained use cases in this case.

– Otherwise, we add the list of patterns formed by the list of use case
patterns minus the intersection to the list of added patterns. Note
that two extreme cases are included in the scenario. Note that the
case where the list of added patterns is included in the list of the
patterns of the use case is covered by this scenario. So, the use case is
added to the list of remaining patterns for the use case.

After each iteration, the current use case is removed from the list of use
cases. We stop when the list is empty.

63

Based on this observation, we have chosen to validate compliance for only
these four examples. This strategic decision allows us to test 70% (23/33) of our
relevant use cases instead of attempting to validate all 21 cases. It is important
to note that the selected four examples cover 50% (23/46) of the patterns within
the metamodel.

Table 4.7 enumerates the four chosen use cases sourced from Tables 4.2,
4.1, 4.3, and 4.6.

Use case Identifier Use case name

15 MPEG video file transfer

1 JMS Request-Reply

24 The loan broker

46 Order processing

Table 4.7: The four use cases retained for metamodel compliance validation.

It is important to note that all the selected examples belong to different
table categories, and this distribution is coincidental, not planned. For each use
case, we provide a description, retrieve the UML object diagram through reverse
engineering from the source code, and subsequently compare the resulting model
with the established metamodel.

For the validation, we will rely on the object model of each connector.
Once we have the object models, we must validate that they conform to the
designed metamodel. A UML object diagram represents a specific instance of the
metamodel. Then, we have concretely the name of the object and the number of
instances of each object that compose the connector. The connector object model
is an instance of the connector metamodel. For that, we analyzed different objects
that the connector has. This information is available by specified constraints in
the metamodel. This consists of which required entity is present or not. If an
entity is present, does the number respect the minimum and maximum required
number? If an element is present, is it similar to one list element? The validation
process is manual, and each entity is analyzed manually.

66

Explanation for table understanding: The table explanations help to un-
derstand the comparison result tables that will be presented for each use case.
The first line indicates the entity being verified, while the second line lists the
constraints the connector must adhere to according to the connector metamodel.
The third line shows the status of the object model, including the number of
instances corresponding to metamodel entities.

Please refer to the following explanations to clarify the constraints outlined
in the second line. The abbreviations NbE, NbC, NbQ, NbT, and NbR refer to
the specified numbers of Endpoint, Channel, Queue, Transformer, and Router,
respectively. Msg corresponds to Message, while MList represents a collection
of message types, including Event, Document, Request, Query, Reply, Seqencer,
Text, and Test. The notation Ci:nQ indicates that channel C1 has n queues, with
C1:1Q indicating one queue for channel C1.

Validation of Use case 1 - MPEG video file transfer: In this section, we
scrutinize the validation process for the first use case, focusing on the MPEG
video file transfer. The use case involves transferring an MPEG video file from a
specified folder to another configured folder using the Spring Integration Frame-
work.

Figure 4.4 visually depicts the message flow for this use case and involves
constituents.

ConsumerProducer

Without
Adapter

Channel Adapter

D

Document
Message

PubSubFileChannel Service activator

File channel 1

File channel 2

File channel 3

Message Bridge

D

Figure 4.4: Overview of the message flow for the first use case

Message is the data transfer unit; it consists of a header, a container that
can be used to transmit metadata, and a body, payload, which is the actual data
that is of value to be transferred; in our use-case, the video file. Channel is the
pipe by which messages are relayed from one system to another. We have three
separate channels, all identified by their respective names.

Channel adapter Publish-Subscribe (Pub-Sub) channels establish a one-
to-many communication line between systems or components. This will allow us
to publish to all three direct channels we created earlier. Then, we want to replace
the P2P channel with publish-subscribe to relay the message to the destination.

67

A channel adapter is used for that. We have now converted the inbound channel
adapter to publish to a Pub-Sub channel instead of three separate channels.

Message Bridge The channel adapter allows us to send the files being read
from the source folder to multiple destinations. However, to connect two message
channels or adapters if they cannot connect directly. We create a bridge from
the pubSubFileChannel to fileChannel1, fileChannel2, and fileChannel3 so that
messages from pubSubFileChannel can be fed to all three channels simultaneously.
Bridge replicate messages from the Publish-Subscribe channel to the Point-to-
Point Channel.

Service activator Once the messages are available in channels, the service
activator will activate the message that must consume the messages.

From the implemented connector that consists of our first use case, we
create the object model of the connector, an instance of the connector metamodel.
So, we need to validate that the connector object model respects the connector
metamodel. Figure 4.5 shows the object model of the implemented connector.

Connector

connector_id = 1

IncomingEndpoint

OE1 : Producer

name: MessageSource

OutgoingEndpoint

IE2 :ServiceActivator

name: FileHandlerMethodActivator

IE3 : Consumer

name: MessageHandler

IE1: ChannelAdapter

name: InboundChannelAdapter

C1 : Channel1

name: "PubsubFileChannel"

C2 : Channel2

name: "P-to-PFileChannel"

Q1 : Queue1

name: "PubsubFileQueue"

Q2 : Queue2

name: "FileQueue2"

Q3 : Queue3

name: "FileQueue3"

Q4 : Queue4

name: "FileQueue4"

C3 : Channel3

name: "MessageBridge"

Q5 : Queue5

name: "BridgeFromPubSubChannel"

M1: Message1

messageId= 1

D : DocumentB : Body

messageId= "Hello"

H : Header

timestamp= "2023-09-30 23:14:45"
correlationId= null
returnAddress= null
expiration= null
priority= 4

MH : MessageHistory

componentList: "OE1, IE1, C1, Q1, C3, Q5, Q2, Q3, Q4, IE2, IE3"

FI : FormatIndicator

format_doc: "XML"
version: "1.0"
foreignKey: null

Figure 4.5: Object model of the connector for the first use case

68

Table 4.8 summarizes the metamodel compliance results for the object
model of the first use case and the connector metamodel.

Endpoint Channel Queue Transformer Router Message construct

Metamodel
requirement

NbE ≥ 2 NbC ≥ 1 ∀C∃NbQ/NbQ ≥ 1 NbT ≥ 0 NbR ≥ 0 Msg ∈ MList

Object model
state

4 2 C1:1Q; C2:3Q 0 0 M1:D

Table 4.8: Metamodel compliance validation for the first use case

The validation results confirm that all connectors adhere to the metamodel
requirements. Specifically, the connector metamodel requires a minimum of two
message endpoints, and the object model for the first use case exhibits four end-
points. There are two channels, C1 and C2, which align with the metamodel
requirement of at least one channel. Channel C1 has one queue, while channel C2
has three queues. Both instances meet the constraints as the metamodel specifies
that each channel should have at least one queue (NbQ ≥ 1).

The metamodel allows for the presence or absence of routers and message
transformers; however, the current use case does not include either. The meta-
model indicates that the connector manages a specific message list, and the first
use case utilizes a Document message, which falls within the defined message list.

Considering these observations, we validate that the connector in the first
use case conforms to the connector metamodel.

Use Case 2 - JMS Request-Reply: The second use case involves utilizing the
Java Messaging System (JMS) to facilitate Request-Reply communication pat-
terns. This example demonstrates the implementation of Request-Reply, where
a Requester constituent sends a request to a Replier constituent. The Replier
constituent receives the request and returns a reply to the requester. The exam-
ple demonstrates how an invalid message will be rerouted to a specific channel.
Figure 4.6 illustrates the exchange flow that is implemented.

This example includes the main components: the Requester and Replier,
a Point-to-Point channel, and an Invalid message handling mechanism. The
Requester acts as a message endpoint responsible for sending a request message
and waiting for a corresponding reply message.

The Replier is a message endpoint that receives a request message and
responds with a reply message. The Requester and the Replier operate in sepa-
rate Java virtual machines, facilitating distributed communication. This example
assumes that the messaging system has three defined queues: jms/RequestQueue,

69

Requestor Replier

Request channel

Reply channel

Invalid message channel

D

Request Return
Address

Corr. D

ReplyCorrelation
Identifier

Figure 4.6: Overview of the message flow for the second use case

the queue used by the Requester to send the request message to the Replier. The
jms/ReplyQueue is the queue used by the Replier to send the reply message to the
Requester. The jms/InvalidMessages destination channel contains queues where
both the Requester and Replier redirect messages that they cannot interpret.

The sending message includes a specific return queue and provides a Cor-
relation identifier to the Replier, enabling it to identify which sender requires
the answer. This scenario involves a published asynchronous request-response
pattern.

The object diagram model for the second use case is extracted and con-
structed from the specifications and implemented source code, as shown in Fig-
ure 4.7.

Table 4.9 summarizes the metamodel compliance results for the object
model of the second use case and the connector metamodel.

Endpoint Channel Queue Transformer Router Message construct

Metamodel
requirement

NbE ≥ 2 NbC ≥ 1 ∀C∃NbQ/NbQ ≥ 1 NbT ≥ 0 NbR ≥ 0 Msg ∈ MList

Object model
state

2 1 C1:2Q 0 0 M1:D

Table 4.9: Metamodel compliance validation for the second use case

Table 4.9shows that the second use case connector meets the metamodel
specified requirements. The metamodel requires a minimum of two message end-
points, and the object model for the second use case shows two endpoints. Addi-
tionally, one channel, C1, meets the requirement of the metamodel of at least one
channel. Channel C1 has two queues: one for requests and one for replies, which

70

Connector

connector_id = 1

IncomingEndpoint

Rpr : Replier

name: "Replier"

OutgoingEndpoint

Req :Requestor

name: "Requestor"

C1 : Channel1

name: "RequestChannel"

C2 : Channel2

name: "P-to-PFileChannel"

Q1 : Queue1

name: "RequestQueue"

Q2 : Queue2

name: "ReplyQueue"
M1: Request

messageId= "_XYZ123_1048261766139_6.2.1.1"

D : Document

B : Body

messageId= "Hello world"

H : Header

timestamp= "1048261766790 ms"
correlationId= null
returnAddress= "jms/ReplyQueue"
expiration= null
priority= 2

MH : MessageHistory

componentList: "Req, C1, Q1, Rpr

FI : FormatIndicator

format_doc: "XML"
version: "1.0"
foreignKey: null

H : Header

timestamp= "1048261766850 ms"
correlationId= "_XYZ123_1048261766139_6.2.1.1
returnAddress= null
expiration= null
priority= 2

MH : MessageHistory

componentList: "Rpr, C2, Q2, Req

FI : FormatIndicator

format_doc: "XML
version: "1.0"
foreignKey: null

M1: Request

messageId= "_XYZ123_1048261758148_5.2.1.1"

M1: Message

messageId= 1

D : Document

B : Body

messageId= "Hello world"

Figure 4.7: Object model of the connector for the second use case

satisfies the requirement imposed by the metamodel that each channel should
have at least one queue (NbQ ≥ 1).

As per the metamodel, the presence or absence of message routers and
message transformers is allowed, and the second use case does not include either.
The metamodel specifies that the connector manages a specific message list. A
Document message is used in this use case, aligning with the defined message list.

Upon analyzing the table, we can confirm that the connector in the second
use case adheres to the connector metamodel.

Use case 3 - Order processing: The third use case concerns the order process-
ing example. In this example, the company management publishes price changes
and promotions to large customers. An event producer is used to print out mes-
sages. Whenever the price for an item changes, we send a message notifying the
customer. We do the same if we run a special promotion, e.g., all widgets are 10%
off in November. Some customers may be interested in receiving price updates

71

or promotions only related to specific items. If I purchase gadgets primarily, I
may not be interested in whether widgets are on sale. The Message Filter That
has only a single output channel is used. We have two consumers: a simple
Event-Driven Consumer calls whenever a message is received. Figure 4.8 shows
the exchange flow that is implemented.

8

PubSubFileChannel

Producer

E

Event
Message Widget

consumer

Quote
consumer

Quote data type chanel

Channel

Widget data type chanel

Figure 4.8: Overview of the message flow for the third use case 3

The object diagram model built from the third use case is presented in
Figure 4.9.

Table 4.10 summarizes the metamodel compliance results for the object
model of the third use case and the connector metamodel.

Endpoint Channel Queue Transformer Router Message construct

Metamodel
requirement

NbE ≥ 2 NbC ≥ 1 ∀C∃NbQ/NbQ ≥ 1 NbT ≥ 0 NbR ≥ 0 Msg ∈ MList

Object model
state

3 2 C1:1Q; C2:2Q 0 2Filter M1:E

Table 4.10: Metamodel compliance validation for the first use case

The validation results confirm that all connectors comply with the meta-
model requirements. The connector metamodel mandates a minimum of two
message endpoints, and the object model for the third use case exhibits two
endpoints. There are two channels, C1 and C2, aligning with the metamodel
requirement of at least one channel. Channel C1 has one queue, while channel
C2 has two queues, meeting the metamodel’s assertion that each channel should
have at least one queue (NbQ ≥ 1). Both C1 and C2 meet the constraints.

The use case involves two message routers, more precisely two message
filters (R1:2Filter), corresponding to the metamodel requirement that permits
zero or more routers.

The metamodel allows for the presence or absence of message transformers,
but the current use case does not require one. The metamodel specifies that the

72

Connector

connector_id = 1

IncomingEndpoint

Prdc1 : Producer1

name: Eventproducer

OutgoingEndpoint

Cons1 : Consumer1

name: "widgetConsumer"

C1 : Channel1

name: "PubsubChannel"

C2 : Channel2

name: "DataTypeChannel"

Q1 : Queue1

name: "PubsubQueue"

Q2 : Queue2

name: "WidgetQueue"

Q3 : Queue3

name: "Quote"

M1: Message1

messageId= 1

D : EventB : Body

messageId= "State change"

H : Header

timestamp= "2023-09-30 23:14:45"
correlationId= null
returnAddress= null
expiration= 5000ms
priority= 1

MH : MessageHistory

componentList: "prdc1, C1, Q1, Fltr1 or Fltr2, C2, Q2 or Q3, Cons1 or cons2

FI : FormatIndicator

format_doc: "JSON"
version: null
foreignKey: null

Cons2 : Consumer2

name: "quoteConsumer"

R: Router

MFltr1 : MessageFilter1

name: "WidgetFilter"
criteria: "type=Widget"

MFltr2 : MessageFilter2

name: "QuoteFilter"
criteria:"type=Quote"

Figure 4.9: Object model of the connector for the first use case

connector manages a specific list of messages, and the first use case utilizes an
Event message, which is included in the defined message list.

Based on this analysis, we assure that the connector in the first use case
adheres to the connector metamodel.

Use case 4 - The loan broker: The fourth use case centers on testing the
loan broker system example. This example incorporates routing and transforma-
tion patterns into a comprehensive solution, modeling the process of a consumer
obtaining loan quotes from multiple banks. Figure 4.10 shows the implemented
exchange flow.

The object diagram model from the fourth use case is showcased in Fig-
ure 4.11.

73

Loan Broker

LoanRequestQueue

LoanReplyQueue

Bank1Queue Bank 1

Bank 2

Bank 3

Bank2Queue

Bank3Queue

LoanReplyQueue

Corr. T

ReplyCorrelation
Identifier

T

Test
Message

Return
Address

Test System

Message
generator

Verificator

Data enricher Recipientlist

AggregatorTranslator

Figure 4.10: Overview of the message flow for the fourth use case

Connector

connector_id = 1

IncomingEndpoint
Rpr1 : Replier1

name: "Bank1"

OutgoingEndpoint Req :Requestor

name: "Requestor"

C2 : Channel2

name: "BankChannel"

C1 : Channel1

name: "LoanRequestChannel"

Q1 : Queue1

name: "LoanRequestQueue"

Q2 : Queue2

name: "Bank1Queue"

M1: Request

messageId= "_XYZ123_1048261766139_6.2.1.1"

T : Test

B : Body

messageId= "Hello world"

H : Header

timestamp= "1048261766790 ms"
correlationId= null
returnAddress= "jms/ReplyQueue"
expiration= null
priority= 2

MH : MessageHistory

componentList: "Req, C1, Q1, Rpr

FI : FormatIndicator

format_doc: "XML"
version: "1.0"
foreignKey: null

H : Header

timestamp= "1048261766850 ms"
correlationId= "_XYZ123_1048261766139_6.2.1.1"
returnAddress= null
expiration= null
priority= 2

MH : MessageHistory

componentList: "Rpr, C2, Q2, Req

FI : FormatIndicator

format_doc: "XML
version: "1.0"
foreignKey: null

M2: Reply

messageId= "_XYZ123_1048261766139_6.2.1.1"

M1: Message

messageId= 1

T: Test

B : Body

messageId= "Thank you"

Rpr2 : Replier2

name: "Bank2"

Rpr3 : Replier3

name: "Bank3"

Q3 : Queue3

name: "Bank2Queue"

Q4 : Queue4

name: "Bank3Queue"

C3 : Channel3

name: "ReplyChannel"

Q5 : Queue5

name: "Bank3Queue"

Tr: Transformer

name: "FormatTranslator"

Rt1: Router1

name: "DataEnricher"

Rt2: Router2

name: "Recipientlist"

Rt3: Router3

name: "Aggregator"

H : Header

timestamp= "1048261766850 ms"
correlationId= "_XYZ123_1048261766139_6.2.1.1"
returnAddress= null
expiration= null
priority= 2

MH : MessageHistory

componentList: "Rpr, C2, Q2, Req

FI : FormatIndicator

format_doc: "XML
version: "1.0"
foreignKey: null

T: Test

B : Body

messageId= "Thank you"

M3: Reply

messageId= "_XYZ123_1048261766139_6.2.1.1"

H : Header

timestamp= "1048261766850 ms"
correlationId= "_XYZ123_1048261766139_6.2.1.1"
returnAddress= null
expiration= null
priority= 2

MH : MessageHistory

componentList: "Rpr, C2, Q2, Req

FI : FormatIndicator

format_doc: "XML
version: "1.0"
foreignKey: null

T: Test

B : Body

messageId= "Thank you"

M4: Reply

messageId= "_XYZ123_1048261766139_6.2.1.1"

Figure 4.11: Overview of the object diagram for the fourth use case

Table 4.11 summarizes the metamodel compliance results for the object
model of the first use case and the connector metamodel.

Endpoint Channel Queue Transformer Router Message construct

Metamodel
requirement

NbE ≥ 2 NbC ≥ 1 ∀C∃NbQ/NbQ ≥ 1 NbT ≥ 0 NbR ≥ 0 Msg ∈ MList

Object model
state

4 3 C1:1Q;C2:3Q;C3:1Q T1:DE;T2:Trlt R1:1RL;R3:1AG M1:T

Table 4.11: Metamodel compliance validation for the fourth use case

The validation results confirm that all connectors meet the requirements of
the metamodel. There are three channels, C1, C2, and C3, which align with the
metamodel requirement of at least one channel. Channel C1 has a queue, channel

74

C2 has three queues, and channel C3 has one queue. Specifically, the connector
metamodel requires a minimum of two message endpoints, and the object model
for the first use case shows four endpoints. Channel C1 has a queue, channel
C2 has three queues, and channel C3 has one queue. Channel C1 has a queue,
channel C2 has three queues, and channel C3 has one queue. Each channel meets
the constraints, as the metamodel specifies that each channel must have at least
one queue (NbQ ≥ 1).

The metamodel includes two message transformers, a Data Enricher and a
Message Translator. Additionally, there are two message routers, namely a Recip-
ient List and an Aggregator. Thus, the requirement for the message transformer
and message router is met, as the metamodel allows for zero or multiple instances
of these two elements.

The metamodel specifies that the connector manages a specific list of mes-
sages, and the fourth use case employs a Test message, which is appropriate for
the defined message list.

Based on these observations, we confirm that the connector of the first use
case is compliant with the connector metamodel.

Results of the Validation of Use Case Compliance with the Metamodel:
After validating the four use cases against the connector metamodel, we can con-
firm that all considered use cases conform to the connector metamodel. Con-
versely, the connector metamodel covers entities present in all four use cases.
Given that the four use cases were selected to cover the most prevalent interoper-
ability scenarios in the repository, we can conclude that the connect metamodel
encompasses all connectors present in the connector repository, and that each
connector in the connector metamodel conforms to the connector metamodel.

4.1.3 Validation of Metamodel Expandability

To construct the connector metamodel, we use knowledge from Enterprise
Integration Patterns, vendor solutions, and in-house industrial solutions. How-
ever, we acknowledge that companies may require patterns unknown among the
identified Enterprise Integration Patterns. Our metamodel aims to accommodate
any connector, whether vendor-specific, vendor-neutral, or an industrial solution.
When the metamodel does not cover a specific connector, it is essential to inte-
grate new constituents or properties into the existing metamodel. To accomplish
this, we suggest a process starting with an initial metamodel.

75

The process takes the connector metamodel and the model of an imple-
mented connector as input, requiring reverse engineering from the source code.
The entities in the built connector model are classified and categorized into End-
point, Channel, Router, Transformer, and Message constructs based on expert
knowledge related to communication. Each category is assigned a class, and the
existing entities in the metamodel are iterated over and compared with each class
in the connector. When a metamodel entity corresponds to a connector class, we
examine the properties and methods of the metamodel class. If all the properties
and methods of the connector model are present in the matched metamodel en-
tity, the two entities are considered identical, or the metamodel entity is deemed
more comprehensive than the connector model entity. Conversely, if we find prop-
erties or methods in the connector entity but not in the connector metamodel,
we integrate the relevant properties or methods. If the connector model does not
match any of the metamodel entities in the categories, we add the new entity as
a novel addition to the connector metamodel. This indicates the discovery of a
new integration pattern.

Figure 4.12 illustrates the process that facilitates the creation of a more
complete reified connector, taking into account known connectors and potential
future connectors. The model must be extensible to accommodate future connec-
tors.

4.2 Discussion and Conclusion

Although creating a metamodel that encompasses all connectors worldwide
is a challenge, our approach offers inclusivity within the boundaries of a specified
repository. The comprehensiveness of our metamodel is limited to the boundaries
of the connector repository created. To achieve comprehensiveness, we would need
a repository that includes all worldwide connectors. However, this is unachievable
due to the difficulty of accessing industry-specific interoperability mechanisms
implemented without collaboration or anticipating future mechanisms.

To address this limitation, we propose a transparent process to ensure
the adaptability of our metamodel, allowing for the addition of new connectors
to the repository. In terms of validating the metamodel’s conformity with all
possible connectors in the repository, compromises were necessary for several rea-
sons. Having a repository containing all connectors is impossible, so claiming
absolute coverage is not feasible. Validating conformity for over thirty object
diagram classes proved challenging. As a compromise, we selected four examples
encompassing various integration models, following a well-thought-out algorithm.

76

Choose an
implemented connector Reverse engineering Remove business

related class
Classifiy class in

category based on EIP

Select new categoryGet connector category
classes listList Empty

YES

Select first element
NO

Compare to metamodel
entities Matched entity Matched entity exist Iterate properties and

methods

Add entity in the
metamodel

NO

YES

All propetiers exist in
metamodel

Add propeties and
method in the entity

NO

YES

remove first element

All category visited

NO

YES

Figure 4.12: The Evolution of the Connector Metamodel: Integrating a New Project
with Interoperability Mechanisms

At this stage, expertise in corporate integration is essential to identify inte-
gration patterns. Although automation can improve the process, an algorithm for
pattern recognition would be particularly useful in managing numerous connec-
tors, especially those written in different languages. Our analysis focused mainly
on small-scale projects, which presents challenges for larger projects where a con-
nector may not be a primary entity. Semantic matching during the scalability
algorithm can be complex, especially when dealing with new connectors.

77

Chapter 5. ConPL: Unveiling the Connector Product
Lines Framework

5.1 Introduction

In the last chapter, we created the CoReif metamodel, detailing the specifi-
cations for all potential interoperability connectors used in asynchronous commu-
nication, also known as messaging. This involved recognizing recurring patterns
in various interoperability mechanisms across different solutions. The metamodel
helps identify common patterns, guiding connector construction based on these.
It adapts to specific communication needs and highlights connectors’ common
and specific characteristics. This chapter aims to fill the gaps in the literature
using the CoReif metamodel. Two research questions guide this exploration:

1. How can interoperability patterns be effectively utilized to construct connec-
tors that adapt to system changes, reducing development and maintenance
costs?

2. What methods can generate essential connector source code beyond identi-
fying architectural models?

Considering the insights from Chapter 3 and our research questions, this
chapter proposes an approach for building interoperability connectors. This ap-
proach assumes the connector as an independent component, as the connector
metamodel illustrates. To leverage connector commonalities and manage their
variability effectively, the set of connectors is viewed as a Software Product Line
(SPL) [CN02]. Utilizing Model-Driven Engineering (MDE) techniques [S+06],
greater abstraction is achieved, approaching platform independence and enabling
the generation of connector source code in targeted programming languages upon
demand. This proposal introduces a framework facilitating the automatic configu-
ration and generation of interoperability connectors based on reusable connector
artifacts. The goal is to ensure connectors’ flexibility, enabling their creation,
maintenance, and evolution with minimal impact on business applications, ulti-
mately reducing effort in developing, maintaining, and extending connectors.

78

5.2.2 Differentiating Reuse Strategies: Comparative Analysis of
Software Product Line (SPL), Component-Based Software
Engineering (CBSE), and Software Ecosystem (SECO)

When considering strategies for software reuse, there are various options
available, such as Software Product Lines (SPL), Component-Based Software En-
gineering (CBSE), and Software Ecosystems (SECO), each chosen based on spe-
cific needs. To clarify the distinct focuses of these approaches and reinforce the
selection of SPL, it is crucial to review them comprehensively.

CBSE , defined by [Crn01], revolves around constructing software systems by
integrating reusable components with standardized interfaces. This method em-
phasizes selecting, integrating, and utilizing pre-existing components, allowing
for rapid development, scalability, and maintainability. By assembling software
from interchangeable, well-defined components, CBSE enables swifter develop-
ment cycles and easier maintenance, significantly favoring reuse over building
from scratch.

SECO is defined as a network of entities operating collaboratively in a unified
software and services market, according to [JBF09]. In SECO, the emphasis
extends beyond component reuse to encompass a broader range of resources, in-
cluding APIs, libraries, knowledge, and best practices. This approach fosters
interoperability and collective contributions, thriving within open-source commu-
nities, collaborative development platforms, and interconnected software services.

Having clarified these concepts, a summarizing table that delineates these
reuse-centric approaches is proposed.

Table 5.1 highlights their objectives, benefits, and challenges.
The table shows that SPL is optimal for managing and systematically

reusing commonalities and variabilities across a spectrum of related products.
SPL is particularly advantageous when developing a suite of related software
products sharing common features and variabilities. CBSE shines when swiftly
assembling systems by integrating well-tested, standardized components with spe-
cific functionalities or interfaces. Conversely, SECO excels in collaborative envi-
ronments necessitating the sharing and reusing of diverse resources beyond com-
ponents, catering to industries leveraging collective contributions across various
platforms and communities.

As a result, the Software Product Line has been selected as the chosen
reuse strategy for this thesis.

80

Aspect Software Product Line (SPL)
Component-Based Software Engi-
neering (CBSE)

Software Ecosystems (SECO)

Primary
Focus

Developing a family of related
software products

Building software systems by inte-
grating reusable components

Creating an environment for col-
laboration and resource sharing

Key Objec-
tive

Manage commonalities and vari-
abilities across products

Assemble pre-built components to
form software applications

Facilitate collaboration, innova-
tion, and resource sharing

Emphasis
on Reuse

Systematic reuse of features, and
artifacts

Utilization of existing pre-built
components with interfaces

Diverse resource sharing beyond
components

Approach
Identification and management of
reusable elements

Selection, integration, and utiliza-
tion of pre-built components

Fostering an environment for col-
laboration and resource sharing

Benefit
Cost reduction, faster time-to-
market, consistent quality

Rapid development, maintainabil-
ity, reuse of proven components

Innovation, interoperability, scala-
bility, diverse contributions

Scope of
Reusability

Features, artifacts, configurations
within a product line

Pre-built components with stan-
dardized interfaces

Wide range of resources including
components, APIs, knowledge

Challenges
Managing variability across prod-
uct variations

Component compatibility, version-
ing, and selection

Governance, compatibility, evolv-
ing standards, diversity

Example
Use Case

Developing multiple versions of a
software application

Building an application using
third-party libraries or APIs

Open-source communities, collab-
orative development platforms

Table 5.1: Comparative Analysis of Software Reuse Alternative: SPL, CBSE, and
SECO

5.2.3 Delta-Oriented Programming principle

Implementing a software product line following the DOP principle implies
implementing a core product and set of changes called delta modules that can be
activated for a given configuration and applied to create a customized product.

Figure 5.2 gives the overview of the DOP principle.

Core product

Delta 1
<<remove>> Entity
from core model

Delta 3
<<add>> Attribute
to core model

Delta 2
<<remove>> Attibute
from core model

Delta 4
<<add>> Entity to
core model

Apply
Delta 4

Apply
Delta 1

Derived product

Set of delta modules

Figure 5.2: Understanding the DOP Principle: A Snapshot

In the context of DOP principles, it is crucial to comprehend several key
terms [PKK+15]. The Delta action denotes a set of one or more modification ac-
tions applicable to an original product, resulting in a modified product. A Delta
module serves as a container for modifications applicable to a product variant, en-

81

compassing a set of delta actions. The Delta set combines a delta module with a
defined application approach to introduce more complex modifications to a prod-
uct. This methodology enhances the reusability of delta modules, streamlining
the development process by eliminating the need to create each potential delta
module individually.

5.3 Motivation for Adopting a Software Product Line approach

Software development rarely starts from scratch, as developers naturally
reuse existing solutions. Developers typically seek out similar, pre-existing soft-
ware when creating new software, whether developed in-house or sourced from
open-source repositories. This is where the Clown-and-Own (C&O) [RDR03,
DRB+13] approach comes into play. This method involves forking and adapting
existing software to create the desired product. Initially, the two software in-
stances share common functionality, but the products are gradually differentiated
through modification and introducing variability, resulting in a common base with
variable components.

Software development often involves reusing existing solutions rather than
starting from scratch. Developers commonly search for similar, pre-existing soft-
ware when creating new software, whether developed in-house or sourced from
open-source repositories. The Clown-and-Own (C&O), described in [RDR03,
DRB+13], involves forking and adapting existing software to create the desired
product. Initially, the two software instances share common functionality. How-
ever, the products are gradually differentiated through modification and intro-
ducing variability, resulting in a common base with variable components.

The importance of reuse extends beyond legacy systems; modern frame-
works often provide generators that allow developers to focus on business logic
by leveraging a foundational software base. A prime example is the Spring Ini-
tializr, a template that facilitates the generation of initial SpringBoot project
code [KU22]. This approach allows developers to focus on the business logic,
leveraging a foundational software base for time efficiency, although occasional
assistance is required for extensions.

Utilizing an existing software base accelerates initial development but leads
to managing multiple parallel applications. Transitioning between similar core
products demands significant effort for effective management [LDDF11]. Library
evolution introduces new cross-functional features and tests to support ongoing
development [ZDAT22], yet errors often arise from risks linked to copy-and-paste
tasks.

82

Figure 5.3 illustrates the C&O ad hoc approach, highlighting its potential
drawbacks and the complexity of managing multiple derived products.

1

2 3

4

5
6

1

2 3

4

5
6

7

1

2 3

4

5
6

7

9 8

1

2 3

4

5
6

7

9 8

11

10

EA

EB

EC

Fork

Fork

EA

EAEA

EBEB

EC

ECEC

EB

Fork

Software 1 Software 2

Software 3Software 4
Figure 5.3: Illustration of the ad-hoc, Clone-and-Owns (C&O) approach

Four related software instances are depicted in the illustration (Figure 5.3).
The arrow labeled fork signifies creating a software version derived from another
through the ad-hoc C&O method. Each rectangle is assigned a number, and
variations in rectangle sizes with the same number indicate modifications. An
extra rectangle represents additional code introducing new functionalities to the
software.

In Figure 5.3, we observe four related software instances. The arrow la-
beled fork signifies creating a software version derived from another through the
ad-hoc C&O method. Each rectangle is assigned a number, and variations in rect-

83

Base software Bloc list Update or error fixing

Software 1 Init 1, 2, 3, 4, 5, 6 EA, EB, EC

Software 2 Software 1 1’, 2, 3, 4’, 5, 6, 7, 8 EA, EB, EC

Software 3 Software 2 1’, 2’, 3, 4’, 5, 6, 7, 8, 9, 10 EA, EB, EC

Software 4 Software 1 1’, 2’, 3, 4’, 5, 6, 7, 8’, 9, 10 EA, EB, EC

Table 5.2: Table of illustration of the ad hoc Clone-and-Owns (C&O) approach

angle sizes with the same number indicate modifications. An additional rectangle
denotes additional code for new functionalities in the software.

Table 5.2 offers a more comprehensive explanation of these software enti-
ties.

Upon analyzing Table 5.2, it is evident that certain areas require enhanced
and streamlined maintenance practices. Firstly, the selection of base software
appears somewhat arbitrary. The developer may have chosen initial software
that is similar but deviates from the desired version. In this case, Software 4
seems closer to Software 3 than Software 1. After applying the C&O method,
the developer reworked the functionalities associated with blocks 1’, 2’, 4’, 7, 8’,
9, and 10. If Software 4 had been derived from Software 3, the developer would
have only needed to address the corresponding code for blocks 8’ and 10.

What is more, there are other areas in need of improvement. Even in
the case of arbitrary developer selection, maintenance, and bug-fixing become
repetitive tasks that require greater developer involvement. This is underlined by
the last column of the table 5.2. The red rectangle in the figure 5.3 means that
problems need to be solved or development needs exist, such as library updates,
language migrations, and vulnerability fixes. Each software version requires de-
velopment work, which can result in some software not being updated, making
it obsolete or vulnerable. This results in redundant development, correction, and
testing efforts.

84

5.4 Why should connectors be considered as a product line?

Section 5.3 delves into the challenge of unplanned software reuse via the
ad-hoc C&O method prevalent in software development. This challenge is notably
amplified in software connectors due to their susceptibility to change, influenced
by their inherent evolution and the shifts in business software.

Connectors as a Product Line: A Necessity To provide a clearer insight
into the challenge of efficiently reusing interoperability mechanisms, we delve into
the specific interoperability mechanisms implemented at Berger-Levrault 1.

The Berger-Levrault information system comprises numerous heteroge-
neous constituents that must work seamlessly between themselves and third-party
information systems. However, achieving this is not always straightforward due
to constant technical and domain specifications changes.

Developing and maintaining interoperability mechanisms can be very time-
consuming. The initial step was to decrease development time using a Message-
Oriented Middleware (MOM) [YQC+19] library called BL-MOM. BL-MOM li-
brary was referenced in [ALL+20]. BL-MOM library offers low-level features,
including a publish/subscribe [Tar12] messaging mechanism via the event bro-
ker RabbitMQ [Tos15], following the asynchronous message queuing protocol
(AMQP) [Pra21].

Although BL-MOM offers advantages, such as reusing low-level function-
alities and enabling focus on high-level connector functionality, a significant por-
tion of the connector development process remains manual. Consequently, despite
considerable efforts to boost productivity, only a few connectors rely on the BL-
MOM library. Streamlining code reuse is crucial to minimize development time
and effort.

Figure 5.4 outlines the current process and the proposed approach to aug-
ment reuse.

Table 5.3 shows the metrics extracted from the Berger-Levrault private
GitLab projects for seventeen connectors developed using the BL-MOM library,
including the actions required for their development and maintenance.

These metrics include the commit count, contributor involvement, dura-
tion from project start to the latest activity, the previous iteration commit count,
average monthly commits, and the current project maintenance status.

The table displays a selection of connectors developed by Berger-Levrault,
as part of a project to facilitate event-driven communication among applications.

1https://www.berger-levrault.com/fr/

85

Total
commits

Contributors
First com-
mit date

Last com-
mit date

Number
of com-
mits at
last date

Duration
(month)

Average
commits/-
month

Active

Project A 185 3 2019-02-13 2021-12-15 3 34 5.4 YES

Project B 48 1 2019-01-08 2022-03-08 12 38 1.3 YES

Project C 34 1 2021-01-11 2021-12-15 3 11 3.1 YES

Project D 8 1 2019-12-02 2022-07-15 1 31 0.3 YES

Project E 153 2 2018-11-23 2022-03-17 1 42 3.6 YES

Project F 167 2 2018-11-23 2022-04-06 1 40 4.2 YES

Project G 33 1 2020-12-28 2021-12-15 4 12 2.8 YES

Project H 44 2 2018-12-17 2022-09-12 4 45 1 YES

Project I 55 3 2019-05-24 2022-07-07 2 34 2.3 YES

Project J 32 1 2020-06-03 2021-12-15 4 18 1.8 YES

Project K 77 4 2019-10-16 2022-07-07 2 34 2.3 YES

Project L 72 2 2019-12-13 2022-05-25 5 29 2.5 YES

Project M 30 3 2021-10-15 2022-09-29 3 11 2.7 YES

Project N 23 1 2020-12-30 2021-1215 4 11 2.1 YES

Project O 7 2 2022-02-10 2021-02-17 2 0.23 30.4 YES

Project P 65 3 2020-08-28 2022-05-02 4 21 3.1 YES

Project Q 46 3 2019-12-06 2021-12-15 5 24 1.9 YES

Table 5.3: Git metrics analysis for all connector projects of our industrial partner

tiative. Additionally, these indicators can increase significantly during significant
transitions, such as the backward compatibility challenges from RabbitMQ to
Apache Kafka. Similar issues may arise within Berger-Levrault or other contexts
when using traditional ad hoc interoperability methods, resulting in significantly
higher connector indicators.

BL-MOM serves as a shared source library, offering functionalities for con-
nectors. Yet, developing and maintaining MOM-based connectors can be time-
consuming and lack enthusiasm from other teams.

The software product line approach reduces development efforts by utiliz-
ing core functionalities for reuse, simplifying maintenance through collective issue
resolution, and enabling variability to customize specific connectors.

A Practical Demonstration: Connectors as Product Lines To argue for
considering connectors as a product line, we rely on the connector repository de-
tailed in Chapter 3 and visualized in Figure 3.3. Within this repository, we iden-

87

tify the primary connectors relevant to specific case studies, which are crucial for
validating the metamodel discussed in Chapter 3, as outlined in Subsection 4.1.2.

Figure 4.4, Figure 4.6, Figure 4.8, and Figure 4.10 illustrate these selected
use cases. They were deliberately chosen using heuristics to minimize connector
numbers while maximizing coverage across various models.

This deliberate focus on particular use cases represents a pessimistic sce-
nario for evaluating commonality within the connectors repository. We have in-
tentionally selected connectors with highly divergent patterns to ensure maximum
pattern coverage. Doing so has created a worst-case scenario for commonalities
among connectors. If the four most divergent connectors selected share common
functionalities, the same will be true for all the other connectors.

Table 5.4 presents lists of connectors and their associated patterns for the
use cases.

The table is read as follows:
The first column lists patterns found in at least one connector. The first

row lists the considered use cases. Entries in subsequent columns and rows indi-
cate whether a pattern is present or absent for a given use case. The presence of
a pattern is denoted by its name, sometimes followed by a numerical identifier.
If no number is specified, it implies a single instance. If a specific variant name
is unavailable, it is indicated as Yes in the table for summary purposes.

Essentially, the data in column two and row two share a commonality,
indicating the presence of a pattern. The pattern names denote variability, which
is not the main focus of this subsection. The goal is to demonstrate commonalities
to support software product lines. Entries marked as N.C indicate no observed
commonalities for a pattern within a particular use case.

By applying a basic calculation—dividing the number of cells without N.C
by the total number of cells—we find that 26 out of 36 instances indicate a 72%
occurrence of commonalities.

5.5 ConPL: Model-Based Connector Product Line Framework

The Connector Product Line is focused on interoperability connectors as its
software products. It differs inherently from the broader SPLE Framework illus-
trated in Figure 5.1 by offering a more granular perspective, especially concerning
implementation strategies. The product line implementation within the solution
space initially adheres to the Delta-Oriented approach. Subsequently, the prod-
uct line implementation continues within the solution space, using a Model-Driven

88

Patterns Use case 1 Use case 2 Use case 3 Use case 3

Incoming
endpoint

Channel
Adapter

Requestor Producer Requestor

Outgoing
Endpoint

Service Ac-
tivator

Replier Consumer Replier

Message
Channel

Publish-
Subscribe,
Point-to-
Point

Invalid
Message

Publish-
Subscribe,
2x Point-
to-Point

3x Point-
to-Point

Message
Queue

3x Queue 3x Queue 2x Queue 4x Queue

Message
Router

N.C. N.C
2x
Content-
Based

Recipient
List, aggre-
gator

Message Document Document Event Test

Correlation
Identifier

N.C Yes N.C Yes

Message
Trans-
former

N.C N.C N.C
Data En-
richer,
Translator

Return
Adress

N.C N.C N.C Yes

Table 5.4: Analysis of Commonalities within the Highly Diverse Connector Subset
from the Connector repository

89

The extractive approach, SPL re-engineering, involves constructing core assets
from an existing product not originally developed using SPLE.

Our research focuses on an extensible set of existing connectors from di-
verse sources. This extensibility implies that the connector repository can accom-
modate a new connector, as outlined in the process depicted in Figure 4.12.

Hence, our approach involves a combination of extractive and reactive
approaches. This combined approach constructs ConPL using existing connector
products, intending to evolve by seamlessly integrating new connectors into the
product line.

While the iterative approach is straightforward—centered around itera-
tive analysis and modeling, the extractive approach involves considering diverse
strategies, as outlined by [ALHL+17]. These strategies encompass expert-driven,
static, information retrieval, dynamic, and search-based analysis.

The Expert-Driven Strategy [WCC+95] relies on specialists’ expertise, such
as software engineers, architects, developers, and stakeholders. Static Analysis in-
volves examining structural information from static artifacts without executing
them. Dynamic Analysis [CZVD+09] uses tools to gather and analyze execution-
related data, often focusing on low-level abstractions like source code. Information
Retrieval leverages identifiers and comments to capture domain knowledge, often
considering textual similarity. Search-based approaches [HMZ09] apply optimiza-
tion algorithms, like Genetic Algorithms, derived from the optimization field.

This work relies on an Expert-Driven and static analysis strategy. The pro-
cess leverages the connector repository developed in Chapter 3, a comprehensive
repository encompassing connectors from various sources such as Berger-Levrault
or industrial partners, software-neutral vendors, and open-source solutions. Noted
that the connector repository led to a connector metamodel.

Most connectors within the repository are implicit, meaning their inter-
operability mechanisms are intertwined with the business logic code. Extracting
the connector codes from the closely coupled business logic codes is essential
to delineate their distinct characteristics. This challenge was addressed through
reification in Chapter 3. Consequently, duplicating this effort is unnecessary.
Leveraging the reified metamodel, which already consolidates the outcomes of
the reverse engineering process, serves as our starting point. We will identify
features that encompass all connector attributes from this metamodel.

Figure 5.6 showcases the connector characteristics captured by the meta-
model, offering reusable artifacts through its entities, attributes, and method
signatures. The next step is to model the features, which will be the focus of the
following subsection.

91

Connector
repository

Connector metamodel

EntityA

+ propertA1: int

+ propertA2: Stri

EntityB

+ propertB1: int

EntityC

+ propertC1: bo

+ propertC2: St

EntityD

+ propertD1: int

+ propertD2: Stri

Extends

1...0

Feature modeling
modeling

Chapter 3

Chapter 4

Functionalities

Figure 5.6: Illustrating the process of commonalities and variability analysis based
on the connector metamodel

5.5.2 Modeling Variability in Connectors

The second step within the DE sub-process aligns with the second box
positioned at the top left in Figure 5.1.

This phase involves exploiting the connectors’ characteristics captured by
the connector metamodel to organize them to illustrate their common aspects
and differences, following the process described in Figure 5.6.

As the metamodel is a structure diagram, it may seem inappropriate to
talk about organization. We are talking about organizations showing functional-
ities commonalities and variability for future configuration, so we need a type of
representation conducive to this, hence functionalities modeling.

92

The literature defines two primary variability modeling approaches: de-
cision models (DM) and feature models (FM). DM encapsulates a set of deci-
sions that aid in distinguishing various members within an application engineering
product family [Gom05]. FM specifies valid combinations of features and defines
the scope/domain of a software product line [FGFdAM14].

The main distinction between FM and DM is their purpose. FMs aim
to facilitate commonality and variability modeling, while DM focuses solely on
variability modeling [C+93].

We have chosen feature modeling to exhaustively encompass all possible
characteristics, commonalities, and variability and represent them graphically
through a feature diagram. The connector feature model is constructed from the
identified characteristics in the feature identification process. It represents all
connectors based on the built connector repository.

Figure 5.7 illustrates the feature model showcasing all possible functional-
ities for the connectors within the connector repository.

93

Figure 5.7: Feature Model Encompassing All Potential Connectors Emanated from
the Established Connector repository

94

5.5.3 Implementing the Connector Product Line within the Solu-
tion Space

The final step of the Domain Engineering sub-process, located in the top
left box of Figure 5.5, focuses on enabling reusability and subsequent product
derivation. Several decisions are made in this stage, including choosing the im-
plementation paradigm, defining the product’s form and abstraction level, and
organizing the reusable artifacts.

Choosing the Implementation Paradigm The literature categorizes soft-
ware product line implementation methods into two main approaches: annotative
and compositional. Annotative approaches use conditional compilation [LAL+10],
which is based on the pre-processor technique, and represents one of the earli-
est approaches. On the other hand, compositional methods encompass Feature-
Oriented Programming (FOP) [FGFdAM14], Aspect-Oriented Programming (AOP)
[KLM+97], and Delta-Oriented Programming (DOP) [SBB+10], with the latest
approach termed Trait-Oriented Approach (TOP) [BD17].

Though prevalent, the emergence of TOP prompts the recognition of a
third approach—a transformation-based method encompassing DOP and TOP.
Hence, our study identifies three categories of implementation approaches: anno-
tative (conditional compilation), compositional (FOP, AOP), and transformative
(DOP, TOP).

This thesis advocates implementing the software product line using the
Delta-Oriented Programming (DOP) paradigm. While each paradigm possesses
its unique set of advantages and drawbacks, selecting a paradigm hinges upon the
specific requirements of the software product line. The rationale behind choosing
DOP, supported by a comparative study, is outlined in Table 5.5.

In the comparative analysis presented in the table, the DOP paradigm
stands out for its substantial support for incremental, modular modifications
within software systems, allowing modifications to existing products by express-
ing changes as deltas. While FOP, AOP, TOP, and conditional compilation have
their respective merits, they lack inherent support for the incremental and mod-
ular modifications critical to our software product line implementation.

The context outlined in this thesis revolves around a dynamic environment
that requires adaptability to changing interoperability specifications. Given this
context, the choice paradigm is needed to facilitate transformative approaches.
When considering DOP vs. TOP, the decision was tilted towards the DOP

95

Paradigm Approach Focus Description Drawbacks

Conditional
computation

Anotative Preprocessor

Utilizes conditional compilation
to include/exclude code frag-
ments based on pre-defined con-
ditions.

Limited flexibility for extensive
software product line use.¡br¿-
Can lead to codebase complex-
ity and errors.

FOP Compositional
Feature orga-
nization

Organizes code around features
using feature models, represent-
ing desired software features.

Restricts modification of exist-
ing products. Not suitable
for extensive product modifica-
tions.

AOP Compositional
Separation of
concerns

Enhances modularity by ex-
tracting common behavior into
reusable aspects, though not in-
herently designed for SPL im-
plementation.

Lacks explicit focus on software
product lines. Limited capabil-
ity for SPL implementation.

DOP Transformative
Incremental
modular
modification

Facilitates incremental, mod-
ular software modification
through expressing changes in
the form of deltas. Considered
an extension of FOP.

Complexity in managing a mul-
titude of deltas. Learning
curve associated with delta-
based modifications.

TOP Transformative

Methods
independent
of class hier-
archy

Utilizes methods independent of
class hierarchy to create specific
products.

Less focus on software product
line implementation. May not
explicitly support SPL concepts

Table 5.5: Summarized software product line implementation paradigms

paradigm due to its unique ability to support incremental modifications, which
aligns well with the dynamic nature of our environment.

Now that the DOP paradigm has been selected, let’s present its principles
and discuss our strategies to overcome its limitations.

Determining Product Line Abstraction Level The analysis presented in
Table 5.5 highlighted the advantages of DOP paradigms in incrementally modify-
ing existing software products. This conclusion led us to choose DOP paradigms
for our approach.

Despite being a suitable SPL paradigm for interoperability contexts, DOP,
like other paradigms, has certain drawbacks. Managing multiple deltas and the
associated learning curve for delta-based modifications are key challenges.

Our solution is implementing the connector product line at the model level
to address these issues. This abstraction allows for consistent modeling of the core
delta module and facilitates product creation through refinement, such as moving
from a high-level model to generated code. By using Model-Driven Engineering
(MDE), we aim to improve the evolution and maintainability of the product line.

Architecture of the Connector Product Line The article explores the so-
lution space for domain engineering by following DOP principles. The Connec-
tor Product Line integrates a core connector model and a repository of reusable

96

artifacts. The core connector model is depicted by the connector metamodel,
structured as a class diagram showcased in Figure 3.4, which was developed in
Chapter 3.

Although this metamodel effectively captures the structural information
of the connector, it is limited to class, properties, and method signatures. Relying
solely on this information would restrict the potential of our approach. To fully
achieve our aim of reducing the volume of code developed by programmers, we
must leverage a repository of source code from diverse connector projects within
our connector repository. This will provide a significant advantage.

To adhere to this perspective, the implementation of the software prod-
uct line includes three main components: the connector metamodel, which cap-
tures structural information; a repository of reusable artifacts, which includes
method-level behavior elements; and a collection of delta modules that contain
modifications applicable to the central delta module.

Figure 5.8 presents a detailed illustration of the domain engineering im-
plementation. It shows the main components of the solution space in the domain
engineering sub-process. The delta module repository describes potential modifi-
cations that can be applied to one or more model versions. Reusable artifacts are
organized within delta modules, creating a many-to-many relationship: each delta
module contains multiple artifacts, and conversely, artifacts can belong to multi-
ple delta modules. This connection aligns entities, properties, and method-level
artifacts, ensuring each entity is associated with a reusable delta module.

Introducing a Metamodel for Managing Repositories of Reusable Ar-
tifacts The method-level reusable artifacts are crucial for creating coherence
within entities and delta modules. However, managing these artifacts can be-
come cumbersome without a specified organizational structure.

To streamline this process, we propose storing these artifacts in a separate
repository structured as a JSON file containing an array of JSON objects. Our
proposed metamodel is designed to address method source code, facilitating the
integration and organization of these reusable artifacts.

Figure 5.9 illustrates the proposed metamodel for organizing method-level
reusable artifacts.

A JSON structure representing a delta module has a unique identifier
called the name and a field called predecessors. The name acts as a distinctive
tag for the delta module, while the predecessors field contains a list of other delta
module names that must be applied before the current one, separated by commas.

97

Connector

EntityA

+ propertA1: int

+ propertA2: Stri

EntityB

+ propertB1: int

EntityC

+ propertC1: bo

+ propertC2: St

EntityD

+ propertD1: int

+ propertD2: Stri

Extends

1...0

ẟa

ẟd Δb

Δc
Delta sequence

bloc1 bloc2

bloc3
bloc4

bloc 5

Link class and artifacts

Changes
Link delta and

reusable artifacts

Figure 5.8: Comprehensive Overview of the Solution Space for the Connector Product
Line in Domain Engineering: Leveraging DOP Paradigms

This list defines the sequence in which these modules should be applied. Each
delta module can have none or multiple predecessor delta modules.

A delta module contains zero or several classes corresponding to the core
delta module entity. Each class has a name and includes multiple methods. The
methods within a class have their name and a source anchor that represents the
source code of the methods and pertains to the reusable artifacts.

The delta module exclusively contains methods not present in any of its
predecessor modules. If a delta module depends on another through the prece-
dence relationship, it inherits methods from the predecessors delta modules.

5.5.4 Mapping Guidelines: Feature Model to Model-Level Product
Line Architecture

The connector product line architecture, represented by the connector
metamodel, was established through a thorough reification process outlined in

98

DeltaModule

name: String
Class

name: String

Method

name: String
sourceAnchor: String

1,1 0,N

1,1

1,N
Parameters

name: String
type: String

1,11,N

1,1

Parent

Interfacce

name: String1,1

Figure 5.9: Metamodel organizing the Repository of Reusable Artifacts

Chapter 3. This foundational step aligns with the ConPL framework, simplifying
the transition from problem to solution space.

The feature model usually comes before the product line architecture.
However, bridging the gap between the domain engineering problem and its so-
lution can be intricate, specifically transitioning from the feature model to the
product line implementation.

Expanding beyond the variability model, implementing a product line of-
ten stalls without leveraging its full potential. To address this, we propose guide-
lines for a Model-to-Model (M2M) transformation [LWK10]. This transformation
bridges the gap, converting a feature model into a product line architecture rep-
resented explicitly by a class diagram.

M2M transformations are foundational in model-driven engineering and
can be approached through various methods, including operational and declara-
tive. Declarative approaches articulate the relationship between source and target
models, while operational approaches delineate the execution steps in generating
the target from the source model.

To streamline the transformation process, we categorize features into three
distinct groups: the root feature, the internal node feature, and the leaf feature.
The root feature denotes the primary feature devoid of any parent association.
Internal node features, while not the root, contain at least one child feature. Leaf
features, on the other hand, lack child features and can be categorized further as
those with and without attributes.

We have developed twelve transformation rules categorized into three sec-
tions: feature transformation, relationship modifications, and constraint handling.

99

N° Category Name Description

1 Feature Root Feature
Transformed into the root class of the class diagram, establishing a composition
relationship with related classes, indicating their dependence.

2 Feature
Internal node Fea-
tures

Converted into classes; their attributes become the class’s properties.

3 Feature
Leaf Features
(with Attributes)

Transformed into separate classes

4 Feature
Leaf Features
(without At-
tributes)

Become operations of the parent feature’s class

5 Relationship Mandatory
Transformed into a composition relationship where the parent becomes the com-
posite class, and the child becomes the part class, enforcing the child’s presence
if the parent exists.

6 Relationship Optional
Similar to mandatory but with a maximum cardinality of 1 and allowing the
child’s absence if the parent exists

7 Relationship OR group
Enforces a composite relationship, allowing for multiple composite classes (one
per child feature)

8 Relationship Alternative
Requires the presence of only one child element, becoming a composite class
with one part class (child feature). To ensure mutual exclusion, constraints are
expressed in Object Constraint Language (OCL) [RG02].

9 Constraint Implies
Represents the relationship between Feature A and Feature B where A can exist
if B exists but not vice versa. This constraint prevents the existence of the class
from Feature A without the class from Feature B

10 Constraints
If and only if
(IFF)

Indicates that Features A and B can exist or not but simultaneously. This con-
straint ensures that a class from Feature A or B does not exist without the other.

Table 5.6: Rule for transforming the feature model into a class diagram

These rules systematically guide converting features, associations, and constraints
from a feature model into a structured class diagram.

Refer to Table 5.6 for a detailed breakdown of these transformation rules.

The table presents transformation rules for converting a feature model into
a class diagram, categorized into three sections: features, relationships, and con-
straints. This structured guideline accurately represents the transformed model’s
feature attributes, relationships, and constraints in the resulting class diagram.

Figure 5.10 shows an illustrative example involving transforming a feature
model to a metamodel.

The proposed rules can be used manually or automatically. Automatic
transformation can be accomplished using some template-based transformation
engine such as the Atlas transformation model (ATL) [JABK08] or Apache ve-
locity [CH07].

100

Ecore class diagram
metamodel

MetaMetamodel
Conform to

.ecore
Feature model

Metamodel

.ecore

Conform to

Conform to Conform to

.ecore

.XMI .XMI

Figure 5.10: Transformation Process: Feature Model to Model-Level Core Product

5.5.5 Application Engineering through Model-Driven Engineering

In software product line engineering, application engineering is pivotal for
crafting connector products that meet specific criteria. This process unfolds in
three key stages: defining precise product specifications, selecting suitable config-
urations, and actualizing products aligned with the chosen setup. Employing a
Model-Driven Engineering (MDE) approach within this context streamlines the
transformation of resulting product models into executable code customized to
suit the distinct requirements of the software product line.

Utilizing Domain Engineering for connector creation Within the appli-
cation engineering sub-process, domain engineering is vital in crafting connec-
tors, progressing through four structured steps. Firstly, the process initiates by
precisely outlining the desired attributes of the connector. Following this, stake-
holders configure the domain feature model, meticulously selecting the necessary
features for the connector’s specification.

The subsequent step involves synthesizing the anticipated connector model.
This synthesis draws from various sources, such as the connector product line ar-
chitecture, delta modules, constraints originating from the domain engineering
sub-process, and the specific configuration desired for the connector. In the do-
main engineering phase, delta actions are tailored to reflect diverse constraints
pertinent to each configuration.

This meticulous process results in the automatic proposition of all delta
actions corresponding to the feature model configuration, respecting the estab-

101

lished constraints. Ultimately, this effort yields the expected connector model,
which is subsequently used to generate the source code of the connector in the
desired programming language.

Application Engineering and connector model derivation This section
primarily delves into the domain of application engineering, building upon the
groundwork laid by the domain engineering sub-process to generate the intended
connector. The sequential steps involve meticulously specifying the connector
attributes, configuring the domain feature model, and applying delta modules
from the domain engineering sub-process to derive the expected connector model.

The resulting target connector model embodies a specific variant derived
from the applied delta actions, a pivotal aspect of this modeling process. Finally,
the ultimate stage culminates transforming the resultant connector model into
executable code. The elucidation of this intricate process utilizes concrete ex-
amples within scenarios detailed in the forthcoming implementation use case in
Section 5.6. This practical illustration illuminates the complexities and practical
applications of this engineered approach to connector development.

5.6 Practical Application Scenario

In Chapter 3, we detailed the rationale behind analyzing a multitude of
connectors during the creation of the connector repository and metamodel. These
connectors encompassed a range of sources, including those from industrial part-
ners, vendor-specific, and vendor-independent solutions. Each case study revealed
diverse patterns that contributed to defining the metamodel’s dimensions. To en-
sure a well-rounded experimentation framework, we selected a connector from
each source to create a concise yet representative product line.

Our selection criteria prioritized shared commonalities among the three
chosen connectors to streamline the selection process. However, during the meta-
model validation in Chapter 3, our focus shifted towards connectors covering a
broader spectrum of patterns, even if they shared fewer commonalities. This
shift aimed to embrace more diverse patterns, resulting in a comprehensive and
detailed product line tailored for efficient product code generation. This empha-
sis underscores the significance of our work in establishing a versatile connector
repository, offering flexibility in selecting connectors based on our specific exper-
imental requirements.

Within the experimental product line, six primary message connectors
have been derived from industry expertise—Berger-Levrault, RabbitMQ GitHub

102

page 2, and EIP book example based on Java Messaging Service 3. These connec-
tors, based on Berger-Levrault’s BL-MOM library, unify various use cases sourced
from multiple origins, incorporating RabbitMQ and Java Messaging Service ex-
amples. Let’s delve into the exploration of these connectors.

Connector 1 , depicted in Figure 5.11, entails a message producer responsible
for message publication and a consumer handling message reception and printing.

ConsumerProducer Queue

RabbitMQ

Publish-Subcribe channel

Figure 5.11: Enabling fundamental Publish-Subscribe exchange with RabbitMQ

Connector 2 , depicted in Figure 5.12, introduces an intermediary step using
an Exchange for message publication. This approach enables producers to send
messages without specifying a particular Queue, facilitating adaptable message
retrieval and processing by recipients. The Exchange receives messages from
producers and distributes them across queues. This use case focuses on fan-
out, sending messages to all connected queues, thus enhancing system flexibility
and decoupling. For further details on AMQP Exchange, refer to the RabbitMQ
documentation 4.

2https://github.com/rabbitmq
3https://www.enterpriseintegrationpatterns.com/patterns/messaging/

RequestReplyJmsExample.html
4https://www.rabbitmq.com/tutorials/amqp-concepts.html

103

Consumer
B

Producer

RabbitMQ

X

Queue A

Publish-Subcribe channel

Queue B Consumer
A

Fanout
Exchange

Figure 5.12: Enabling Publish-Subscribe Fanout Exchange Pattern with RabbitMQ

Connector 3 (Figure 5.13) employs a direct type of exchange to Connector 2
but introduces message filtering based on routing keys. In this setup, consumers
intending to receive the message must be subscribed to a specific queue where
the name matches the routing key, for instance, ”prescription.hospital.france” or
”prefecture.lyon”. Compliance with this format is crucial for the consumer.

Consumer
B

Producer

RabbitMQ

X

Queue A

Publish-Subcribe channel

Queue B Consumer
A

Direct
Exchange

routing key=hospital

routing key= Government

Figure 5.13: Enabling Publish-Subscribe Direct Exchange Pattern with RabbitMQ

Connector 4 (Figure 5.14) improves routing flexibility using topic exchanges,
directing messages with specific routing keys to corresponding queues. Unlike Con-
nector 3, consumers interested in receiving the message need not subscribe to a
queue that precisely matches the routing key; instead, they adhere to a pattern
such as hospital.*.france, prescription.#, or city-hall. Here, ”*” signifies any
word, while ”#” denotes one or more words within the routing key. In hospi-
tal.*.france example ”*” can be replaced by public or private.

104

Consumer
B

Producer

RabbitMQ

X

Queue A

Queue B Consumer
A

Topic
Exchange

routing key= *.healt.*

routing key= *.admin.*.public.*
Publish-Subcribe channel

routing key= *.social.*

Figure 5.14: Enabling Publish-Subscribe Topic Exchange Pattern with RabbitMQ

Connector 5 (Figure 5.15) diverges from the initial four examples by employing
Command messages rather than Event messages and operates distinctively from
the fire-and-forget principle. It initiates requests and expects server responses.

Producer

RabbitMQ

X

RPC Request Queue

Consumer

Direct
Exchange

Publish-Subcribe
channel

RPC Reply Queue

Request
reply_to= RPC Reply Queue

wcorerlation_id=1

Reply
correlation_id=1

Figure 5.15: Enabling publish-subscribe RPC communication with RabbitMQ

Connector 6 demonstrates asynchronous request-response using JMS (Fig-
ure 5.16). It comprises a Requester, a Replier, and dedicated handling of invalid
messages in a separate Invalid channel. Unlike the previous five use cases, this
connector operates on JMS instead of RabbitMQ. Furthermore, unlike the first
four connectors, like Connector 5, it does not rely on the fire-and-forget principle.
Although a response similar to Connector 5 is required, the difference lies in using
a Command message for Connector 5 and a Text message for Connector 6. This
distinction extends to using Event messages in the initial four connectors.

105

ReplierRequestor

JMS Request Queue

Java Messaging Service (JMS)

Destination

JMS Reply Queue

Invalid message Queue

Reply
correlation_id=4

Request
reply_to= JMS Reply Queue

wcorerlation_id=4

Figure 5.16: Enabling asynchronous Request-Reply Exchange via Java Messaging
Service (JMS)

The descriptions of these connectors highlight their functionalities and
capabilities, both common and unique. Future enhancements may be necessary
to tailor the connectors to specific requirements. This exploration provides a
comprehensive overview of the connectors’ essential features, commonalities, and
distinctive functionalities and suggests potential improvements for more advanced
connectors.

5.7 Summary

This chapter introduces an innovative approach to generate interoperabil-
ity connectors, employing a methodology rooted in Software Product Line Engi-
neering (SPLE) specifically tailored for implementing these connectors. Through-
out the Domain Engineering phase, we harness a connector repository to construct
a comprehensive feature model encompassing all potential connectors for messag-
ing interactions. Simultaneously, we utilize the connector metamodel as a vital
component within the connector product line. This metamodel, integrated with
the system metamodel, is complemented by a repository of delta modules and
a collection of reusable artifacts crucial for illustrating the architecture of the
connector software product line.

Our proposed approach features explicit rules and automated transforma-
tions, enabling the seamless conversion of a feature model into a class diagram.
Additionally, we introduce a meticulously structured metamodel for reusable ar-
tifacts at a fine-grained code level, optimizing their practical application.

106

The subsequent chapter will delve into application engineering, where we
will demonstrate the feasibility of this approach through real-world industrial
case studies. This section will intricately detail the configuration and derivation
of an expected connector model from the connector architecture, employing delta
modules that contain essential delta actions. Furthermore, we’ll provide insights
into generating connector source code from the model.

Despite our adoption of model-driven engineering to achieve platform in-
dependence, the current model for code generation is tailored to specific commu-
nication patterns. Therefore, future iterations will develop a more inclusive model
encompassing diverse interoperability platforms. Additionally, our approach aims
to incorporate comprehensive support for connector lifecycle management.

107

Chapter 6. Tooling Support for Implementing Software
Product Lines: The PhaDOP Framework

In Chapter 5, the ConPL framework is introduced, which is used for build-
ing a Connector Product Line (SPL) by combining Delta-Oriented Programming
(DOP) and Model-Driven Engineering (MDE). The chapter provides an overview
of the basic principles of DOP. However, to practically implement a software prod-
uct line for product creation, it is necessary to address the solution space within
the domain engineering (DE) and application engineering (AE) sub-processes.
This section involves preparing all reusable artifacts and applying them for prod-
uct derivation. Figure 5.8 illustrates the steps in implementing the software prod-
uct line. The chapter presents the PhaDOP framework, which provides techno-
logical support for implementing a software product line (SPL) while focusing
on the solution space. It includes a fundamental use case to demonstrate the
practicality of the PhaDOP framework within the ConPL framework.

6.1 Surveying Tools for Software Product Line landscape

Software Product Lines (SPL) implementation encompasses a range of
tools, but only a few can handle the solution space. Due to this lack of tech-
nological support, SPL has not been widely adopted yet [SRA19]. As a result,
most projects only focus on product line modeling, where experts use features to
create specifications and configuration guides. Stakeholders usually do not move
beyond the domain engineering stage. Although DOP is one of the latest ap-
proaches to SPL, it also faces the same limitation of technological support. This
section provides an overview of well-known tools organized by their primary focus.

Tool for Analyzing, Modeling, and Testing in the Problem Space: Soft-
ware product line building often takes an extractive approach, where product lines
are derived from existing products. Tools such as BUT4Reuse [MZB+17] play a
crucial role in extracting variants of software artifacts, addressing commonality,
variability, and feature identification.

108

For functionality modeling and configuration generation in large systems,
feature modeling tools such as FeatureIDE [KTS+09] and Familiar [ACLF13] are
commonly used. These tools are essential for effective feature representation.

ECCO [FLLHE15] streamlines the product line engineering process by
automating various steps, including characterization, variability modeling, and
code generation. However, it is limited to handling source code.

IsiSPL [Hla22] covers the entire software product line (SPL) lifecycle, em-
phasizing feature localization, product generation, and incremental product lines
specifically for Java programs. Although it is based on the Abstract Syntax Tree
of Java programs and supports the Java language, it follows an annotative ap-
proach rather than the Delta-Oriented Programming (DOP) paradigm and lacks
support for model-level product line implementation.

LEADT1 is a Java-based tool designed to help developers identify func-
tionality within Java code and translate it into a software product line. Type-
Chef [KKHL10] focuses on verifying SPL properties without addressing product
generation.

Solution Space Implementation Tool: For FOP paradigms, AHEAD [Bat04],
a tool that supports stepwise refinement, allowing incremental feature addition.
FeatureHouse [AKL09] provides a language-independent framework for compos-
ing software artifacts, such as Java source code.

For AOP paradigms, AspectJ [KHH+01], an Aspect-Oriented Program-
ming (AOP) extension to Java, facilitates modular implementation of cross-functional
features. CaesarJ [AGMO06] unifies aspects, classes, and packages, solving prob-
lems in AOP and component-oriented programming. FeatureC++ [ALRS05] ex-
tends C++ for aspect-oriented and feature-oriented programming.

For conditional compilation, Colligens [MLD+13], a tool for pre-processor-
based SPLs in C that integrates TypeChef and FeatureIDE on the Eclipse plat-
form 2. Munge 3 is a straightforward Java preprocessor designed for simplicity. It
exclusively supports conditional source inclusion based on specified string patterns
such as ”if[tag]”, ”ifnot[tag]”, ”else[tag], and ”end[tag]”. Unlike conventional pre-
processors, Munge retains all comments and formatting in its output, ensuring
human-readable source code distribution. CIDE [KA09] focuses on preprocessor-
based SPL with a variability analyzer. VariantSync [PTS+16] automates synchro-
nization between variant products.

1https://github.com/ckaestne/LEADT
2https://projects.eclipse.org/projects/eclipse.platform
3https://github.com/sonatype/munge-maven-plugin

109

For the TOP paradigm, TraitRecordJ [BDSS13]programming language,
which is a Java dialect that uses traits and records as composable behavior
and state reuse units, respectively, and aims for interface-based polymorphism.
Xtraitj [BD17] is in continuity TraitRecordJ. It is a language for pure trait-based
programming interoperable with the Java-type system without reducing the flex-
ibility of traits.

For the DOP paradigm, DeltaJ [KHS+14], which is a pioneering tool for
DOP, offers operations for adding, modifying, and deleting methods and class
fields in Java programs. ParametricDeltaj [WKS+16] extends DeltaJ to consider
attributes as parameters. Delta-MontiArc [HRR14] is a delta-oriented variability
modeling language for architectural variability. SiPL [PKK+15] is a tool suite
supporting DOP at the model level, enabling software product line implementa-
tion. It allows the construction of SPLs over Python code through model-to-text
transformation. PYDOP [Lie23] is a recent Python library implementing DOP
for building SPLs over transformable Python artifacts.

Discussion Tools such as ECCO and IsSPL cover various steps in Software
Product Line (SPL) development but do not embrace Delta-Oriented Program-
ming (DOP) paradigms. AHEAD and FeatureC++ excel in compositional SPL
but lack transformation capabilities. DeltaJ and Delta-MontiArc are focused on
code-level implementation within the DOP context. SiPL, which focuses on DOP
at the model level, is the closest approach to meeting the specified objectives.
However, it requires manually creating model versions to calculate Delta Mod-
ules.

To address these gaps, we introduce the PhaDOP framework, an SPL im-
plementation approach that aligns with the DOP paradigm and leverages model-
driven engineering. This framework guarantees platform independence and in-
cludes features such as GUIs for Delta Project management, Delta Module cre-
ation and application, model-to-Java code transformation using the Pharo and
Moose platforms, and visualization of Delta Modules. Section 6.2.1 explains
the framework’s internal functionalities and implementation details and provides
guidelines for usage.

110

6.2 PhaDOP: A Pharo Framework for Implementing Software Product
Lines using Delta-Oriented Programming and Model-Based Engi-
neering

PhaDOP is a framework for implementing software product lines using
DOP and MDE. The framework is designed to overcome technological barriers,
facilitating the implementation of the industrial software use cases presented in
Chapter 5, Section 5.6, Figure 5.11, 5.12, 5.13, 5.14, 5.15, 5.16.

6.2.1 The PhaDOP Framework: Overview and Internal Mecha-
nism

This section introduces PhaDOP, a model-driven delta programming frame-
work. Figure 6.1 gives an overview of the main components and steps. The im-
plementation is based on the Pharo language and the Moose platform. Pharo 4

is a pure object-oriented, open source, dynamically typed programming language
inspired by Smalltalk [BNDP10]. It also provides a powerful and user-friendly en-
vironment with a focus on simplicity. Moose [AEH+20] is an open-source platform
for software and data analysis in Pharo.

Delta Service

Delta AGUI

Reusable Artefacts
repository (JSON

File)

Model to code
generator

Delta database

DeltaEcore V1

DeltaEcore V2

...........................

DeltaEcore Vn

DeltaEcore
Repository

Delta Generator V1

Delta Generator V2

...........................

Delta Generator Vn

Delta Generator
Repository Product

derivation

Apply change to
the generator

Import reusable
artefact

Instantiate
model

Java source code

Model to text
transformation

Delta creation, upade and delete sub-flow Product derivation sub-flow

Control action

Data model

Action

Figure 6.1: Overview of the PhaDOP Framework: Main Components and Steps

The framework comprises a set of components that we will describe in
detail.

The PhaDOP Graphical User Interfaces (GUIs): Managing Delta Projects
and Delta Modules can be complex when dealing with large amounts of source

4https://pharo.org/

111

code or many Delta Modules. The main challenge is to maintain usability when
working with Delta Modules. It is essential to hide potentially tedious tasks such
as program execution or source code manipulation. This is one of the limitations
we have pointed out with DeltaJ [KHS+14]. To overcome this challenge, the
PhaDOP framework introduces a set of graphical user interfaces (GUIs) that al-
low users to interact with Delta Projects and modules. These interactions include
creating, updating, and deleting Delta Modules. Developed using Spec2 [DVD19],
a framework designed for building GUIs in Pharo, the PhaDOP framework pro-
vides six GUIs, calledPresenters, that users can use for their interactions. The
first presenter, named SpDopToolStartPresenter, serves as the entry point of the
framework. Figure 6.2 illustrates the starting presenter of the PhaDOP frame-
work.

Figure 6.2: Overview of the PhaDOP starting interface

This starting presenter provides a sub-menu of options for users to navigate
to their desired presenter. The sub-menu offers choices for seven GUIs, each
of which is explained in the following sections: new Delta Project for project
initialization, create a delta, apply a set of Delta Modules, update a Delta Module,
generate a metamodel from a generator, generate Java code from a metamodel
variant, and cancellation. To launch the starting GUIs, which serve as the entry
point for the framework, execute the code snippet provided in Listing 6.1 in the
Pharo playground.

112

Listing 6.1: Pharo code for launching the starting presenter

1 SpDopToolStartPresenter new start

Listing 6.2 shows the code responsible for creating the sub-menu in the
starting presenter.

Listing 6.2: Pharo code for launching the main presenter

2 subMenu

3 ^ self newMenu

4 addItem: [:item |

5 item

6 name: ’New Delta Project ’;

7 icon: (self iconNamed: #add);

8 action: [SpCreateDeltaProjectPresenter new start]];

9
10 addItem: [:item |

11 item

12 name: ’Create a Delta Module ’;

13 icon: (self iconNamed: #add);

14 action: [SpCreateDeltaModulePresenter new start]];

15
16 addItem: [:item |

17 item

18 name: ’Apply a Delta Module ’;

19 icon: (self iconNamed: #smallProfile);

20 action: [SpApplyDeltaModulePresenter new start]];

21
22 addItem: [:item |

23 item

24 name: ’Update a Delta Module ’;

25 icon: (self iconNamed: #smallUpdate);

26 action: [SpUpdateDeltaModulePresenter new start]];

27
28 addItem: [:item |

29 item

30 name: ’Generate model fro metamodel ’;

31 icon: (self iconNamed: #add);

32 action: [SpModelGeneratorPresenter new start]];

33
34
35 addItem: [:item |

36 item

37 name: ’Generate code from model ’;

38 icon: (self iconNamed: #add);

39 action: [SpModelToCodePresenter new start]];

40
41 addItem: [:item |

42 item

43 name: ’Cancel ’;

44 icon: (self iconNamed: #back);

45 action: [self inform: ’Cancelled back to main menu’]];

46
47 yourself

Control actions: is activated upon clicking and directs the model toward spe-
cific tasks. As per our design, these tasks are assigned to other components,
namely Delta service for functions related to database access and Delta action,
which handles code modifications.

Delta services: are called by control action components to handle data access.
Consolidating all the code within the control action poses code readability and
maintenance risks. The control action module uses a data transfer object to insert

113

data into the internal database [Mon03]. It also retrieves data from the internal
database and passes it to the action module for logical processing requirements.

The data model: encompasses all the properties that define the data being
handled, such as the Delta Core, Delta Module, entities, and generators. It is a
blueprint for the required data structure for the framework’s operations. These
data elements are mapped to the internal database to ensure persistence within
the system.

Delta database: The Delta database is the repository for essential data within
the framework, mirroring the data model. Figure 6.3 illustrates the database
structure, highlighting various entities and their interconnections. Information is
stored or retrieved for creation, update, deletion, and application.

The Delta Core table stores initial project information, such as a unique
identifier, project name, and a feature list that defines possible configurations.
The table gets populated when initializing a Delta Project using the SpCre-
ateDeltaProjectPresenter interface, which is a GUI for initializing a new Delta
Project.

The Delta Module Table contains information on each Delta Module, such
as a unique identifier, module name, application condition, predecessors (an or-
dered list of preceding Delta Modules), the associated Delta Core, and addon/re-
movable entities. This information is recorded using the GUI SpCreateDeltaMod-
ulePresenter.

The Model Generator table contains details of all generators, each with a
unique identifier, name, target package, prefix, and suffix. Generators are copies
of the Delta Core metamodel modified by Delta Modules. This table is popu-
lated when registering a Delta Module through the SpCreateDeltaModulePresen-
ter GUI.

The Entity Table stores entities involved in delta operations, ensuring
uniqueness based on entity names. The link between entities and Delta Modules
is maintained in the delta-entity-link table. Entries are added when registering a
Delta Module through the SpCreateDeltaModulePresenter GUI.

The Delta-Generator-Link Table tracks the link between Delta Modules
and model generators, providing insights into the impact of Delta Modules on
generators and vice versa.

The database structure enables a comprehensive understanding of the
inter-dependencies of project information. It delineates the scope of a Delta Mod-
ule to a single Delta Project, influencing various entities. Conversely, an entity

114

can be impacted by one or more Delta Modules, resulting in the addition or dele-
tion of operations. Multiple Delta Modules may collectively affect a generator,
while a single Delta Module can contribute to different model variants through
zero or more variants.

The database structure enables a comprehensive understanding of the
inter-dependencies of project information. It delineates the scope of a Delta Mod-
ule to a single Delta Project, influencing various entities. Conversely, an entity
can be affected by one or more Delta Modules, resulting in the addition or dele-
tion of operations. Multiple Delta Modules may collectively impact a generator,
while a single Delta Module can contribute to different model variants through
zero or more variants.

Figure 6.3 presents the structure of the PhaDOP database structure. It
highlights each table with the concerted action that is initializing the Delta
Project, creating the Delta Module, and applying Delta Modules

Delta_Module

id

name

apply_condition

predecessors

id_delta_core

addon_entities

removable_entities

Model_Generator

id

name

package

prefix

suffix

Entity

name

Delta_Entity_Link

id_delta

name_entity

operation

Delta_Generator_Link

id_delta

id_generator

Delta_Core

name

feature_list

artefact_uri

Init

Create

Apply

Figure 6.3: Overview of the PhaDOP Framework Database Structure

115

Delta action manager: manipulates the Delta Module created and applies it
for the product derivation. In effect, the user action in the GUI that requests to
use a Delta Module retrieves the corresponding Delta Modules and applies them
to the target Delta Core generator. The delta manager acts on a copy of the
original generator, as we do not want to overwrite the original database.

Delta generator repository: contains each generator version created through
the Delta Modules application, i.e., product derivation. Indeed, we do not over-
write. The source and the target version of the generation are tracked in the delta
database. This lets us know which Delta Module will enable us to get which gen-
erator version and to which version. If necessary, we generate the corresponding
models.

Delta Core repository: contains generated metamodels variants from genera-
tors; they are UML class diagram models [vdML02]. Indeed, we decided to act on
the generator instead of the model itself. Thus, we can generate the corresponding
model if we want. The generators have the same structure, including packages,
classes, properties, and relations methods. So we can create and apply a common
method. Instead, we must use the created function for delta management case
by case. For example, we must iterate on a model before removing an entity or
its properties.

Reusable artifacts repository a JSON file containing reusable artifacts with
method-level granularity. It contains links between model entities and methods
with their reusable source code. The class diagram is a structural UML diagram
in which the system’s behavior, such as the body of methods, cannot be mod-
eled. This means the Delta Core module, the metamodel, cannot capture the
product’s structure. It, therefore, reduces reusability to the level of architectural
commonalities. As a result, the derived product can only generate source code
but only the project’s structure, such as classes, attributes, inheritance, inter-
faces, and method signature. We then lose interest in behavioral commonalities.
This is the most important thing because the developer must manually rewrite
the code without it. JSON links the core and reusable classes to the source code
of reusable artifacts. In this way, the source code of reusable methods is stored
in one place and can be used by any product.

The Model of the code generator allows the instantiation of the product
variant, representing a model obtained through a generator resulting after deriva-

116

tion. The instantiating consists of giving value to the model properties. The
method core is extracted from the Reusable artifact JSON. We must also store
the properties’ value in the JSON file. Reusable artifacts organization is pre-
sented by the metamodel proposed in Chapter 5, Figure 5.9. Once the connector
model is instantiated, we can generate the software product’s source code. the
code generation from the instantiated model rely on the Famix2Java project 5 for
the code generation.

6.3 Experimentation and Evaluation

This section provides an in-depth exploration of each component’s func-
tionality after introducing the tool’s main elements. Practical illustrations are
continuously used to enhance understanding and clarity.

To test the effectiveness of the PhaDOP framework, it is being applied to a
familiar use case known as the Expression Product Line (EPL). This use case has
been previously examined in related research, particularly in the works of DeltaJ
and SiPL. DeltaJava implements a Software Product Line (SPL) using the DOP
paradigm for Java, while SiPL follows a model-driven approach.

Figure 6.4 depicts the feature model for the EPL, consisting of eight fea-
tures: three abstract and five concrete. The root feature, EPL is an abstract
feature at the top level. It has two mandatory abstract child features, Data and
Operations, organizing the features into two distinct categories. Within the Data
abstract features, three children exist: Lit, Add, and Neg. Lit is a mandatory
child feature of Data, while Add and Neg are optional. On the other hand, the
Operations abstract feature includes two children: Print, which is mandatory,
and Eval, which is optional.

In this scenario, the EPL is implemented using a reactive approach. The
product line is built from the existing EPL legacy system implemented in Java.
Excerpts of this implementation are showcased in Listings 6.3, 6.4, 6.5, and 6.6.

Listing 6.3: Legacy Java Code for the Exp Class

48 public class Exp {

49 void print(){ }

50 int eval(){

51 return 0;

52 }

53 }

Listing 6.4: Legacy Java Code for the Lit Class

5https://github.com/moosetechnology/FAMIX2Java

117

93 return (-1) * this.expr.eval();

94 }

95 }

Now that we have the legacy system, we can proceed with the PhaDOP
Framework.

Creating the Delta Core Two strategies are applicable for implementing a
Delta Core [SBB+10]: starting from a Complex Core and starting from a Simple
Core. The Complex Core strategy involves creating product variants from com-
plete products, primarily by removing features. The Simple Core strategy involves
creating product variants from the most basic products, with only mandatory fea-
tures present.

We have chosen a Complex Core strategy to implement the SPL. This
means that we create product variants from the most complete products valid.
The most significant aspect of this strategy is the removal operations.

The PhaDOP framework utilizes model-based engineering to abstract the
Delta Core on the model level. In simpler terms, the EPL metamodel represents
the Delta Core as a UML class diagram created from the legacy source code. The
Delta Core is produced by using the Moose platform in the Pharo environment
and language. We are not going to build the metamodel directly. We are currently
focusing on developing a generator to generate a metamodel representing Delta
Core. This is a capability that is enabled by the Moose platform.

The Moose platform uses a Pharo class to represent a model generator,
which contains methods for creating the metamodel. Like all others, the generator
class is created in a Pharo package. In this example, the package name is called
EPL-model-generator. The generator class is named EPLModelGeneratorCore
and both are located in the EPL-model-generator package. Each class name is
an instance variable of the model generator class. You can find the source code
of the generator in Listing 6.7.

Listing 6.7: Declaration of the EPL Core Model Generator Pharo Class generator

96 FamixMetamodelGenerator subclass: #EPLModelGeneratorCoreOrgn

97 instanceVariableNames: ’exp lit add neg’

98 classVariableNames: ’’

99 package: ’EPL -model -generator

By default, the Moose metamodel class generator provides two class-side
methods and four instance-side methods. The class-side methods include pack-
ageName for returning the package name in which the model will be generated
and prefix for providing a string value used for the generated model to prevent
ambiguity in entity names.

119

Listing 6.8 and Listing 6.9 show the source code of the two class-side
methods.

Listing 6.8: EPL package name method

100 packageName

101 ^ #’EPL -model -generator ’

Listing 6.9: EPL prefix method

102 prefix

103 ^ #’EPL -Core -Orgn’

On the instance side, the defineClasses method allows the declaration of
entities in the Delta Core. For the EPL use case, the required entities include
Exp, Lit, Add, and Neg. The defineHierarchy method establishes inheritance rela-
tionships, where Lit, Add, and Neg are designated to have Exp as their superclass.
The defineProperties method specifies the necessary properties for each entity; for
instance, Lit has value, and Add entity has expr1 and expr2. The defineRelations
method indicates relations between entities; however, in the EPL system, entities
like Exp, Add, Lit, and Neg do not have multiplicity relations.

Listings 6.10, 6.11, 6.12, 6.13 present the methods Pharo code for the four
instance-side methids.

Listing 6.10: EPL defineClasses method

104 defineClasses

105 super defineClasses.

106 exp := builder newClassNamed: #Exp.

107 lit := builder newClassNamed: #Lit.

108 add := builder newClassNamed: #Add.

109 neg := builder newClassNamed: #Neg.

Listing 6.11: EPL defineHierarchy method

110 defineHierarchy

111 super defineHierarchy.

112 lit --|> exp.

113 add --|> exp.

114 neg --|> exp.

Listing 6.12: EPL defineProperties method

115 defineProperties

116 super defineProperties.

117 lit property: #value type: #String.

118
119 add property: #expr1 type: #String.

120 add property: #expr2 type: #String.

121
122 neg property: #expr type: #String.

Listing 6.13: EPL defineRelations method

123 defineRelations

124 "No relation yet"

120

Now that we have the metamodel generator, we can create a Delta Module
and begin our project.

6.3.1 Initializing the Delta Project

In the Delta Project initiation stage, the first step is to gather all the nec-
essary prerequisites for the Delta Core. This includes creating the delta database
and setting up the required tables based on the architecture shown in Figure 6.3.
During this phase, the details of the Delta Core are completed, such as the name
of the initial core model, the specifications for the Delta Core module, the list
of features to be included or excluded during configuration, and the location of
reusable artifacts essential to the project.

To provide the necessary information, we utilize a GUI to create the Delta
Project. To begin, we launch the tool through the home presenter and select New
Delta Project from the submenu. This takes us to the project initialization via the
SpCreateDeltaProjectPresenter GUI. Within this interface, there are input text
fields where the user can enter the required information for persisting in the delta
database. The user fills in the database name, Delta Core name, and feature list.
A comma should separate each string value.

Figure 6.5 provides a snapshot of the GUI and an illustrative input text
example.

Figure 6.5: Initializing the Delta Project with User-Provided Data

121

During the initialization stage, the Delta project database is created with
all the necessary tables, as shown in Figure 6.3. SQLite is used as the local
relational database for this purpose. Various implemented functions enable the
storage of relevant information on Delta Core in the corresponding table. This
functionality is made possible by the action implemented and the service it in-
vokes. The code for the GUI presenter is shown in Listing 6.14, which invokes the
action initDeltaProject. The code for the GUI presenter is shown in Listing 6.14,
which invokes the action initDeltaProject. Additionally, Listing 6.15 contains the
code for the initDeltaProject action.

Listing 6.14: Code of the init Delta Project action GUI

125 initializePresenters

126 fieldDBName := self newTextInput

127 placeholder: ’Name of the delta database ’;

128 yourself.

129
130 fieldDeltaCoreName := self newTextInput

131 placeholder: ’Name of the version of the Delta Core ’;

132 yourself.

133
134 fieldFeatureList := self newTextInput

135 placeholder: ’List of features ’;

136 yourself.

137
138 fieldArtifactUri := self newTextInput

139 placeholder: ’Artifacts location ’;

140 yourself.

141
142 buttonInitDeltaProject := self newButton

143 label: ’Init Delta Project ’;

144 color: Color gray;

145 action: [self initDeltaProject]

146 yourself.

122

Listing 6.15: Code of the ”initDeltaProject” called when posting the data for Delta
Project initialization

148 initDeltaProject

149
150 | connection dbName deltaCoreName featureList artifactUri |

151 "Field values"

152 dbName := fieldDBName text.

153 deltaCoreName := fieldDeltaCoreName text.

154 featureList := fieldFeatureList text.

155 artifactUri := fieldArtifactUri text.

156
157 "database"

158 connection := SQLite3Connection memory.

159 connection := SQLite3Connection on:

160 (Smalltalk imageDirectory / dbName) fullName.

161
162 connection open.

163 connection

164 execute:

165 ’

166 CREATE TABLE "delta_core" (

167 "id" INTEGER NOT NULL ,

168 "name" TEXT ,

169 "feature_list" TEXT ,

170 "artifact_uri" TEXT ,

171 PRIMARY KEY("id" AUTOINCREMENT)

172);

173 ’.

174 connection

175 execute:

176 ’

177 CREATE TABLE "delta_module" (

178 "id" INTEGER NOT NULL ,

179 "name" TEXT UNIQUE ,

180 "apply_condition" TEXT ,

181 "predecessors" TEXT ,

182 "addon_entities" TEXT ,

183 "removable_entities" TEXT ,

184 "id_delta_core" INTEGER ,

185 FOREIGN KEY(" id_delta_core ") REFERENCES "delta_core "("id"),

186 PRIMARY KEY("id" AUTOINCREMENT)

187);

188 ’.

189 connection

190 execute:

191 ’

192 CREATE TABLE "variant_generator" (

193 "id" INTEGER NOT NULL ,

194 "name" TEXT UNIQUE ,

195 "package" TEXT UNIQUE ,

196 "prefix" TEXT UNIQUE ,

197 "sufixe" TEXT UNIQUE ,

198 PRIMARY KEY("id" AUTOINCREMENT)

199);

200 ’.

201 connection

202 execute:

203 ’

204 CREATE TABLE "delta_variant_link" (

205 "id_delta" INTEGER ,

206 "id_variant" INTEGER ,

207 FOREIGN KEY(" id_delta ") REFERENCES "delta_module "("id"),

208 FOREIGN KEY(" id_variant ") REFERENCES "variant_generator "("id")

209);

210 ’.

211 connection

212 execute:

213 ’

214 CREATE TABLE "entity" (

215 "id_entity" INTEGER NOT NULL ,

216 "name_entity" TEXT ,

217 PRIMARY KEY(" id_entity" AUTOINCREMENT)

218);

219 ’.

220 connection

221 execute:

222 ’

123

223 CREATE TABLE "delta_entity_link" (

224 "id_delta" INTEGER ,

225 "name_entity" TEXT ,

226 "operation" TEXT ,

227 FOREIGN KEY(" id_delta ") REFERENCES "delta_module "("id")

228);

229 ’.

230 "Init Delta Core table"

231 connection

232 execute:

233 ’INSERT INTO delta_core(name , feature_list , artifact_uri) VALUES

234 (?1, ?2, ?3);’

235 with: {

236 deltaCoreName .

237 featureList .

238 artifactUri }.

239
240 connection close.

241
242 self inform: ’Delta Project succefully initialized ’.

243 self inform: ’Delta Core ’, deltaCoreName , ’ succefully initialized ’.

Figure 6.6 illustrates the interaction among various tool components during
the initiation of a Delta Project.

User

Init delta
project

interface
Provide

information Handle clic
action

Action
Controller

Redirect to
service

Init delta
service

Create
required tables

persist in
delta_core table

Show creation
message

Figure 6.6: Sequence Diagram: Initialization Process of the Delta Project

6.3.2 A Truth Table-Based Methodology to Identifying Entity and
Method-Level Granularity Delta Modules

Delta Modules at the entity and method-level granularity refer to changes
made at the class level. After initializing the Delta Project with a Delta Core, a
list of features, and reusable artifacts, the next step is to prepare Delta Modules

124

that apply to the Delta Core. Anticipating all potential Delta Modules in advance
requires effort, as predicting future additions, such as new entities or methods, can
be challenging. Identifying foreseeable changes can enhance the overall process,
especially when using model-based engineering. This can increase productivity
and make the task more accessible to non-experts.

We propose a methodology for identifying Delta Modules applicable to a
Delta Core according to the feature model. The process relies on a known truth
table. Indeed, each feature has two possible states for a valid target software
product, present or absent. In other words, each feature presence test has a true
or false value. The presence of a feature is materialized by a Delta Module that
accomplishes an ”Add” operation if the corresponding artifact does not exist
yet. Inversely, the not present features correspond to the Delta Module that
realizes the remove operation if the entity exists. This truth table proposition
does not consider the granularity of features at the properties level. Note that
the metamodel representing the Delta Core is a reusable entity and attribute-level
artifact. Methods are all directly managed from the reusable artifacts repository.

For a truth table with n inputs, where n is the number, there are 2n

possible outputs. We can adapt this to our context by designating features as
inputs and valid combinations to create products as outputs.

Table 6.1 presents the truth table corresponding to the EPL. The ”+” sign
means the feature is present for a given combination materialized by the table
truth inputs, and the ”-” sign feature is absent. The table shows all the possible
configurations at the entity level and method level. Even if the functions are not
present in the metamodel, entity and function are linked to the function artifacts
reusable located in the reusable artifacts repository.

It is important to note that there are mandatory features that are always
present and do not change. These features are not considered as variable inputs
in our methodology. Therefore, the total number of inputs equals the number of
optional features. The optional features comprise optional features, group features,
and alternative group features since each element is occasionally optional. This
means that for b, which represents the number of optional features, we have a
total of 2b possible delta modules. The set of possible delta modules has different
granularities, namely entity and function. In this context, we focus on the entity
granularity.

Table 6.2 displays the truth table of the EPL, which focuses on variable
features. Each row in the truth table represents a valid configuration to create
an EPL variant. This enables us to identify Delta Modules.

125

Lit Print Add Neg Eval

+ + + + +

+ + + + -

+ + + - +

+ + + - -

+ + - + +

+ + - + -

+ + - - +

+ + - - -

Table 6.1: Truth Table for the complete EPL

We have chosen a Complex Core DOP, focusing primarily on removal op-
erations. This simplifies both the number and size of the Delta Modules. The
table below illustrates the list of delta actions as shown in Table 6.3.

We note a simplification using the Complex Core. Indeed, the Delta Mod-
ule size is reduced, i.e., the number of possible Delta Action, because we do not
have operations related to mandatory features. For example, Delta has just one
operation, removing the Eval method instead of three, as presented in Table 6.3.
Once identified, all we have to do is implement the Delta Modules we want.

Table 6.2 is insufficient to show the impact of operation embedded in delta
action and difficulties caused by the number of combinations related to the delta
module. Indeed, when a configuration outpost gives several Delta Modules with
zero or more Delta Action, this does not mean all these Delta Action operations
must be applied. Remove actions are accomplished if the entity or method does
not already exist. Converting the Add operations is performed if the feature is
absent. This means each delta module is itself a set of Delta Action combinations.
We can see that the Delta Module itself is a truth table where the Delta Action is
input. So, a Delta Module was evaluated thanks to the possible entity-level add
and remove Delta Module truth table, Table 6.4.

126

Print Add Neg Eval

Delta 1 + + +

Delta 2 + + -

Delta 3 + - +

Delta 4 + - -

Delta 5 - + +

Delta 6 - + -

Delta 7 - - +

Delta 8 - - -

Table 6.2: Possible Delta Modules for Adding and Removing Entities and Methods
in the EPL

If we zoom in on a Delta Module in Table 6.4, for example, Delta 2, the
possible Delta Actions in the second column give 2n − 1 versions of the delta
module, where n is the number of delta actions. For Delta 2, n = 3 because
we have three delta actions. The −1 is included because a combination remains
unused. For example, the composition of Delta Actionsadd Add entity, add Neg
entity, and remove Eval method corresponds to the configuration of the feature
model in where entities Add and Neg are present, and method Eval is absent.

6.3.3 Delta Module Implementation

Delta Modules are a set of modifications that can be applied to a Core
Delta Module. This section aims to create some Delta Modules that can gener-
ate valid products. The Core Delta Module is the initial product without any
modification. In this case, the Core Delta Module is represented by a metamodel
that contains entities extracted from existing source code. Following the Com-
plex Core strategy, each entity is initially present in the Core Delta Module. The
cardinality between entities is defined using the EPL feature model. Entities of

127

Delta Mod-
ule

Possible Delta Action
Possible Delta Action for Complex

Core strategy

Delta 1
add Add entity, add Neg entity,
add Eval method

N.C.

Delta 2
add Add entity, add Neg entity, re-
move Eval method

remove Eval method

Delta 3
add Add entity, remove Neg entity,
add Eval method

remove Neg entity

Delta 4
add Add entity, remove Neg entity,
remove Eval method

remove Neg entity, remove Eval

method

Delta 5
remove Add entity, add Neg entity,
add Eval method

remove Add entity

Delta 6
remove Add entity, add Neg entity,
removeEval method

remove Add entity, remove Eval

method

Delta 7
remove Add entity, remove Neg en-
tity, add Eval method

remove Add entity, remove Neg en-
tity

Delta 8
remove Add entity, remove Neg en-
tity, Remove Eval method

remove Add entity, remove Neg en-
tity, remove Eval method

Table 6.3: Possible entity-level add and remove Delta Module for the EPL

a mandatory feature have a minimum cardinality of 1, while the minimum car-
dinality for an entity of a mandatory feature is zero. The EPL core module is
presented in Figures 6.7.

The Delta Module organizes reusable artifacts for entities using JSON ob-
jects. Method implementations are linked to corresponding classes when applying
the Delta Module. This allows for the addition and removal of methods as spec-
ified. Class source codes are grouped as key-value pairs. The provided example
in Listing 6.16 demonstrates reusable artifacts extracted from a Delta Module.

Listing 6.16: Example of delta repository stored in JSON file

128

Delta Mod-
ule

Possible Delta Action

Delta 2-1 add Add entity

Delta 2-2 add Neg entity

Delta 2-3 remove Eval method

Delta 2-4 add Add entity, add Neg entity

Delta 2-5
add Add entity, remove Eval

method

Delta 2-6
add Neg entity, remove Eval

method

Delta 2-7
add Add entity, add Neg entity, re-
move Eval method

Delta 2-8 N.C

Table 6.4: Possible entity-level add and remove Delta Module for the EPL

244 {
245 ”Exp” : {
246 ” targe tSourceLocat ion ” : ”D:\\ Users\boubouthiam . niang\\workspace\\

ep l l e gacy dop too l demo \\ExpressionProductLineGeneratedNew\\ s r c ” ,
247 ”methods” : [
248 {
249 ”name” : ” p r in t ” ,
250 ” sourceEnchor ” : ”{ //Comment : nothing yet }” ,
251 ”parameters ” : [
252 {}
253]
254 }
255] ,
256 ” parent ” : {} ,
257 ” i n t e r f a c e ” : [
258 {}
259]
260 } ,
261 ” L i t ” : {
262 ” targe tSourceLocat ion ” : ”D:\\ Users\boubouthiam . niang\\workspace\\

ep l l e gacy dop too l demo \\ExpressionProductLineGeneratedNew\\ s r c ” ,
263 ”methods” : [
264 {
265 ”name” : ” L i t ” ,
266 ” sourceEnchor ” : ”{ t h i s . va lue=n ; }” ,
267 ”parameters ” : [
268 {
269 ”name” : ” value ” ,

129

EPL
Lit

value: int

print()

Add

expr1: String

expr1: String

print()

Neg

expr: String

print()

Exp

print()

Extends

Extends

Extends

1,1 1,1

0,1

0,1

Figure 6.7: Core model of the EPL

270 ” type” : ” i n t ”
271 }
272]
273 } ,
274 {
275 ”name” : ” p r in t ” ,
276 ” sourceEnchor ” : ”{ System . out . p r i n t l n (t h i s . va lue) ; }” ,
277 ”parameters ” : [
278 {}
279]
280 }
281] ,
282 ” parent ” : {
283 ”name” : ”Exp”
284 } ,
285 ” i n t e r f a c e ” : [
286 {}
287]
288 } ,
289 ”Add” : {
290 ” targe tSourceLocat ion ” : ”D:\\ Users\boubouthiam . niang\\workspace\\

ep l l e gacy dop too l demo \\ExpressionProductLineGeneratedNew\\ s r c ” ,
291 ”methods” :
292 [
293 {
294 ”name” : ”Add” ,
295 ” sourceEnchor ” : ”{ t h i s . expr1 = a ; t h i s . expr2 = b ; }” ,
296 ”parameters ” : [
297 {
298 ”name” : ” expr1” ,
299 ” type” : ”Exp”
300 } ,
301 {
302 ”name” : ” expr2” ,
303 ” type” : ”Exp”

130

304 }
305]
306 } ,
307 {
308 ”name” : ” p r in t ” ,
309 ” sourceEnchor ” : ”{ t h i s . expr1 . p r i n t () ; System . out . p r i n t (\” + \”) ; t h i s . expr2 .

p r i n t () ; }” ,
310 ”parameters ” : [
311 {}
312]
313 }
314] ,
315 ” parent ” : {
316 ”name” : ”Exp”
317 } ,
318 ” i n t e r f a c e ” : [
319 {}
320]
321 }
322 }

We begin by setting up the Delta Project. We do this by initializing the
Delta Core Module and reusable artifacts. After that, we create a Delta Module
to modify the Delta Core Module version. This is done to create derived products.
To accomplish this, we use a scenario that specifies which Delta Module we want
based on the application condition and order. The process involves several steps.

The first step in the scenario is with a product with a Lit and Add entities,
each with the Print method. We create a delta DLitAdd module to modify the
core module. Knowing we adopted a Complex Core strategy, this Delta Module
has evolved to remove optional Neg features.

EPL
Lit

value: int

print()

Add

expr1: String

expr1: String

print()

Exp

print()

Extends

Extends

1,1 1,1

0,1

Figure 6.8: Target variant metamodel of when applying the DLitAdd delta model on
the EPL core module

The artifacts that can be reused for this delta module are also stored in
the artifacts repository, which can be referred to using the reference number 6.16.

131

Another product version is desired in the second step, building upon the
modifications introduced by the DLitAdd Delta Module. This modification in-
volves adding the Eval method to both Lit and Add entities. A new Delta Module,
DEvalLitAdd, is created, with a dependency on the DLitAdd module. Notably,
applying DEvalLitAdd before DLitAdd would revert to the original core model.
Figure 6.9 showcases the resulting model.

Furthermore, it has been demonstrated that Delta Modules are reusable,
as shown by their application order and dependencies. Each class in these mod-
ules implements a variant of the Eval method, and the associated method-level
reusable artifacts are stored in JSON files. To manage dependencies, the JSON
file includes fields that specify the order of Delta Modules, separated by commas
when applicable.

EPL
Lit

value: int

print()

Eval()

Add

expr1: String

expr1: String

print()

Eval()

Exp

print()

Eval()

Extends

Extends

1,1 1,1

0,1

Figure 6.9: The EPL Delta Module: DEvalLitAdd

The JSON file that contains reusable artifacts is structured following the
metamodel proposed in Chapter5, Figure 5.9.

Regarding the initial Delta Modules, the reusable artifacts linked to the
DEvalLitAdd Delta Module are also archived in the artifacts repository, as de-
picted in 6.16.

However, for having the wanted product, we could also use it. Instead, it
has two dependent Delta Modules. It is possible to use a single Delta Module
to go from the original Delta Core and remove one of the Neg entities to have
only the Lit, Add with print method for each class, and at the same time in-
troduce the ”Eval” method in both Lit and Add class. Let us call this Delta

132

Module DBigEvalLitAdd. The ”DBigEvalLitAdd” will contain the same changes
as the first Delta Module, DLitAdd, plus adding a new method Eval. Thus, this
is a significant Delta Module with already existing modifications. This needs to
emphasize the reusability of the Delta Module itself. The Delta Module manage-
ment could be more convenient with the reuse of Delta. This is our criticism of
DeltaJ afterward, not that Delta Modules can not be reused but that code-level
management without MDE could be time-consuming.

To summarize, to have the wanted product, we can choose the second Delta
Core and use a big Delta Module, DBigEvalLitAdd, or reuse a first Delta Module,
DLitAdd, composing with a small Delta Module, DEvalLitAdd. So specify delta
relation, DLitAdd after DEval, even if we prefer the later choice. We present the
Delta Module for the first case. Having an initialized Delta Project with the Delta
Core and reusable artifacts, we create a Delta Module to modify the core model
version for derived product creation. We use the scenario describing which Delta
Module we want following an application condition and their application order.
Here are the different steps of the scenario:

The reusable artifacts for the DBigEvalLitAdd Delta Module are stored in
the artifacts repository, as referenced in 6.16. Users can choose between a single
large Delta Module or a sequence of smaller Delta Modules.

The objective of the third scenario is to create a product that includes the
Neg entity with the Print and Eval methods but without the Add entity. The Lit
entity should maintain both the Print and Eval methods. To accomplish this, we
introduce the DLitNeg Delta Module, which excludes the ’Add’ entity from the
Delta Core.

The original Delta Core Module already includes the Neg entity, but ad-
ditional modifications are required to achieve the desired product. Removing the
Add entity from the original core produces a model variant with the Neg entity
but without the Add entity. However, this action results in the loss of the Eval
method in the Lit entity. To address this issue, we propose applying the Delta
Module DEvalLitAdd before DEvalLitNeg. The original core model is modified
by introducing the Eval method in both the Add and Lit entities, followed by the
removal of the Add entity.

The challenge arises from the fact that the DEvalLitNeg module does not
have a Neg entity, as it relies on the DLitAdd module, which removes the Neg
entity. Therefore, the only viable solution is to transition from the DEvalLitAdd
module by adding the Neg entity. We prefer a complex core strategy where
removal takes precedence over addition, so we choose a Delta Module that removes
the Add entity from the original core module while adding evaluation methods

133

to both the Lit and Neg entities. This module is called DEvalLitNeg and is
similar to DBigEvalLitAdd but with Add replaced by Neg. Another approach is to
first implement a Delta Module that removes Add (DLitNeg) and then introduce
DEvalLitNeg, which depends on DLitNeg and adds evaluation methods to the Lit
and Neg entities.

EPL
Lit

value: int

print()

eval()

Neg

expr: String

print()

eval()

Exp

print()

eval()

Extends

Extends

1,1 1,1

0,1

Figure 6.10: The EPL Delta Module: DEvalLitNeg

Similarly to the previous Delta Module, the repository includes reusable
source code relevant to this Delta Module, as referenced in 6.16.

Delta Module is created using the SpCreateDeltaModulePresenter started
by selecting the Create new Delta Module option in the submenu available from the
main present. Users input details regarding the relevant database and the name
of the Delta Module while specifying its application condition. This condition is
based on the feature list within the Delta Core table. Additionally, users specify
the list of entities for addition or removal. The Delta Core ID precisely designates
the involved Delta Project. Refer to Figure 6.11 for a visual representation of the
DEvalLitAdd Delta Module creation interface.

The Delta Module creation process involves adding user-provided infor-
mation to the corresponding table in the embedded delta database, as shown in
Figure 6.3. The code for the SaveDeltaModule action is provided in Listing 6.17.

Listing 6.17: Code of the ”SaveDeltaModule” called when posting the data for cre-
ating a Delta Module

323 saveDeltaModule

134

Figure 6.11: Reusable Artifacts of the Delta Module DEvalLitNeg in the EPL Arti-
facts

324
325 | connection dbName name applyCondition predecessors idDeltaCore addonEntities removableEntities

idDeltaModule tabAddonEntities tabRemovableEntities|

326 "Field values will become dto"

327 dbName := fieldDbName text.

328 name := fieldDeltaName text.

329 applyCondition := fieldApplyCondition text.

330 predecessors := fieldPredecessors text.

331 idDeltaCore := fieldIdDeltaCore text.

332 addonEntities := fieldAddonEntities text.

333 removableEntities := fieldRemovableEntities text.

334
335 "database"

336 connection := SQLite3Connection memory.

337 connection := SQLite3Connection on:

338 (Smalltalk imageDirectory / dbName) fullName.

339
340 connection open.

341
342 connection

343 execute:

344 ’INSERT INTO delta_module(name , apply_condition , predecessors , id_delta_core , addon_entities ,

removable_entities) VALUES (?1, ?2, ?3, ?4, ?5, ?6);’

345 with: {

346 name.

347 applyCondition.

348 predecessors.

349 idDeltaCore.

350 addonEntities.

351 removableEntities

352 }.

353
354 "Create entity and delta link"

355
356 idDeltaModule := ((connection execute: ’Select id from delta_module where name=?’ with: {name}) next) at

:’id’.

357 "Todo create function for the two case duplication"

358 tabAddonEntities := addonEntities splitOn: ’,’.

359 tabAddonEntities do: [:each |

135

360 |entity|

361
362 entity := (connection execute: ’Select name_entity from entity where name_entity =?’ with: {each}) next.

363 "if entity not alredy exist"

364 entity ifNil: [

365 each ifNotEmpty: [

366 connection

367 execute:

368 ’INSERT INTO entity(name_entity) VALUES (?1);’

369 with: {

370 each

371 }.

372]

373
374].

375 "Create link between Delta Module and entity"

376 each ifNotEmpty: [

377 connection

378 execute:

379 ’INSERT INTO delta_entity_link(id_delta , name_entity , operation) VALUES (?1, ?2, ?3);’

380 with: {

381 idDeltaModule.

382 each.

383 ’ADD’

384 }.

385]

386].

387
388 "Todo create function for the two case duplication"

389 tabRemovableEntities := removableEntities splitOn: ’,’.

390 tabRemovableEntities do: [:each |

391 |entity|

392 entity := (connection execute: ’Select name_entity from entity where name_entity =?’ with: {each}) next.

393 "if entity not alredy exist"

394 entity ifNil: [

395 each ifNotEmpty: [

396 connection

397 execute:

398 ’INSERT INTO entity(name_entity) VALUES (?1);’

399 with: {

400 each

401 }.

402]

403
404].

405
406 "Create link between Delta Module and entity"

407 each ifNotEmpty: [

408 connection

409 execute:

410 ’INSERT INTO delta_entity_link(id_delta , name_entity , operation) VALUES (?1, ?2, ?3);’

411 with: {

412 idDeltaModule.

413 each.

414 ’REMOVE ’

415 }.

416]

417].

418
419 connection close.

420
421 self inform: ’Delta Module ’, name , ’ succefully created ’

Figure 6.6 illustrates the sequence diagram that delineates the interactions
among the involved components during creating a Delta Module.

6.3.4 Visualize Delta Modules

In a comprehensive system, the demand for Delta Modules could reach
hundreds, as outlined in Table 6.2. While model-based engineering simplifies the
handling of Delta Modules compared to working at the code level, effective man-

136

Loop

Provide
information Handle clic

action
Redirect to

service Insert in delta
module table

:User : Create delta
IHM

:Action
controller

:Create delta
service

:Delata
database

Get id of created
delta module

id delta module

[Foreach addon and
removable entity name] Get entity by name

Entity result set

alt

 [Result set>0]

 [else]

Insert link entity delta

Insert link entity delta

Insert entity

Show creation
message

Figure 6.12: Sequence Diagram for Delta Module Creation

agement on such a large scale might require advanced functionalities, especially
for individuals not well-versed in the field.

This section underscores the functionality within our framework for vi-
sualizing Delta Modules, allowing us to showcase their interdependencies. The
visualization feature leverages Roassal [Ber22], a Pharo library. Figure 6.13 pro-
vides an overview of the visualization of the Delta Module table.

In a comprehensive system, the demand for Delta Modules could reach
hundreds, as outlined in Table 6.2. While model-based engineering simplifies the
handling of Delta Modules compared to working at the code level, effective man-

137

Figure 6.13: Delta Modules dependencies visualization

agement on such a large scale might require advanced functionalities, especially
for individuals not well-versed in the field.

This section underscores the functionality within our framework for vi-
sualizing Delta Modules, allowing us to showcase their interdependencies. The
visualization feature leverages Roassal [Ber22], a Pharo library. Figure 6.13 pro-
vides an overview of the visualization of the Delta Module table.

6.3.5 Apply Delta Modules - Product derivation

This section explains how the PhaDOP applies a Delta Module for prod-
uct derivation. We consider the Delta Module DEvalLitEval introduced in Sec-
tion 6.3.3. It is about a Delta Module that removes the Neg from the Delta Core
module and adds the Eval method to the ”Lit” and ”Add” entities. This Delta
Module is created using the following configuration: Lit, Add,!Neg, Print, Eval.
The symbol ! means the entity or method is absent for the chosen configuration.
This corresponds to the Delta Module presented in the database. A single Delta
Module accomplishes the modification. Adding Eval to ”Lit” and ”Add” will be
in the artifact repository JSON file.

To apply a Delta Module, we open the interface SpApplyDeltaModulePre-
senter after choosing the option ”Apply Delta Module” from the sub-menu of the
tool home interface. Then, the user enters the required information: the database

138

name, the Delta Module name, the generator that must be modified, the package
name of the original generator, the prefix for differentiating entity names, and
the suffix that will be appended to the original package name. Figure 6.14 give
an overview of the delta application user interface.

Figure 6.14: Delta Module application GUI

During validation, the system will extract information from the database
and subsequently apply these changes to the target model generator. The valida-
tion action code is presented in Listing 6.18.

Listing 6.18: Code of the ”SaveDeltaModule” called when posting the data for cre-
ating a Delta Module

422 applyDeltaModule

423
424 | connection dbName deltaName generatorName generatorClassName generatorClass entitiesOperationsLink

packageName prefix suffix deltaModule deltaActionManager sourceNameDico retrievedGenerator|

425
426 dbName := fieldDbName text.

427 deltaName := fieldDeltaName text.

428 generatorName := fieldGeneratorName text.

429 packageName := fieldPackageName text.

430 prefix := fieldPrefix text.

431 suffix := fieldSuffix text.

432
433 connection := SQLite3Connection memory.

434 connection := SQLite3Connection on:

435 (Smalltalk imageDirectory / dbName) fullName.

436
437 connection open.

438
439 deltaModule := (connection execute: ’Select id from delta_module where name=?’ with: {deltaName }) next.

440 entitiesOperationsLink := (connection execute: ’Select name_entity , operation from delta_entity_link

where id_delta =?’ with: {(deltaModule at:’id’)})"next".

441
442 "generatorClassName := deltaModule at:’generator ’."

443 generatorClass := Smalltalk classNamed: generatorName.

444 "entityName := deltaModule at:’entity ’."

445 "packageName := deltaModule at:’package ’."

446 "prefix := deltaModule at:’prefix ’."

447 "suffix := deltaModule at:’suffix ’."

448
449 deltaActionManager := DeltaActionManager new.

450
451 "Each entity delta link"

452 (entitiesOperationsLink rows) do:[: row |

453 deltaActionManager modifyGeneratorInstanceSideForDelta: generatorClass entitiesOperationsLink: row.

139

454].

455
456 sourceNameDico := Dictionary new.

457 sourceNameDico at: ’packageName ’ put: packageName.

458 sourceNameDico at: ’prefix ’ put: prefix.

459
460 deltaActionManager modifyGeneratorClassSideForDelta: generatorClass sourceNameDico: sourceNameDico

varianteSufixe: suffix.

461
462 "After applying we deltas modules we save link with generator in db"

463 connection

464 execute:

465 ’INSERT INTO variant_generator(name , package , prefix , sufixe) VALUES (?1, ?2, ?3, ?4);’

466 with: {

467 generatorName.

468 packageName.

469 prefix.

470 suffix

471 }.

472
473 "Create link betweeen generator and Delta Module"

474 retrievedGenerator := (connection execute: ’Select id from variant_generator where name=?’ with: {

generatorName }) next.

475 connection

476 execute:

477 ’INSERT INTO delta_variant_link(id_delta , id_variant) VALUES (?1, ?2);’

478 with: {

479 (deltaModule at:’id’).

480 (retrievedGenerator at:’id’)

481 }.

482
483 connection close.

484
485
486 self inform: ’Delta Module ’, deltaName , ’ succefully applied ’.

The program navigates through several framework components, as de-
picted in the sequence diagram in Figure 6.15.

The Delta Module is applied by modifying the model generator’s methods
on both the class and instance sides. The updated generator is then stored in
the database, and a relationship between the Delta Module and the generator is
established in the corresponding table. This allows tracking which Delta Modules
have been applied to the generator and which generators are impacted by a partic-
ular Delta Module. This knowledge is essential for effective system management,
particularly when assessing the impact of removing a Delta Module.

Once the Delta Module has been applied, the next step is to generate the
derived variant using the dedicated GUI provided by the framework, called the
SpModelGeneratorPresenter. The GUI for generating a model from a metamodel
is shown in Figure 6.16.

Listing 6.19 the code corresponding to the action component called when
posting the model generation request.

Listing 6.19: Code of ”generateModel” for Generate the product model from variant
metamodel

487 generateModel: metamodelName

488 |class|

489 class := (Smalltalk classNamed: metamodelName text).

490 class generate.

491 self inform: ’Model successfully generated ’.

140

Provide
information Handle clic

action
Redirect to

service
Get delta module

by name

:User : Apply delta
IHM :Action controller

:Apply delta
service

:Delata
database

Delta module

Get linked entities and
attached operations

Map of entity operation

Modify class side methods

Modify instance side methods

:Model
generator

Insert generator in table

Insert variant generator link in table

Show apply message

Figure 6.15: Sequence diagram for Delta Module creation

Figure 6.16: Graphical User Interface (GUI) for Model Generation

The subsequent step involves model-to-code transformation after the gen-
erated model has been obtained.

141

6.3.6 Generation of Product Source Code - Application Engineer-
ing

This section is dedicated to generating code from the obtained model.
PhaDOP provides functionalities for generating Java code, which can be accessed
through a dedicated GUI called the ’SpModelToCodePresenter’ interface. This
interface can be accessed after a selection in the initial interface. Figure 6.17
provides an overview of the tool and the necessary information.

Figure 6.17: Transformation from Model to Code - EPL Variant Code Generation
from the Core Delta Module

The program utilizes user-provided data, such as the entity name, prefix
(which is removed for processing), location of reusable artifacts, and root folder
for source code generation. It then iterates through model entities and creates
a class for each entity based on the provided information. However, as the class
diagram only captures the static model and excludes behavioral aspects, the pro-
gram utilizes reusable artifacts stored in a JSON file. A dictionary establishes
connections between classes and their corresponding artifacts to bridge the gap.
The metamodel shown in Figure 5.9 defines the structure of reusable artifacts.
An iterative process is used to extract methods for each class.

We designate the root location for generating the respective class for every
class. The program iterates through the methods, setting the method parameters
by further iterating through each method’s parameters. Each method contains a
source code segment that encapsulates the method’s body.

Listing 6.20 provides the action code for generating Java source code based
on the root model entity name.

142

Listing 6.20: Source code of the ”generateJavaFromDeltaCore” action that export
the model to java source code

492 generateJavaFromDeltaCore

493 | rootEntityName prefix artifactsLocaton rootFolder entityList artefactsDictionary visitor|

494
495 rootEntityName := fieldRootEntityName text.

496 prefix := fieldPrefix text.

497 artifactsLocaton := fieldArtifactsLocaton text.

498 rootFolder := fieldRootFolder text.

499
500 "Todo funtion: prefixe , class name , Model Name location"

501 entityList := (Smalltalk classNamed: rootEntityName) allSubclasses.

502
503 "targetSourceLocation := ’D:\ Users\boubouthiam.niang\workspace\epl_legacy_dop_tool_demo\

ExpressionProductLineGeneratedNew\src ’."

504
505 artefactsDictionary := artifactsLocaton asFileReference

506 readStreamDo: [:readStream |

507 (NeoJSONReader on: readStream) next].

508
509 "Attribut"

510 entityList do: [:class |

511 |st c m package componentAnnotation componentAnnotationInstance getAnnotation getAnnotationInstance

parentClass methodArray targetSourceLocation|

512
513 st := FamixJavaClass new.

514 st name: ’String ’.

515 c := FamixJavaClass new.

516 c name: (class name copyFrom:prefix size + 1 to:class name size).

517
518 class instVarNames do: [:var |

519 |currentAttribut|

520 currentAttribut := FamixJavaAttribute new.

521 currentAttribut name: var.

522 currentAttribut declaredType: st.

523
524 c addAttribute: currentAttribut.

525].

526
527 "Method"

528 m := FamixJavaMethod new.

529 "Get linked artefacts for current class"

530 methodArray := (artefactsDictionary includesKey: c name) ifTrue: [(artefactsDictionary at: c name) at:’

methods ’]

531 ifFalse: [OrderedCollection new.].

532 methodArray do:[:method |

533 |arrayParam paramTmp|

534
535 m := FamixJavaMethod new.

536 m name: (method at:’name’).

537 m sourceAnchor:

538 (FamixJavaSourceTextAnchor new source:

539 (method at: ’sourceEnchor ’)).

540 "1 halt."

541 m parentType: c.

542 m declaredType: st.

543 arrayParam := OrderedCollection new.

544 (method at:’parameters ’) do: [:p |

545 |param paramType|

546 "1 halt."

547 p ifNotEmpty: [

548 param := FamixJavaParameter new.

549 paramType := FamixJavaClass new.

550 paramType name: (p at:’name’).

551 param declaredType: paramType.

552 arrayParam add:param.

553]

554].

555
556 "Multi parameter sort problem in Famix2Java (why param sourceAnchor ?)"

557 "arrayParam ifNotEmpty: [m parameters: arrayParam]."

558
559 "Annotation methhod (not key value yet)"

560 getAnnotation := FamixJavaAnnotationType new name: ’MethodAnnotation ’.

561 getAnnotationInstance := FamixJavaAnnotationInstance new annotationType: getAnnotation.

562
563 m annotationInstances add: getAnnotationInstance.

143

564 "1 halt."

565 c addMethod: m.

566
567].

568
569
570
571 componentAnnotation := FamixJavaAnnotationType new name: ’ComponentAnnotation ’.

572 componentAnnotationInstance := FamixJavaAnnotationInstance new annotationType: componentAnnotation.

573 c annotationInstances add: componentAnnotationInstance.

574 "Inheritance (real parentclass ?)"

575 parentClass := FamixJavaClass new

576 name: ’ParentClass ’;

577 parentPackage: package;

578 yourself.

579
580 c

581 addSuperInheritance:

582 (FamixJavaInheritance new

583 subclass: c;

584 superclass: parentClass).

585
586 targetSourceLocation := (artefactsDictionary at:c name) at:’targetSourceLocation ’.

587
588
589 visitor := FAMIX2JavaVisitor new.

590 "visitor rootFolder: targetSourceLocation asFileReference."

591 visitor rootFolder:’D:\ Users\boubouthiam.niang\workspace\epl_legacy_dop_tool_demo\

ExpressionProductLineGeneratedNew\src’ asFileReference.

592 c accept: visitor.

593].

The code generation action facilitates obtaining the source code classes for
the anticipated variant of the EPL system. To achieve this, we partially rely on
Famix2Java 6, a visitor designed for exporting FamixJava [Tic99] models to Java
code. Specifically, it manages the transition from constructed classes to Java files.
Listings 6.21,6.22, and6.23 showcase the generated classes.

Listing 6.21: Generated class Exp

594 @ComponentAnnotation

595 public class Exp extends ParentClass {

596 @MethodAnnotation

597 String print () {

598 // Comment:nothing yet

599 }

600 }

Listing 6.22: Generated class Lit

601 @ComponentAnnotation

602 public class Add extends ParentClass {

603 String expr1;

604 String expr2;

605
606 @MethodAnnotation

607 String Add() {

608 this.expr1 = a ; this.expr2 = b ;

609 }

610
611 @MethodAnnotation

612 String print () {

613 { this.expr1.print();System.out.print(" + "); this.expr2.print ();

614 }

615
616 }

6https://github.com/moosetechnology/FAMIX2Java

144

generated Manual completion

Class x -

Method signature x -

Method parameters - x

Method body x -

Class annotation x -

Method annotation x -

Package import - x

Implement interface - x

Table 6.5: Table showing what can be generated and what is done manually

Listing 6.23: Generated class Add

617 @ComponentAnnotation

618 public class Add extends ParentClass {

619 String expr1;

620 String expr2;

621
622 @MethodAnnotation

623 String Add() {

624 this.expr1 = a ; this.expr2 = b ;

625 }

626
627 @MethodAnnotation

628 String print () {

629 { this.expr1.print();System.out.print(" + "); this.expr2.print ();

630 }

631
632 }

The code generated meets our expectations by successfully creating classes,
attributes, methods, constructors, and annotations compared to existing systems.
Although the model-to-code engine requires improvement in parameter genera-
tion, importing classes remains a pending task. However, this issue is not critical
as the remaining code to be completed is minimal. Table 6.5 summarizes the
artifacts that can be generated or completed manually using the current version
of the tool.

145

6.4 Discussion

The proposed tool takes advantage of working at the model level. This
simplifies the delta management compared to code. However, the passage from
the model to code after derivation is sometimes challenging for the model-based
approach. To this day, we can generate Java code. After instantiating our re-
sulting model, we use a project called Famix2Java to parse the code to Java.
The transformation in another language requires another parser. Concerning the
derivation process, we use a core complex strategy and focus on removing instead
of adding. This can be a limitation for evolving software product lines because
we must create a delta operation concerning the added class when the product
line evolves by adding a new model. It is necessary to improve the tool to take
entity removal into account. In this line, we must accomplish experimentation
that implies changes in attributes. We focused on entity and method levels. The
current version of the tool does not take charge of the sequential application of
the dependent Delta Module. Even if we present how it must work, we need to
improve the code for that and realize more experimentation. The product con-
figuration must be more constrained. Today, we indicate a configuration that
can activate the Delta Module, but we must do more control when applying the
Delta Module. As we move forward, the chosen configuration has little impact
on the derivation, so we indicate the metamodel to be applied. It would be in-
teresting if, knowing that a configuration is entered for each Delta Module, it
was possible to leave the choice of Delta Modules to the configuration. In this
way, a configuration can automatically design all applicable Delta Modules. The
visualization of the Delta Module must be improved. It will be interesting to go
beyond showing simple Delta Module dependencies, the link with the impacted
model generator, and the relation between the Delta Module and entity. This
will help with the maintenance of the Delta Project. Thus, the impacted Delta
Module could be refactored by removing an obsolete entity when we evolve the
product line. However, this tool tackles scientific lock about implemented DOP
at the model level because none do the same today.

6.5 Threats to Validity

This chapter introduces tools that facilitate the implementation of Soft-
ware Product Lines (SPL) based on Delta-Oriented Programming (DOP) paradigms
and Model-Driven Engineering (MDE). However, it is essential to acknowledge
that these tools have certain limitations.

146

Specifically, the primary emphasis of the tool is on handling complex core
strategies, often neglecting support for adding entities. Consequently, each Delta
Module primarily focuses on removing entities, which can make it challenging
to add new ones seamlessly. While this approach is suitable for large-scale use
cases, such as our ongoing example, it may pose challenges in situations that
require complex and multiple operations, especially those involving entity removal
and reuse. This limitation could become more pronounced in large-scale systems
where detecting all possible Delta Modules may be impractical.

Secondly, the current management of reusable artifacts relies on JSON
files. Compared to tools like DeltaJ, manual management of files can become
cumbersome at a larger scale, impacting product line maintenance. Exploring
more efficient ways to manage JSON files, such as utilizing a JSON database like
MongoDB, could significantly enhance this aspect.

Thirdly, we may need to fine-tune the code generated by our tools to
improve its overall readability and quality.

Fourthly, concerning the generation of source code for the product, the
current process involves converting a model into code using Famix2Java, a vis-
itor [EKLG+03] designed to export FamixJava [Tic99] models into Java code.
However, expanding our capabilities to generate code in other programming lan-
guages would necessitate the development of a new engine tailored for model-to-
code transformations in those specific languages.

6.6 Conclusions

The PhaDOP framework is a transformation-centric approach to Software
Product Lines. It is specifically designed for implementing SPLs using the Delta-
Oriented Programming (DOP) paradigm and leveraging Model-Driven Engineer-
ing. Currently, it focuses on generating Object-Oriented code emphasizing entity
removal. Ongoing efforts aim to enhance its capabilities to encompass a broader
range of operations, including entity addition. The presented end-to-end process
validates the framework’s functionality through a straightforward use case. We
actively pursue continuous improvements and enhancements.

147

Chapter 7. Experimentation on Software Connector
Generation from the Connector Product Line

This Chapter validates the practicality of the proposed framework for cre-
ating interoperability connectors using ConPL, a software product line approach.
The framework consists of domain and application engineering sub-processes, each
further divided into problem and solution spaces, as introduced in Chapter 5 and
illustrated in Figure 5.8.

This section validates the practicability of the proposed framework for cre-
ating interoperability connectors using ConPL, a software product line approach.
This framework was introduced in Chapter 5, as illustrated in Figure 5.8.

The key steps involved in this practicability demonstration are as follows:
Within the problem space of domain engineering, we address feature identifica-
tion and feature modeling. This entails recognizing common architectural and
behavioral features by analyzing interoperability patterns in existing connectors,
summarized in a connector corpus. Following this, we construct a feature model
representing all potential features for building a messaging connector. We estab-
lish relationships between the connector product line architecture materialized by
the metamodel presented in Chapter 3, Figure 3.4, and a reusable artifact. This
constitutes the solution space of application engineering, specifically for imple-
menting the connector product line.

The primary focus of this section is to demonstrate that the software prod-
uct line enables the creation of interoperability connectors in practice. The SPL
expert creates the product line, and engineers can use it to produce products.
This use case emphasizes application engineering and involves:

• Receiving a connector specification and configuring the product to generate
a product variant of the established product line. Leveraging model-driven
engineering, the expected outcome of the derivation process is a variant of
the connector metamodel, potentially with additional or reduced entities
and linked reusable artifacts.

• Generating the source code for the resulting product model after instantia-
tion.

148

For clarity, we will work with a streamlined version of the established prod-
uct line, considering a simplified metamodel. The process will rely on the PhaDOP
framework developed in Chapter 6, Figure 6.1. This section will first present a
reduced product line, personal product derivation for this product line based on
a product specification and configuration, and generation of the interoperability
connector.

7.1 Incremental Feature Analysis and Identification

This subsection aims to identify features and reusable artifacts for con-
structing an experimentation product line. The approach involves meticulously
analyzing legacy class source code files, explicitly focusing on Java. In some in-
stances, there might be a need to restructure a class to encapsulate shared features
better or enhance usability within our experimentation framework.

This experiment is limited to analyzing Java code. We analyze two groups
to ensure meaningful comparisons: publisher code and code consumer code.For
each component serving as either a producer or a consumer, we select the first
one, identify its features, and insert reusable artifacts into the artifact repository.
If necessary, we may restructure without altering the component’s behavior. For
example, consolidating multiple lines of code into a Java method can create a
reusable function or feature. The following sections will explain the proposed
process in detail, starting with producers and moving on to consumers.

Incremental analysis for producers For the incremental analysis, we con-
sider two connectors due to time and resource constraints. The connectors used
for the experimentation correspond to Connector 1, Connector 2, where the
exchange flow are respectively depicted in order in Figures 5.11, 5.12 in Chap-
ter 5, Section 5.6.

New or variant features are framed in red. So, the code not framed in red
corresponds to a feature already identified in a previous analysis. The feature
analysis and localization process is manual.

Producer of connector 1: feature location and feature analysis: We
start by analyzing the producer of the first connector, who is responsible for
publishing a text message to a channel. In Figure 7.1, the producer’s code is
presented with highlighted features.

The producer of the first connector exhibits seven features, with the red
highlights indicating corresponding reusable artifacts. This initial iteration results

149

AMQP
producer

Connection

Channel

Queue

Message

basicPublish
in queue

Host

Queue name

Figure 7.1: Identified Features for Basic Publish-Subscribe Producer

in the presentation of the first version of the producer feature table, as shown in
Table 7.1. In the table, the symbol ”+” indicates the presence of a feature, while
”-” signifies its absence.

From Table 7.1, we obtain the feature model of the connector product line
after the first iteration. Figure 7.2 depicts the corresponding feature model.

This initial iteration process aligns with the thesis positioning, which in-
volves constructing a software product line from existing products using static
analysis and Expert-Driven strategies. Some features in Table 7.1 result from
static code analysis, while others are derived from expert knowledge. For exam-
ple, the documentation extracts features such as AutoDelete, Exclusive, Durable,
and Argument, which provide possible properties for a message Queue. Although
not explicitly evident in the code, we encounter values such as true and false.
Some advanced techniques, like feature mining, can potentially complement or
enhance this process [SHU+13]. However, this specific technique is not utilized in
the scope of this work.

Since they are present, we consider all features mandatory for this initial
iteration of the connector. However, exceptions may be based on the informa-
tion extracted from the code. For example, the Argument feature is marked as
null, indicating that it may be present or absent. Meanwhile, features such as
AutoDelete, Exclusive, and Durable have optional groups.

150

Feature Basic producer

Connection +

Host +

Channel +

Queue +

Queue name +

Message +

basicPublish +

Table 7.1: First Iteration of the Incremental Feature Table

Figure 7.2: Feature Model of the Experimental Connector Following the Initial Iter-
ation

Producer of connector 2: feature location and feature analysis: The
second producer is similar to the first, but with a key distinction: it includes
an exchange where the producer publishes. The producer publishes directly to a
queue in the first connector (Figure 5.11). In the second connector (Figure 5.12),

151

the exchange enables the producer to publish without specifying a particular
queue, broadcasting the message to all queues. The product line’s variability
is limited to two features. The distinguishing factor is the ability to use an
exchange for publishing to all queues. Figure 7.3 displays the identified features
in the producer code. Table 7.2 presents the second iteration of features.

basicPublish
with

exchange

Exchange
with type
Fanout

Figure 7.3: Identified Features for Fanout through Exchange Publish-Subscribe Pro-
ducer

Compared to the preceding connector, the second connector introduces
two new features. Table 7.2 displays the features of the second producer in a
distinct column.

From Table 7.2 resulting from the second iteration evolves the feature
model of the connector. The resulting feature model is shown in Figure 7.4.

The second feature model introduces two new features: ExchangePublisher
and Exchange. Additionally, new constraints are evident. Specifically, BasicPub-
lisher implies the presence of the Queue feature, while ExchangePublisher implies
the presence of the Exchange feature. As a reminder of the Implies truth table,
for features A and B, A implies B is false only when A is present and B is ab-

152

Feature Basic producer Fanout exchange produce

Connection + +

Host + +

Channel + +

Queue + -

Queue name + -

Message + +

Queue basicPublish + -

Fanout exchange - +

Exchange basicPublish - +

Table 7.2: Second Iteration of the Incremental Feature Table

Figure 7.4: Feature Model of the Experimental Connector Following the Second Iter-
ation

sent, and true in all other cases. Therefore, these constraints signify that a valid

153

configuration cannot have BasicPublisher present without Queue, and similarly,
ExchangePublisher cannot be present without Exchange.

We must follow a similar process for each producer and consumer to obtain
the complete feature model construction. In this demonstration, we will conclude
with the producer. It is now time to transition to the solution space.

7.2 Implementation Connector Product Line

Given time and resource constraints, the demonstration primarily focuses
on the two producers of the connector. However, it’s important to note that the
process applies to other constituents of the connector. Based on the feature model,
we present the experimental connector’s metamodel, a streamlined version of the
connector metamodel introduced in Chapter 3, focusing solely on producers.

7.2.1 Metamodel of the Reduced Experimental Connector

Using the Model-Driven Engineering technique, we implemented the Core
Delta Module at the model level and aligned it with the prospective model of
the reduced connector, as shown in Figure 7.4. The conversion from the feature
model to the UML class diagram, which is the reduced metamodel of the connector
represents the Core Delta Module, followed the transformation rule articulated
in Chapter 5, Section 5.5.4. The metamodel for the experimental connector is
depicted in Figure 7.5.

Creating the Metamodel Generator for the Reduced Connector in
Pharo Following the PhaDOP framework, Chapitre 6, that we follow for the
solution space implementation, we create the metamodel generator that will make
it possible to generate a metamodel for variant connectors.

Listing 7.1 specifies the prefix used to show the distinction between gen-
erated metamodel variants as CC for Core connector.

Listing 7.1: Method that precise Prefix making a distinction between metamodel
variants

633 p r e f i x
634 ˆ #’CC’

Listing 7.2 method specifies the package in which the metamodel will be
generated.

Listing 7.2: Method that specify the package where the metamodel will be generated

154

Connector

Channel

Queue
queueName: String
exclusive: boolean
durable: boolean
autoDelete: boolean
argument: String

[1..*]

[0..*]

OutputEndpoint

[1..*]
[0..*] publishChannel

Binding
routing_key: String

Exchange
name: String

[1..1] [1..1]

Producer

DirectExchange TopicExchange FanoutExcahnge

Connection

host: String
[1..1]

Message

TextMessage

body: String

Extends

[1..*]

[1..*]

Figure 7.5: Reduced Metamodel of the Connector, Focusing on the Producer Con-
stituent

635 packageName
636 ˆ #’ Connector−Model ’

Listing 7.3 presents the code for the declaration of the metamodel class
generator.

155

Listing 7.3: Declaration of the connector metamodel generator class

637 FamixMetamodelGenerator subc l a s s : #ConnectorMetamodelGenerator
638 instanceVariableNames : ’ connector connect ion channel queue exchange binding directExchange

topicExchange fanoutExchange message textMessage producer outputendpoint ’
639 c lassVar iableNames : ’ ’
640 package : ’ Connector−Model−Generator ’

Listing 7.4 is the method that specifies creating an instance for each entity
that must generate the metamodel

Listing 7.4: Method that creates an instance for each entity of the metamodel

641 d e f i n eC l a s s e s
642 super d e f i n eC l a s s e s .
643 connector := bu i l d e r newClassNamed : #Connector .
644
645 outputEndpoint := bu i l d e r newClassNamed : #OutputEndpoint .
646 producer := bu i l d e r newClassNamed : #producer .
647
648 connect ion := bu i l d e r newClassNamed : #Connection .
649 message := bu i l d e r newClassNamed : #Message .
650
651 textMessage := bu i l d e r newClassNamed : #TextMessage .
652
653 channel := bu i l d e r newClassNamed : #Channel .
654 queue := bu i l d e r newClassNamed : #Queue .
655 binding := bu i l d e r newClassNamed : #Binding .
656
657 exchange := bu i l d e r newClassNamed : #Exchange .
658 directExchange := bu i l d e r newClassNamed : #DirectExchange .
659 topicExchange := bu i l d e r newClassNamed : #TopicExchange .
660 fanoutExchange := bu i l d e r newClassNamed : #FanoutExchange .

Listing 7.5 displays the hierarchy between different classes. The code shows
that the class named Producer is inherited from the class named OutputEndpoint.
Additionally, the class named Exchange has three child classes: DirectExchange,
TopicExchange, and FanoutExchange. In this code, we also use the TextMessage
class, inherited from the Message entity.

Listing 7.5: Method that specify eventual inheritance between entities

661 de f ineH i e ra r chy
662 super de f ineH i e ra r chy .
663 producer −−|> outputEndpoint .
664 directExchange −−|> exchange .
665 topicExchange −−|> exchange .
666 fanoutExchange −−|> exchange .
667 textMessage −−|> message .

In Listing 7.6, we present the properties associated with each entity in the
proposed metamodel classes. The Producer class inherits from the OutputEnd-
point class as shown in the code. The Exchange class has three child classes:
DirectExchange, TopicExchange, and FanoutExchange. Additionally, the code
demonstrates the use of the TextMessage entity, which inherits from the Mes-
sage entity. Properties have been specified for entities such as Exchange, Queue,
TextMessage, Binding, and Connection.

Listing 7.6: Method that specify properties for each entity that has at lest one

156

668 d e f i n eP r op e r t i e s
669 super d e f i n eP r op e r t i e s .
670
671 queue property : #queueName type : #St r ing .
672 queue property : #durable type : #Str ing .
673 queue property : #ex c l u s i v e type : #St r ing .
674 queue property : #autoDelete type : #Str ing .
675 queue property : #argunment type : #Str ing .
676
677 exchange property : #exchangeName type : #St r ing .
678 exchange property : #exchangeType type : #Str ing .
679
680 binding property : #routingKey type : #Str ing .
681
682 textMessage property : #body type : #Str ing .
683
684 connect ion property : #host type : #Str ing .

In Listing 7.7, we can see the relationships between different entities. One
interesting observation is that the entity Connector can be associated with multi-
ple instances of Channels and Messages. This entity has a single Connection and
one OutputEndpoint, each associated to a singular connector. On the other hand,
the OutputEndpoint class can publish in multiple Channels and interact with sev-
eral possible Exchanges. Additionally, a Binding is linked to one Exchange and
one Queue.

Listing 7.7: Method that specifies cardinalities between classes

686 de f i n eRe l a t i on s
687 (connector property : #channel) <>−∗ (channel property : #connector) .
688 (connector property : #message) <>−∗ (message property : #connector) .
689 (connector property : #connect ion) <>− (connect ion property : #connector) .
690 (connector property : #outputEnpoint) <>− (outputEndpoint property : #connector) .
691
692
693 (outputEndpoint property : #channel) <>− (channel property : #outputEndpoint) .
694 (outputEndpoint property : #exchange) <>− (exchange property : #outputEndpoint) .
695
696 (binding property : #exchange) <>− (exchange property : #binding) .
697 (binding property : #queue) <>− (exchange property : #queue) .

After obtaining all methods of the metamodel generator, we use the model
generator GUIs or PhaDOP to generate the metamodel as represented in Fig-
ure 7.5.

Creating Possible Connector Variants and the Associated Delta Module
Once we have the metamodel, we must create a metamodel variant for each
connector possible connector. We need to know how many delta modules are
required for each producer. Based on Table 7.3, which is the amelioration of
Table 7.2, we highlight the possible delta module.

The two variants are obtained as follows:

• DeltaQueue:DeltaQueue corresponds to the initially reduced metamodel
when everything related to Exchange is removed.

157

Feature Basic producer
Fanout exchange
produce

Delta Module for Basic
producer

Delta Module for Ex-
changeproducer

Connection + +

Host + +

Channel + +

Queue + - remove Queue

Message + +

Queue basicPublish + -
remove Queue Basic
publish

Fanout exchange - + remove Queue

Exchange basicPub-
lish

- +
remove Exchange Ba-
sic publish

Table 7.3: Second Iteration of the Incremental Feature Table

• DeltaFanoutExchange:corresponds to the initially reduced metamodel when
both Queue and Exchange are included, specifically limited to FanoutEx-
change.

Figure7.6 and Figure 7.7 and ?? illustrate the two representations of the
resulting metamodel variants obtained after the derivation facilitated by the
PhaDOP framework.

Connector

Channel

Queue
queueName: String
exclusive: boolean
durable: boolean
autoDelete: boolean
argument: String

[1..*]

OutputEndpoint

[1..*]
[0..*] publishChannel

Producer

Connection

host: String
[1..1]

Message

Extends

[1..*]

[1..*]

TextMessage

body: String

Figure 7.6: Metamodel Variant for the Basic Publish Producer Utilizing a Queue

158

Connector

Channel

Queue
queueName: String
exclusive: boolean
durable: boolean
autoDelete: boolean
argument: String

[1..*]

[0..*]

OutputEndpoint

[1..*]
[0..*] publishChannel

Binding
routing_key: String

Exchange
name: String

[1..1] [1..1]

Producer

FanoutExcahnge

Connection

host: String
[1..1]

Message

Extends

[1..*]

[1..*]

TextMessage

body: String

Figure 7.7: Metamodel Variant for the Basic Publish Producer Utilizing a Queue
Through a Fanout Exchange

7.2.2 Reusable artifact at the method-level granularity

The Core Delta Module, implemented through the metamodel, emphasizes
granularity at both the entity and attribute levels, as explained in Chapter 5, Sec-
tion 5.5.3, Paragraph 5.5.3. As a structural diagram, it is essential to note that
the metamodel cannot contain information about the connector’s behavior. To
overcome this limitation, in Chapter 5, we introduced a JSON-structured reposi-
tory to capture reusable artifacts at the method level. This approach exclusively
facilitates the generation of the class structure. Furthermore, we proposed a
metamodel to capture source code information related to methods.

Refactoring of the artifact The significance of this industrial use case, in con-
trast to the foundational implementation in Chapter 6 via the EPL use case, lies
in the heterogeneous nature of the artifact. The metamodel effectively captures
details about attributes and entities. So we can represent architectural common-
alities and variabilities [SSS17]. However, we introduce a JSON-based repository

159

to encapsulate behavior-related information within methods. The challenge with
the PhaDOP framework is its inability to represent artifacts beyond attributes,
methods, and entities. Other code blocks cannot be adequately captured. We pro-
pose refactoring the code by consolidating all non-attribute and non-class blocks
within methods to address this limitation.

Listing 7.8 and Listing 7.9 represent the refactored version of the source
code of the concerned use case for implementation presented in Figure 7.1 and
Figure 7.3.

Listing 7.8: Identified Features for Basic Publish-Subscribe Producer after refactoring

699 pub l i c c l a s s SendRefactored {
700
701 pr i va t e f i n a l s t a t i c S t r ing QUEUENAME = ” he l l o ” ;
702 Connection connect ion ;
703 Channel channel ;
704 St r ing message=”Hel lo World ! ” ;
705
706 pub l i c s t a t i c void main (St r ing [] argv) throws Exception {
707 try (Connection connect ion = getConnect ion () ;
708 channel = getChannel (Connection connect ion)) {
709 queueDeclareChannel (channel , QUEUENAME, f a l s e , f a l s e , f a l s e , nu l l) ;
710 bas i cPub l i sh (”” , QUEUENAME, nul l , message . getBytes (StandardCharsets . UTF 8)) ;
711 printMessage () ;
712 }
713 }
714 pr i va t e s t a t i c Connection getConnect ion () {
715 ConnectionFactory f a c t o ry = new ConnectionFactory () ;
716 f a c t o ry . setHost (” l o c a l h o s t ”) ;
717 return f a c t o ry . newConnection () ;
718 }
719 pr i va t e s t a t i c Channel getChannel (Connection connect ion) {
720 return connect ion . createChannel () ;
721 }
722 pr i va t e s t a t i c void queueDeclareChannel (Channel channel ,
723 St r ing QUEUENAME, boolean durable , boolean exc lu s i v e ,
724 boolean autoDelete , S t r ing argument) {
725 channel . queueDeclare (QUEUENAME, f a l s e , f a l s e , f a l s e , nu l l) ;
726 }
727 pr i va t e s t a t i c void bas i cPub l i sh (Channel channel , S t r ing st r ,
728 messageByte) {
729 channel . ba s i cPub l i sh (s t r , QUEUENAME, nul l ,
730 messageByte) ;
731 }
732 pr i va t e s t a t i c void printMessage (St r ing message) {
733 System . out . p r i n t l n (” [x] Sent ’ ” + message + ” ’ ”) ;
734 }
735 }

Listing 7.9: Identified Features for Fanout through Exchange Publish-Subscribe Pro-
ducer after refactoring

736 pub l i c c l a s s EmitLogRefactored {
737
738 pr i va t e s t a t i c f i n a l S t r ing EXCHANGENAME = ” log s ” ;
739 St r ing message = ” i n f o : He l lo World ! ” ;
740
741 pub l i c s t a t i c void main (St r ing [] argv) throws Exception {
742 try (Connection connect ion = getConnect ion () ;
743 channel = getChannel (Connection connect ion)) {
744 exchangeDeclareChannel (channel , EXCHANGENAME, BuiltinExchangeType .FANOUT)
745 publishExchangeFanout (channel , EXCHANGENAME, BuiltinExchangeType .FANOUT)
746 printMessage () ;
747 }
748 }
749

160

750 pr i va t e s t a t i c Connection getConnect ion () {
751 ConnectionFactory f a c t o ry = new ConnectionFactory () ;
752 f a c t o ry . setHost (” l o c a l h o s t ”) ;
753 return f a c t o ry . newConnection () ;
754 }
755 pr i va t e s t a t i c Channel getChannel (Connection connect ion) {
756 return connect ion . createChannel () ;
757 }
758 pr i va t e s t a t i c void exchangeDeclareChannel (Channel channel ,
759 St r ing EXCHANGENAME, BuiltinExchangeType .FANOUT) {
760 channel . exchangeDeclare (EXCHANGENAME, BuiltinExchangeType .FANOUT) ;
761 }
762 pr i va t e s t a t i c void publishExchangeFanout (Channel channel ,
763 St r ing EXCHANGENAME, BuiltinExchangeType .FANOUT) {
764 channel . ba s i cPub l i sh (Channel channel , EXCHANGENAME,
765 ”” , nu l l , message . getBytes (”UTF−8”)) ;
766 }
767 pr i va t e s t a t i c void publishExchangeFanout (Channel channel ,
768 St r ing EXCHANGENAME, BuiltinExchangeType .FANOUT) {
769 channel . ba s i cPub l i sh (Channel channel , EXCHANGENAME,
770 ”” , nu l l , message . getBytes (”UTF−8”)) ;
771 }
772 pr i va t e s t a t i c void p r in t (S t r ing message) {
773 System . out . p r i n t l n (” [x] Sent ’ ” + message + ” ’ ”) ;
774 }
775 }

7.2.2.0.1 JSON representation of the model-level reusable artifact:
After the refactoring, we can represent all the reusable artifacts at model-level
granularity. This is done in conformity with the reusable artifact repository pre-
sented in Figure 5.9. For simplification purposes, we represent reusable artifacts
for the producer with publication without Exchange, called SenderRefactored in
Listing 7.8.

Listing 7.10 shows the JSON representation of the reusable artifact repos-
itory focusing on the SenderRefactored class.

Listing 7.10: Reusable method-level artifact focusing of the basic producer class

776 {
777 ”producer ” : {
778 ” targe tSourceLocat ion ” : ”D:\\ Users\boubouthiam . niang\\workspace\\manuscript\\

i n du s t u s e c a s e \\ s r c ” ,
779 ”methods” : [
780 {
781 ”name” : ”main” ,
782 ” sourceEnchor ” : ”{ t ry (Connection connect ion = getConnect ion () ; channel =

getChannel (Connection connect ion)) {queueDeclareChannel (channel ,
QUEUENAME, f a l s e , f a l s e , f a l s e , nu l l) ; ba s i cPub l i sh (\”\” , QUEUENAME,
nul l , message . getBytes (StandardCharsets . UTF 8)) ; pr intMessage () ;} ” ,

783 ”parameters ” : [
784 {
785 ”name” : ” argv” ,
786 ” type” : ” St r ing [] ”
787 }
788]
789 } ,
790 {
791 ”name” : ” getConnect ion ” ,
792 ” sourceEnchor ” : ”{ConnectionFactory f a c t o ry = new ConnectionFactory () ; f a c t o ry

. setHost (\” l o c a l h o s t \”) ; re turn f a c t o ry . newConnection () ;} ” ,
793 ”parameters ” : [
794 {}
795]
796 } ,
797 {
798 ”name” : ” queueDeclareChannel ” ,

161

799 ” sourceEnchor ” : ”{ St r ing QUEUENAME, boolean durable , boolean exc lu s i v e ,
boolean autoDelete , S t r ing argument) { channel . queueDeclare (QUEUENAME,
f a l s e , f a l s e , f a l s e , nu l l) ;} ” ,

800 ”parameters ” : [
801 {
802 ”name” : ” channel ” ,
803 ” type” : ”Channel”
804 } ,
805 {
806 ”name” : ” e x c l u s i v e ” ,
807 ” type” : ” boolean ”
808 } ,
809 {
810 ”name” : ”argument” ,
811 ” type” : ” St r ing ”
812 }
813]
814 } ,
815 {
816 ”name” : ” bas i cPub l i sh ” ,
817 ” sourceEnchor ” : ”{ channel . ba s i cPub l i sh (s t r , QUEUENAME, nul l , messageByte) ;} ”

,
818 ”parameters ” : [
819 {
820 ”name” : ” channel ” ,
821 ” type” : ”Channel”
822 } ,
823 {
824 ”name” : ” s t r ” ,
825 ” type” : ” St r ing ”
826 }
827]
828 } ,
829 {
830 ”name” : ” pr intMessage ” ,
831 ” sourceEnchor ” : ”{ System . out . p r i n t l n (\” [x] Sent ’\” + message + \” ’\”) ;} ” ,
832 ”parameters ” : [
833 {
834 ”name” : ”message” ,
835 ” type” : ” St r ing ”
836 }
837]
838 }
839] ,
840 ” parent ” : {} ,
841 ” i n t e r f a c e ” : [
842 {}
843]
844 }
845 }

7.2.3 Product Derivation - Basic Producer Code Generation:

After obtaining the variant of the metamodel and the reusable artifact,
the next step is to generate the source code for the Producer class. This can be
achieved using the dedicated GUIs provided by the PhaDOP framework. A de-
tailed explanation of this process is presented in Chapter 6, Figure 6.17, and the
corresponding code is shown in Chapter 6, Listing 6.20. The repository JSON
location and the target folder for the generated source code are the only vari-
ables that change. The generated source code is shown in The generated code
in Listing 7.11 is quite similar to the initial code that was reverse-engineered.
This similarity is discussed in detail in the EPL use case demonstration in Chap-

162

ter 6. One significant difference is that the generated code contains no method
arguments.

Listing 7.11: Basic producer code generated

846 @ExampleComponentAnnotation
847 pub l i c c l a s s SenderRefactored extends ParentExemple {
848
849
850 @ExampleMethodAnnotation
851 St r ing main () {
852 try (Connection connect ion = getConnect ion () ; channel = getChannel (Connection connect ion)

) {queueDeclareChannel (channel , QUEUENAME, f a l s e , f a l s e , f a l s e , nu l l) ; ba s i cPub l i sh (
”” , QUEUENAME, nul l , message . getBytes (StandardCharsets . UTF 8)) ; pr intMessage () ;

853 }
854
855 @ExampleMethodAnnotation
856 St r ing getConnect ion () {
857 ConnectionFactory f a c t o ry = new ConnectionFactory () ; f a c t o ry . setHost (” l o c a l h o s t ”) ; r e turn

f a c t o ry . newConnection () ;
858 }
859
860 @ExampleMethodAnnotation
861 St r ing queueDeclareChannel () {
862 St r ing QUEUENAME, boolean durable , boolean exc lu s i v e , boolean autoDelete , S t r ing argument

) { channel . queueDeclare (QUEUENAME, f a l s e , f a l s e , f a l s e , nu l l) ;
863 }
864
865 @ExampleMethodAnnotation
866 St r ing bas i cPub l i sh () {
867 { channel . ba s i cPub l i sh (s t r , QUEUENAME, nul l , messageByte) ;
868 }
869
870 @ExampleMethodAnnotation
871 St r ing printMessage () {
872 System . out . p r i n t l n (” [x] Sent ’ ” + message + ” ’ ”) ;
873 }
874 }

7.3 Conclusion

In this chapter, we conducted an industrial use case experiment to validate
the feasibility of the proposed software product line approach applied to inter-
operability connectors. This experiment aimed to validate an end-to-end process
for implementing a software product line, starting from the feature location step
and culminating in product generation. The Delta-Oriented Programming (DOP)
paradigm is used in this process as a transformational approach. Model-Driven
Engineering (MDE) techniques are employed to manipulate artifacts at the model
level whenever possible.

One challenge encountered was managing product lines at the method-level
granularity using MDE and DOP. This challenge was addressed through previous
code refactoring. The chapter validated the practicability of the PhaDOP frame-
work in an industrial context. However, there are areas for improvement, such
as missing method parameters. Future studies will address formatting issues to
make the generated code more user-friendly and visually clear.

163

Chapter 8. Conclusion

8.1 Summary

The thesis addresses the challenges of achieving interoperability in dy-
namic and distributed Information Systems that face continuous technological
and organizational changes. It introduces a practical metamodel for the rei-
fied interoperability mechanisms called Messaging Connector, which emphasizes
asynchronous communication. The exploration considers interoperability mecha-
nisms as first-class constituents, leading to conceptualizing Information Systems
as Systems-of-Systems. This perspective grants technical, geographical, and man-
agerial independence to the information system and its constituents. A trans-
ferable heuristic is proposed for the Messaging Connector metamodel to ensure
comprehensive coverage. The comparative analysis emphasizes the advantages
of messaging-based connectors in industrial settings. Methodologies for Software
Product Lines utilizing Delta-Oriented Programming find practical application
through the PhaDOP framework. This thesis significantly contributes to interop-
erability, messaging connectors, and software product lines. The methodologies
and frameworks presented offer valuable insights and tools, advancing our under-
standing and practical application of interoperability mechanisms and software
engineering practices in the evolving landscape.

8.2 Contribution

The thesis led to the following contributions:

• Reverse engineering of current systems that incorporate interoperability
mechanisms resulted in creating a comprehensive repository of connectors
designed for experimentation within the scientific community.

• The reification of the interoperability mechanism, transforming the abstract
concept into a tangible notion of the Messaging Connector, is accomplished
by introducing an extensible model designed to illustrate and define the
fundamental aspects of a connector. The proposed metamodel is specifically
crafted to highlight asynchronous communication.

164

• A heuristic for validating and extending a metamodel forMessaging Connec-
tors. This contribution outlines methodologies for validating the metamodel
to ensure it includes all possible connectors and details the process for ac-
commodating new connectors that the existing metamodel may not cover.
This approach is transferable and can be applied to other metamodels.

• Comparative analysis between messaging-based connectors and non-messaging-
based connectors. This involved demonstrating, through use cases derived
from real-world industrial scenarios, situations where numerous document
messages with substantial volumes must be transmitted to an application
within a short time frame. The experiment illustrates that messaging so-
lutions exhibit flexibility and systems with resilience are not susceptible
to bottleneck issues. Additionally, the experiment explores the impact of
the connector’s constituents, examining how the speed of interactions varies
with increased routers, transformers, etc.

• Proposing methodologies and implementation strategies supported by a ded-
icated tool for implementing Software Product Lines (SPL). This approach
revolves around Delta-Oriented Programming (DOP) using Model-Driven
Engineering (MDE) principles.

• Proposing the PhaDOP framework and demonstrating its practical appli-
cation in implementing Software Product Lines. The focus is on employ-
ing Delta-Oriented Programming at the model level to execute the ConPL
framework, illustrated through a specific use case. To facilitate this, a new
metamodel has been introduced for organizing and managing the delta mod-
ule at a large scale.

8.3 Future work

In addition to the contributions detailed in Section 8.2, our research reveals
new perspectives for addressing challenges not explicitly covered in this thesis.
These perspectives are relevant for both interoperability and software product
line engineering.

Using the Connector Metamodel to Analyze Interoperability Mecha-
nisms: We use a manual reverse engineering process to examine existing inter-
operability mechanisms with expert knowledge when constructing the connector
metamodel. Due to the required time and expertise, this method is effective but

165

challenging for non-experts. The metamodel includes entities relevant to interop-
erability mechanisms, making it possible for interoperability pattern recognition
within projects.

A metamodel is platform-independent, allowing its application across projects
that involve diverse programming languages. This versatility is valuable for ana-
lyzing interoperability mechanisms and identifying patterns, especially when esti-
mating the impact of changes in interoperability requirements, such as transition-
ing from HTTP to HTTPS. This is particularly relevant when initiating a project
that adopts messaging-style communication for decoupled interoperability. The
metamodel helps identify code segments that need to be extracted from business
logic and placed in the connector, streamlining the development process.

Leveraging Behavior Models, such as Sequence Diagrams, to Enhance
Metamodel Extensibility: Chapter 4 validates the expandability of the meta-
model through a defined process illustrated in Figure 4.12. This process may re-
quire expertise. The initial step ensures the connector metamodel covers a reified
or embedded interoperability mechanism. If not, it should the metamodel must
extended by adding the corresponding entity. However, determining whether a
particular mechanism corresponds to a specific entity in the metamodel can be
challenging. Ideally, the class DynamicRouter.java would correspond to the Dy-
namicRouter entity in the metamodel 3.4. However, developers are not obligated
to use a nomenclature that suits the metamodel. For example, a developer might
implement a message producer in a class named DynamicRouter.java. Analyzing
the behavior of the implemented pattern is essential to determine if it corresponds
to an entity in the metamodel. Relying solely on a class diagram to represent the
metamodel may be insufficient and time-consuming. Therefore, it may be ben-
eficial to complement the metamodel with a series of sequence diagrams, each
involving a pattern presented as an entity in the metamodel. This approach
considers class names in the engineering process and examines their interactions
with other classes. This aids in the classification of the analyzed pattern within
a specific category.

Comprehensive Experimentation: Assessing Performance, Security, En-
ergy Consumption, and Complexity: Chapter 3 provides a comprehensive
overview of the reified Messaging Connector, highlighting its internal constituents
within the system. The initial experimentation primarily focuses on assessing the
proposed connector’s performance compared to a non-messaging-based counter-
part. However, due to the sensitivity of the reified connector to various factors,

166

more in-depth experimentation is warranted. To evaluate the connector objec-
tively, analyzing its performance concerning complexity is crucial. For instance, it
is essential to explore the impact of the number of message routers on interaction
speed and identify the key components adversely affecting performance.

Another vital aspect to investigate is the security vulnerabilities of the
connector. Conducting ethical hacking tests and benchmarking against other in-
teroperability solutions can provide insights into the connector’s robustness. It is
also essential to understand the energy consumption of the proposed connector’s
structure. Identifying constituents contributing to higher or lower energy con-
sumption and comparing the reified connector’s energy efficiency with embedded
interoperability solutions in business logic is essential. If the reified connector
is more energy-efficient, it could reduce the energy consumption associated with
bloatware.

Complete Code Generation: Beyond Class Diagrams When summariz-
ing ConPL, the Software Product Line approach described in Chapter 5, Sec-
tion 5.5, and illustrated in Figure 5.5, the connector metamodel defines the struc-
ture of the connector. The ConPL Solution Space in Application engineering
includes a set of predefined modifications called delta modules, activated by con-
figuring the metamodel, resulting in a variant of the metamodel. The connector’s
model is instantiated to create a model of the connector. The connector’s source
code is generated through a model-to-text transformation.

Class diagrams, being structural diagrams, can only generate the class
skeleton, encompassing class, attribute, and method signatures. To address this
limitation, we propose storing reusable source code separately. The stored code
is combined with the metamodel to generate the methods’ body, as Chapter 7
explains.

In the future, exploring the possibility of capturing more than just static
information will be necessary. Future work will investigate an approach that
integrates class diagrams, sequence diagrams, and statechart diagrams to facil-
itate the generation of more comprehensive code. The class diagram captures
data structure information, while the sequence diagram specifies interdependen-
cies among classes and methods, indicating classes used by others and methods
called by others. State machines model the behavior of each entity, enabling the
filling of method bodies.

Figure 8.1 shows the process that sequentially uses different models for
mode core generation.

167

UML class
diagram

UML state
machine diagram

UML sequence
diagramm

More complet
code

Step 1 Code structure

Step 2

Code structure
+

Method
behaviour

Step 3

Figure 8.1: Sequential Combination of Class, Sequence, and State Chart Diagrams
for Code Generation

Configurable and Comprehensive Code Generation through Genera-
tive Artificial Intelligence The process of product derivation, as explained in
Chapter 5, Section 5.5, and illustrated in Figure 5.5, utilizes the ConPL approach.
This involves applying a delta module driven by the configuration specified in the
domain feature model. However, generating code solely from a connector model
represented as a class diagram results in structural code through model-to-text
transformation. Additional methods, such as reusing source code or exploring
diverse model combinations, can enhance code generation.

Generative AI [Win92], including tools like Github Copilot 1 [DMN+23],
CodeGeex 2 [ZXZ+23], and OpenAI ChatGPT 3 [ZJYR23], presents a promising
solution to overcome the challenges in generating comprehensive code. While
the existing code snippets in the connector repository were derived from exten-
sive analysis, discovering new interoperability patterns may necessitate ongoing
research, which can be time-consuming, especially for non-experts. Leveraging ad-
vanced Generative AI solutions can significantly aid in both configuration tasks
and complete code generation.

The manual process of configuring the connector based on a specification
involves reading, comprehending, and selecting configurations. An alternative
approach involves utilizing an AI tool to autonomously read and synthesize the
features specified in the connector documentation, streamlining the configuration
process.

Figure 8.2 showcases an example wherein an AI-driven tool interprets a
domain feature model outlining all potential valid configurations and a connector

1https://chat.openai.com/
2https://codegeex.cn/
3https://chat.openai.com/

168

specification. The objective is to furnish a valid configuration aligned with the
specified requirements.

Document
specification

of the
desired

connector

Read domain
feture model1

2 3

N

Step number

Read
specification

Provide require
configuration

AI Engine

Figure 8.2: The Concept of Utilizing AI for Configuring Software Product Lines

The AI could facilitate the code generation process for the connector. This
involves obtaining the metamodel by applying and instantiating the data model
and then using the connector model to extract information. From this informa-
tion, a prompt is constructed and further processed using ChatGPT.

Figure 8.3 illustrates the process of generating source code for connector
class diagram fragment.

Router

AI EngineModel fragment

Model query

retrieved data
Prompt Code

Parse text Generate

Figure 8.3: The Concept of Utilizing AI for Configuring Software Product Lines

Listing 8.1, Listing 8.2, and Listing 8.3 demonstrate a prompt for creating
an event producer and the corresponding source code that it generates.

Listing 8.1: Example promt for generating the Java code of a connector entity

169

875 Generate in java a producer that publish an event message through RabbitMQ using Topic\-Type Exchange

Listing 8.2: Generated Java code for Connector Router entity

876 import com.rabbitmq.client.Channel;

877 import com.rabbitmq.client.Connection;

878 import com.rabbitmq.client.ConnectionFactory;

879
880 public class TopicExchangeProducer {

881
882 private static final String EXCHANGE_NAME = "topic_exchange";

883 private static final String ROUTING_KEY = "example.topic";

884
885 public static void main(String [] args) {

886 // Set up connection and channel

887 ConnectionFactory factory = new ConnectionFactory ();

888 factory.setHost("localhost"); // RabbitMQ server address

889 try (Connection connection = factory.newConnection (); Channel channel = connection.createChannel ())

{

890
891 // Declare the exchange

892 channel.exchangeDeclare(EXCHANGE_NAME , "topic");

893
894 // Message to be published

895 String message = "Hello RabbitMQ!";

896
897 // Publish the message with a routing key

898 channel.basicPublish(EXCHANGE_NAME , ROUTING_KEY , null , message.getBytes ());

899 System.out.println(" [x] Sent ’" + ROUTING_KEY + "’:’" + message + "’");

900
901 } catch (Exception e) {

902 e.printStackTrace ();

903 }

904 }

905 }

Listing 8.3: Generated dependencies required for the generated code

907 <dependency >

908 <groupId >com.rabbitmq </groupId >

909 <artifactId >amqp -client </artifactId >

910 <version >5.14.0 </ version > <!-- Replace with the latest version available -->

911 </dependency >

The objective is to develop a versatile prompt template suitable for various
platforms. The interest of the template lies in the deliberate choice of words,
which must be used thoughtfully rather than randomly.

Advancing Runtime Interoperability: Leveraging DevOps approach for
Continuous Deployment of the Reified Connector One important reason
for making connectors tangible components within the system is to achieve sys-
tem decoupling. This decoupling, as emphasized in the thesis summary (see
section 8.1), leads to a system-of-systems where each constituent operates in-
dependently. Therefore, the deployment of the connector is crucial. Given the
dynamic context of interoperability in information systems and other domains, a
potential avenue for future work involves addressing the ongoing generation and
deployment of the reified connector. One possible approach is integrating the

170

connector into a DevOps process, facilitating runtime interoperability through
transparent deployment.

171

LIST OF PUBLICATIONS

The following chronological list showcases the papers published within the
context of this thesis:

1. NIANG, Boubou T., KAHN, Giacomo, AMOKRANE, Nawel, et al. To-

wards the Generation of Interoperability Connectors using Software Prod-

uct Line Engineering. In : Conférence en IngénieriE du Logiciel. 2021.

URL https://hal.science/hal-03274478/

2. NIANG, Boubou, KAHN, Giacomo, AMOKRANE, Nawel, et al. Auto-

matic Generation of Interoperability Connectors using Software Product

Lines Engineering. In : ICSOFT. 2022. URL https://hal.science/

hal-03673588/

3. NIANG, Boubou T., KAHN, Giacomo, AMOKRANE, Nawel, et al. Using

Moose platform for the implementation of a Software Product Line accord-

ing to model-based Delta-Oriented Programming. In : IWST22—International

Workshop on Smalltalk Technologies. 2022. https://hal.science/hal-03816240/

4. COLA journal under review

5. IST journal submit JSS rejected paper before defense

6. Metamodel and validation valorization submit before defense

Throughout the thesis, we conducted research on various other topics.

Although these topics are not directly related to the main objective of this thesis,

we have compiled a list of corresponding papers for reference:

1. LAVAL, Jannik, NIANG, Boubou Thiam, GHZAIEL, Imene, et al. Le

projet Pulse: vers la supervision des échanges dans un système IoT. In :

CONGRES INFORSID-Atelier 2: Évolution des SI: vers des SI pervasifs?.

2021. https://hal.science/hal-03250112/

172

2. LAVAL, Jannik, AMOKRANE, Nawel, THIAM NIANG, Boubou, et al.

Data interoperability assessment, case of messaging-based data exchanges.

Journal of Software: Evolution and Process, 2023, p. e2538. https://hal.

science/hal-03250112/

173

References

[ABG+19] Ermyas Abebe, Dushyant Behl, Chander Govindarajan, Yining
Hu, Dileban Karunamoorthy, Petr Novotny, Vinayaka Pandit,
Venkatraman Ramakrishna, and Christian Vecchiola. Enabling en-
terprise blockchain interoperability with trusted data transfer (in-
dustry track). In Proceedings of the 20th international middleware
conference industrial track, pages 29–35, 2019.

[ABKM06] Alexander Arlt, Andreas Brunnert, Robert Kühn, and Matthias
Meisdrock. Open message queue. In Informatiktage, pages 41–44,
2006.

[ACLF13] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert B
France. Familiar: A domain-specific language for large scale man-
agement of feature models. Science of Computer Programming,
78(6):657–681, 2013.

[ACN02] Jonathan Aldrich, Craig Chambers, and David Notkin. Archjava:
Connecting software architecture to implementation. In Proceed-
ings of the 24th International Conference on Software Engineering.
ICSE 2002, pages 187–197. IEEE, 2002.

[ADSG+18a] Marco Autili, Amleto Di Salle, Francesco Gallo, Claudio Pompilio,
and Massimo Tivoli. Model-driven adaptation of service chore-
ographies. In Proceedings of the 33rd Annual ACM Symposium on
Applied Computing, pages 1441–1450, 2018.

[ADSG+18b] Marco Autili, Amleto Di Salle, Francesco Gallo, Claudio Pompilio,
and Massimo Tivoli. On the model-driven synthesis of evolvable
service choreographies. In Proceedings of the 12th European Con-
ference on Software Architecture: Companion Proceedings, pages
1–6, 2018.

[ADSG+18c] Marco Autili, Amleto Di Salle, Francesco Gallo, Claudio Pompilio,
and Massimo Tivoli. On the model-driven synthesis of evolvable
service choreographies. In Proceedings of the 12th European Con-

174

ference on Software Architecture: Companion Proceedings, pages
1–6, 2018.

[AEH+20] Nicolas Anquetil, Anne Etien, Mahugnon Honoré Houekpetodji,
Benôıt Verhaeghe, Stéphane Ducasse, Clotilde Toullec, Fatija
Djareddir, Jèrome Sudich, and Mustapha Derras. Modular moose:
A new generation of software reengineering platform. In Inter-
national Conference on Software and Systems Reuse (ICSR’20),
number 12541, 2020.

[AGMO06] Ivica Aracic, Vaidas Gasiunas, Mira Mezini, and Klaus Ostermann.
An overview of caesarj. Transactions on Aspect-Oriented Software
Development I, pages 135–173, 2006.

[AIS+19] Marco Autili, Paola Inverardi, Romina Spalazzese, Massimo Tivoli,
and Filippo Mignosi. Automated synthesis of application-layer con-
nectors from automata-based specifications. Journal of Computer
and System Sciences, 104:17–40, 2019.

[AIT18] Marco Autili, Paola Inverardi, and Massimo Tivoli. Choreogra-
phy realizability enforcement through the automatic synthesis of
distributed coordination delegates. Science of Computer Program-
ming, 160:3–29, 2018.

[AKL09] Sven Apel, Christian Kastner, and Christian Lengauer. Feature-
house: Language-independent, automated software composition.
In 2009 IEEE 31st International Conference on Software Engi-
neering, pages 221–231. IEEE, 2009.

[AL17] Damian Arellanes and Kung-Kiu Lau. Exogenous connectors for
hierarchical service composition. 2017 IEEE 10th Conference on
Service-Oriented Computing and Applications (SOCA), pages 125–
132, 2017.

[ALHL+17] Wesley KG Assunção, Roberto E Lopez-Herrejon, Lukas Lins-
bauer, Silvia R Vergilio, and Alexander Egyed. Reengineering
legacy applications into software product lines: a systematic map-
ping. Empirical Software Engineering, 22(6):2972–3016, 2017.

175

[ALL+20] Nawel Amokrane, Jannik Laval, Philippe Lanco, Mustapha Derras,
and Nejib Moala. Analysis of data exchanges, towards a tooled
approach for data interoperability assessment. Intelligent Systems:
Theory, Research and Innovation in Applications, pages 345–363,
2020.

[ALRS05] Sven Apel, Thomas Leich, Marko Rosenmüller, and Gunter Saake.
Featurec++: feature-oriented and aspect-oriented programming in
c++. Technical report, Technical report, Department of Computer
Science, Otto-von-Guericke . . . , 2005.

[AMS22] Arul Christhuraj Alphonse, Alexandra Martinez, and Akshata
Sawant. MuleSoft for Salesforce Developers: A practitioner’s guide
to deploying MuleSoft APIs and integrations for Salesforce enter-
prise solutions. Packt Publishing Ltd, 2022.

[Bat04] Don Batory. Feature-oriented programming and the ahead tool
suite. In Proceedings. 26th International Conference on Software
Engineering, pages 702–703. IEEE, 2004.

[BB03] Lubomir Bulej and Tomas Bures. A connector model suitable for
automatic generation of connectors. Technical report, Citeseer,
2003.

[BBG+13] Nelly Bencomo, Amel Bennaceur, Paul Grace, Gordon Blair, and
Valérie Issarny. The role of models@ run. time in supporting on-
the-fly interoperability. Computing, 95:167–190, 2013.

[BC10] Lamia Berkani and Azeddine Chikh. A process for knowledge reuse
in communities of practice of e-learning. Procedia-Social and Be-
havioral Sciences, 2(2):4436–4443, 2010.

[BC19] Oscar Borgogno and Giuseppe Colangelo. Data sharing and in-
teroperability: Fostering innovation and competition through apis.
Computer Law & Security Review, 35(5):105314, 2019.

[BCD+09] Françoise Baude, Denis Caromel, Cédric Dalmasso, Marco Dane-
lutto, Vladimir Getov, Ludovic Henrio, and Christian Pérez. Gcm:
a grid extension to fractal for autonomous distributed components.

176

Annals of Telecommunications-annales des télécommunications,
64:5–24, 2009.

[BCK15] Sebastian K Boell and Dubravka Cecez-Kecmanovic. What is an
information system? In 2015 48th Hawaii International Conference
on System Sciences, pages 4959–4968. IEEE, 2015.

[BCS12] Carsten Bormann, Angelo P Castellani, and Zach Shelby. Coap:
An application protocol for billions of tiny internet nodes. IEEE
Internet Computing, 16(2):62–67, 2012.

[BD17] Lorenzo Bettini and Ferruccio Damiani. Xtraitj: Traits for the java
platform. Journal of Systems and Software, 131:419–441, 2017.

[BDSS13] Lorenzo Bettini, Ferruccio Damiani, Ina Schaefer, and Fabio
Strocco. Traitrecordj: A programming language with traits and
records. Science of Computer Programming, 78(5):521–541, 2013.

[Bec95] Kent Beck. Design patterns: Elements of reusable object-oriented
software. IBM Systems Journal, 34(3):544, 1995.

[BEF+07] A J Berre, Brian Elvesæter, Nicolas Figay, Claudia Guglielmina,
Svein G Johnsen, Dag Karlsen, Thomas Knothe, and Sonia Lippe.
The athena interoperability framework. In Enterprise interoper-
ability II: new challenges and approaches, pages 569–580. Springer,
2007.

[Ben13] Amel Bennaceur. Synthèse dynamique de médiateurs dans les en-
virennements ubiquitaires. PhD thesis, Paris 6, 2013.

[Ber22] Alexandre Bergel. Agile Visualization with Pharo: Crafting Inter-
active Visual Support Using Roassal. Springer, 2022.

[BGNI19] Georgios Bouloukakis, Nikolaos Georgantas, Patient Ntumba, and
Valérie Issarny. Automated synthesis of mediators for middleware-
layer protocol interoperability in the iot. Future Generation Com-
puter Systems, 101:1271–1294, 2019.

[BHR15] Françoise Baude, Ludovic Henrio, and Cristian Ruz. Program-
ming distributed and adaptable autonomous components—the

177

gcm/proactive framework. Software: Practice and Experience,
45(9):1189–1227, 2015.

[BI14] Amel Bennaceur and Valérie Issarny. Automated synthesis of me-
diators to support component interoperability. IEEE Transactions
on Software Engineering, 41(3):221–240, 2014.

[BKS15] Noor Hasrina Bakar, Zarinah M Kasirun, and Norsaremah Salleh.
Feature extraction approaches from natural language requirements
for reuse in software product lines: A systematic literature review.
Journal of Systems and Software, 106:132–149, 2015.

[BN17] Amel Bennaceur and Bashar Nuseibeh. The many facets of me-
diation: A requirements-driven approach for trading off mediation
solutions. In Managing trade-offs in adaptable software architec-
tures, pages 299–322. Elsevier, 2017.

[BNDP10] Andrew P Black, Oscar Nierstrasz, Stéphane Ducasse, and Damien
Pollet. Pharo by example. Lulu. com, 2010.

[Boo06] Grady Booch. The accidental architecture. IEEE software, 23(3):9–
11, 2006.

[BS06] John Boardman and Brian Sauser. System of systems-the meaning
of of. In 2006 IEEE/SMC international conference on system of
systems engineering, pages 6–pp. IEEE, 2006.

[BVT22] Farouk Belkadi, J Vieille, and B Tanous. Towards a smart con-
nector for dynamic interoperability in agile enterprises. IFAC-
PapersOnLine, 55(10):2342–2347, 2022.

[C+93] Software Productivity Consortium et al. Reuse adoption guide-
book, version 02.00. 05. Technical report, Technical report No.
SPC-92051-CMC, Software Productivity Consortium . . . , 1993.

[Cam21] Guilherme Camposo. Cloud Native Integration with Apache Camel.
Springer, 2021.

[CBB+00] Ngom Cheng, Valdis Berzins, Swapan Bhattacharya, et al. Au-
tomated generation of wrappers for interoperability/june 2000.

178

American Journal of Orthodontics and Dentofacial Orthopedics,
2000.

[CC19] Binildas Christudas and Binildas Christudas. Activemq. Practical
Microservices Architectural Patterns: Event-Based Java Microser-
vices with Spring Boot and Spring Cloud, pages 861–867, 2019.

[CD06] David Chen and Nicolas Daclin. Framework for enterprise interop-
erability. In Interoperability for Enterprise Software and Applica-
tions: Proceedings of the Workshops and the Doctorial Symposium
of the Second IFAC/IFIP I-ESA International Conference: EI2N,
WSI, IS-TSPQ 2006, pages 77–88. Wiley Online Library, 2006.

[CFP+01] Carlos Canal, Lidia Fuentes, Ernesto Pimentel, José M Troya, and
Antonio Vallecillo. Extending corba interfaces with protocols. The
Computer Journal, 44(5):448–462, 2001.

[CH07] John Carnell and Rob Harrop. Velocity template engine. Pro
Apache Struts with Ajax, pages 359–389, 2007.

[Cha04] David A Chappell. Enterprise service bus: Theory in practice. ”
O’Reilly Media, Inc.”, 2004.

[CMO+18] Giovanni Ciatto, Stefano Mariani, Andrea Omicini, et al. Respectx:
Programming interaction made easy. Computer Science and Infor-
mation Systems, 15(3):655–682, 2018.

[CN02] Paul Clements and Linda Northrop. Software product lines.
Addison-Wesley Boston, 2002.

[Coh02] Gary Cohen. securing ftp. login Usenix Mag., 27(4), 2002.

[Crn01] Ivica Crnkovic. Component-based software engineering—new chal-
lenges in software development. Software focus, 2(4):127–133, 2001.

[CZ13] Zhuo Cai and XQ Zhang. Overview of sca 4.0 specification. J.
Commun. Technol, 46(7):126–128, 2013.

[CZVD+09] Bas Cornelissen, Andy Zaidman, Arie Van Deursen, Leon Moonen,
and Rainer Koschke. A systematic survey of program comprehen-

179

sion through dynamic analysis. IEEE Transactions on Software
Engineering, 35(5):684–702, 2009.

[DAB+01] Robert H Dolin, Liora Alschuler, Calvin Beebe, Paul V Biron,
Sandra Lee Boyer, Daniel Essin, Elliot Kimber, Tom Lincoln, and
John E Mattison. The hl7 clinical document architecture. Journal
of the American Medical Informatics Association, 8(6):552–569,
2001.

[Dan09] George Danezis. Traffic analysis of the http protocol over tls, 2009.

[Dau22] Bekim Dauti. Windows Server 2022 Administration Fundamentals:
A beginner’s guide to managing and administering Windows Server
environments. Packt Publishing Ltd, 2022.

[DC92] Richard De Courcy. Les systèmes d’information en réadaptation.
Québec, Réseau international CIDIH et facteurs environnemen-
taux, 5(1-2):7–10, 1992.

[DMN+23] Arghavan Moradi Dakhel, Vahid Majdinasab, Amin Nikanjam,
Foutse Khomh, Michel C Desmarais, and Zhen Ming Jack Jiang.
Github copilot ai pair programmer: Asset or liability? Journal of
Systems and Software, 203:111734, 2023.

[DNO98] Enrico Denti, Antonio Natali, and Andrea Omicini. On the expres-
sive power of a language for programming coordination media. In
Proceedings of the 1998 ACM symposium on Applied Computing,
pages 169–177, 1998.

[DRB+13] Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski,
Martin Becker, and Krzysztof Czarnecki. An exploratory study of
cloning in industrial software product lines. In 2013 17th European
Conference on Software Maintenance and Reengineering, pages 25–
34. IEEE, 2013.

[DVD19] Clement Dutriez, Benôıt Verhaeghe, and Mustapha Derras.
Switching of gui framework: the case from spec to spec 2. 2019.

[EKLG+03] Florida Estrella, Zsolt Kovacs, Jean-Marie Le Goff, Richard Mc-
Clatchey, Tony Solomonides, and Norbert Toth. Pattern reification

180

as the basis for description-driven systems. Software & Systems
Modeling, 2:108–119, 2003.

[FGFdAM14] Gabriel Coutinho Sousa Ferreira, Felipe Nunes Gaia, Eduardo
Figueiredo, and Marcelo de Almeida Maia. On the use of feature-
oriented programming for evolving software product lines—a com-
parative study. Science of Computer programming, 93:65–85, 2014.

[FGM+97] Roy Fielding, Jim Gettys, Jeffrey Mogul, Henrik Frystyk, and Tim
Berners-Lee. Rfc2068: Hypertext transfer protocol–http/1.1, 1997.

[FLLHE15] Stefan Fischer, Lukas Linsbauer, Roberto E Lopez-Herrejon, and
Alexander Egyed. The ecco tool: Extraction and composition for
clone-and-own. In 2015 IEEE/ACM 37th IEEE International Con-
ference on Software Engineering, volume 2, pages 665–668. IEEE,
2015.

[GA18] Didem Gürdür and Fredrik Asplund. A systematic review to merge
discourses: Interoperability, integration and cyber-physical sys-
tems. Journal of Industrial information integration, 9:14–23, 2018.

[Gar13] Nishant Garg. Apache kafka. Packt Publishing Birmingham, UK,
2013.

[GG21] Felipe Gutierrez and Felipe Gutierrez. Spring cloud data flow: In-
troduction and installation. Spring Cloud Data Flow: Native Cloud
Orchestration Services for Microservice Applications on Modern
Runtimes, pages 209–262, 2021.

[Gio12] W Gio. Mediators, concepts and practice to appear in studies
information reuse and integration in academia and industry, 2012.

[GMFFGS09] Iván Garćıa-Magariño, Rubén Fuentes-Fernández, and Jorge J
Gómez-Sanz. Guideline for the definition of emf metamodels using
an entity-relationship approach. Information and Software Tech-
nology, 51(8):1217–1230, 2009.

[Gom05] Hassan Gomaa. Designing software product lines with uml.
In 29th Annual IEEE/NASA Software Engineering Workshop-
Tutorial Notes (SEW’05), pages 160–216. IEEE, 2005.

181

[GON19] Lina Garcés, Flavio Oquendo, and Elisa Yumi Nakagawa. Software
mediators as first-class entities of systems-of-systems software ar-
chitectures. Journal of the Brazilian Computer Society, 25(1):1–23,
2019.

[HBS+02] Mark Hapner, Rich Burridge, Rahul Sharma, Joseph Fialli, and
Kate Stout. Java message service. Sun Microsystems Inc., Santa
Clara, CA, 9, 2002.

[Hla22] Nicolas Hlad. IsiSPL: an automated process to facilitate the en-
gineering of software product lines according to a reactive or ex-
tractive industrial adoption strategy. PhD thesis, Université de
Montpellier, 2022.

[HMZ09] Mark Harman, S Afshin Mansouri, and Yuanyuan Zhang. Search
based software engineering: A comprehensive analysis and review
of trends techniques and applications. 2009.

[Hoh06] Gregor Hohpe. Conversation patterns: Workshop report. In
Dagstuhl Seminar, volume 7, 2006.

[HRR14] Arne Haber, Jan Oliver Ringert, and Bernhard Rumpe. Montiarc-
architectural modeling of interactive distributed and cyber-
physical systems. arXiv preprint arXiv:1409.6578, 2014.

[HTSC08] Urs Hunkeler, Hong Linh Truong, and Andy Stanford-Clark.
Mqtt-s—a publish/subscribe protocol for wireless sensor networks.
In 2008 3rd International Conference on Communication Sys-
tems Software and Middleware and Workshops (COMSWARE’08),
pages 791–798. IEEE, 2008.

[HW04] Gregor Hohpe and Bobby Woolf. Enterprise integration patterns:
Designing, building, and deploying messaging solutions. 2004.

[IRHBJ16] Mat́ıas Ibáñez, Cristian Ruz, Ludovic Henrio, and Javier Bustos-
Jiménez. Reconfigurable applications using gcmscript. IEEE cloud
computing, 3(3):30–39, 2016.

[IT13] Paola Inverardi and Massimo Tivoli. Automatic synthesis of mod-
ular connectors via composition of protocol mediation patterns.

182

In 2013 35th International Conference on Software Engineering
(ICSE), pages 3–12. IEEE, 2013.

[JABK08] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev.
Atl: A model transformation tool. Science of computer program-
ming, 72(1-2):31–39, 2008.

[JBF09] Slinger Jansen, Sjaak Brinkkemper, and Anthony Finkelstein.
Business network management as a survival strategy: A tale of
two software ecosystems. Iwseco@ Icsr, 2009, 2009.

[JSS+12] Sung-Shik TQ Jongmans, Francesco Santini, Mahdi Sargolzaei,
Farhad Arbab, and Hamideh Afsarmanesh. Automatic code gen-
eration for the orchestration of web services with reo. In Service-
Oriented and Cloud Computing: First European Conference, ES-
OCC 2012, Bertinoro, Italy, September 19-21, 2012. Proceedings
1, pages 1–16. Springer, 2012.

[JSS+14] Sung-Shik TQ Jongmans, Francesco Santini, Mahdi Sargolzaei,
Farhad Arbab, and Hamideh Afsarmanesh. Orchestrating web ser-
vices using reo: from circuits and behaviors to automatically gen-
erated code. Service Oriented Computing and Applications, 8:277–
297, 2014.

[KA09] Christian Kästner and Sven Apel. Virtual separation of concerns-
a second chance for preprocessors. Journal of Object Technology,
8(6):59–78, 2009.

[KHH+01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey
Palm, and William G Griswold. An overview of aspectj. In ECOOP
2001—Object-Oriented Programming: 15th European Conference
Budapest, Hungary, June 18–22, 2001 Proceedings 15, pages 327–
354. Springer, 2001.

[KHS+14] Jonathan Koscielny, Sönke Holthusen, Ina Schaefer, Sandro
Schulze, Lorenzo Bettini, and Ferruccio Damiani. Deltaj 1.5: delta-
oriented programming for java 1.5. In Proceedings of the 2014 Inter-
national Conference on Principles and Practices of Programming

183

on the Java platform: Virtual machines, Languages, and Tools,
pages 63–74, 2014.

[KKHL10] Andy Kenner, Christian Kästner, Steffen Haase, and Thomas Le-
ich. Typechef: Toward type checking# ifdef variability in c. In
Proceedings of the 2nd international workshop on feature-oriented
software development, pages 25–32, 2010.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
oriented programming. In European conference on object-oriented
programming, pages 220–242. Springer, 1997.

[KRU+03] Charles Keating, Ralph Rogers, Resit Unal, David Dryer, Andres
Sousa-Poza, Robert Safford, William Peterson, and Ghaith Rabadi.
System of systems engineering. Engineering Management Journal,
15(3), 2003.

[KTS+09] Christian Kastner, Thomas Thum, Gunter Saake, Janet
Feigenspan, Thomas Leich, Fabian Wielgorz, and Sven Apel. Fea-
tureide: A tool framework for feature-oriented software develop-
ment. In 2009 ieee 31st international conference on software engi-
neering, pages 611–614. IEEE, 2009.

[KU22] Siva Prasad Reddy Katamreddy and Sai Subramanyam Upad-
hyayula. Getting started with spring boot. In Beginning Spring
Boot 3: Build Dynamic Cloud-Native Java Applications and Mi-
croservices, pages 29–45. Springer, 2022.

[LAL+10] Jörg Liebig, Sven Apel, Christian Lengauer, Christian Kästner,
and Michael Schulze. An analysis of the variability in forty
preprocessor-based software product lines. In Proceedings of
the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 1, pages 105–114, Cape Town, South Africa,
2010. ACM Press.

[LATN+23] Jannik Laval, Nawel Amokrane, Boubou Thiam Niang, Mustapha
Derras, and Néjib Moalla. Data interoperability assessment, case of

184

messaging-based data exchanges. Journal of Software: Evolution
and Process, page e2538, 2023.

[LDDF11] Jannik Laval, Simon Denier, Stéphane Ducasse, and Jean-Rémy
Falleri. Supporting simultaneous versions for software evolution
assessment. Science of Computer Programming, 76(12):1177–1193,
2011.

[LEW05] Kung-Kiu Lau, Perla Velasco Elizondo, and Zheng Wang. Exoge-
nous connectors for software components. In International Sym-
posium on Component-Based Software Engineering, pages 90–106.
Springer, 2005.

[Lie23] Michael Lienhardt. Pydop: A generic python library for delta-
oriented programming. In Proceedings of the 27th ACM Interna-
tional Systems and Software Product Line Conference-Volume B,
pages 30–33, 2023.

[LL09] Kathryn B Laskey and Kenneth Laskey. Service oriented architec-
ture. Wiley Interdisciplinary Reviews: Computational Statistics,
1(1):101–105, 2009.

[LLA+20] Leo Liu, Weizi Li, Naif R Aljohani, Miltiadis D Lytras, Saeed-Ul
Hassan, and Raheel Nawaz. A framework to evaluate the inter-
operability of information systems–measuring the maturity of the
business process alignment. International Journal of Information
Management, 54:102153, 2020.

[LWK10] Philip Langer, Manuel Wimmer, and Gerti Kappel. Model-to-
model transformations by demonstration. In International Con-
ference on Theory and Practice of Model Transformations, pages
153–167. Springer, 2010.

[LY02] Kalle Lyytinen and Youngjin Yoo. Ubiquitous computing. Com-
munications of the ACM, 45(12):63–96, 2002.

[MDCB17] Rita Suzana P Maciel, José Maria N David, Daniela Claro, and
Regina Braga. Full interoperability: Challenges and opportuni-

185

ties for future information systems. Sociedade Brasileira de Com-
putação, 2017.

[MDG08] Mario Mustra, Kresimir Delac, and Mislav Grgic. Overview of the
dicom standard. In 2008 50th International Symposium ELMAR,
volume 1, pages 39–44. IEEE, 2008.

[Men07] Falko Menge. Enterprise service bus. In Free and open source
software conference, volume 2, pages 1–6, 2007.

[MG00] Pierre-Alain Muller and Nathalie Gaertner. Modélisation objet avec
UML, volume 514. Eyrolles Paris, 2000.

[MLD+13] Flávio Medeiros, Thiago Lima, Francisco Dalton, Márcio Ribeiro,
Rohit Gheyi, and B ANDFONSECA. Colligens: A tool to support
the development of preprocessor-based software product lines in c.
In Proc. Brazilian Conf. Software: Theory and Practice (CBSoft),
2013.

[MM20] Tarnia Major and Joseph Mangano. Modernising payments mes-
saging: The iso 20022 standard. 1. 1 Managing the Risks of Holding
Self-securitisations as Collateral 2. 11 Government Bond Market
Functioning and COVID-19 3. The Economic Effects of Low Inter-
est Rates and Unconventional 21 Monetary Policy 4. Retail Cen-
tral Bank Digital Currency: Design Considerations, Rationales,
page 66, 2020.

[MMHA15] Saleh Majd, Abel Marie-Hélène, and Mishra Alok. An architec-
tural model for system of information systems. In On the Move
to Meaningful Internet Systems: OTM 2015 Workshops: Confed-
erated International Workshops: OTM Academy, OTM Industry
Case Studies Program, EI2N, FBM, INBAST, ISDE, META4eS,
and MSC 2015, Rhodes, Greece, October 26-30, 2015. Proceedings,
pages 411–420. Springer, 2015.

[MMP00] Nikunj R Mehta, Nenad Medvidovic, and Sandeep Phadke. To-
wards a taxonomy of software connectors. In Proceedings of the
22nd international conference on Software engineering, pages 178–
187, 2000.

186

[MMS19] Agust́ın Mántaras, Mántaras, and Srivastava. BizTalk Server 2016.
Springer, 2019.

[Mon03] Paul B Monday. Implementing the data transfer object pattern.
In Web Services Patterns: Java™ Platform Edition, pages 279–295.
Springer, 2003.

[MZB+17] Jabier Martinez, Tewfik Ziadi, Tegawendé F Bissyandé, Jacques
Klein, and Yves Le Traon. Bottom-up technologies for reuse: au-
tomated extractive adoption of software product lines. In 2017
IEEE/ACM 39th International Conference on Software Engineer-
ing Companion (ICSE-C), pages 67–70. IEEE, 2017.

[NAG19] Mahda Noura, Mohammed Atiquzzaman, and Martin Gaedke. In-
teroperability in internet of things: Taxonomies and open chal-
lenges. Mobile networks and applications, 24:796–809, 2019.

[Pan15] Chandan Pandey. Spring integration essentials. Packt Publishing
Ltd, 2015.

[Pat17] Sanjay Patni. Pro RESTful APIs. Springer, 2017.

[PBVDL05] Klaus Pohl, Günter Böckle, and Frank Van Der Linden. Software
product line engineering: foundations, principles, and techniques,
volume 1. Springer, 2005.

[PED19] Cristina Paniagua, Jens Eliasson, and Jerker Delsing. Interoper-
ability mismatch challenges in heterogeneous soa-based systems.
In 2019 IEEE International Conference on Industrial Technology
(ICIT), pages 788–793. IEEE, 2019.

[Pel03] Chris Peltz. Web services orchestration and choreography. Com-
puter, 36(10):46–52, 2003.

[Pir21] Vartan Piroumian. Digital twins: Universal interoperability for the
digital age. Computer, 54(1):61–69, 2021.

[PKK+15] Christopher Pietsch, Timo Kehrer, Udo Kelter, Dennis Reuling,
and Manuel Ohrndorf. Sipl–a delta-based modeling framework for
software product line engineering. In 2015 30th IEEE/ACM Inter-

187

national Conference on Automated Software Engineering (ASE),
pages 852–857. IEEE, 2015.

[PR22] William Penberthy and Steve Roberts. Microsoft sql server. In
Pro. NET on Amazon Web Services: Guidance and Best Practices
for Building and Deployment, pages 303–329. Springer, 2022.

[Pra21] Ambar Prajapati. Amqp and beyond. In 2021 International Con-
ference on Smart Applications, Communications and Networking
(SmartNets), pages 1–6. IEEE, 2021.

[PRS+16] Felipe Pezoa, Juan L Reutter, Fernando Suarez, Mart́ın Ugarte,
and Domagoj Vrgoč. Foundations of json schema. In Proceedings
of the 25th international conference on World Wide Web, pages
263–273, 2016.

[PTD+19] Stefan Profanter, Ayhun Tekat, Kirill Dorofeev, Markus Rickert,
and Alois Knoll. Opc ua versus ros, dds, and mqtt: Performance
evaluation of industry 4.0 protocols. In 2019 IEEE International
Conference on Industrial Technology (ICIT), pages 955–962. IEEE,
2019.

[PTS+16] Tristan Pfofe, Thomas Thüm, Sandro Schulze, Wolfram Fenske,
and Ina Schaefer. Synchronizing software variants with vari-
antsync. In Proceedings of the 20th International Systems and
Software Product Line Conference, pages 329–332, 2016.

[RBVL18] Felix Maximilian Roth, Christian Becker, Germán Vega, and
Philippe Lalanda. Xware—a customizable interoperability frame-
work for pervasive computing systems. Pervasive and mobile com-
puting, 47:13–30, 2018.

[RDR03] Claudio Riva and Christian Del Rosso. Experiences with software
product family evolution. In Sixth International Workshop on
Principles of Software Evolution, 2003. Proceedings., pages 161–
169. IEEE, 2003.

188

[RG02] Mark Richters and Martin Gogolla. Ocl: Syntax, semantics, and
tools. In Object Modeling with the OCL: The Rationale behind the
Object Constraint Language, pages 42–68. Springer, 2002.

[Ris07] Dejan Risimić. An integration strategy for large enterprises. Yu-
goslav Journal of Operations Research, 17(2):209–222, 2007.

[S+06] Douglas C Schmidt et al. Model-driven engineering. Computer-
IEEE Computer Society-, 39(2):25, 2006.

[S+15] Martin Sústrik et al. Zeromq. Introduction Amy Brown and Greg
Wilson, page 16, 2015.

[Sar19] Rishi Kanth Saripalle. Fast health interoperability resources (fhir):
current status in the healthcare system. International Journal of
E-Health and Medical Communications (IJEHMC), 10(1):76–93,
2019.

[SBB+10] Ina Schaefer, Lorenzo Bettini, Viviana Bono, Ferruccio Damiani,
and Nico Tanzarella. Delta-oriented programming of software prod-
uct lines. In Software Product Lines: Going Beyond: 14th Interna-
tional Conference, SPLC 2010, Jeju Island, South Korea, Septem-
ber 13-17, 2010. Proceedings 14, pages 77–91. Springer, 2010.

[Sch05] Hans Jochen Scholl. Interoperability in e-government: More
than just smart middleware. In Proceedings of the 38th Annual
Hawaii International Conference on System Sciences, pages 123–
123. IEEE, 2005.

[SCT13] Andy Stanford-Clark and Hong Linh Truong. Mqtt for sensor net-
works (mqtt-sn) protocol specification. International business ma-
chines (IBM) Corporation version, 1(2):1–28, 2013.

[SHU+13] A-D Seriai, Marianne Huchard, Christelle Urtado, Sylvain Vaut-
tier, et al. Mining features from the object-oriented source code of
software variants by combining lexical and structural similarity. In
2013 IEEE 14th International Conference on Information Reuse &
Integration (IRI), pages 586–593. IEEE, 2013.

189

[SI10] Romina Spalazzese and Paola Inverardi. Mediating connector pat-
terns for components interoperability. In Software Architecture: 4th
European Conference, ECSA 2010, Copenhagen, Denmark, August
23-26, 2010. Proceedings 4, pages 335–343. Springer, 2010.

[SL99] Matti Sinko and Erno Lehtinen. The challenges of ICT. Citeseer,
1999.

[SL+16] Ashutosh Satapathy, Jenila Livingston, et al. A comprehensive
survey on ssl/tls and their vulnerabilities. International Journal of
Computer Applications, 153(5):31–38, 2016.

[SM17] Dipa Soni and Ashwin Makwana. A survey on mqtt: a protocol
of internet of things (iot). In International conference on telecom-
munication, power analysis and computing techniques (ICTPACT-
2017), volume 20, pages 173–177, 2017.

[SMR+12] Lionel Seinturier, Philippe Merle, Romain Rouvoy, Daniel Romero,
Valerio Schiavoni, and Jean-Bernard Stefani. A component-based
middleware platform for reconfigurable service-oriented architec-
tures. Software: Practice and Experience, 42(5):559–583, 2012.

[SPCF04] Joseph M Schlesselman, Gerardo Pardo-Castellote, and Bert
Farabaugh. Omg data-distribution service (dds): architectural up-
date. In IEEE MILCOM 2004. Military Communications Confer-
ence, 2004., volume 2, pages 961–967. IEEE, 2004.

[SPE17] Romina Spalazzese, Patrizio Pelliccione, and Ulrik Eklund. In-
tero: an interoperability model for large systems. IEEE Software,
37(3):38–45, 2017.

[SRA19] Maya RA Setyautami, Rafiano R Rubiantoro, and Ade Azu-
rat. Model-driven engineering for delta-oriented software product
lines. In 2019 26th Asia-Pacific Software Engineering Conference
(APSEC), pages 371–377. IEEE, 2019.

[SSS17] Anas Shatnawi, Abdelhak-Djamel Seriai, and Houari Sahraoui. Re-
covering software product line architecture of a family of object-

190

oriented product variants. Journal of Systems and Software,
131:325–346, 2017.

[Tar12] Sasu Tarkoma. Publish/subscribe systems: design and principles.
John Wiley & Sons, 2012.

[Tic99] Sander Tichelaar. Famix java language plug-in 1.0. Technical Re-
port, 1999.

[Tos15] Martin Toshev. Learning RabbitMQ. Packt Publishing Ltd, 2015.

[Van01] Frédéric Vandenberghe. Reification: History of the concept. In-
ternational Encyclopedia of the Social and Behavioral Sciences,
19:12993–12996, 2001.

[vdML02] Thomas von der Maßen and Horst Lichter. Modeling variability by
uml use case diagrams. In Proceedings of the International Work-
shop on Requirements Engineering for product lines, pages 19–25.
Citeseer, 2002.

[WCC+95] Brian A Wichmann, AA Canning, DL Clutterbuck, LA Winsbor-
row, NJ Ward, and D William R Marsh. Industrial perspective on
static analysis. Software Engineering Journal, 10(2):69, 1995.

[Weg96] Peter Wegner. Interoperability. ACM Computing Surveys (CSUR),
28(1):285–287, 1996.

[Wie92] Gio Wiederhold. Mediators in the architecture of future informa-
tion systems. Computer, 25(3):38–49, 1992.

[Win92] Patrick Henry Winston. Artificial intelligence. Addison-Wesley
Longman Publishing Co., Inc., 1992.

[WKS+16] Tim Winkelmann, Jonathan Koscielny, Christoph Seidl, Sven
Schuster, Ferruccio Damiani, Ina Schaefer, et al. Parametric deltaj
1.5: propagating feature attributes into implementation artifacts.
In CEUR WORKSHOP PROCEEDINGS, volume 1559, pages 40–
54. CEUR-WS, 2016.

191

[YQC+19] Jiang Yongguo, Liu Qiang, Qin Changshuai, Su Jian, and Liu Qian-
qian. Message-oriented middleware: A review. In 2019 5th Inter-
national Conference on Big Data Computing and Communications
(BIGCOM), pages 88–97. IEEE, 2019.

[YS94] Daniel M Yellin and Robert E Strom. Interfaces, protocols, and
the semi-automatic construction of software adaptors. In Proceed-
ings of the ninth annual conference on Object-oriented program-
ming systems, language, and applications, pages 176–190, 1994.

[ZDAT22] Oleksandr Zaitsev, Stéphane Ducasse, Nicolas Anquetil, and Ar-
naud Thiefaine. How libraries evolve: A survey of two industrial
companies and an open-source community. In 2022 29th Asia-
Pacific Software Engineering Conference (APSEC), pages 309–317.
IEEE, 2022.

[ZJYR23] Jun-Jie Zhu, Jinyue Jiang, Meiqi Yang, and Zhiyong Jason Ren.
Chatgpt and environmental research. Environmental Science &
Technology, 2023.

[ZXZ+23] Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei
Xue, Zihan Wang, Lei Shen, Andi Wang, Yang Li, et al. Codegeex:
A pre-trained model for code generation with multilingual evalua-
tions on humaneval-x. arXiv preprint arXiv:2303.17568, 2023.

192

	niang_bt_pagedetitre
	niang_bt_these
	Abstract
	Résumé
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1. Introduction
	Research context
	Defining fundamental Concepts and positioning
	Interoperability: Levels, Layers, and Vision
	Distinguishing Interoperability, Integration, and Alignment

	Research Motivations and Objectives
	Structure of the manuscript

	Chapter 2. State of the Art
	Introduction
	Exploration of Key terminology in Describing Interoperability Mechanisms
	Middleware
	Mediator
	Adaptor
	Wrapper
	Application Programming Interface (API)
	Software connector
	Summary of terminologies

	Industrial practice/architecture for interoperability
	Point-to-Point architecture
	Hub-Spoke architecture
	Message-Oriented Middleware (MOM)
	Service-Oriented Architecture (SOA)
	Enterprise Service Bus (ESB)
	Summarize of the architectural style

	Survey of Standard for interoperability
	Interoperability mechanisms implementation approach
	Connector as first-class entity
	Dynamic or runtime reconfiguration
	Automatic synthesis
	Model-driven approaches
	Exploiting variability and code generation

	Summary

	Chapter 3. Reifying Interoperability Mechanism: An Extensible Metamodel for Software Connectors
	Motivation for Reifying Interoperability Mechanisms
	Methodology for the Reification of Interoperability Connectors
	Building a Repository for Analyzing Interoperability Mechanisms
	Concretization of the Reification: Metamodel for the Messaging Connector
	The Importance of Using a Metamodel to Represent the Reified Messaging Connector

	Introducing the Metamodel of the Messaging Connector
	Detailed presentation of the metamodel:
	Revealing the Concrete Connector: A Comprehensive Overview

	Summary

	Chapter 4. Validating the Completeness and Extensibility of the Messaging Connector Metamodel and Conducting performance tests on the Reified Messaging Connector
	Assessing the Scope of Connector Metamodel Coverage
	Validation of the connector repository building process
	Comparison of Compliance with the metamodel through illustrative examples
	Validation of Metamodel Expandability

	Discussion and Conclusion

	Chapter 5. ConPL: Unveiling the Connector Product Lines Framework
	Introduction
	Foundational Concepts
	Software Product Line Engineering
	Differentiating Reuse Strategies: Comparative Analysis of Software Product Line (SPL), Component-Based Software Engineering (CBSE), and Software Ecosystem (SECO)
	Delta-Oriented Programming principle

	Motivation for Adopting a Software Product Line approach
	Why should connectors be considered as a product line?
	ConPL: Model-Based Connector Product Line Framework
	Analysis of Commonalities and Variabilities in Connectors
	Modeling Variability in Connectors
	Implementing the Connector Product Line within the Solution Space
	Mapping Guidelines: Feature Model to Model-Level Product Line Architecture
	Application Engineering through Model-Driven Engineering

	Practical Application Scenario
	Summary

	Chapter 6. Tooling Support for Implementing Software Product Lines: The PhaDOP Framework
	Surveying Tools for Software Product Line landscape
	PhaDOP: A Pharo Framework for Implementing Software Product Lines using Delta-Oriented Programming and Model-Based Engineering
	The PhaDOP Framework: Overview and Internal Mechanism

	Experimentation and Evaluation
	Initializing the Delta Project
	A Truth Table-Based Methodology to Identifying Entity and Method-Level Granularity Delta Modules
	Delta Module Implementation
	Visualize Delta Modules
	Apply Delta Modules - Product derivation
	Generation of Product Source Code - Application Engineering

	Discussion
	Threats to Validity
	Conclusions

	Chapter 7. Experimentation on Software Connector Generation from the Connector Product Line
	Incremental Feature Analysis and Identification
	Implementation Connector Product Line
	Metamodel of the Reduced Experimental Connector
	Reusable artifact at the method-level granularity
	Product Derivation - Basic Producer Code Generation:

	Conclusion

	Chapter 8. Conclusion
	Summary
	Contribution
	Future work

	List of Publications
	References

