Multimodal machine learning methods for pattern analysis in smart cities and transportation - TEL - Thèses en ligne
Thèse Année : 2024

Multimodal machine learning methods for pattern analysis in smart cities and transportation

Méthodes d'apprentissage automatique multimodales pour l'analyse de modèles dans les villes intelligentes et les transports

Ifigeneia Drosouli
  • Fonction : Auteur
  • PersonId : 1419019
  • IdRef : 280511949

Résumé

In the context of modern, densely populated urban environments, the effective management of transportation and the structure of Intelligent Transportation Systems (ITSs) are paramount. The public transportation sector is currently undergoing a significant expansion and transformation with the objective of enhancing accessibility, accommodating larger passenger volumes without compromising travel quality, and embracing environmentally conscious and sustainable practices. Technological advancements, particularly in Artificial Intelligence (AI), Big Data Analytics (BDA), and Advanced Sensors (AS), have played a pivotal role in achieving these goals and contributing to the development, enhancement, and expansion of Intelligent Transportation Systems. This thesis addresses two critical challenges within the realm of smart cities, specifically focusing on the identification of transportation modes utilized by citizens at any given moment and the estimation and prediction of transportation flow within diverse transportation systems. In the context of the first challenge, two distinct approaches have been developed for Transportation Mode Detection. Firstly, a deep learning approach for the identification of eight transportation media is proposed, utilizing multimodal sensor data collected from user smartphones. This approach is based on a Long Short-Term Memory (LSTM) network and Bayesian optimization of model’s parameters. Through extensive experimental evaluation, the proposed approach demonstrates remarkably high recognition rates compared to a variety of machine learning approaches, including state-of-the-art methods. The thesis also delves into issues related to feature correlation and the impact of dimensionality reduction. The second approach involves a transformer-based model for transportation mode detection named TMD-BERT. This model processes the entire sequence of data, comprehends the importance of each part of the input sequence, and assigns weights accordingly using attention mechanisms to grasp global dependencies in the sequence. Experimental evaluations showcase the model's exceptional performance compared to state-of-the-art methods, highlighting its high prediction accuracy. In addressing the challenge of transportation flow estimation, a Spatial-Temporal Graph Convolutional Recurrent Network is proposed. This network learns from both the spatial stations network data and time-series of historical mobility changes to predict urban metro and bike sharing flow at a future time. The model combines Graph Convolutional Networks (GCN) and Long Short-Term Memory (LSTM) Networks to enhance estimation accuracy. Extensive experiments conducted on real-world datasets from the Hangzhou metro system and the NY City bike sharing system validate the effectiveness of the proposed model, showcasing its ability to identify dynamic spatial correlations between stations and make accurate long-term forecasts.
Dans le contexte des environnements urbains modernes et densément peuplés, la gestion efficace des transports et la structure des Systèmes de Transport Intelligents (STI) sont primordiales. Le secteur des transports publics connaît actuellement une expansion et une transformation significatives dans le but d'améliorer l'accessibilité, d'accommoder des volumes de passagers plus importants sans compromettre la qualité des déplacements, et d'adopter des pratiques respectueuses de l'environnement et durables. Les avancées technologiques, notamment dans l'Intelligence Artificielle (IA), l'Analyse de Données Massives (BDA), et les Capteurs Avancés (CA), ont joué un rôle essentiel dans la réalisation de ces objectifs et ont contribué au développement, à l'amélioration et à l'expansion des Systèmes de Transport Intelligents. Cette thèse aborde deux défis critiques dans le domaine des villes intelligentes, se concentrant spécifiquement sur l'identification des modes de transport utilisés par les citoyens à un moment donné et sur l'estimation et la prédiction du flux de transport au sein de divers systèmes de transport. Dans le contexte du premier défi, deux approches distinctes ont été développées pour la Détection des Modes de Transport. Tout d'abord, une approche d'apprentissage approfondi pour l'identification de huit médias de transport est proposée, utilisant des données de capteurs multimodaux collectées à partir des smartphones des utilisateurs. Cette approche est basée sur un réseau Long Short-Term Memory (LSTM) et une optimisation bayésienne des paramètres du modèle. À travers une évaluation expérimentale approfondie, l'approche proposée démontre des taux de reconnaissance remarquablement élevés par rapport à diverses approches d'apprentissage automatique, y compris des méthodes de pointe. La thèse aborde également des problèmes liés à la corrélation des caractéristiques et à l'impact de la réduction de la dimensionnalité. La deuxième approche implique un modèle basé sur un transformateur pour la détection des modes de transport appelé TMD-BERT. Ce modèle traite l'ensemble de la séquence de données, comprend l'importance de chaque partie de la séquence d'entrée, et attribue des poids en conséquence en utilisant des mécanismes d'attention pour saisir les dépendances globales dans la séquence. Les évaluations expérimentales mettent en évidence les performances exceptionnelles du modèle par rapport aux méthodes de pointe, soulignant sa haute précision de prédiction. Pour relever le défi de l'estimation du flux de transport, un Réseau Convolutif Temporel et Spatial (ST-GCN) est proposé. Ce réseau apprend à la fois des données spatiales du réseau de stations et des séries temporelles des changements de mobilité historiques pour prédire le flux de métro urbain et le partage de vélos à un moment futur. Le modèle combine des Réseaux Convolutifs Graphiques (GCN) et des Réseaux Long Short-Term Memory (LSTM) pour améliorer la précision de l'estimation. Des expériences approfondies menées sur des ensembles de données du monde réel du système de métro de Hangzhou et du système de partage de vélos de la ville de New York valident l'efficacité du modèle proposé, démontrant sa capacité à identifier des corrélations spatiales dynamiques entre les stations et à faire des prévisions précises à long terme.
Fichier principal
Vignette du fichier
2024LIMO0028.pdf (6.7 Mo) Télécharger le fichier
Origine Version validée par le jury (STAR)

Dates et versions

tel-04709700 , version 1 (25-09-2024)

Identifiants

  • HAL Id : tel-04709700 , version 1

Citer

Ifigeneia Drosouli. Multimodal machine learning methods for pattern analysis in smart cities and transportation. Machine Learning [cs.LG]. Université de Limoges; University of West Attica, 2024. English. ⟨NNT : 2024LIMO0028⟩. ⟨tel-04709700⟩
0 Consultations
0 Téléchargements

Partager

More