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A B S T R A C T

Dwarf Novæ are eruptive binary systems comprised of a Roche-lobe overflowing solar-
type star and an accreting white dwarf. Their recurrence time can be explained by a low-
accreting phase called quiescence. During this phase the angular momentum transport
parameter is inferred to be α = 10−2 by the Disc Instability Model (DIM) to reproduce
observations. However, during this phase, the accretion disc is too cold, and too little
ionised for the usual accretion driving mechanism, the Magneto-rotational Instability, to
sustain turbulence and drive accretion. In this work, I explore two candidate mechanisms
to explain the observed accretion during the quiescence phase, with the GPU-accelerated
Idefix code. First, I study the accretion driven by spiral shock excited by the tidal poten-
tial. I show that the linear perturbative theory fails to predict the spirals wave behaviour
in this cold regime. I then show that spiral shocks only achieve angular momentum
transport an order of magnitude too low, at best, because these discs are so cold and thin
(H/R ≈ 10−3) during quiescence. In a second part, I explore the possibility that an MHD
wind arises and increases the angular momentum transport in low magnetic Reynolds
number (Rm ≈ 100) regime. I quantify the efficiency of the arising MHD wind and com-
pare the modelled transport parameter values to values inferred from observations by
the DIM. I show that accretion is strongly enhanced by the presence of a magnetic wind,
that launches even from a highly resistive disc. In magnetised simulations, a strong disc
tilt develops. I examine different scenarii to understand the growth of this tilt.

v
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M
onitoring stars has long been a human pastime. The oldest formal star maps
and star registers we have discovered are as old as the oldest written records
(Kansas, 2007), dating back to around 3000 BCE. Indeed, knowing the pos-

ition of stars in the sky is quite handy as their movement is accurately predictable for
most of them, and their evolution usually takes place on a timescale of tens of thousands
of years. As a matter of fact, the constellations described by the Sumerians or the Vedic
Indians are still very much observable today.

This clockwork regularity was already empirically observed back then, and star maps
and registers were used to make calendars and to travel by night. In fact, this regularity
inspired philosophical and religious traditions as well as the first attempts at empirical
models of the skies, like the musica universalis of Pythagorean philosophers.

1.1 first detections of variable stars

It seems that Chinese astronomers were the first to note a discrepancy in this numbing
regularity. During the 14th century BCE, they noted the appearance of a new star in the
sky. We also have evidence that ancient Egyptians noticed a star with varying luminosity
around 1200 BCE (Jetsu et al., 2013). Such events occurred on other occasions throughout
recorded history, namely, amongst other less known events, in 1006 CE, 1054 CE, 1572 CE
and 1604 CE. It is after the one of 1572 that the Danish astronomer Tycho Brahe published
a book, De Stella Nova (1573) (Latin for On the new star), compiling observations of the
event by contemporaneous astronomers. The event of a new star appearing took the
name of a nova, the Latin word for new. More precisely, most of the observed events I
mentioned above are now called super novæ because of the tremendous luminosity of the
newly appeared star.

Nowadays, stars with varying luminosity are still an ongoing research topic for astro-
nomers and astrophysicists. We call them variable stars and we have classified them into
a wide range of categories (see for example Levy (2005) for an introduction to variable
stars). The luminosity of these stars may vary for a lot of different reasons. The first
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reason can be geometry. For example, when two stars form a binary system, it may hap-
pen that one star periodically eclipses the other. Some other stars, the Cepheid variables,
have a changing luminosity because they undergo periodic contraction, changing both
their radius and temperature. Another category of variable stars are the flare variables
which feature strong, but irregular, increases in their luminosity. Finally, the category in
which I am interested in this work are cataclysmic variables, or CVs for short. These stars
are actually binary stars that can have dramatic changes in luminosity, so much so that
some of them become visible to the naked eye when they do brighten.

The change in luminosity of cataclysmic variables is due to the interaction between
the two stars. In these systems, one of the stars is always a white dwarf while there
is no general rule for the second star, usually called the companion star. In all cases,
the sudden increase in luminosity is caused by matter from the companion star falling
onto the white dwarf. We call this process accretion, and it may take various forms. For
example, in the case of classical novæ, which are a subcategory of cataclysmic variables,
a thermonuclear explosion occurs when so much matter from the companion star has
fallen onto the white dwarf that the bottom layers of accreted material reach the ignition
temperature for thermonuclear reaction.

Cataclysmic variable stars have been long studied, and are now classified in the fol-
lowing categories (see Warner (2003) for example):

Classical novæ are systems with only one observed eruption. The luminosity variations
of these systems are between 6 and 19 magnitude, and are the result of thermonuclear
explosion on the white dwarf.

Recurrent novæ are previous classical novæ systems that go into outburst at least a
second time.

Dwarf novæ are systems that go into regular outbursts with luminosity contrast of 2

to 5 magnitude. Each system has a well-defined outburst pattern, but across all dwarf
novæ the time between two outbursts may vary from 10 days to tens of years. These
outbursts usually last from 2 to 20 days, correlated with the time between two outbursts.
The difference with regular novæ is made from observed spectra. During the outburst of
a recurrent nova, material is ejected at high velocities; this is not the case for dwarf novæ
and the light curves are very different. An example of typical dwarf novæ visible light
emission is shown in figure 1.1.

Nova like are a wide category of cataclysmic variable stars. This category includes all
the cataclysmic variables that do not go into outburst, but have similar spectra to that
of novæ in ouburst. As such this category most likely includes pre-novæ, systems that
have not been detected in outburst yet, and post-novæ, systems that underwent outburst
which we never observed.

Magnetic CVs are systems where accretion occurs through magnetised accretion columns
onto the white dwarf. Depending on the strength of the magnetic field, the accretion disc
may be partially or totally disrupted. The two biggest subclasses of magnetic CVs are
polars with no accretion disc signature, and intermediate polars with a truncated accretion
disc. The suppression or truncation of the accretion disc is attributed to a strong mag-
netic field of the white dwarf. Polars are estimated to have magnetic field of B ≥ 1000 T
and intermediate polar B ≥ 100 T. Magnetic CVs are sometimes included in the nova-like
category.

1.2 particularities of dwarf novæ

In the present work, I am particularly interested in dwarf novæ systems, and I will
restrict the discussion to these systems. They were first observed by Hind (1856) who
thought he was witnessing a regular nova, but he noticed that it faded away only a few
days later. This star was observed again three months later by Pogson, suggesting again
a different behaviour than a regular nova. Pogson’s observations were later compiled
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Figure 1.1 – Historic light curve of SS Cygni, a typical dwarf novæ system. Data compiled by the
AAVSO, figure from their website https://www.aavso.org/vsots_sscyg.
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by Turner (1906). This star, U Geminorum (U Gem), is now the prototypical dwarf nova
system.

1.2.1 Observational characteristics

These systems featuring regular outbursts are now classified into three subcategories.
These categories correspond to three general luminosity behaviours. Here we only con-
sider the behaviour of their visible luminosity. The names of these categories are taken
from the name of the prototypical system with this behaviour (Warner, 2003).

Z Cam star feature standstills at about 0.7 magnitude below their maximum brightness.
During these standstills that can last days to years, there is no outburst. An example of
the light curve of Z Cam is plotted on figure 1.2. The standstill after one of the outbursts
is clearly identifiable.

SU UMa feature occasional superoutbursts. These superoutbursts are brighter than
regular outbursts and are about five times as long. Figure 1.3 shows the lightcurve of
V1505 Cyg, an example of SU UMa system. On this figure, one can recognise thirteen
regular, short, outbursts and three superoutburts, lasting for much longer. During these
superoutbursts, SU UMa systems also feature a lower-amplitude higher-frequency lumin-
osity variation. These short periodic increases of luminosity during the superoutbursts
are called superhumps and were first described by Vogt (1974).

U Gem dwarf novæ are all the other dwarf novæ. They typically outburst every month
for about a week, but there can be strong variations within this class. On figure 1.1 is
plotted the historical lightcurve of SS Cygni. This system is a U Gem type dwarf nova
that has been continuously observed since Wells (1896). This system is bright enough to
be observed by amateur astronomers, as a matter of fact, the plotted historic lightcurve
is taken from the American Association of Variable Star Observers (AAVSO).

In this work, I will focus on describing U Gem dwarf novæ, and I will now discuss only
them for the remainder of this introduction. These systems feature only two luminosity
states differing by around 4 magnitudes; they can clearly identify on figure 1.1. The
low luminosity state is called the quiescence phase, and the bright phase corresponds
to the periodic outbursts. First, I will present the observational characteristics of this
type of system. Then, I will discuss the proposed physical mechanisms to explain the
observations. Chapter 2 presents a more in-depth theoretical lay of the land.

1.2.2 Explaining the luminosity variations

Since the 1920s, the spectral behaviour of cataclysmic variable stars was a puzzle for
astronomers. Joy (1954) used spectra of AE Aquarii to show that this cataclysmic variable
star was actually a binary star. They then applied a similar method to the dwarf nova
SS Cygni to show that this star also was a binary star (Joy, 1956). Together with Walker
(1954, 1956)’s works on DQ Her, these works led Kraft (1962) to speculate that ‘that
all cataclysmic variables might be binary systems’. They found that the systems they
studied were composed of a blue (hot) component and a red (cold) component, and are of
short orbital period, that is less 10 hours. They suggest that the blue stars may be white
dwarfs. They observe that the red stars have a spectrum consistent with a 1 M⊙ mass,
but appear underluminous for their mass. They propose that the red stars overflow their
Roche lobes and that the overflowing material forms a ring or a disc around the white
dwarf. Nowadays, this binary system model is widely accepted, see for example see
review by Ritter (2008) and Zorotovic and Schreiber (2020).

[ 7th October 2024 at 12:23 – classicthesis ]



1.2 particularities of dwarf novæ 7

Figure 1.2 – Light curve of Z Cam, with a typical standstill. Figure from the AAVSO website
https://www.aavso.org/vsots_zcam.

Figure 1.3 – Light curve of V1504 Cyg, a typical SU UMa system with long superoutbursts (here
three). Figure from Osaki and Kato (2013).
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1.2.2.1 Roche lobe over flow: why do we think that ? How can it happen ?

These binary systems where one of the components overflows from its Roche lobe are
called semi-detached binaries. To obtain such systems from an initially wide binary system
with a solar-type star and a white dwarf, there are two possible paths. One possibility is
that the binary spirals in down to a separation where the solar-type star is larger than its
shrinking Roche lobe. For the binary system to spiral in, some of its angular momentum
must be expelled. This can occur through the emission of gravitational waves (Kraft et
al., 1962) or from magnetic braking (Verbunt and Zwaan, 1981; Mestel and Spruit, 1987),
i.e. from the magnetised wind of the stellar companion that is tidally locked to the white
dwarf. The typical angular momentum loss timescale is estimated by these authors to be
108 years.

The other scenario that can produce a semi-detached binary is the expansion of the
secondary star. The timescale of this growth is given by the nuclear evolution timescale
of the star. For main sequence stars, this time is typically larger than one billion years.
While possible, this second mechanism is less likely to produce cataclysmic variables
because the angular momentum loss in a binary system is usually faster than stellar
evolution timescale (Ritter, 2008).

The presence of a matter disc around the white dwarf is a direct consequence of the
Roche lobe overflow. Its formation is summarised in figure 1.4. The overflowing matter
circularises in a ring around the white dwarf. This ring then radially spreads: some mat-
ter loses its angular momentum and falls at lower radii, but the total angular momentum
is conserved and the disc also spreads at larger radii. The point where the matter flux
from the secondary star hits the disc is the hot spot. There, the disc is heated as some
of the kinetic energy of the infalling matter is released in shock heating with the disc.
This hot spot was initially thought to be on the surface of the white dwarf by Krzeminski
(1965). Smak (1971) and Warner and Nather (1971) showed concomitantly that this bright
spot was in fact in the outer regions of the disc.

1.2.2.2 Which component is at the origin of the outburst ?

The discovery that dwarf novæ were binary systems opened new possibilities to ex-
plain the recurrent increases of luminosity. The first interpretations of spectral evolu-
tion proposed that the white dwarf was the ‘seat of the eruptions’ (Zuckermann, 1961;
Kraft, 1963). This mechanism relies on thermonuclear explosions at the surface of the
white dwarf similar to novæ explosions. This model was not further explored when it
appeared unlikely that it could produce short recurrence time between two outbursts
(Osaki, 1974).

This interpretation was soon contested in favour of an explanation based on variations
of the companion star (Krzeminski, 1964, 1965; Smak, 1969). One of their arguments that
favoured an origin of the outbursts in the companion is the absence of an expanding shell
like in other systems featuring novæ explosions. Paczyński (1965) and Bath (1969, 1972)
proposed an instability mechanism of the outer layer of the companion star to explain
the recurrent outbursts. They proposed that the outer convective layers of companion
star pulsate. During a pulsating timescale, the star expands beyond its Roche lobe and
produces an unstable outflow. That is, matter is removed from the outer layers of the
companion star at a fast enough rate so that the expansion of the star due to this mass
reduction is greater than the corresponding reduction in Roche lobe size. With this
model, they were able to reproduce the rapid increases in luminosity of dwarf novæ.
The recurrence time of the outburst is not well explained by this model as it mainly
depends on the pulsating timescale of the companion star.

Osaki (1970) proposed another model where the companion star was at the origin of
the outburst. He rules out any dynamical origin in the outburst because the thermal
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Figure 1.4 – Formation of a disc in a semi-detached binary system, from Verbunt (1982).
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and nuclear timescales of solar-type stars are much longer than the recurrence times of
dwarf novæ. In his scenario, he postulates that the outburst originates in a return to
some equilibrium: When the companion star overflows its Roche lobe, the shear flow
turbulence resulting from the mass loss regulates the star size as it temporarily increases
energy transport. Consequently, the outburst corresponds to when the star is overflowing
its Roche lobe, and the quiescence phase when not. With this model, Osaki (1970) was
able to explain the short recurrence times of dwarf novæ. However, he could not produce
outbursts with a strong enough luminosity increase.

Following the first accretion disc model for X-Ray Binaries (Pringle and Rees, 1972;
Davidson and Ostriker, 1973; Lamb et al., 1973; Shakura and Sunyaev, 1973), Osaki (1974)
proposed that a similar mechanism could explain the luminosity variation of dwarf novæ.
He proposed that the mass flow from the companion star was constant, but that matter
piling up in a ring around the white dwarf could undergo ‘some kind of instability’ and
‘fall onto the white dwarf with a shorter timescale than that of piling up, resulting in
sudden release of gravitational energy’. Our current understanding is now in line with
this later model.

1.2.2.3 Observed luminosity origin

Like in the other types of accreting systems, the observed luminosity mostly originates
in the release of gravitational potential energy of infalling matter onto the accreting object.
In the case of dwarf novæ, this matter accretes through an accretion disc as first suggested
by Kraft (1962), and eventually falls onto a white dwarf.

The matter from this disc slowly loses angular momentum and falls to lower radii
eventually reaching the white dwarf surface. In a first approximation, the light we ob-
serve corresponds to the amount of potential energy lost by the infalling material. It can
be simply evaluated, per unit mass, as e = Ψ(rWD) − Ψ(rL1), where Ψ is the potential
including gravitational energy and rotation energy, and rWD and rL1 are the radii of the
white dwarf and of the first Lagrange point of the binary system respectively. In these
systems, the mass of the companion star is less than the mass of the white dwarf, and the
Lagrange point is always such that rWD ≪ rL1 , and close to the white dwarf, other contri-
bution to the gravitational potential, such as the secondary star, are negligible compared
to the potential of the white dwarf. As a consequence, the potential energy released by
the infalling matter, per unit mass, is

e ≈ GMWD

rWD
(1.1)

which yields e ≈ 2 × 10−4 c2 for a white dwarf of 1 M⊙. The energy released by
unit mass is only slightly less than the energy released by fusion reactions: for instance,
Deuterium fusion D + D → He fusion releases efus ≈ 0.006 c2. In the case of accretion
onto neutron stars or black holes, the energy released through accretion even surpasses
the energy released by fusion reactions.

This estimate shows us the total (time-integrated) amount of energy released per unit
mass of infalling matter. The emitted luminosity L, i.e. the amount of energy radiated
away per unit time, depends on the rate at which matter is accreted onto the white dwarf.

L ≈ GMWD

rWD
ṀWD (1.2)

where ṀWD is the accretion rate, that is the amount of mass falling onto the white dwarf
per unit time. For an axisymmetric disc of height H, this rate is Ṁ = −2πrWDHρvR with
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vR the radial velocity of the accretion disc fluid, and ρ its density, whit the white dwarf
centred in r = 0.

Osaki (1974)’s model was able to explain from basic arguments the fact that the ob-
served luminosity was indeed a consequence of accretion. His idea was that after some
time in quiescence, the matter accumulated in the accretion disc would be rapidly ac-
creted onto the white dwarf. This can be more formally written as

Ṁcompτrec = Ṁoutburstτoutburst (1.3)

where τrec the time between two outbursts and τoutburst the duration of an outburst, and
Ṁcomp is the matter flow rate coming from the overflowing companion, and Ṁoutburst is
the accretion rate onto the white dwarf during an outburst. This equation is deducted by
the conservation of mass. The left-hand side is the total mass provided by the companion
in a recurrence time; the right-hand side is the total mass accreted onto the white dwarf
during an outburst. If the only way to remove matter from the disc is for it to fall onto
the white dwarf, we obtain this equation.

He then estimates the companion accretion rate with the luminosity of the hot spot,
with

Lhot spot ≈
GMWD

rout
Ṁcomp (1.4)

where rout is the outer radius of the disc, where the hot spot is located. The accretion
rate is not known, but their ratio corresponds to the ratio of the two characteristic times,
hence the ratio of the luminosity during and outburst and the luminosity of the hot spot
is

Loutburst

Lhot spot
=

rout

rWD

τrec

τoutburst
. (1.5)

By estimating Lhot spot as one-half of Lquiescence, using a typical value of rWD = 5× 106 m
and rout = 108 m, he obtained

Loutburst

Lquiescence
≈ 160 (1.6)

which matches the observation of dwarf novæ systems. The conclusion of this work
is that an intermittent accretion through the disc onto the white dwarf is able to explain
the change in luminosity of dwarf novæ. However, Osaki (1974) did not propose any
instability mechanism that could explain this intermittent accretion. At the beginning of
the 1980s, a model was proposed to explain this instability-like behaviour. This model is
the Disc Instability Model, and is presented in details in section 2.2.

1.2.3 Different contributions to the emission

The emission described above accounts for most of the energy released through accre-
tion. However, it is not the only emission channel in dwarf novæ. Let me rapidly review
the different observable contributions of dwarf novæ systems.
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Figure 1.5 – Spectral evolution from quiescence (bottom spectrum) to maximum of outburst (top
spectrum) for SS Cygni. Figure from Horne (1991).

Most of the radiation emitted by dwarf novæ accretion disc originates in the accre-
tion disc. Local viscous or viscous-like heating releases the potential energy of matter
and is radiated away. The simplest picture is to think of the accretion disc as a multi-
temperature black body. Different radii have different viscous heating rates and thus
radiate different amounts of energy, at different frequencies. In this picture, inner re-
gions of the disc release more energy, being at higher temperature. They emit at shorter
wavelengths than the outer regions of the disc. A method to probe the disc radial tem-
perature profile is discussed in the following.

Wood et al. (1986) separated the relative optical contributions of the different compon-
ents of the accreting system for Z Cha. During quiescence, the disc accounts for about
50% of the emitted flux, the hot spot contributes to close to 30% and the white dwarf to
20% of the luminosity. During outburst, the disc luminosity is so enhanced that the other
contributions are negligible in comparison.

Additionally, the different elements of the gas, or rather plasma, or the accretion disc
will also contribute to the emission through their atomic lines. Spectral lines provide
precious information on the composition, temperature and density of the emitting region.
First of all, they prove that the elements corresponding to the emission lines are present
in the disc. Examples of spectra of SS Cyg are shown in figure 1.5. There, we see
spectra at different epochs of the quiescence–outburst cycle. During the outburst phase,
absorption lines are observed, whereas during quiescence emissions lines are observed
because of a change in the temperature stratification and optical thickness of the emission
region. The presence of atomic lines allows us to compare with the usually assumed
solar composition of ≈70% Hydrogen, ≈28% Helium and ≈2% of heavier elements (in
number density, see Grevesse and Sauval (1998) for example). Williams and Ferguson
(1982) were the first to show a deviation from this composition. They showed that several
CV systems they observed featured H i and He i lines that required an unexpectedly
high Helium abundance: He/H ≳ 100 in the disc. Done and Osborne (1997) showed
with X-ray spectroscopy that the dwarf nova SS Cyg appeared to have a lower than
expected abundance of heavy elements. More recently, Harrison (2016) showed that
for the forty-one cataclysmic variables they observed, they found a subsolar metallicity
composition of the companion stars, as well as subsolar hydrogen fraction. With near-
infrared spectroscopy, Harrison and Marra (2017) note a small 12C/13C abundance ratio
in the donor star of three cataclysmic variables. Together with recent studies (Godon
and Sion, 2023; Yamaguchi et al., 2023), these results suggest that the companion star
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is semi-detached binary systems may be evolved stars. This means that the formation
channel of cataclysmic variable binaries may need to be revisited.

1.3 structure of the binary system

As detailed above, it is well established that dwarf novæ are binary systems com-
posed of an accreting white dwarf surrounded by a disc which is fed by a Roche lobe
overflowing-solar-type companion star. It is however possible to have a finer description
of the structure of the systems thanks to several observational methods.

1.3.1 Eclipse mapping

This method was originally introduced by Horne (1985) for eclipsing systems, i.e. sys-
tems that are seen from a high enough inclination that the companion star periodically
occults part of the disc and white dwarf component. See Baptista (2016) for a recent
review.

This method relies on the fact that at different orbital phases, the companion star will
hide different parts of the system. This method enables us to probe the structure of the
accretion disc as different regions may emit different amounts of light.

A simulation of eclipse mapping observation is shown on figure 1.6. The right column
shows a disc with a non-uniform emission pattern, represented by the colour. The oc-
cultation of the disc by the companion star is shown as an additional black region over
the disc. This way, only the visible regions of the disc are coloured. This occulted region
has a parabola shape. Its size depends on the size of the companion star, i.e. the mass
ratio q = Ms/MWD of the binary system, and on the inclination under which the system
is seen from Earth.

In practice, eclipse mapping observations work by finding a disc structure that is able
to reproduce the observed light curve. This method assumes that the disc is razor-thin,
and neglects its vertical extent to produce a two-dimensional structure. However, such
a structure cannot be completely determined by a one-dimensional light curve. The
remaining free parameters are selected among possible values using a Maximum Entropy
Method.

Eclipse mapping produced a series of important results in the study of eclipsing cata-
clysmic variables. It was possible to show that the disc extends to approximately half the
distance to the first Lagrange point in a variety of systems. Horne and Stiening (1985)
showed it for the nova-like RW Tri, and Horne and Cook (1985) for the dwarf nova Z
Cam during outburst.

Smak (1984) suggested that the disc size varies between the quiescence and outburst
phases, with a larger disc during the outburst than during quiescence. This was later
confirmed by the comparison of Horne and Cook (1985) who found rout ≈ 0.6rL1 during
outburst and Wood et al. (1986) who found rout ≈ 0.37rL1 during the following quiescence
of Z Cam.

These results were generalised to all dwarf novæ by followings work (Patterson, 1981;
Wood et al., 1989a; Wood et al., 1989b; Rutten et al., 1992a,b; Baptista and Catalán, 2001;
Vrielmann et al., 2002; Vrielmann and Offutt, 2003; Shafter and Misselt, 2006; Baptista et
al., 2007). They confirmed the trend that, outbursting discs are larger that quiescent discs,
even for the same system, between 25% to 70% of the distance to the first Lagrange point.
They also noted that the measured size of the disc was dependent on the observation
wavelength; discs appear larger at longer wavelengths because the outer discs are colder
than the inner regions.

These size measurements are key to understanding the physics of these discs, for
instance, they help constrain theoretical models of the truncation of the disc, like those
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Figure 1.6 – Illustration of the concept of eclipse mapping with q = 0.5 and inclination of 81°.
Left: Simulated observed light curve at different binary phases ϕ. The red hexagon
shows the current phase. Right: Disc in false black body colour, the region of the disc
occulted by the eclipsing companion is blackened. The yellow dashed lines show the
Roche lobe and the ballistic trajectory of the mass flux from the companion star. The
binary rotation is counter-clockwise. Figure from Baptista (2016).
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Figure 1.7 – Radial profile of the brightness temperature of Z Cha during outburst. The solid lines
show the theoretical model (1.7) for different values of the accretion rate. Figure from
Horne and Cook (1985).

discussed in chapter 2. The change in size with luminosity is also an important result
as it can be easily compared to theoretical models too. For instance, a disc with high
angular momentum transport will strongly accrete and also radially expand.

Additionally, eclipse mapping allows for a fine study of the structure of the bulk of
the accretion disc and to derive properties of the accretion flow from it. For example, the
radial profile of the accretion rate can be estimated from the observed brightness tem-
perature. To do so, one compares the radial brightness temperature profile to theoretical
estimates of this quantity. Assuming a steady disc with an optically thick, black-body
emission due to viscous heating, Shakura and Sunyaev (1973) give

σT4
eff =

3
8π

Ṁ
GMWD

r3

[
1 −

( rWD

r

)1/2
]

(1.7)

where Teff is the effective temperature, i.e. disc surface temperature, at radius r, and
σ is Stefan’s constant. Teff and the mass of the white dwarf are deduced from observa-
tions, its radius is constrained by the white dwarf equation of state. An example of the
estimation of the accretion rate in the disc of outbursting Z Cha is shown on figure 1.7.
There, we see that the data is well fitted by the theoretical model for a steady viscous
disc. We see that the accretion rate in this system is approximately 10−9M⊙/yr during
this outburst. For dwarf novæ, the typical accretion rate range from 10−14 M⊙/yr to
10−10 M⊙/yr during quiescence, and are typically 10−9 − 10−8 M⊙/yr during outburst.

This study of the temperature structure of the disc can be conducted at different times
during the outburst – quiescence cycle and provides information on where in the disc the
outburst is first triggered. Figure 1.8 shows the evolution of the disc temperature during
the whole cycle for the dwarf nova EX Dra. Baptista and Catalán (2001) observed with
this technique the propagation of heating and cooling fronts in the accretion disc related
to the beginning of the outburst and the return to quiescence. More recently, Court et al.
(2020) showed that for this system, the outbursts seem to be consistently triggered in
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Figure 1.8 – Eclipse mapping observation of EX Dra at different times. (a) quiescence. (b) early
rise. (c) late rise. (d) maximum of the outburst. (e) early decline. (f) late decline.
Left: eclipse mapping observation data (green boxes) and model (solid line) Middle:
Reconstructed eclipse maps, brightness temperature in false blackbody colour. Right:
Azimuthal average of the brightness temperature. Figure from Baptista (2016).
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1.3 structure of the binary system 17

Figure 1.9 – Doppler map of U Gem during outburst using the He ii λ4686 line, taken from Groot
(2001). A spiral pattern is visible in the velocity space. The balloon shape represents
the secondary star, which has the same shape as the Roche lobe because it is in co-
rotation with the binary. The + is the position of the centre of mass and the × is the
position of the white dwarf.

the inner regions of the disc and the heating front propagates towards the outer radii.
This type of outburst is called inside out outburst. On the contrary, outbursts seeded in
outer regions are called outside in outbursts. This observational knowledge can then be
confronted with theoretical modelling of dwarf novæ outbursts.

It is important to note however that results of eclipse mapping observation should
be treated with caution as they rely on some strong assumptions. For instance, the
measured brightness temperature is not a perfect proxy to measure the disc temperature.
It is typically measured at a one wavelength assuming a perfect black body disc, which
might not be the case. Moreover, the actual vertical structure of the disc is required
to obtain the relation between the measured brightness temperature and the effective
temperature (1.7). For example, Hirose et al. (2014) showed with numerical simulations
with radiative transfer that the temperature at the centre of the disc can be upwards of
five times larger than the disc surface temperature.

1.3.2 Doppler tomography

The Doppler tomography technique (see Marsh (2001), Echevarría (2012) for reviews)
relies on the observed Doppler shifts of emission or absorption lines in cataclysmic vari-
able systems. These shifts are measured during an orbital period along the projected line
of sight and can then be used to detect structures in the accretion disc. By definition of
this method, these structures are observed in a two-dimensional velocity space thanks
to the rotation of the binary system. They are then translated into the real space using
assumptions on the disc’s general structure. Like eclipse mapping, this technique is only
usable for systems observed under a high enough inclination.

The most prominent discovery made with this technique is the detection of spiral
structures in dwarf novæ discs. They were first detected by Steeghs et al. (1997) in the
IP Peg system. Spiral in cataclysmic variable discs were then observed in outbursting
dwarf nova U Gem (Groot, 2001) and also in super-outbursting dwarf novæ (Baba et al.,
2002). They were then also observed in novæ-like systems V3885 Sgr (Hartley et al.,
2005), UX UMa (Neustroev et al., 2011). Figure 1.9 shows one of the Doppler maps of
Groot (2001). The spirals appear to extend beyond the position of the companion star
because this plot is in velocity space, not real space. In a (quasi-)Keplerian disc, higher
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velocities correspond to radii closer to the central object. Spiral structures have also been
observed during quiescence in the U Gem system (Neustroev et al., 2004). These results
suggest that spiral waves are formed in the disc. These may have an impact on the disc
dynamics. For instance, during quiescence, the usual mechanism driving accretion can
not be sustained because the disc is too cold, as detailed further in chapter 2. Spiral
shocks may then be a viable way to drive accretion in these cold discs. These observed
structures are possibly related to tidally excited spirals that were extensively studied
analytically (see for example Savonije and Papaloizou (1983) and Savonije et al. (1994))
as well as numerically (see for example Savonije et al. (1994) and Ju et al. (2016)). This
possibility is extensively studied in chapter 4.

More recently, Ruiz-Carmona et al. (2020) vitiated the consensus of the systematic
presence of spiral structures in dwarf novæ discs (in outburst). In their study of sixteen
systems, they find non-axisymmetric structures in most of them but identified spirals in
only two of them. They conclude that spirals may still exist in discs where they do not
detect them, but they may not be luminous enough to be detected, or ‘hidden’ by some
other disc condition.

1.4 observations of outflows in dwarf novæ

Another feature of dwarf novæ system is the presence of large coherent outflows es-
caping the binary systems. They are mostly observed thanks to their Doppler-shifted
spectrographic signatures and may play a key role in the accretion, as I will discuss in
chapter 2.

1.4.1 Winds during outburst

The best direct evidence we have to confirm the presence of an outflow in accreting
systems is the observation of P Cygni profiles. A P Cygni profile is an emission line accom-
panied by a blue-shifted absorption feature of the same line, and that was first observed
in the P Cygni star by Maury and Pickering (1897). This spectrographic feature corres-
ponds to a gas outflow towards the observer, absorbing the background emission of the
star or the disc (Beals, 1929; McCrea, 1929), hence the blue-shifted absorption. With these
features observed in UV emission, we detected outflows in dwarf novæ (Cordova and
Mason, 1982; Mauche and Raymond, 1987; Drew, 1990). This type of outflow is usually
classified as wind and not jet because they are not very collimated. Their measured velo-
city ranges from 3000 to 5000 km/s. These velocities correspond to the escape velocity
close to the white dwarf, it is thus suspected that these winds originate from disc regions
close to the white dwarf. P Cygni profiles were first observed in non-eclipsing systems
with a high accretion rate (> 10−9 M⊙/yr). In high inclination systems, bipolar flows are
proposed to explain the lack of detection of P Cygni profiles (Drew, 1990; Knigge and
Drew, 1997). Hoare and Drew (1993) and Knigge and Drew (1997) estimate the mass loss
due to these winds to be close to 10−9 M⊙/yr, i.e. a few percent of the disc accretion rate.
Recently, Cúneo et al. (2023) showed that several nova-like systems feature optical sig-
natures of outflows. They report high outflow velocities (> 1000 km/s), consistent with
disc winds. Winds appear to be a general feature of outbursting cataclysmic variables.

1.4.2 Winds during quiescence

To this day, there has not been any direct observation of winds in quiescent dwarf
novæ systems. Perna et al. (2003) suggest that the broad O vii line they observed could
be due to the presence of an outflow in WX Hyi in quiescence. According to them, the
presence of an outflow is a compelling argument to explain the discrepancy in X-ray
and UV accretion rates they witness. Hakala et al. (2004) report a possibly blue-shifted
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Figure 1.10 – Simultaneous lightcurves for two outbursts and a quiescence phase of SS Cyg. Top:
Visible band emission (AAVSO). Bottom: X-rays flux (RXTE/PCA). Figure from
McGowan et al. (2004). Note that the X-ray luminosity increase at the end of the
outburst is not a general feature of dwarf novæ, but is particular to SS Cyg.

iron line, that could, here too, be due to the presence of an outflow in YZ Cnc during
quiescence.

More recently, Hernández Santisteban et al. (2019) observed an illuminated distant
bow shock in the V1838 dwarf nova during one of its outbursts. This bow shock appears
too distant to have propagated during the outburst of the observation, rather they argue
that a ‘quasi-continuous outflow of material is required to sustain a standing bow shock
with the interstellar medium’. This suggests that, in this system, a wind is also present
during the quiescence phase.

We unfortunately lack further observations of winds during the quiescence phase.
Either they are not present, but numerical studies suggest that they should (see Scepi
et al. (2018a) and Scepi et al. (2019) for example), or they are too faint to be observed
with current telescopes.

1.4.3 Jets

Contrarily to winds, jets are high velocity, low density, and collimated outflows. They
are usually detected with radio emission attributed to synchrotron radiation.

The radio emission observed by Körding et al. (2008) during a 2007 outburst SS Cyg
suggests that jets might also be present in dwarf novæ. Following this discovery, Har-
rison (2014) and Coppejans et al. (2015, 2016) showed that several other nova-like and
dwarf novæ systems were also radio emitters, albeit at low power that prevented earlier
detection. Körding et al. (2008), Russell et al. (2016) and Fender et al. (2019) argue that
the radio emission in SS Cyg originates from synchrotron emission in a transient radio jet,
similar to what is observed in X-ray binaries. However, contrarily to X-ray binaries, radio
emission seems to linger well into the luminosity plateau of the outburst phase (Webb,
2023). A recent review by Coppejans and Knigge (2020) errs on the side of caution and
advises that one should not conclude that all dwarf novæ emit jets just yet.

1.5 uv and x observations

Finally, dwarf novæ systems also feature higher energy wavelength emission. Indeed,
basic accretion theory predicts that half of the gravitational energy (1.2) is released in

[ 7th October 2024 at 12:23 – classicthesis ]



20 introduction

Figure 1.11 – Simultaneous lightcurves of SS Cyg during one outburst. Top: Visible band emis-
sion (AAVSO). Middle: EUV emission (EUVE from 0.1 keV to 0.2 keV). Bottom:
X-rays flux (RXTE/PCA). Figure from Wheatley et al. (2003).

Figure 1.12 – Boundary layer at the interface of the accretion disc and the white dwarf. Left: High
accretion rate regime with optically thick boundary layer (coloured region). Right:
Low accretion rate with optically thin boundary layer (dotted region). Note that
1016 g/s ≈ 10−10 M⊙/yr. Figure from Patterson and Raymond (1985a).
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1.6 summary 21

accretion disc flow, while the other half is radiated away close to the white dwarf in the
boundary layer between the accretion disc and the white dwarf (Lynden-Bell and Pringle,
1974). The light emitted by the inner regions of the disc is released in the form of
ultraviolet radiation. The contribution of the boundary layer is emitted in Extreme Ultra
Violet (EUV) radiation or X-rays.

During the low accretion quiescence phase, dwarf novæ emit soft X-rays 1 while during
the high accretion outburst phase, the X-rays flux is suppressed and they emit EUV
(Patterson and Raymond, 1985a,b; Wheatley et al., 1996; Wheatley et al., 2003; McGowan
et al., 2004; Wheatley and Mauche, 2005; Fertig et al., 2011; Balman, 2015). Figure 1.10

and 1.11 show this behaviour. On figure 1.10, we see that X-ray emission is quenched
during the high luminosity plateau of the outburst. On figure 1.11 we see that the EUV
luminosity is increased during the outburst and decreases at the end of the outburst.
The difference between these two regimes is well understood (Patterson and Raymond,
1985a,b), and is represented on figure 1.12. During the quiescence phase, when the
accretion rate is ≲ 10−10 M⊙/yr, the boundary layer has a low density, and is optically
thin. As a consequence cooling is inefficient and the plasma emits a bremsstrahlung
radiation in X-rays (≲ 10 keV). On the contrary, during the outburst, the boundary layer
is optically thick and emits black body radiation in EUV (≲ 100 eV).

From the emission at these wavelengths, it is possible to have a second estimate of the
accretion rate, independently of the optical emission estimate as they measure different
phenomena. The EUV and X-rays emission come from the accretion onto the white
dwarf, and thus depend on the chosen model for the boundary layer. On the other hand,
the optical estimate depends on how accretion in the disc flow is modelled. For example,
Pandel et al. (2005) computed the accretion rate of nine quiescent dwarf novæ from X-ray
observations. They find accretion rates 10−12 − 10−10 M⊙/yr. This range is consistent
with the estimate of Wheatley et al. (2003), 5 × 10−11 M⊙/yr for quiescent SS Cyg. In
this latter work, they measure an accretion rate of ≈ 10−8 M⊙/yr during an outburst of
SS Cyg with the same method.

1.6 summary

In this introduction, I presented the historical discovery of dwarf novæ and the obser-
vational state of the art for these systems. In the following chapters, I will present the
theoretical and numerical works that have been carried out to best explain these observa-
tions. In the following, I will focus on describing only the accretion disc of dwarf novæ,
and, at times, the matter flux from the companion star. The white dwarf, the boundary
layer and the companion star, can impact the accretion disc (through illumination effects,
amongst other effects), but will not be included in the following.

1. For Patterson and Raymond (1985a) ‘hard X-rays‘ refer to the energy range 0.2-4.0 keV, which are
usually called ‘soft’ X-rays, ‘because the observations require or suggest hard spectra‘. Unlike them, here, I
use the usual nomenclature.
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W
e saw in chapter 1 that the behaviour of dwarf novæ system is tightly
linked to the accretion disc that forms from the overflowing material of
the companion star. In this chapter, I discuss the theoretical framework

relevant to modelling these systems and in particular their accretion disc. We will see
how the observations presented in the previous chapter constrain the theoretical model
and motivate the theoretical developments I present here.

2.1 analytical formulation

2.1.1 Approximations and assumptions

Before diving into the analytical formulation of the problem at hand, let me first intro-
duce the typical relevant scales for dwarf novæ systems.

For a quantity q(r, t), one can define typical variation length and time scales. I define
the typical length scale over which this quantity varies as follows.

L ≈ q
|∇q| (2.1)

I can do the same to define the typical variation time scale of this quantity.

τ ≈ q
∂tq

(2.2)

In dwarf novæ, these scales are closely related to the geometry of the accretion disc
and the binary system. The orbital separation of the binary system gives us an upper
estimate of the length scale. This scale is usually a ≈ 109 m. Closely related to this scale
is the orbital frequency of the binary system. This time is related to the binary separation
and the mass of the binary components. The binary components usually have masses
comparable to a solar mass, i.e. MWD ≈ 1030 kg. In any case, the mass of the white
dwarf can not exceed the Chandrasekhar limit of 1.44 M⊙ ≈ 3× 1030 kg (Chandrasekhar,
1931). The companion star is usually a few tens of percent of the mass of the white dwarf

23
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24 hydrodynamics and mhd of accretion discs

Length Time Mass Magnetic field

a ≈ 109 m T0 ≈ 104 s MWD ≈ 1030 kg B ≈ 10−9 – 10 T

Table 2.1 – Typical physical scales of dwarf novæ binary system.

Length Time Density Temperature (Ma)

Quiescence Hin ≈ 104 m Tin ≈ 10 s – Tout ≈ 1 h
10−1 kg/m3 T ≈ 2, 000 K (1000)

Outburst Hin ≈ 105 m 10−2 kg/m3 T ≈ 40, 000 K (100)

Table 2.2 – Typical physical scales of dwarf novæ disc during quiescence and outburst.

(Zorotovic et al., 2011). The binary system period is usually a few hours, that is T0 ≈ 104

s.
In these systems, it is also possible for a magnetic field to be present, and as I will

discuss later, this has important consequences on the accretion disc. The magnetic field
in cataclysmic variable systems is very loosely constrained. The lower estimate values
come from typical interstellar medium values of BISM ≳ 10−9 T (Crutcher and Kemball,
2019). The upper estimation for the magnetic field is provided by a choice of my study.
Here, I am interested in studying only non-magnetic systems. In other words, I am not
interested in describing polars or intermediate polars, which have B ≥ 102 T. As this field
is evaluated on the white dwarf, it is an upper limit of the field in the disc even in those
systems. In non-magnetic systems, if it does not come from the interstellar medium, the
magnetic field originates from the components of the binary system, which are likely to
have a dipolar field that can produce fields of at least B ≈ 10−2 T in the disc (Pearson
et al., 1997).

The other relevant scales not only depend on the gravitational properties of the system,
but also on the properties of the accretion disc. Most of the relevant scales I will discuss
in the following have no hope of being resolved by current observational techniques, and
we have to make assumptions on some of the disc properties. Here I assume a collisional
fluid description of the accretion disc. I will present verifications that this assumption is
compatible with the typical scales it allows us to compute.

For the accretion disc, an important length scale is its scale-height at the inner radius
of the disc, that is at the radius of the white dwarf. This scale can be computed from the
hydrostatic vertical equilibrium of the disc. Under the assumption that the disc is thin,
i.e. H/R ≪ 1, it can be computed as H ≈ cs

ΩK
, with cs the local sound speed in the gas

and ΩK =
√

GMWD/R3 the local Keplerian frequency. Through the pressure (and here
the sound speed), this scale directly depends on the temperature of the disc.

During the quiescence phase, we typically have a disc temperature around T = 2, 000
K. Close to the white dwarf, this means that Hin ≈ 104 m. The corresponding aspect ratio
of the disc is R/H ≲ 1000. This aspect ratio also corresponds to the Mach number of
the Keplerian flow Ma = vK

cs
, with vK the Keplerian velocity. During the outburst phase,

the disc is hotter and thus thicker. The typical outburst disc temperature is T ≈ 4 × 104

K, that is a disc height scale close to the white dwarf Hin ≈ 105 m, and a Mach number
Ma ≈ 100. If the temperatures of these two phases are very different, the disc surface
density predicted by the Disc Instability Model is the same Σ ≈ 103 kg/m2. This model
is presented in section 2.2.

At the inner radius, the relevant timescale is the local Keplerian orbital period which
is of a few tens of seconds, Tin ≈ 10 s. At the outer radius of the disc (close to 40% to 60%
of the binary separation), this timescale is longer, close to one hour, that is Tout ≈ 3× 103

s.
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The relevant scales of the system are summarised in table 2.2 for quantities relevant to
the accretion disc, and in table 2.1 for the scales relevant to the binary system.

compact system , but relativistic ? The above estimation relies on the compu-
tation of the Keplerian velocity close to the white dwarf. This velocity is typically of the
order of a few percent of the speed of light, because the system is so compact. These
velocities are however not high enough to require a relativistic description. With γL the
Lorentz factor, we have γL − 1 ≲ 10−4 ≪ 1. In the following, I use a classical description
of dynamics which is well justified.

continuous medium description In order to use a fluid description of the field
q, the medium needs to be well described as a continuous medium, i.e. q being smooth
enough. This can be quantified by the Knudsen number, and a fluid approximation is
relevant when

Kn =
ℓ

L
≪ 1, (2.3)

where ℓ is the mean free path of the particles of the medium. In this work, we will
be interested in both an ionised plasma description of the medium as well as a non-
magnetised gas, we can estimate the mean free path in both regimes. As we do not have
access to the actual velocity distribution of the medium, we have to make assumptions
to compute the mean free path. In both following cases, I assume that the medium is
collisional, such that the temperature and pressure are well-defined, and verify that the
obtained mean free path is not in contradiction with this assumption.

First, in the non-magnetic case, we can assume that the gas is an ideal gas as the
particle sizes are much smaller than the inter-particle distances. We then have for an
ideal gas (see for example Rohlf (1994))

ℓHD =
kBT√
2πd2 p

, (2.4)

where kB is Boltzmann’s constant, T is the temperature, p is the pressure and d is the
particle size. During the quiescence phase, for an atomic gas we typically have ℓHD ≤
10−6 m.

At the other extreme of the fluid description, we have that for a fully ionised hydrogen
plasma, dominated by Coulomb collision, we have that (see for example Spitzer (1956))

ℓplasma =
(kBTϵ0)2

2πe4ne ln Λ
, (2.5)

whereϵ0 is the vacuum permittivity, me is the electron mass, e is the unit charge, ne is
the electron number density, and Λ is the plasma parameter. In quiescent dwarf novæ
systems we have ℓplasma ≈ 10−14 m.

This means that between a fully ionised state and a non-ionised state we have ℓ ∈
[10−14, 10−6] m.

En passant, we have computed the typical time between two collisions which is

τcoll = ℓ

√
µ

kBT
(2.6)
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with µ the molecular mass of the medium. We have τcoll ≈ 10−10 s for the non-
magnetic case; hence, much shorter than the typical time scales. We indeed have ℓ ≪ L
and τcoll ≪ τ, that is no contradiction with the collisional fluid approximation.

neglecting molecular viscosity We further assume that the molecular viscos-
ity is negligible compared to the effective viscosity arising from turbulence. Following
the argument of Kato et al. (2008), one can estimate how they compare (see Goldreich
and Schubert (1967) the original argument for star interiors). For instance, we can estim-
ate them as ν = vl where v is the relevant velocity and l the relevant length scale. In both
cases, the relevant velocity can be estimated to be the sound speed. For the molecular
viscosity, the relevant length scale is ℓHD the mean free path, and for the turbulent vis-
cosity, it can be estimated to be H the local disc scale-height (see for example the review
of Terquem (2002)). We then have

νmol

νturb
=

ℓHD

H
≈ 10−10 ≪ 1. (2.7)

We can also evaluate the associated viscous timescales as τν = R2/ν. We obtain τmol =
3 × 1016 s, that is approximately 100 million years. This is much larger than any relevant
timescale for these systems. On the other hand, τturb ≥ Tin, that is τturb ≈ 1 s.

low-frequency limit We also assume that the microphysics related to electromag-
netism and charged particles is taking place at much faster rate than the time scales that
we are interested in. This means that we require

ωLτ ≫ 1, (2.8)

as well as

ωpτ ≫ 1. (2.9)

where ωL is the Larmor frequency, which corresponds to gyration frequency due to the
magnetic field. ωp is the plasma frequency, that is the response time of charged particles
in the medium. For typical regimes of dwarf novæ systems, we have ωL = 1011 Hz for
electrons and ωL = 108 Hz for heavier ions like Na+. The plasma frequency is ωp = 1013

Hz. In both cases, the time scales we are interested in are much larger.

large scale limit Related to the above time scale are the following length scales
which must be much smaller that the ones we are interested in studying.

L ≫ λD, (2.10)

and,

L ≫ λL. (2.11)

where L ≫ λD is the Debye length, that is the screening length of the plasma. In this kind
of system, we have L ≫ λD = 10−8 m. λL is the Larmor length, which corresponds to
the gyration scale due to the magnetic field. For typical regimes of dwarf novæ systems,
we have λL = 10−6 m for electrons and λL = 10−4 m for heavier ions like Na+. Even in
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the case of extremely low magnetic field, at interstellar medium value of 10−7 T, we are
lower than the typical length scale of dwarf novæ systems.

We see that all the relevant microphysics scales are much smaller than the scales that
we are interested in describing. As a consequence, there is no contradiction in using
a collisional plasma description for the material of the accretion disc. Moreover, the
plasma scales are such that it can be considered a locally neutral medium and will be
well-described by an inviscid (magneto-)hydrodynamics description.

self-gravitating disc ? When discs becomes cold enough, it is possible that its
internal pressure is no longer able to counteract its own gravity. For a rotating disc, the
relevant criterion is the Toomre criterion (Toomre, 1964). This criterion reads

csκ

πGΣ
> 1 ⇔ stable, (2.12)

where κ is the epicyclic frequency, G is the gravitational constant and Σ is the disc
column density, which I assume to be constant for this estimate. This criterion can be
translated into

Mdisc

MWD
<

H
R

⇔ stable. (2.13)

For dwarf novæ, even during quiescence, when H/R ≈ 10−3, the mass of the disc is
about 1018 kg and this criterion is satisfied. The accretion disc is not expected to be
subject to gravitational instability. As a consequence, I will only take into account the
gravitational potential of the stars of the binary.

2.1.2 Equations

Now that I have verified that a fluid description is appropriate, we know that the Euler
equations (Euler, 1757) can be used to describe the evolution of the fluid. I will not repeat
their general form, rather I present their most relevant version for this work.

In the non-magnetic case, we have

∂tρ +∇ · (ρu) = 0, (2.14)

∂tu + (v ·∇)u = −1
ρ
∇p −∇Ψ, (2.15)

∂tE +∇ · (Eu) = −∇ · (up), (2.16)

where ρ is the fluid density, p its pressure, u its velocity and E its energy per unit volume,
and Ψ the gravitational potential.

The energy E includes the gas internal energy per unit volume ρe, the kinetic energy
and the potential energy.

E = ρe +
1
2

ρu2 + ρΨ. (2.17)
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This equation system must be closed by an equation of state, and we use the ideal gas
law.

p =
ρ

µ
kBT, (2.18)

where T is the fluid temperature, and µ is the molecular mass of the fluid. For an ideal
gas undergoing adiabatic transformation, we have that

ρe =
p

γ − 1
, (2.19)

with γ the heat capacity ratio of the gas.

In the magnetic case, we need to include the Maxwell equations (Maxwell, 1861) for
the electric and magnetic fields E and B.

∇ · B = 0, (2.20)

∇ · E = 0, (2.21)

∇ ∧ B = µ0j, (2.22)

∇ ∧ E = −∂tB, (2.23)

where j is the electric current density, and µ0 the vacuum magnetic permeability. The fact
that we are interested in scales larger than the typical electric charge screening length of
equation (2.10) translates in the absence of charge density in equations (2.21) and (2.22).
Let us consider the simpler general case, where the plasma can not be considered a
perfect conductive medium, rather it has a finite conductivity σ (and resistivity η =
1/(µ0σ)). We have Ohm’s law for a fluid at velocity u.

j = σ(E + µ0u ∧ B) (2.24)

Hence we obtain from (2.23), (2.22) and (2.24) the magnetic field evolution equation.

∂tB = ∇ ∧ (u ∧ B)−∇ ∧ (η∇ ∧ B) (2.25)

This form includes the possible space variations of the Ohmic resistivity η.
Now, one still needs to include the Lorentz force j∧ B to the momentum balance (2.15).

We obtain the following equation.

∂tu + (u ·∇)u = −1
ρ
∇p −∇Ψ +

1
µ0ρ

(∇ ∧ B) ∧ B (2.26)

The energy equation simply needs to be modified with E 7→ E + 1
2

B2

µ0
to include the

local magnetic energy density, one also needs to include the Poynting flux. We thus have
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∂tE +∇ · (Eu + Π) = −∇ · (up), (2.27)

where Π = E∧B
µ0

= ηj ∧ B + B2v − (B · v)B is the Poynting flux.

We also note that in practical applications, and in order to have a better intuition on
the effect of the Lorentz force, we usually decompose it in two parts.

1
µ0

(∇ ∧ B) ∧ B = − 1
2µ0

∇B2 +
1
µ0

(B ·∇) · B (2.28)

The first term is the gradient of magnetic pressure and can be interpreted as pressure
force like −∇p. The second term is the magnetic tension and can be interpreted as an
effect counteracting magnetic field line bending. Indeed, for a constant amplitude field,
this term is B2

µ0
K with K proportional to the inverse of the curvature radius of the field

lines.

non-ideal mhd effects Above, I presented the equation for MHD that includes a
dissipation term: the Ohmic resistivity, or simply resistivity, η.

It is relevant to include this term when the plasma is poorly ionised, but is not the
only term that I could have included. When the plasma is not well ionised, the collisions
between charged particles and neutral particles may become significant and change the
dynamics. These terms are the difference between ideal MHD and non-ideal MHD. These
non-ideal terms that arise due to this poor ionisation are a way to model the fact that the
different species (electrons, ions and neutrals) are not perfectly coupled, while keeping
the convenient one-fluid description.

For quiescent dwarf novæ systems, the ionisation fraction can be estimated for the
plasma from the Saha equation (Saha, 1920). Using solar composition of Grevesse and
Sauval (1998), that is hydrogen abundance X = 0.7 and metallicity Z = 0.02, Scepi et al.
(2018a) find typical values around

ξ ≈ 10−5. (2.29)

This value of ξ ≪ 1 does not explicitly say whether the non-ideal effect will be relevant,
but it certainly raises caution. Apart from the resistivity, two other non-ideal effects may
be relevant in weakly ionised discs. Ohmic resistivity arises because of electron-neutral
collisions whereas ambipolar diffusion arises from ion-neutral collisions, causing non-
negligible ion-neutral drift. On the other hand, the Hall effect arises from a velocity drift
between ions and electrons.

These two other non-ideal effects – the Hall effect (H) and Ambipolar diffusion (A) –
are known to play an important role in protoplanetary discs (see for example Lesur et al.
(2014) and Bai (2015) and reference therein). Balbus and Terquem (2001) propose a way
to quantitatively measure their relative importance compared to Ohmic resistivity (O).
They give
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O
H

=

(
ρ

3 × 10−3 kg/m3

) 1
2 ( cs

vA

)
, (2.30)

O
A

=

(
ρ

10−5 kg/m3

)(
T

103 K

)− 1
2
(

cs

vA

)2

. (2.31)

In these systems, the large-scale magnetic field is due to the dipole of the companion
star and can be estimated as B ≈ 10−2 T (Pearson et al., 1997). In this case we have
O/H ≈ 102 and O/A ≈ 107. From these estimates, it seems that the Hall effect may
not be negligible. As discussed in Scepi et al. (2018a), the Hall effect is characterised by
the Hall Lundquist number LH. In dwarf novæ regimes, this number is LH ≫ 1 such
that the actual effect of the Hall effect is in practice negligible (Sano and Stone, 2002;
Kunz and Lesur, 2013). This confirms that the other non-ideal effects will have a lower
impact on the dynamics. Furthermore, the above estimate for magnitude field amplitude
does not take into account any disc dynamo effect, that can produce a stronger magnetic
field. As vA ∝ 1/B, a stronger field further reduces the relative impact of Hall effect and
ambipolar diffusion. In this work, I do not take them into account.

The quantitative effect of the resistivity term included in the equation is discussed in
the section on accretion in magnetised discs 2.3. There, I discuss the quantitative effect
of resistivity on magnetic accretion-driving mechanisms.

2.1.3 Application to accretion discs

The Euler and Maxwell equations I presented above are the very general evolution
equations for a magnetised fluid in a gravitational potential. In this work, I am more
specifically interested in describing the evolution of an accretion disc. These particular
objects have been modelled for almost eighty years (Weizsäcker, 1948), and the main
problem we face to understand their evolution is to understand how angular momentum
is redistributed inside the disc flow. Indeed, for matter to be able to lose some of its
angular momentum and fall onto the central object, this angular momentum must be
transferred to some other part of the flow.

A way to redistribute angular momentum in a flow is through some viscosity ν; this
is what Lynden-Bell and Pringle (1974) proposed. At the time the physical origin of this
viscosity was unknown. At around the same time, Shakura and Sunyaev (1973) proposed
to quantify the angular momentum transport with a dimensionless parameter α. In fact,
by construction, the two approaches are related as one can write the following relation.

ν = αcsH (2.32)

where cs is the sound speed and H is the disc thickness.

More recently, Balbus and Papaloizou (1999) formalised this approach making use of
the weak turbulence formalism in the case of thin discs, i.e. when H ≪ R. They were
able to obtain the same dynamical equations as the previous models, but without using
any ad hoc term. Namely, one can obtain the α parameter from first principles. I will use
this formalism in the following. With this approach, I will derive a simple one-dimension
model for an accretion disc. I however include the possibility of a vertical outflow in this
picture, contrary to the first approach of Balbus and Papaloizou (1999).
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As I am interested in understanding angular momentum transport, I will focus on the
mass conservation equation (2.14) and the angular momentum equation. The latter is
obtained from equation (2.26) and reads

∂t
(

Rρuφ

)
+∇ ·

[
Rρuφu − BφB

µ0

]
+ ρ∂φP +

ρ

2µ0
∂φB2 = 0, (2.33)

for a stationary central gravitational and axisymmetric potential.
Then, we write the quantities as some ‘mean’ field plus some perturbation to this field.

In cylindrical coordinates (R, φ, z) we have

uR = 0 + vR, uφ = ΩR + vφ, uz = 0 + vz, (2.34)

where ΩR is the some azimuthal velocity. Note that I the ‘mean’ field taken here need
not be the actual average of the flow, nor need the perturbation be of smaller amplitude
than this ‘mean’ field 1. In the following I assume ∂ϕΩ = 0 = ∂tΩ.

The angular momentum balance can be written with these new variables.

∂t
(

Rρvφ

)
+∇ ·

[
Rρvφu − BφB

µ0

]
+ ρu ·∇(ΩR2) + ρ∂φP +

ρ

2µ0
∂φB2 = 0, (2.35)

We now introduce the following averages, to reduce the three-dimensional problem to
just one spatial dimension.

⟨X⟩ = 1
2π

∫ 2π

0
Xdφ and X =

∫ h

−h
⟨X⟩dz, (2.36)

where h is some arbitrary height scale. For simplicity, we take ∂th = ∂φh = ∂Rh = 0.
With these, we obtain a new form of the continuity equation

∂tΣ +
1
R

∂R (RρuR) +
[
⟨ρvz⟩

]h
−h = 0, (2.37)

where Σ = ρ the azimuthal average of the surface density. The angular momentum
balance becomes

∂t(Rρvφ) + ρvR∂R
(
ΩR2)+ 1

R ∂R

[
R2
(

ρvφvR − BφBR
µ0

)]
+

[
R
(
⟨ρvφvz⟩ −

⟨BφBz⟩
µ0

)]h

−h
= 0.

(2.38)

Here, the possibility of a wind arising translates in not assuming the surface terms
[
...
]h
−h

to be zero. Under this form, the angular momentum balance equation can be easily
interpreted, as each contribution to the angular momentum change is isolated. Let me

1. Balbus and Papaloizou (1999) only assume |⟨v⟩|2 ≪ ⟨v2⟩, i.e. that fluctuation motions are of small
amplitude compared to the mean state.

[ 7th October 2024 at 12:23 – classicthesis ]



32 hydrodynamics and mhd of accretion discs

decompose this balance equation in several terms to obtain a better understanding of the
global picture.

First, let me focus on the bulk terms of this equation. They are related to the physics
inside the accretion disc. They are directly related to the usual properties of accretion.
For instance, for a stationary regime without wind, equation (2.38) reduces to

Ṁ =
2π

∂R (ΩR2)
∂R

[
R2

(
ρvφvR − BφBR

µ0

)]
(2.39)

with Ṁ = 2πRρvR is the local accretion rate. This was the usual picture until recently.
Based on the dimensional argument of Shakura and Sunyaev (1973), we define the α
parameter as

ρvφvR − BφBR

µ0
= αp (2.40)

In the case where accretion is driven by disc mechanisms, such as hydrodynamical or
magnetic instabilities, this is a good description of accretion. This case corresponds to
when the total angular momentum of the disc is conserved. In this case, it is simply
redistributed at different radii. This model simply relates the radial advection of angular
momentum ρvR∂R

(
ΩR2) to the gradient of stresses of the flow 1/R∂R(R2αp). These

stresses may be purely hydrodynamics, for example emerging from local turbulence, or
arise from the magnetic fields.

A common abuse of terminology is to refer to α as directly quantifying the accretion.
However, as we can see in equation (2.39) and (2.40) the value of α alone does not directly
give the accretion rate. This abuse of terminology implicitly assumes that the disc is in
a quasi-Keplerian steady state, with no radial variation of α, and a disc described by
power-law profiles.

The α formulation of the stress is equivalent to a viscous model, provided that we use
the effective viscosity of equation (2.32). Indeed, we can write the above stress as follows.

αp = −2
3

νΣ
dΩ

d log R
(2.41)

However, disc winds may also extract angular momentum as we can see in equation
(2.38). Such an outflow effects translate in the presence of a surface term. This surface
term is related to possible surface stresses that can locally remove angular momentum
from the disc. Much like Shakura and Sunyaev (1973), Lesur (2021) proposed to intro-
duce a dimensionless parameter υ to quantify the contribution of outflows to accretion,
such that

[
R
(
⟨ρvφvz⟩ −

⟨BφBz⟩
µ0

)]h

−h
= υpmid (2.42)

where pmid is the midplane pressure. This way, α quantifies the radial angular mo-
mentum transport, while υ quantifies the vertical transport. In the stationary regime,
and when ∂zΩ = 0, this yields
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Ṁ =
2π

∂R (ΩR2)

[
∂R(R2αp) + R2υpmid

]
(2.43)

A similar treatment can be done to the energy equation. We obtain

∂tEm +
1
R

∂R(RFm,R) +
[
⟨Fm,z⟩

]h
−h = p∇ · v −

[
ρvφvR − BφBR

µ0

]
dΩ

d log R
− Λ (2.44)

with Em = 1
2 ρv2 + B2

2µ0
is the mechanical energy associated with the fluctuations, and

Fm =
(
Em + p + B2

2µ0

)
v − v·B

µ0
B − E×B

µ0
is the associated energy flux. Λ corresponds to

possible losses, for example from Joule effect heating, viscous heating, radiative losses...
If we take this equation in a steady state, we see the losses are compensated for by

the stress term α dΩ
d log R . Moreover, when outflows are present, this local heating will be

reduced, if the stress remains the same, as outflows do not locally contribute to heating,
but can carry energy away. As a consequence, the observational signature of a disc will
change depending on whether there is an outflow.

2.2 the disc instability model

When it comes to modelling accretion in dwarf novæ systems, the Disc Instability
Model (DIM) provides an adapted theoretical one-dimensional framework. This model
has been initiated more than forty years ago (Hōshi, 1979; Meyer and Meyer-Hofmeister,
1981; Cannizzo et al., 1982; Smak, 1982; Faulkner et al., 1983; Mineshige and Osaki, 1983)
and explains the outburst-quiescence cycle by a thermo-viscous opacity hysteresis cycle
(see Lasota (2001) and Hameury (2020) for reviews). This model can also be modified to
describe some low-mass X-ray binary systems (van Paradijs and Verbunt, 1984; Cannizzo
et al., 1985; van Paradijs, 1996). It has also been applied to FU Ori protoplanetary systems
(Bell and Lin, 1994) and to active galactic nuclei (Janiuk et al., 2004; Hameury et al., 2009)
with less success.

The DIM uses a non-magnetic description of the accretion disc, and uses a similar ap-
proach as presented in the previous section to obtain a one-dimensional problem. How-
ever, it includes additional effects relevant to dwarf novæ. The two first additional effects
correspond to including the companion star in the picture. First, one should include the
matter stream coming from this star as it provides both mass and angular momentum
to the disc. Second, the tidal torque of the close companion also needs to be taken into
account.

Finally, the last required addition is to the energy balance equation. We include a
heating term Q+, which is expressed under its viscous form, and we also include a
black-body radiation cooling term Q−. Note that in its original version the DIM does not
include winds. In this case, we obtain the following equations.

∂tΣ +
1
R

∂R(RΣvR) =
1

2πR
∂R Ṁext, (2.45)

j∂tΣ +
1
R

∂R(RΣjvr) +
3

2R
∂R(R2ΣνΩK) =

jext

2πR
∂R Ṁext −

1
2πR

Ttid, (2.46)
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∂tTc + vR∂RTc +
RTc

µCPR
∂R(RvR) =

Q+ − Q−

CPΣ
, (2.47)

where Ṁext is the amount of matter per unit time coming from the companion star, j =√
GMWDR is the local specific angular momentum, jext is the specific angular momentum

of material coming from the companion star, ΩK is the Keplerian angular frequency, Ttid
is the tidal torque of the companion star, Tc is the disc central temperature. Q+ = 3αΩp
is viscous heating. Q− = 2σT4

eff is the radiative cooling with σ the Stefan constant, and
Teff the disc surface temperature.

From these modified Euler equations alone, the outbursting nature of these systems
can not be explained. It is in fact somewhat hidden in the surface temperature Teff.

As its name suggests, this temperature is different from the disc central temperature Tc.
As the (vertically) inner regions of the disc will heat through viscous heating, the heat
will propagate more or less rapidly towards the upper and lower surfaces of the disc.
This efficiency is mostly determined by the opacity of the disc’s gas, κ. In the diffusion
approximation, as the disc is optically thick, we have, for a constant opacity,

T4
eff =

4
3κΣ

T4
c (2.48)

As a consequence, one can compute the central equilibrium temperature of the disc
Teq by equating Q+ = Q−.

Teq =

(
9
8

Ωκ

σ

kB

µ
Σ2
) 1

3

(2.49)

where µ is the molecular mass of the fluid. However, it turns out that in the regime of
dwarf novæ gas, there is an additional complication to this equilibrium. First, the opacity
of the gas varies sharply by several orders of magnitude close to the temperature and
density regime of dwarf novæ. This is because we are close to the ionisation temperature
of hydrogen.

This rapid change in opacity is illustrated on figure 2.1. The opacity plotted on this
figure is from Cox and Stewart (1970) and corresponds to Population II gas composition,
that is hydrogen fraction X = 0.8, and metallicity Z = 10−3, and helium fraction Y =
0.199. Depending on the ionisation fraction of the hydrogen, there will be a contribution
to the opacity by atomic excitation and photo-ionisation, and free-free absorption (inverse
Bremsstrahlung). Namely, as hydrogen ionises, the freed electrons increase significantly
the inverse Bremsstrahlung opacity.

Second, to further complicate the matter, in addition to this sharp change in opacity,
this regime of density and opacity is also such that for one single value of density, there
exist several possible equilibrium temperatures such that T/

√
κ is constant. This is what

is illustrated on figure 2.1. Points a and b are on the same constant density curve, and
have the same T/

√
κ, but different temperatures and opacities.

The stability of the accretion flow depends on whether the radiative losses of the disc
can totally compensate for the viscous heating, that is the flow is stable if when the
temperature changes, the heating terms are such that the state returns to equilibrium.
However, this strongly depends on the value of the opacity and temperature for a given
disc density. For example, point b on figure 2.1 may correspond to a stable opacity-
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Figure 2.1 – Opacity as a function of density and temperature of the gas computed from Cox and
Stewart (1970). The different solid lines correspond to different densities expressed
in g/cm3. The opacity is expressed in cm2/g, and the temperature in K. Figure from
Hōshi (1979).

temperature regime while point a may correspond to an unstable regime as they have
the same T/

√
κ but correspond to different Teff.

In the global picture, Hōshi (1979) showed that the accretion flow is stable if

∂TQ+(Teq) ≤ ∂TQ−(Teq) (2.50)

where Q+ may include additional heating terms, for example, heating due to the matter
stream from the secondary star hitting and heating the disc at the hot spot. However, only
heating terms that depend on the temperature may alter the stability of the equilibrium.

The viscous part of this thermo-viscous instability is captured by the criterion given by
Lightman and Eardley (1974): the disc is stable if

∂Σν

∂Σ
(Σeq) > 0, (2.51)

where ν is the viscosity of the disc. If this criterion is not satisfied, the disc tends to break
up into rings. In practice, for dwarf novæ, the thermal part of the instability captures
most of the disc evolution.

The global picture is summarised in figure 2.2. First, this figure illustrates the three
possible equilibrium temperatures of the disc at a given disc surface density Σ, radius
R, and α. It also relates the different heating/cooling regimes to the ionisation of the
hydrogen of the gas. Then, it shows the relation between the heating/cooling regime
and the accretion rate of the disc. Finally, it introduces the comparison of this accretion
rate with the matter flux rate from the companion star. Indeed, if Ṁext > Ṁ the surface
density of the disc will increase, conversely if Ṁext < Ṁ it will decrease.

This figure also shows the fact that the three equilibrium temperatures only exist for
a range of surface density Σ ∈ [Σmin, Σmax]. Outside this range, only one equilibrium
temperature exists. Note that in this range, there are two stable temperatures (upper and
lower branches) and one unstable temperature (middle branch).

This complete picture proposed by the DIM is summarised by the dashed arrows
represented on figure 2.2. They show the full outburst-quiescence cycle following the
equilibrium temperature curve.
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Figure 2.2 – S-curve in the surface density-temperature space, at constant radius and α. The
black solid line represents the equilibrium temperature, i.e. where Q+ = Q−. The
background colour represents the hydrogen ionisation state. The dashed arrows
represent the outburst-quiescence cycle path. The hot branch corresponds to the
outburst phase and the cold branch corresponds to the quiescence phase. Figure
adapted from Scepi (2019).
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Figure 2.3 – Density (solid lines) and temperature (dotted lines) versus radius at different times.
Top: Propagation of an inward cooling front and the associated density rarefaction
wave. Bottom: Propagation of an outward heating wave and over-density. Figure
from Hameury et al. (1998).

1. During the quiescence phase, the disc is cold and little ionised. The companion star
provides more mass to the disc than the amount accreted onto the white dwarf.
As a consequence, the surface density of the disc slowly increases. Its temperature
also slowly increases.

2. When Σmax, Tmin is reached, there no longer is a stable cold branch and an ionisation-
opacity runaway is triggered: The disc is hot enough for the hydrogen to start ion-
ising. The opacity of the gas is strongly enhanced, and the disc cooling drops in
efficiency; the disc heats up even more. This triggers the outburst.

3. During the outburst phase, the disc is hot and fully ionised. Accretion is strong and
so is the viscous heating. During this phase, more matter is being accreted than
what is provided by the companion star. The surface density of the disc rapidly
decreases.

4. When Σmin, Tmax is reached, there is no more stable hot branch. The hydrogen re-
combines and the opacity of the disc decreases. The disc falls back to the quiescence
phase.

Equations (2.45) – (2.47) can be solved to produce quantitative modelling of the evolu-
tion of a dwarf novæ disc. Such solutions, taken from Hameury et al. (1998), are plotted
on figure 2.3. On this figure, we can see the density and temperature of the disc evolve
with time. The most striking feature is the propagation of the cooling and heating fronts
at the beginning and end of the outburst.

To produce these results, one has to make assumptions of the value of the local turbu-
lent stresses α, as they can not be directly measured from an instantaneous observation
of these systems. Indeed, the emitted spectrum does not depend on α. However, it is
possible to estimate their value from the time variations of the emission. From the evol-
ution equations, one can estimate a typical viscous timescale. For instance, neglecting
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Figure 2.4 – Mock visible light curve obtained with the DIM for two different values of Ṁext.
Figures taken from Hameury et al. (1998).

any possible outflow, and neglecting the time variation terms of the angular momentum
balance, because v ≪ ΩR, one can obtain

∂tΣ =
1
R

∂R

(
1

R∂R(R2Ω)
∂R
(

R2αp
))

. (2.52)

Using that p ≈ c2
s Σ and approximating the derivatives as division by the relevant

timescale, we obtain

τν =
1

αΩ
Ma2 (2.53)

where Ma = ΩR
cs

= R
H is the Mach number of the accretion flow.

From this estimate, it is possible to compute approximate values of the α parameter
during the quiescence and outburst phases. The general idea is to equate the viscous
timescale to the relevant time scale for each phase.

For the quiescence phase, Cannizzo et al. (1988, 2012) estimate from the recurrence
time of dwarf novæ

αquiescence = 0.02 − 0.04. (2.54)

From the decay time of the outburst, Smak (1999), King et al. (2007) and Kotko and
Lasota (2012) estimate for the outburst

αoutburst = 0.1 − 0.2. (2.55)

One of the main strengths of the DIM is that using these parameters, it is able to
produce disc oscillating between the outburst and quiescence state as shown on figure
2.4. It is then possible to tune the parameters of the model in order to best fit observed
light curves and understand the physics of dwarf novæ discs. The main parameters that
can be tuned are the α parameter values during quiescence and outburst, the size of the
disc (inner and outer radii) and the matter flux from the secondary star.
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The DIM is now widely accepted as a good model for recurrent outbursting systems
(see for example Dubus et al. (2018) for a large-scale verification of the DIM with Gaia
DR2 data (Gaia Collaboration et al., 2018; Lindegren et al., 2018)), and a number of
refinements have been proposed in the last decades. I will not recall them here as they
can be found in recent reviews like Hameury (2020), but they include effects like inner
disc truncation, time variations of Ṁext, irradiation by the disc or by the components of
the binary systems...

What is most relevant to my work are the attempts at including disc winds in the
DIM picture. As discussed above, wind can carry matter as well as angular momentum
away from the system, and this can strongly change the emission of accreting systems.
For instance, using the DIM Tetarenko et al. (2018) proposed that for X-ray binaries,
the mass loss due to an outflow will significantly decrease the decay timescale of the
luminosity peak. This allows us to explain very rapid decay time without requiring
α values close to 1. To our current knowledge, such a high value of α can only be
explained by strong magneto-rotational-instability-driven turbulence with a large-scale
magnetic field, through the presence of substantial outflows (Bai and Stone, 2013a; Lesur
et al., 2013; Salvesen et al., 2016), or with large scale convection (Hirose et al., 2014).

Concomitantly, Scepi et al. (2018b) used local models of the accretion flow of dwarf
novæ to study the impact of magnetised winds. Their use of a vertical magnetic net
flux allowed for MRI to develop in the hot branch, while being quenched in the cold
branch by plasma resistivity, unless using strong magnetic fields. They then computed
the expected light curves for such models of DIM including a magnetic wind in Scepi
et al. (2019). They showed that the obtained light curves are compatible with observation.
They propose that during the outburst, accretion is mostly driven by the MRI while being
mostly driven by winds during the quiescence phase.

2.3 accretion in magnetised discs

As we saw, the DIM requires that an effective viscosity, captured by the α parameter,
is present in the disc, with different values during outburst and quiescence. Until the
nineties, the physical origin of this viscosity was unknown; and the DIM was agnostic of
the physical mechanism giving rise to it. In this section, I present mechanisms that can
drive accretion in magnetised discs.

2.3.1 The magneto-rotational instability

It is only with the uncovering of a strong linear instability that can exist even in low
magnetic field regime that we obtained the first plausible generic mechanism driving
accretion in hot, well-ionised accreting systems discs.

The magneto-rotational instability (Velikhov (1959), Chandrasekhar (1961) and Balbus
and Hawley (1991), MRI) is nowadays the widely accepted driving mechanism for accret-
ing systems and has been extensively studied in a wide range of systems and regimes. In
fact, it was its wide range of applications was already understood as it was first proposed
by Balbus and Hawley (1991). Indeed, they write

’The instability has some extraordinary properties. It is present if a disk (1)
is differentially rotating with a rate decreasing with distance from the center;
and (2) has a weak (subthermal Alfvén speed) poloidal component. Remark-
ably, neither the growth rate of the most rapidly growing wavenumbers nor
the stability criterion itself formally depend upon the magnetic field strength.’
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These conditions apply to a wide variety of accretion discs, like AGN discs, protoplan-
etary discs or compact binary discs. The existence of this instability relies on an efficient
coupling of the plasma of the disc and the magnetic field. When this coupling decreases,
a minimal poloidal magnetic field amplitude, in terms of 2µ0P/B2

z , is required to trigger
this instability. In fact, in cold systems, where the plasma is poorly ionised, non-ideal
MHD effects can quench this instability. This is for example the case for the dead zone
of protoplanetary discs (Gammie, 1996), or during the quiescence phase of dwarf novæ
systems (Gammie and Menou, 1998).

As my work focuses on global mechanisms driving accretion rather than local, turbu-
lence driving mechanisms, I will not re-derive the linear stability analysis of the MRI
here. Let me simply recall the stability criterion in the case where a vertical magnetic
field is present, i.e. the net flux case. This criterion is expressed in the Hill approximation
at radius R, we have the criterion

(kzVA,z)
2 < 2qΩ2 ⇔ mode kz is unstable (2.56)

where kz is the vertical wave vector, and VA,z = Bz/
√

µ0ρ is the vertical field Alfvén
velocity. Ω is the local angular frequency of the flow at radius R, and q is the local shear
rate at radius R

q = −d log Ω
d log R

(2.57)

From this criterion, we understand that for a quasi-Keplerian flow, i.e. with q ≈ 3/2,
one can always find a large enough vertical scale so that the corresponding mode is
unstable. In a disc, however, the vertical scale is limited by the thickness of the disc
H = cs

Ω . We can thus obtain a criterion on the vertical plasma parameter.

4π2

q
< βz ⇔ the disc is unstable (2.58)

where βz = 2µ0c2
s ρ

B2
z

the vertical plasma parameter. This criterion can be translated as
follows.

Bz <
1
π

H
R

GMWDρ

2R
⇔ the disc is unstable (2.59)

For typical outbursting dwarf novæ regime, this means Bz ≲ 1 T for the disc to be
unstable. This value of the magnetic field is compatible with the estimates of the local
magnetic field in these systems.

The fundamental mechanism behind the MRI can be understood in simple terms. Let
us consider the stability of a couple of fluid particles along the same vertical magnetic
field line at a given radius. This simplified description of the MRI is represented on
figure 2.5. By angular momentum conservation, if one particle falls to a lower radius,
the other one will go to a further radius. The magnetic tension will act as a spring and
counteract their relative drift. For a strong enough magnetic field, this is a stabilising
effect. Otherwise, this effect, will further remove angular momentum of the inner-radius
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Figure 2.5 – Simplified picture of the MRI mechanism, taken from Lesur (2021).

particle and give it to the outer-radius particle. This will increase their relative drift into
a positive feedback loop.

In the linear picture, the MRI can grow indefinitely, but of course, this instability will
eventually saturate. Goodman and Xu (1994) showed that this saturation is mostly due to
parasitic instabilities. This saturation will yield a turbulent saturation regime of the MRI.
As such, the MRI-driven turbulence, and thus the MRI, can be reduced to an α parameter
description. The first model of this instability required no mean magnetic field, as it can
be kickstarted from a finite amplitude perturbation. Then the ‘MRI dynamo’ produces
the field necessary to sustain the turbulent regime (Hawley et al., 1996). In this case, they
measured an angular momentum transport parameter α ≈ 0.01. But it was later realised
that this value depended on the numerical resolution (Fromang and Papaloizou, 2007).

It is also possible to study the MRI when a mean magnetic field is present. Hawley
et al. (1995) showed with local simulations of accretion flow that the obtained value of
α depends on the amplitude of the magnetic field. They studied the case where a mean
vertical field was present as well as when a mean toroidal field was present. In this work,
I only consider the mean vertical field case, as the more likely origin for this field in
dwarf novæ is the dipole or either binary component.

Including corrections of local simulations by Bodo et al. (2008) to the work of Hawley
et al. (1995), Lesur (2021) estimates that in the net flux case, for βz ∈ [400, 50000], we have

α ≈ 3.3β−1/2
z (2.60)

2.3.2 Magnetic winds

The second effect that can arise in an accretion disc when a large-scale vertical mag-
netic field is present is magnetic outflow. When deriving the equations relevant for
accretion discs I mentioned possible vertical outflows. Magnetic winds 2 are a type of
such outflows. Other possible outflows are thermal winds (Parker, 1958) and line-driven

2. The distinction between winds and jets is not clear cut as it mainly depends on the angle of the outflow.
Jets are typically fast, low-density and collimated; winds may carry more mass and are not collimated.
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Figure 2.6 – Wind launching picture. The radial shear creates Bφ , 0 from radially advected
field. The vertical gradient of magnetic pressure field pushes matter away from the
disc. If the disc is isothermal, the thermodynamic pressure is proportional to the disc
density.

winds (Lucy and Solomon, 1970). While these may be relevant for dwarf novæ observa-
tions, they do not apply a torque to the accretion disc, and as such do not contribute to
the angular momentum transport and I will not consider them here.

Note that, the contribution of these outflows to accretion is not captured by the α
parameter, as they correspond to a surface torque rather than a bulk torque. As mentioned
above an analogous parameter υ can be introduced to describe their contribution.

The mechanism described by Blandford and Payne (1982) for the magnetic launching
of a wind is rather simple. If the magnetic field lines are frozen in the accretion disc, as
is the case in ideal MHD, some material will be ejected from the disc along the field lines
like a ’bead on a rigid wire’ because of the centrifugal force.

An equivalent picture can be drawn from MHD properties of the flow. The accretion
taking place in the disc will create a radial component of the magnetic field by advection.
Then, the radial shear will produce a toroidal magnetic field from this radial field as
represented on figure 2.6. This is the usual Ω dynamo effect. As a consequence, the
magnetic pressure will be maximal at the surface of the disc. The magnetic pressure
gradient, ∇B2/2µ, will push matter out from the disc. As shown on figure 2.6, there
also is a magnetic pressure gradient directed towards the midplane inside the disc. In
cases where the magnetisation of the disc is weak, i.e. β ≫ 1, the disc remains supported
by the thermodynamic pressure.

In fact, the creation of the toroidal magnetic field is associated with a radial current
density. The Lorentz force corresponding to this current and to the toroidal magnetic
field corresponds to the vertical magnetic pressure gradient. This picture is similar to
induction braking in Faraday’s wheel experiment (1831).

As detailed above, the contribution of this outflow to angular momentum transport
can be quantified with the dimensionless parameter υ (2.42)

Note that the simplified picture of figure 2.6 does not take turbulent effects into ac-
count. See Jacquemin-Ide et al. (2021a) for a more detailed vertical structure that includes
the turbulent fluctuations of the magnetic field.

2.3.3 Impact of resistivity

The accretion driving mechanisms presented in this section both rely on an efficient
coupling of the plasma to the ambient magnetic field. However, during the quiescence
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phase of dwarf novæ systems, the plasma is cold little ionised as I extensively discussed
above. This means that the coupling of the magnetic field to the plasma will be decreased.
For example for the MRI, Gammie (1996) showed that for the cold, little ionised dead zone
of protoplanetary disc, this enhanced resistivity killed the MRI altogether. Above, I
wrote that the ionisation fraction was ξ ≪ 1, but I did not quantitatively discuss the
consequences of this poor ionisation. In fact, the effect of the resistivity is best captured
with another dimensionless number: the magnetic Reynolds number.

Rm =
vKH

η
(2.61)

Much like the usual Reynolds number, if Rm ≫ 1 this means that the effect of the
dissipative term, here resistivity, is small compared to the advection term of Navier-
Stokes equation, here the induction equation (2.25). On the other hand, when Rm ≪ 1
the resistivity will strongly modify the flow compared to an ideal MHD flow.

impact on the mri The picture of the MRI presented above was developed for a
fully ionised plasma with no Ohmic resistivity. Gammie and Menou (1998) however
showed that during the quiescence phase of dwarf novæ systems resistivity plays an
essential role in quenching this instability.

Like with the hydrodynamic Reynolds number, the flow is expected to be laminar if
Rm ≪ 1 while it is expected to be turbulent when Rm ≫ 1. Also like for the usual
Reynolds number, the transition to turbulence does not occur at Rm ≈ 1 but rather at
some critical Rmc. For accretion disc, this transition regime depends on the exact field
amplitude β, but is typically around Rmc ≈ 103.

The exact criterion for MRI stability in a resistive disc is

Rm >
βmean√

3
2π2 βmean − 4

⇒ unstable (2.62)

where βmean = 2µ0⟨P⟩/⟨B⟩2. This criterion is illustrated on figure 2.7. This figure
also shows an intermittent turbulence regime. In this regime turbulence is not fully
developed, as showed by Fleming et al. (2000).

This means that for cold, poorly ionised discs, the MRI can only survive in regions
where the disc is somehow heated or ionised by some external source, such as central
star irradiation or the hot spot in dwarf novæ systems, or in regions where enough
magnetic flux has been accumulated.

impact on magnetic winds The wind launching mechanism can be understood as
a saturation effect of the MRI, according to Lesur (2021)’s interpretation. As such, if the
disc is too resistive for MRI to be triggered, no outflow will be launched. However, even
with non-ideal effects the MRI can be triggered at the surface of the disc, and launch
an outflow from there, possibly with a non-turbulent disc. See for example the MRI
stability analysis figure 26 of Lesur (2021) that proposes another interpretation of the
winds launched simulations of Bai and Stone (2013b).

2.4 state of the art in modelling dwarf novæ beyond the dim

When it comes to modelling dwarf novæ discs, the DIM is a simple one-dimensional
model that achieves to reproduce the outburst quiescence cycle. However, as intrinsically
one-dimensional, it can not capture a lot of relevant physical effects. For example, the
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Figure 2.7 – Stability and instability with respect to the MRI in a resistive disc; βmean is defined
as in the text. Figure from Lesur (2021).

secondary star induces fundamentally non-axisymmetric perturbations in the disc, like
the tidal truncation of the disc or the matter flow from the companion. Another example
is that the heating and cooling fronts (see for example figure 2.3) are barely wider than
the disc height scale, suggesting that adding the vertical dimension of the disc may help
understand the physics of these. Finally, effects like the MRI or disc winds can not arise
ab initio from the full three-dimensional flow and magnetic field geometry. They can only
be included with a by-hand prescription. Here, I present past efforts to take into account
these effects. First, I discuss local models focusing on understanding the underlying
mechanisms driving the accretion, that can then be included in the DIM as educated
prescriptions. Second, I present global models of dwarf novæ disc that try to understand
large-scale accretion in dwarf novæ systems.

2.4.1 Local simulations

Because of the high numerical cost of numerical simulations, a particular effort has
been carried out in the accretion disc community to produce local simulations of the
accretion flow. With these, one focuses on understanding the local properties of the flow,
like local instabilities cascading to turbulence. If they do not capture the global prop-
erties of the accretion flow, they achieve the great resolution necessary to resolve such
instabilities. These simulations use the shearing box framework first developed by Hawley
et al. (1995) to study the MRI. This framework corresponds to the Hill approximation.

The shearing box model is based on a Taylor expansion of the flow around a radius
R. The simulation domain is a cuboid with special boundary conditions. In three di-
mensions, the coordinates used are (x, y, z) and they correspond to the local cylindrical
coordinates (R, φ, z). The gravitational potential in this model is the Hill potential, that is
a local second-order Taylor expansion of the potential at radius R. The y and z boundary
conditions are taken to be periodic. The x boundary conditions are also periodic, but
with a twist. To represent to local Keplerian shear in which the domain is embedded,
the flow properties across the x boundary are periodic but shifted of a number of cells
corresponding to the shear between the two x sides of the box. Note this number of cells
may not be an integer. Some models also include a vertical dependency on gravity and
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non-periodic vertical boundary conditions. The latter ones are referred to as stratified
shearing box models.

More particularly for dwarf novæ, King et al. (2007) compiles previous simulations
that focused on the MRI-driven turbulence in a not vertical magnetic net flux model.
They showed with shearing box simulation, that they were not able to produce the α
values required to match the DIM estimates during the outburst phase.

At around the same time, Fromang and Papaloizou (2007) raised caution about the fact
that the α measured from local simulations appeared to be dependent on the numerical
parameters of the simulations. This was later confirmed by Shi et al. (2016) who showed
that this low measured effective viscosity is a numerical artefact due to the chosen aspect
ratio of the simulation domain. In the meantime, Davis et al. (2010) showed that in
stratified shearing box simulations, the restoration of the vertical gravity allowed for
numerical convergence. However, they used periodic vertical boundary conditions for
numerical simplicity; they point out that this is unrealistic for stratified shearing box
simulations. Then, Bodo et al. (2014) and Ryan et al. (2017) produced stratified shearing
box simulations with an outflow boundary condition in the vertical direction. They
showed that the measured α parameter was also dependent on the chosen resolution,
the latter found α ∝ N−1/3 with N the number of grid cells per disc height scale H.
At this point in time, the numerical convergence problem of shearing box simulations,
stratified or not, has not been completely elucidated. At the same time, it was also shown
the turbulent properties of the MRI were dependent on the magnetic Prandtl number
Pm = ν/η, the ratio of viscosity to resistivity. The change of saturation of the MRI may
play a critical role, given that the Prandlt number varies dramatically depending on the
accreting system, with Pm ≪ 1 in young stellar objects and Pm in active galactic nuclei
or proto-neutron stars. Studying these regimes is computationally expensive, as one
needs to have a fine enough grid to resolve the very small scales introduced by either
low viscosity or low resistivity. Recently, Meheut et al. (2015) achieved regimes with
Pm ≲ 10−2 and observed a low-Pm saturation of the α parameter in the presence of a
mean magnetic field. On the other hand Guilet et al. (2022) examined Pm ≳ 100 and
found a high-Pm saturation independent of the Reynolds number. Fromang et al. (2007)
also found that there is no MRI in Pm < 1 regimes with no magnetic net flux.

In the beginning of the 2010s, it was shown from local simulations that it was in fact
possible to explain the outburst-quiescence cycle. Latter and Papaloizou (2012) showed
that even with MRI-driven turbulence and simple treatment of opacity and cooling, they
were able to reproduce S-curve equilibrium. This was not obvious as turbulence-induced
fluctuation could have killed this particular equilibrium state.

Using a more accurate radiative transfer model, Hirose et al. (2014) then showed that
large-scale convection during the outburst phase of dwarf novæ could possibly enhance
accretion and bridge the order of magnitude gap between the α values of the DIM of
around 0.2. Prior to this work, shearing box simulation only achieved α values of around
0.02.

More recently, Scepi et al. (2018a) added the effect of cold quiescence temperature on
the disc plasma. During this phase, the hydrogen of the disc is poorly ionised, so much
so that the plasma is not well coupled to the magnetic field. Quantitatively, this means
Rm ≤ 104. They showed, in agreement with the argument of Gammie and Menou (1998),
that during the quiescence phase, MRI-driven turbulence is completely quenched and
could not explain the α of the DIM.

Scepi et al. (2018b) then showed that provided a large-scale vertical magnetic field
is present, a wind may be launched from the disc. During the quiescence phase, this
wind is the main contributor to angular momentum transport in the accretion flow. As I
discussed above, a such wind can however not be reduced to an α prescription, because,
amongst other reasons, it does not contribute to heating the disc.
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Recently, Held and Latter (2018, 2021) emphasised the impact of hydrodynamical
as well as magnetohydrodynamical convection in angular momentum transport. They
showed that convection can produce large-scale structures as well enhance angular mo-
mentum transport by nearly an order of magnitude. They were able to confirm the
picture of Hirose et al. (2014) when a strong resistivity is included in the model, but not
with a low resistivity.

Finally, Suzuki (2023) tried to make a step towards having a better global picture of
local turbulence. They restored the curvature terms to the shearing box approximation
and observed that the radial variation of the epicyclic frequency enhanced non-linear
processes in the flow. They report stronger ’time variability, intermittency, and localized
substructures’ compared to traditional shearing box models.

2.4.2 Global models

On the other hand, some effects are fundamentally large-scale mechanisms and can
not be captured by local models like shearing box simulations. Here, I present a chro-
nological series of global models used to describe dwarf novæ systems. Their objective
are various, but they all share the necessity to use a global approach to address a given
physical question.

In fact, the first global simulations of such binary system discs predate local simula-
tions by more than two decades (Lin and Pringle, 1976). The first step they undertook
was to understand whether an accretion disc formed in these binary systems. How to
interpret the accretion conclusions of these very early numerical models is debatable
(see discussion at the end of the article), however, they show that a disc can indeed be
formed from a Roche lobe overflowing companion. Not much later, Paczyński (1977)
showed that the maximum radial extent of the disc was dictated by the tidal potential’s
influence on the fluid particle orbits 3.

With the advent of Smoothed Particle Hydrodynamics methods (SPH, Gingold and
Monaghan (1977) and Lucy (1977)), it became possible to produce more reliable models
of accretion discs. These simulations enable them to produce simulations of the entirety
of the accretion disc with an improved description of the fluid. Whitehurst (1988a,b)
improved this method and applied it right away to dwarf novæ systems. They were
particularly interested in understanding the sumperhump behaviour of UM UMa stars.
A few years before, Vogt (1982) and Osaki (1985) had proposed that this behaviour could
be explained by an eccentric disc. Studying these required the use of global simulations.
Lubow (1991a) proposed a theoretical model to explain this eccentricy due to a tidal
coupling to the disc. Concomitantly, they produced SPH simulation that validated their
model (Lubow, 1991b). The properties of these eccentric discs have been studied extens-
ively with global simulations; to mention only a few Kunze et al. (1997), Murray (1998),
Smith et al. (2007) and Kley et al. (2008). Note that the last one of these articles differs
from the others as the numerical method changed. Rather than SPH simulations, they
produced finite-volume Godunov simulations. These are better suited to study sharp
pressure structures compared to SPH models. This type of method is presented extens-
ively in chapter 3.

The other large-scale mechanism that has been studied with global models is spiral
density waves. They are a type of tidal interaction with the binary companion star. This
type of interaction has been long studied (Darwin, 1879) in the context of planet-satellite
interaction or star binary evolution. Cowling (1941) showed that such interaction could
excite oscillatory modes in a polytropic gas body like a star.

Goldreich and Tremaine (1980) and then Papaloizou and Lin (1984) showed that this
tidal coupling could excite density waves in the context of accretion discs. These dens-
ity waves are spirals shaped, and propagate from the exterior of the disc towards inner

3. More details about the tidal truncation of the disc are presented in chapter 4.
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regions. Sawada et al. (1986a,b) were the first to produce numerical simulations to spe-
cifically study these waves in semi-detached binaries. They showed that for hot discs
(Ma ≤ 10) these spiral waves could propagate to the inner regions of the disc and carry
a significant amount of angular momentum. Spruit (1987) then showed that in the case
where these waves become sonic, they will steepen into shocks and will contribute to an-
gular momentum transport in the disc. They estimate that the resulting transport scales
as α ∝ Ma−3/2.

These waves were then studied through linear theory by Savonije et al. (1994), but also
in full non-linear models. Savonije et al. (1994) produced finite-difference simulations
of such disc and Artymowicz and Lubow (1994) studied them with SPH simulations.
The former were particularly interested in understanding the efficiency of these waves in
angular momentum transport. They concluded that for ‘cold’ discs with Ma ≥ 25 these
wave produce only little accretion.

More recently Ju et al. (2016, 2017) produced global simulations of dwarf novæ discs
to tie local and global effects together. Here again, they shifted towards a finite volume
method (Athena++) rather than SPH method. Their first article focused on the dynamics
driven by the spiral waves. First, they show that with temperatures relevant for the
outburst phase spiral-driven accretion is already weak. They measure α ≲ 0.05. These
values are closer to what is expected during the quiescence phase, but they explore a
hot disc regime, with Ma ≈ 50 at the inner radius. They were not able to probe realistic
temperature regime, that is a much thinner disc, for quiescence. However, they show that
with decreasing temperature, angular moment transport decreases too. They report that
the shock model from Spruit (1987) is not a good fit for the spirals they observe. They
conclude however that the linear theory of Savonije et al. (1994) provides a satisfactory
fit. They speculate, in agreement with linear theory, that in the colder quiescence phase,
spiral-driven transport is very weak and may not be able to explain the values required
by the DIM. In section 4.5, I present how I was able to reproduce their results.

In their second paper, they include the coupling to magnetic field, and compare the
efficiency of MRI-driven accretion with spiral-driven accretion. They produce hot disc
simulations with Ma ≈ 10. In this simulation, they see that the MRI-driven accretion and
spiral-driven accretion are comparable when β = 400. They note that when increasing
the magnetic field to β = 100 MRI-driven accretion surpasses spiral-driven accretion.
They then attempted to produce a colder simulation with Ma ≈ 20, however, due to the
increased numerical cost of this simulation they were not able to integrate long enough
to reach a steady state. They observe however that in this colder simulation the spiral
waves are more tightly wound, as expected from linear theory, and contribute less to
angular momentum transport.

Finally, Pjanka and Stone (2020) produced global 3D MHD simulations of hot dwarf
novæ discs. They produce a simulation with Ma ≈ 5 and a simulation with Ma ≈ 10.
They found that accretion was highly variable on all timescales. Moreover, they find that
the vertical position of the spiral pattern varies quickly on sonic timescale, but they do
not mention any coherent global motion. They also find that above a couple of thermal
scale-heights, there is a highly magnetised region or ‘corona’. They report that this
corona contributes to 30% to 50% of the measured accretion. Due to the high numerical
cost of such simulations, they are only able to integrate them for 10 binary orbits. They
believe that longer-term simulations should be carried out to explore the existence of a
steady state, especially in low-temperature regimes.

2.5 conclusion

From all the works presented in this chapter, we see that we have a rather good under-
standing of the accretion dynamics in dwarf novæ. The disc instability model provides
a model for the periodic outburst-quiescence cycle. This model has some shortcomings,
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but I will not repeat them here (see section 5 of Hameury (2020) for a review of those).
Then, models focusing on more precise aspects of the dynamics of dwarf novæ discs
were able to furnish physical mechanisms to explain the observed accretion during the
outburst-quiescence cycle.

Indeed, during the outburst phase, we now know that the main accretion-driving
mechanism is the magneto-rotational instability. As detailed above, this has been con-
firmed by both zoomed-in local simulations and global simulations. During this phase,
it has been shown that the tidally-excited spiral waves still exist but do not contribute
much to accretion compared to the MRI.

The quiescence phase, however, is still a blind spot of the models. Scepi et al. (2018b)
and Scepi et al. (2019) showed that magnetic winds could be included in the DIM picture
and were a possible accretion-driving mechanism during this phase. During this phase,
the disc is cold and the MRI is quenched, so it also remains possible that spiral-driven
accretion can drive the little accretion required by the DIM. Analytical and numerical
estimates predict that this is not the case, but no model has explored realistic temperature
regime for this phase yet (Ma ≲ 1000). It also remains to be shown that MHD winds
survive in a global model during the quiescence phase; and their possible large-scale
impact on such razor-thin resistive accretion discs are completely unknown to this day.

This is in this context that my PhD work comes in. In this work, I focus on understand-
ing the accretion-driving mechanism relevant to the cold and poorly ionised quiescence
phase. With the methods presented in the next chapter, I study dwarf novæ accretion
discs at temperatures low enough to model the quiescence phase.
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A
s presented in the previous chapter, there are several different ways to
numerically study fluid dynamics for accretion discs. In this chapter, I
present the method I used in this work, at the core of the Idefix code

(Lesur et al., 2023) 1.

3.1 discretisation and riemann solvers

The Euler equations presented in the previous chapter can be written as a hyperbolic
partial differential equation system of the following form.

∂tq +∇ · F(q) = S (3.1)

where q = (ρ, ρv, E) ∈ Rd+2 the local state of the flow and F : q 7→ (ρv, ρv ⊗ v +
pId, (E + p)v) ∈ Rd(d+2) the corresponding fluxes, for a d-dimensional flow, that is v ∈
Rd. S is a possible source term. In the case of the MHD equations q and F(q) have
additional dimensions to describe the magnetic field. Additionally, the magnetic energy
and forces are included in relevant components of q and F(q).

Gravity also requires a special treatment. In Idefix, the potential energy is not included
in the internal energy E . Rather, the work of gravitational forces ρv ·∇Ψ are included
as source terms are included as a source term. This means that the time variations of
the potential energy ρΨ are neglected. In general, this assumption is reasonable as the
gravitational potential varies much more slowly than the other forms of energy. In the
present work, I use a reference frame such that the potential is constant with respect to
time. The gravitational forces −ρ∇Ψ are also included as source terms in the relevant
equations.

1. The source code and documentation are available at https://github.com/idefix-code/idefix.
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Additional terms that arise from non-Cartesian coordinate systems, i.e. curvature
terms, are also included as source terms. Inertial forces arising from the choice of a
rotating reference frame are included as source terms as well.

The variables in q are called the conservative variables, as equation (3.1) is a conserva-
tion equation. The usual variables of Euler equations ρ, v, p are the primitive variables,
and going from one to the other is quite simple.

3.1.1 Finite-volume method

The idea of the finite-volume method is to discretise the integration domain in small
volumes Vi. We integrate equation (3.1) over such a volume and, in the case where there
is no source term, we obtain

∫
Vi

∂tqdV +
∮
Si

F(q) · dS = 0. (3.2)

with Si = ∂Vi. We write the average of q over Vi, Qi =
1
Vi

∫
Vi

qdV where Vi =
∫
Vi

dV is
the measure of Vi.

We now have discretised the flow state q over space, and obtained the following evol-
ution equation.

dQi
dt

= −Vi

∮
Si

F(q) · dS (3.3)

In the above equation, I ignored the time-discretisation, to emphasise how the space-
discretisation is carried out. by integrating this equation between t and t + dt, where t is
some time and dt a discretised time step, this discretisation is restored. If the right-and-
side is known for all times t, the time-integration is straightforward and can be carried
out with any standard method be it a first time order Euler method (Euler, 1768) or a
higher order Runge-Kutta method (Runge, 1895; Kutta, 1901). In this work, I use an
order two Runge-Kutta method implemented in Idefix.

The space discretisation is done accordingly to this Vi-Si decomposition. In one di-
mension, we will write xi the position of the centre of the volume element Vi, and we
will write xi− 1

2
and xi+ 1

2
the positions of its boundaries Si. These lower indices will be

used for any discrete field evaluated at cell centre or cell boundaries.

The remaining difficulty is to evaluate the fluxes F(q) on the boundaries Si of our
discretised volume elements Vi, that is to compute F i± 1

2
.

3.1.2 Godunov method

The solution proposed by Godunov (1959) is to compute these fluxes as the solution of
local Riemann problems (Riemann, 1860). This problem amounts to describing the time
evolution of a fluid at a discontinuity. In the discretised picture, in one dimension with
no source term, equation (3.1) becomes

qn+1
i = qn

i +
∆t
∆x

(
Fn

i− 1
2
− Fn

i+ 1
2

)
, (3.4)
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Figure 3.1 – Godunov discretisation in finite volumes, with average values qi (light blue hori-
zontal lines) used in the original Godunov method, reconstructed values q̃i (black
slanted lines) used by second-order Godunov methods and inter-cell fluxes F i± 1

2
(dark blue arrows).

where the intercell fluxes Fn
i± 1

2
are computed as solutions of the Riemann problem at

the interfaces between cells i ± 1 and i. The upper index denotes the time step index.
This discretisation is depicted on figure 3.1.

3.1.2.1 Isolated Riemann problem

Formally, the Riemann problem is the following one-dimensional initial-boundary
value problem. With x ∈ [xL, xR], with xL < 0 < xR.

∂tq + ∂xF(q) = 0, (3.5)

with initial-boundary conditions

q(x, 0) =

qL, if x < 0,

qR, if x > 0,
(3.6)

∀t ≥ 0,

q(xL, t) = qL,

q(xR, t) = qR.
(3.7)

The solution to this problem involves several waves of density, pressure and velocity
propagating from the discontinuity interface x = 0. In general, there will be waves
propagating towards both negative x and positive x. The exact velocity, amplitude and
type of these waves depend on the initial condition.

Depending on the equations solved, there will be different waves. In the pure hydro-
dynamics case, there will be two sound waves as well as an entropy wave. In the ideal
magnetohydrodynamics case, there are in total seven waves: two Alfvén waves, two slow
magnetosonic waves, two fast magnetosonic waves and an entropy wave.

When the systems is linear, i.e. when ∂xF(q) can be written as a linear operation LF∂xq,
the eigenvalues of LF give us the velocities of the different waves.

When the system is not linear, the waves may interact and produce more complex
waves. In hydrodynamics, there can be shock waves, rarefaction waves and contact
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waves. In the magnetohydrodynamics case, there may additionally be hybrid waves
(Brio and Wu, 1988) and overcompressive shock waves (Liu, 1993).

Unfortunately, there is no general analytical solution for this problem (Toro, 1999) and
we have to resort to numerical evaluation methods.

There exist exact solvers that can reach any arbitrary precisions (e.g. Godunov (1959)
and Godunov et al. (1976)). These are however quite computationally heavy and are not
used in large-scale fluid simulations. For large-scale simulations, like in this work, we
use approximate Riemann problem solvers.

3.1.2.2 Approximate Riemann solvers

The most simple of these Riemann solvers is the Harten, Lax, van Leer (HLL) solver
(Harten et al., 1983). This solver only uses a two-wave structure and approximates the
regions between the wave fronts as homogeneous. This last approximation, of a piece-
wise-constant description of the wave-fan remains in all solvers derived from the HLL
solver like HLLC, HLLD, ... The structure used by this solver is shown on figure 3.2.
In the HLL approximation, the left and right domains of the flow are identical to the
corresponding initial condition. Between these regions is a mixed state qHLL. Depending
on the sign of the wave velocities, one can compute the flux at the x = 0 interface from
either the left qL, the right qR or the mixed qHLL state.

Using the above-mentioned assumption that the three regions, one can compute the
state of the middle region. Assuming that the wave did not propagate to the boundaries,
that is

xL ≤ TSL, and xR ≥ TSR (3.8)

with SL and SR being the fastest signal velocities, we can integrate equation (3.3)∫ xR

xL

q(x, T)dx =
∫ xR

xL

q(x, 0)dx +
∫ T

0
F(q(xL, t))dt −

∫ T

0
F(q(xR, t))dt. (3.9)

The right-hand term is evaluated as follows.

∫ xR

xL

q(x, T)dx = xRqR − xLqL + T(FL − FR) (3.10)

and the right-hand term yields

∫ xR

xL

q(x, T)dx =
∫ TSL

xL

q(x, T)dx +
∫ TSR

TSL

q(x, T)dx +
∫ xR

TSR

q(x, T)dx (3.11)

=
∫ TSR

TSL

q(x, T)dx + (TSL − xL)qL + (xR − TSR)qR (3.12)

where for x ∈ [TSL, TSR], q(x, T) = qHLL by definition. Hence, we have

qHLL =
SRqR − SLqL + FL − FR

SR − SL
(3.13)

and then the flux at x = 0,
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(a) HLL approximate solver wave structure.

(b) HLLC approximate solver wave structure.

(c) HLLD approximate solver wave structure.

Figure 3.2 – Waves structures used by approximate Riemann problem solvers. The velocities of
the waves are constant and the domains they separate are homogeneous in state.
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FHLL
0 =


FL, if SL ≥ 0
SRFL − SLFR + SLSR(qR − qL)

SR − SL
, if SL ≤ 0 ≤ SR

FR, if SR ≤ 0

(3.14)

In the case where SL ≤ 0 ≤ SR this value comes from the Rankine-Hugoniot (Rankine,
1870; Hugoniot, 1889) condition on the shock front.

A more refined approximate solver is the HLLC solver (Toro et al., 1994) which restores
the entropy (contact) wave of the Euler equation. The structure used in this approximate
Riemann solver is shown on figure 3.2. In this work, I used the HLLC solver for all
non-magnetic simulations.

In the magnetohydrodynamics case, additional waves need to be taken into account.
The HLLD developed by Miyoshi and Kusano (2005) uses a five-wave structure (out
of seven waves) to approximate the Riemann problem solution of ideal magnetohydro-
dynamics. In this solver, the waves taken into account are the fast-magnetosonic waves,
the Alfvén waves and the contact wave; only the slow magnetosonic waves are ignored.

3.1.2.3 Practical application

In the above-mentioned approximate solutions, the values of the wave velocities SL,
SR, S∗, ... were assumed to be known. As mentioned earlier, in the non-linear case,
these velocities will differ from what the characteristic method 2 yields. In practice, the
velocities are approximated to be the minimal and maximal sound wave velocity for the
hydrodynamics case, and the minimal and maximal magnetosonic wave velocity for the
magnetic case, from each state qL and qR as proposed by Davis (1988).

These wave velocities are also used for the Courant-Friedrichs-Lewy (CFL) condition
(Courant et al., 1928). This condition ensures that no wave travels across more than one
grid cell during one time step. It can be written as follows.

∆t ≤ CCFL
∆x

Smax
, (3.15)

where CCFL ∈ [0, 1[ is the CFL number, and Smax is the maximum signal velocity in
the cell of size ∆x. If this condition is not satisfied, two wave fronts may cross and not
interact when they should. This condition is illustrated on figure 3.3.

The approximate solutions presented above assume that the state of a cell is a homo-
geneous state. In practice, we use a linear reconstruction scheme inside the cells (van
Leer, 1979) as illustrated on figure 3.1. This produces a second-order scheme thus im-
proving the precision of the method. After this linear reconstruction, there still is a
Riemann problem to be solved at each boundary. For a series of homogeneous states
qi, the linear reconstruction yields q̃i, which is linear and defined for x ∈ [xi− 1

2
, xi+ 1

2
].

The left and right states used in the approximate solver are, for the Riemann problem
between cells i and i + 1

2. This method allows computing the linear wave propagation velocities for a linear partial differential
equation system. These velocities are the eigenvalues of the Jacobian of this system. For linearised Euler
equations around a flow at v, the wave velocities are ±cs + v with multiplicity 1, and v with multiplicity d.
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Figure 3.3 – Illustration of the CFL condition (3.15). The grey solid lines correspond to the wave
propagating. For cell i, the time step ∆ti should be smaller than the time at which
wavefronts will cross the opposite cell boundary.

qL = q̃i(xi+ 1
2
)

qR = q̃i+1(xi+ 1
2
)

(3.16)

The fluxes FL and FR are computed as F(qL) and F(qR) respectively. Note that in
Idefix, the reconstruction step is done on the primitive variables. In some other codes,
this reconstruction is carried out on the characteristics variables 3. It is only after this
reconstruction step, that qL and qR are computed from the primitive variables for the
inter-cell Riemann problems.

Finally, the reconstruction step has to satisfy several criteria to avoid Gibbs phenomenon
(Wilbraham, 1848; Gibbs, 1898, 1899). In particular, it has to be total variation diminishing
(TVD). This means that the total variation defined as T = ∑i |qi − qi+1| must decrease
at each time step.

∀n ∈ N, T n+1 ≤ T n. (3.17)

This condition together with the other stability conditions, which I do not repeat here
(see chapter 13 of Toro (1999) for more details), do not fully constrain the reconstruction.
This means that there are several possible TVD reconstruction schemes with different
properties. By default, Idefix uses the van Leer reconstruction scheme (van Leer, 1974).
It can also use the minmod scheme (Roe, 1986) in cases detailed in the following. This
latter reconstruction method is more diffusive than the former.

3.1.3 Fargo advection scheme

In hydrodynamic systems where the Mach number is Ma ≫ 1, the time step is mainly
constrained by the fluid velocity rather than the sound speed. As discussed in the pre-
vious chapters, this is the case for quiescent dwarf novæ discs which have Ma ≫ 10.
Moreover, in this type of accretion disc, the flow velocity is mainly dominated by the
azimuthal velocity, i.e. |vφ| ≫ |vR|. In order to circumvent this limitation, one can split
the evolution operator in two parts, a mean operator and a fluctuation one.

In practice this amounts to splitting F(q) = F(q) + F ′(q). As the limiting velocity is
some advection velocity, this translates as

3. These are the variables corresponding to eigenvectors of the characteristic method.
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∇ · (ρv) = w ·∇ρ +∇ · (ρ[v − w]) (3.18)

where w is the advection velocity. In practice, this means that the flow is advected at
w and the Riemann problem is solved only for the fluctuation part: ∇ · (ρ[v − w]).

This is the FARGO (Fast Advection in Rotating Gaseous Objects) algorithm developed
by Masset (2000). In theory, any axisymmetric advection velocity can be used, or more
generally an advection velocity such that ∂tw = ∇ · w = 0. Practical uses of non-
Keplerian velocities are discussed in section 3.3.2. The version of this advection scheme
implemented in Idefix is close to the one implemented in Pluto (Mignone et al., 2007,
2012a,b). This scheme is also compatible with MHD, but as will be discussed later, I only
used it in non-magnetic simulations.

Let us here assume that the advection is along the x direction. The advection of the
fluid at w corresponds to a shift of ∆x = w∆t at each time step. In general, this does not
correspond to an integer number of cells. Rather, it corresponds to a shift of m ∈ N cells
plus a residual δx. Along the advection direction, we have the following linear transport
equation.

∂tq + w∂xq = 0 (3.19)

Using the fact that for this linear step, we have

∀ t, ∆t, q(x, t + ∆t) = q(x − w∆t, t) (3.20)

we can discretise the transport equation as follows.

qn+1
i = qn

i−m − δx
∆x

[
Hi−m+ 1

2
− Hi−m− 1

2

]
(3.21)

where Hi+ 1
2
= 1

δx

∫ y
i+ 1

2
y

i− 1
2

qn(x)dx. The second term of the right-hand side corresponds to

the fact that the advection does not correspond to an integer number of cells. To compute
this quantity, one needs to choose a reconstruction method for q inside the cells. In this
work, I use the piecewise linear method implemented in Idefix.

Here, as we are working in the rotating reference frame we used w = (vK − ωR)eφ,
the Keplerian velocity modified by the rotation of the frame.

This algorithm is implemented to be compatible with any MPI (MPI Forum, 2021)
domain decomposition. However, a large amount of cells may need to be exchanged
when used together with an azimuthal domain decomposition. This can significantly
slow down the execution. As a consequence, azimuthal domain decomposition should
be used with care when using the FARGO scheme.

Using this algorithm thus allows for increased time step, as we now use the modified
CFL condition

∆t ≤ CCFL
dx

|Smax − w| (3.22)
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where Smax is the fastest wave, and w is chosen such that |Smax − w| ≪ |Smax|. This
scheme also reduces the numerical diffusivity compared to not using the scheme (Masset,
2000).

An added benefit of using this scheme is that the quantities that we are interested
in measuring often correspond to the departure to the advection flow. For instance,
measuring the accretion properties of the flow requires measuring quantities arising from
v − w. This is the case for Ṁ or α. When using the FARGO algorithm, these quantities
are readily available as the outputs of the Riemann solvers.

3.1.4 Constrained transport

When solving for the magnetohydrodynamics equations, one needs to evolve the mag-
netic field in addition to the hydrodynamics fields. Doing so in a naive fashion will not
ensure that ∇ · B = 0, and this is why we need to use a finer method like constrained
transport to evolve the magnetic field as proposed by Evans and Hawley (1988). To do
so, we compute the electric fields on the edges of the cells and the magnetic fields on the
faces of the cells.

For instance, using a tridimensional cell face S , we can write the surface-integrated
induction equation

∂t

∫
S

B · dS = −
∮
C

E · dl, (3.23)

with C = ∂S . The right-hand side can be space-discretised. To simplify the notation
we have that V is homeomorphic to a cube V � [x−, x+]× [y−, y+]× [z−, z+]. Let z be
the direction normal to the cell face S � [x−, x+]× [y−, y+]. x and y are the two other
dimensions, such that (x, y, z) is direct.

∮
C

E · dl = E−
x dx− − E+

x dx+ + E+
y dy+ − E−

y dy− (3.24)

As the faces of V have common edges, the integrated electric fields will cancel out,
ensuring ∂t

∫
∂V B · dS = 0. As a consequence, the divergence of the magnetic field is

conserved at machine precision, and provided it is initially zero it will remain that way.
This relies on the fact that the electric fields on the same cell edge have the same value

regardless of the face used to compute it. One-dimensional Riemann solvers presented
here however yield the values of the electric fields on the face surfaces and not on the
edges. These values need to be evaluated on the cell edges. There are several ways to
do so, and I used two different methods in this work. The first one is an averaging pro-
cedure proposed by Gardiner and Stone (2005), formally this is a constrained transport
algorithm that includes a contact wave, propagating at S. In this case, the electric fields
are first computed on each cell face and at cell centres, and then computed on cell edges.
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Ei+ 1
2 ,j+ 1

2
=

1
2

(
Ei,j+ 1

2
+ Ei+1,j+ 1

2
+ Ei+ 1

2 ,j + Ei+ 1
2 ,j+1

)

−1
4

(
Ei,j + Ei+1,j + Ei,j+1 + Ei+1,j+1

)

+
S
8

(
Bx

i+ 1
2 ,j − Bx

i,j − Bx
i+ 1

2 ,j+1 + Bx
i,j+1

)

+
S
8

(
Bx

i+ 1
2 ,j − Bx

i+1,j − Bx
i+ 1

2 ,j+1 + Bx
i+1,j+1

)

+
S
8

(
By

i+1,j+ 1
2
− By

i+1,j − By
i,j+ 1

2
− By

i,j

)

+
S
8

(
By

i+1,j+ 1
2
− By

i+1,j+1 − By
i,j+ 1

2
+ By

i,j+1

)

(3.25)

where E is the electric field along the third dimension z, which not indexed here.
Bx and By are the components of the magnetic field in the x and y directions. The other
method I used is taken from Londrillo and del Zanna (2004) and Mignone and Del Zanna
(2021) and is more computationally expensive as it relies on solving two-dimensional
Riemann problems. As this second method is more expensive, I only used it when the
previous method failed and produced either very large ∇ · B values, or straight-up NaNs
(Not-a-Number), which can occur when the computed pressure ends up being negative
because of truncation errors.

In practice, even with these methods, round-off errors can and will accumulate in the
divergence of the magnetic field. When the simulations require billions of time steps, the
accumulated error may become significant. To circumvent this problem, I use the vector
potential formalism, with A such that B = ∇ ∧ A and E = −∂t A. This has an additional
computational cost as it requires storing more fields, but proved necessary in this work.
In this case, the procedure is as follows.

1. Compute the electric field E(t + ∆t) on the cell edges with the chosen method.

2. Evolve the potential vector A(t + ∆t) = −
∫ t+∆t

0 E(τ)dτ on the cell edges.

3. Compute the magnetic field B(t + ∆t) = ∇∧ A(t + ∆t) from the new vector poten-
tial.

4. Reconstruct the cell-centred magnetic field.

This means that the initial magnetic field condition has to be given in terms of A
rather than B. This method, however, is not infallible. As A(t) = −

∫ t
0 E(t)dτ, if there

is a constant electric field, the value of the vector potential can become very large with
time. This may lead to truncation errors when computing ∇∧ A and cause an increased
value of the divergence of the magnetic field. I indeed see a noticeable increase in the
value of ∇ · B, but that remains reasonably small compared to B/∆x.
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3.1.5 Non-ideal MHD term: Ohmic resistivity

In this work, the only non-ideal magnetohydrodynamic term used is Ohmic resistivity.
Its effect is to add an electric field ηj to the induction equation. This term is added
between steps 1 and 2 of the procedure described above.

The values of the Ohmic resistivity η are interpolated from a precomputed table of
solution of Saha equation (Saha, 1920). The tables used are the same as in Scepi (2019),
and assume solar composition of Grevesse and Sauval (1998), that is hydrogen abundance
X = 0.7 and metallicity Z = 0.02. Hence, the local value of the Ohmic resistivity depends
on the local density and temperature. Further specifics of the resistivity implementation
are discussed in chapter 5.

To properly capture this parabolic term of the partial differential equation, there is an
additional CFL condition that constrains the global simulation time step. Here we want
to resolve the diffusion time scale associated with this term, i.e. we must have

∆t ≤ CCFL
∆x2

2η
, (3.26)

where η is the Ohmic resistivity, ∆x is the cell size, and CCFL ∈ [0, 1[ is the CFL number.
In practice, the global time step of the code is computed as

∆t = CCFL

(
max

V

[
∑
d

(
cmax,d

∆xd
+

2η

∆x2
d

)])−1

(3.27)

where V is the whole simulation domain, cmax is the fastest signal velocity in a cell,
and d indexes the dimensions.

3.2 strengths and limitations

Like any method, finite volume methods have strengths and weaknesses. It is import-
ant to keep them in mind to be able to use the best method to address a given physics
problem.

The main advantage of finite-volume method is that it readily includes a proper de-
scription of (magneto-) hydrodynamics shocks. There is no intrinsic problem caused by
the discontinuity of the evolved fields as the Riemann problem is in itself a type of dis-
continuity problem. This means that entropy is not artificially conserved when it should
not be, as it can be the case in Hamiltonian methods. Hence, there is no need to add ad
hoc dissipation terms of unknown physical origin.

Grid-based methods are however not flawless either. For instance, in the case of Idefix,
the grid is static during the simulation. This means that if thin structures develop in
low-resolution regions of the grid, they will be poorly resolved. This is not the case
with Adaptive Mesh Refinement methods like Athena++. However, this feature is not
implemented in Idefix for the time being, meaning that we have to try and anticipate
where the thin structure will develop. This problem will be relevant in chapter 5.

Another known limitation of finite volume methods arises in magnetic simulations,
in regions with low pressure and strong magnetic field, i.e. when β ≪ 1. Miyoshi
and Kusano (2005) proved the positivity-preserving property of the HLLD solver in one
dimension, however this property is not guaranteed in higher dimensions. As I use one-
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dimensional Riemann solvers, this problem can not occur in my simulations. However,
when the energy equation is solved for, it may occur that the field values produced by
the Riemann solver are such that the reconstructed pressure is negative as :

P = (γ − 1)
(

e − 1
2

v2 − B2

2µ0

)
(3.28)

this error is especially likely to occur in highly magnetised regions where B2

2µ0
> P.

This means that the behaviour of finite-volume methods in highly magnetised regions
should be interpreted with caution. Using a more diffusive solver like HLL can mitigate
this effect, at the price of increased numerical diffusion.

Finally, these methods also include a numerical dissipation, be it because of the error
of the numerical evolution scheme, because of the spatial discrete grid or because of
the properties of the chosen approximate Riemann solver. These effects are often hard
to quantify and can sometimes hinder the convergence of simulation. See for example
McNally et al. (2019) for a discussion on the effect of numerical viscosity or Nixon et al.
(2024) for a discussion on numerical resistivity. These highlight the necessity of some
kind of convergence tests for numerical works.

3.3 numerical difficulties

Here, I present some of the numerical difficulties I encountered in this work and the
solutions I used to circumvent them.

3.3.1 Floors and limiters

In all simulations presented in this work, I impose some kind of density floor. In non-
magnetic simulations, a density floor is necessary to prevent the apparition of a very
sharp gradient over a few radial cells at the outer truncation of the disc. In magnetic
simulations, in order to limit the influence of the Alfvén velocity on the time step, I also
impose an Alfvén velocity limiter. The density floors I use are implemented in such a way
that some of the fluid momentum is conserved by the transformation. In the magnetic
case, to limit the Alfvén velocity, I change the density of the cell.

The specifics about these floors and limiters are detailed in the relevant section of part
ii.

3.3.2 Fargo

The first numerical difficulty I encountered is relevant to the results presented in
chapter 4. For these two-dimensional non-magnetic simulations, I made extensive use of
the FARGO algorithm presented above. Indeed, in the non-magnetic case, the limiting
constraint to the time step is the azimuthal velocity of fluid. This velocity is approxim-
ately Keplerian, and is much greater than all other velocities. As a matter of fact, for a
10242 simulation, I obtained a speed-up factor of about 30 when using this algorithm.

However, as the dwarf novæ discs are tidally truncated at some outer radius, the outer
regions of the simulation domain are not actually being advected at vK. Moreover, the
Keplerian velocity rapidly decreases away from the inner radius, and thus the time step
constrain rapidly relaxes at larger radii. Hence, there is no point in using the advection
scheme in the outermost parts of the simulation box.

As presented in Masset (2000), the advection velocity used in the advection scheme
needs only be axisymmetric. I thus implemented a more relevant advection velocity of
the following form.
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w(R) =
1
2
[vK − ωR]×

[
1 − tanh

(
R − Rv

hv

)]
eφ (3.29)

where vK =
√

GMWD
R is the Keplerian velocity, ω is the angular frequency of the binary

system, Rv is the transition radius above which the advection velocity decreases to zero,
an hv is the width of the transition.

Using this advection scheme shortened the run time of my simulations. Indeed, in the
outer regions, the fluid velocity differs from the Keplerian velocity by a large amount, i.e.
|v− vK| 3 vK. This means that, in this region, the modified CFL condition of the FARGO
scheme (3.22) is no longer relevant, and produces a time step larger than the regular CFL
condition (3.15) would. However, it also produced some artefacts in the flow structures
as shown on figure panel (b) of 3.4.

I tested a wide range of parameters to understand the apparition of these wave-like
artefacts, but I did not find any way to predict whether it would appear or not in a given
simulation. For instance, I initially thought that it only appeared when hv ≤ H, the disc
height scale, but I also observed this behaviour in simulations with hv ≫ H.

As a consequence, I only used a Keplerian (that is vK − ωR) advection velocity for this
work. As shown on figure 3.4, this advection velocity does not produce these artefacts,
and the spiral structure is very close to the spiral structure I obtain when do not use the
FARGO advection algorithm at all. In the magnetic simulations of chapter 5, the time
step was no longer constrained by the Keplerian flow, so I did not use this algorithm.

3.3.3 High magnetisation

In my magnetic simulations, I observed the apparition of sharp density variations
over the scale of one cell. These sharp structures are poorly resolved and can not be
interpreted physically.

Typical structures that can arise are chequerboard features in the density field, as
illustrated on panel (a) of figure 3.5. On this figure, it is very clear that they appear only
in regions where βp ≪ 1. These structures are unphysical and need to be avoided.

A way to avoid them is to use the HLL solver rather than the HLLD solver. The former
being much more diffusive, such structures will be smoothed out. However, this means
increasing the numerical diffusivity everywhere in the simulation domain, even in the
disc where there is no problem as β ≫ 1.

To circumvent this, Scepi et al. (2018a) chose to change the approximate solver used
depending on the Riemann problem to solve. For instance, when the pressure difference
between two adjacent cells is “large”, they use the more diffusive HLL solver to avoid
possible failures of HLLD. This feature is not implemented in Idefix because it is in
strong contradiction with the Single Instruction Multiple Data (SIMD) paradigm of GPU
architecture, doing so would very strongly decrease the performances of the code.

Instead, I implemented a simpler solution making use of the shockFlattening option
of Idefix. This feature enables to use the minmod limiter when shocks are considered
strong, that is when |∇P/P| exceeds a user-specified value, thus increasing the numer-
ical diffusivity. As shown on panel (b) of figure 3.5, using this option as is, is not enough.
In order to smooth these structures, one would need to use a very small threshold of
|∇P/P|, thus smoothing all small-scale structures of the simulation.

In order to more effectively smooth the shocks in highly magnetised regions, and not
use too small a threshold that would smooth the disc structures, I implemented a custom
version of this module. With this version, the user can specify the condition that a shock
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must satisfy to be targeted for the use of the minmod limiter. This new feature is now
publicly available.

For my simulations, the shocks have to satisfy either following conditions to be
smoothed by the minimod limiter:

— it must be "strong", that is |∇P/P| > 1, or
— it must occur in a highly magnetised region, that is β < 10−1.

These values were chosen after several test runs. The condition needed to be strong
enough such that the chequerboard pattern is smoothed, but does not smooth out small
disc structures. The results of this method are shown on panel (c) of figure 3.5. On
this figure, we see that the chequerboard structures in high magnetisation regions have
disappeared. We also see that the very thin density structures close to the disc have been
smoothed a little but remain clearly visible.

3.4 numerical resources

In this PhD work, I used the resources of different computing clusters. For the sim-
ulations of 4, I mostly used the local meso-centre from the Université Grenoble Alpes:
GRICAD (Grenoble alpes Recherche Infrasturcture de Calcul Intensif et de Données) 4,
in particular the computing clusters Dahu and Bigfoot. These clusters are equipped with
V100 and A100 Nvidia GPUs.

I also use the V100 Nvidia GPU installed at the French national computing centre
IDRIS, on the Jean Zay supercomputer 5 for the largest simulation of chapter 4 and for
the initial computation of simulations of chapter 5.

Finally, I used the Mi250 AMD GPU installed in the Adastra machine of the French
national computing CINES 6 for most of the work presented in chapter 5.

4. https://gricad.univ-grenoble-alpes.fr/
5. http://www.idris.fr/jean-zay/
6. https://www.cines.fr/calcul/adastra/
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(a) De-projected density profile with FARGO disabled.

(b) De-projected density profile with vanishing FARGO velocity.

(c) De-projected density profile with keplerian FARGO velocity.

Figure 3.4 – Plots show the de-projected relative difference of the density to its azimuthal average
after 20 binary orbits for different advection velocities. Here Rv = 0.15 (grey dotted
line on panel (b)). Differences between the plots are clearly visible at R ≈ 0.15 and
R ≈ 0.06 where the spirals appear to fade.
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(a) With no shockFlattening.

(b) With the original shockFlattening.

(c) With the custom shockFlattening.

Figure 3.5 – Consequences of unphysical results yielded by the approximate Riemann solvers.
These snapshots are taken from three resistive simulations with initial βp = 104

and 0.03 binary orbits after the initial condition. Left: Poloidal β plasma parameter.
Right: Azimuthal average of the density.
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Part II

R E S U LT S

Now we understand the conundrum: observations tell us that there is ac-
cretion during the cold and dim quiescence phase, yet we have no physical
mechanism that can sustain turbulence.
In this part, I will present the two main accretion driving mechanisms rel-
evant for quiescent accretion. The first is a completely non-magnetic effect:
the excitation of spiral shocks by the presence of a close companion. The
second requires the presence of a global vertical magnetic field: magnetic
winds driven angular momentum transport.
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D
ring quiescence, the accretion disc of dwarf novæ systems is cold, poorly
ionised and highly resistive. As a consequence, during this phase, mag-
netic accretion mechanisms have a reduced efficiency compared to during

the outburst. In this chapter, I explore a purely hydrodynamical global accretion-driving
mechanism: spiral-shock-driven accretion. As this mechanism does not require any coup-
ling to the magnetic field, its relative contribution to accretion is highest during the qui-
escence phase. Most of the results presented in this chapter are published in Van den
Bossche et al. (2023).

4.1 adding the secondary star

As I discussed in the introduction chapters, in order to have a complete picture of
the accretion in compact binaries systems, and in particular in semi-detached binaries,

67
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it is crucial to take into account the presence of a close companion star. As discussed
in section 2.2, the Disc Instability Model does so while being a purely one-dimensional
model. Here, as I aim to obtain a global, multidimensional description of the accreting
system, the description of the companion star needs to be refined.

4.1.1 Gravitational potential

The first of these effects is the strong gravitational influence of the secondary star. In
dwarf novæ systems, the radial extent of the disc is usually comparable to the separation
of the binary system. We can typically have the disc extending up to half the binary
separation. This means that in these regions of the disc, the gravitational pull of the
secondary star should not be neglected. More quantitatively, in these systems, the ratio
of the gravitational force of the secondary star to the gravitational pull of the white dwarf
can reach 30% in the outer disc.

The potential of the secondary star is approximated as another point-mass potential.
This way, the total gravitational potential of the system is the sum of the potentials of
both stars ψ = ψWD + ψs,

ψ(r) = − GMWD

|r − rWD|
− GMs

|r − rs|
, (4.1)

where G is the gravitational constant, MWD and Ms the masses of the white dwarf and
the secondary star respectively, and rWD and rs their positions. Note that this potential
does not describe regions inside the stars. Note also that this potential is not spherically
symmetric.

The most striking effect of the potential of the secondary star is that it limits the size
of the accretion disc around the white dwarf. Indeed, an accretion disc inside a binary
system can not extend beyond the first Lagrange point.

In fact, the maximum extent of the accretion disc is even smaller than the radius of the
L1 point. Paczyński (1977) gives an estimation of this truncation radius. Their argument
relies on the orbits of test masses in the binary potential. Close to the white dwarf, the
test-mass orbits are almost Keplerian and circular, as the influence of the secondary star is
negligible. However, at radii further away from the white dwarf, the orbits are distorted,
as shown on figure 4.1; so much so that outer orbits intersect inner orbits. The radius
given by Paczyński (1977) corresponds to the outermost radius for non-intersecting orbits.
Like the L1 point radius, this outermost radius scales with the mass ratio of the binary
system. For the mass ratio range q ∈ [0.03, 0.7] relevant for dwarf novæ, this truncation
radius is close to 70% of the distance to the first Lagrange point. This means that the
disc extends at most to radii ranging from 60% to 40% of the binary orbital separation.
Although not a direct illustration of Paczyński (1977)’s model, we can already understand
the change in disc size with mass ratio clearly visible on figure 4.10 with this model.

4.1.2 Reference frame

In order to simplify our study, we choose to work in a reference frame centred on
the white dwarf. At times, we will also choose a rotating reference frame, in which the
secondary star is stationary.

It is crucial to note that neither of these reference frames is inertial (Galilean), as they
are not centred on the centre of mass of the binary system. To compensate for this, we
have to include inertial forces. When the reference frame is not rotating, it is enough to
add an indirect potential term.

[ 7th October 2024 at 12:23 – classicthesis ]



4.1 adding the secondary star 69

(a) Roche potential.

Roche lobe
Closed orbits

a

White dwarf centre
Companion centre
Barycentre

(b) Closed orbits in a tidal potential.

Figure 4.1 – Top: Roche potential, including the tidal forces and the centrifugal force in a ref-
erence frame centred on the centre of mass of the system. The contours are iso-
potential curves in the binary plane. The first three Lagrange points are represented
at the intersection of these contours. Bottom: Closed prograde orbits inside the
Roche potential at different radii. At radii away from the white dwarf, the orbits are
distorted compared to Keplerian circular orbits. The represented orbits, Roche lobe,
and centre of mass position are computed for the same potential, with q = 0.4. The
arrows represent the orbital motion of the binary around its barycentre.
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Ψ(r) = − GMWD

|r − rWD|
− GMs

|r − rs|
+

GMs

a3 a · r (4.2)

where a = rs − rWD is the binary separation. Note that we will always assume that the
binary has a circular orbit, that is that a is a constant.

The thus obtained total potential is a tidal potential in that the force derived from it is
exactly the tidal forces of a binary system.

When the reference frame is rotating, one needs to include the centrifugal force as well
as the Coriolis force. The former can be written as deriving from a potential. The poten-
tial obtained when including the centrifugal force is called Roche potential; however, the
Roche potential is usually expressed in an inertial reference frame, without the indirect
term.

Each potential well is called Roche lobe. One usually takes the 8-shaped iso-potential
surface crossing the first Lagrange point to define them, as shown on figure 4.1.

4.1.3 Matter stream

Because of the two-well potential, an expanding companion star will eventually over-
flow from its Roche lobe. Most of the matter from the expanding companion will flow
through the first Lagrange point towards the white dwarf. This matter flow has several
effects on the accretion disc.

First, the companion star is the matter reservoir of the accretion disc, and the matter
flux is what determines the outburst–quiescence cycle for the DIM, as we discussed in
section 2.2.

The matter stream will also collide on the external part of the accretion disc, creating
a hot spot. This hot region may heat the neighbouring regions of the disc and as we will
discuss later, it might help seed the outburst.

To measure the importance of the matter stream on the accretion disc in terms of
matter flux, I define the following timescale. It corresponds to the time it would take for
the matter flux to totally replenish the initial accretion disc.

τstream =
Mdisc

Ṁstream
(4.3)

where Mdisc is the mass of the accretion disc, and Ṁstream is the matter flux from the
secondary star. Using estimates of Hameury et al. (1998), this timescale is typically of
thousands to tens of thousands of binary orbits. Numerical simulations are usually run
for, at the very best, hundreds of binary orbits. On these timescales, the amount of matter
brought by the matter stream will be negligible compared to the initial disc mass.

To circumvent this problem, one usually artificially increases the strength of the matter
flux, so that its effects can be observed on the simulation timescale. For example, Ju et al.
(2016) use a very strong mass flow with τstream ≈ 50 T0.

4.2 analytical derivation of spiral-wave solutions

The first approach I used to assess the efficiency of spiral-wave-driven accretion is
analytical. Here, I present the derivation of the spiral-waves solutions excited by the
tidal potential in an accretion disc. This derivation follows Savonije et al. (1994) but also
relies on Savonije and Papaloizou (1983).
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4.2.1 Equations

We can write the Euler equations for an isothermal disc including the tidal potential of
the secondary star, described in equation (4.2). As we are only interested in describing
the radial and azimuthal behaviour of the disc, we vertically integrate the Euler equations.
We have the vertically integrated quantities Σ =

∫
ρdz, and P =

∫
pdz.

The set of equations we want to solve is the following.



∂tΣ +
1
r

∂r(Σrvr) +
1
r2 ∂φ(Σrvφ) = 0

∂tvr + vr∂rvr +
vφ

r
∂φvr −

v2
φ

r
= − 1

Σ
∂rP − ∂rΨ,

∂tvr + vr∂rvφ +
vφ

r
∂φvφ +

vφvr

r
= − 1

rΣ
∂φP − 1

r
∂φΨ.

(4.4)

We additionally assume an arbitrary barotropic equation of state P(Σ).

However, as is, this system of equations can not be solved analytically. We need to
make further assumptions to find an analytical solution.

4.2.2 Spiral waves

Let us now realise that spiral waves are well described with an azimuthal Fourier
expansion of the field of interest. Indeed, for a generic real-valued field ϕ of R2 using
polar coordinates (r, φ), this azimuthal Fourier expansion reads

ϕ(r, φ) =
∞

∑
m=0

ϕm(r)eimφ, (4.5)

with ϕm a complex-valued function. If arg ϕm is not constant, this means that the phase
of the mth mode of ϕ changes with radius. If this phase is a monotonic function, the mth

mode then represents an m-armed spiral.

4.2.3 Linear order approximation

Here, we want to develop a perturbation theory: we assume that the flow can be
described as a mean-field term plus a deviation from this state. The mean state we
choose is the solution for an isolated disc, i.e. with no companion star, (Σ0, P0, vr, vφ)
such that

vr = 0,

v2
φ

r
=

1
Σ0

dP0

dr
+

d
dr

ψWD.

(4.6)

We write the deviations from this state as v′r, v′φ, Σ′, P′. Our perturbation theory can
be understood as an asymptotic development in q, the binary mass ratio, as the tidal
potential is proportional to q for a fixed MWD. In our perturbation theory, we make one
further assumption: we want to find a ‘steady’ state solution. This ‘steady’ state only
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Figure 4.2 – Moduli of Wm, Fourier modes of the tidal potential. The m = 2 is highlighted as it is
the one on which the linear theory focuses. The normalisation factor is |W0(a/100)|.

makes sense in the frame rotating with the binary system. This remark will guide us in
choosing an appropriate corotating Fourier basis.

As explained above, we now expand the quantities in Fourier series. We write Ω =
vφ/r.

We change variables to Km = Σ′
mc2

s
Σ0

and ξm = (v′r)m
im(Ω−ω)

. The m subscript denotes the

mth Fourier mode. ω is the binary angular frequency, and c2
s = dP

dΣ is the sound speed.
To take into account the time periodicity of the position of the companion star, we use
a slightly different Fourier function basis: eim(φ−ωt). This basis is relevant as we want to
find a corotating steady-state solution. For example, the tidal potential is expanded as

Ψ(r, φ, t) =
∞

∑
m=0

Wm(r)eim(φ−ωt) (4.7)

Following, Savonije and Papaloizou (1983), we expect the dominant Fourier mode to
be the m = 2 mode. In the linear pictures, modes do not couple, and we choose to solve
the dynamics for this mode only. We have W2(r) = − 3

4
GMs

a3 r2 + o
(( r

a

)2
)

. The moduli of
the first ten modes are plotted on figure 4.2. There, we see that the m = 2 mode (dashed
line) is the non-axisymmetric mode with the largest amplitude.

We can now rewrite the system (4.4) with the new variables. Here we want to develop
a linear order perturbation theory. Hence we now assume that the perturbed quantities
are of small amplitude compared to the mean state. We thus neglect all non-linear order
terms.

It is possible to obtain one single equation.

d2ξm

dr2 + A(r)
dξm

dr
+ B(r)ξm = D(r) (4.8)

where
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A(r) =
Σ0r
β

d
dr

(
β

Σ0r

)
+

2
Σ0r

d
dr

(Σ0r), (4.9)

B(r) =
d2

dr2 (Σ0r) +
[

1
β

d
dr

(
β

Σ0r

)
+

2Ω
r(Ω − ω)Σ0r

]
d
dr

(Σ0r)

− 4Ω2

r2(Ω − ω)2 − m2(Ω − ω)2 − Ω2

β
, (4.10)

D(r) = − 1
β

[
dWm

dr
+

2ΩWm

r(Ω − ω)
− d

dr

(
Wmβ

r2(Ω − ω)2

)
− 2ΩWmβ

r3(Ω − ω)3

]
, (4.11)

with β = c2
s r2(Ω−ω)2

c2
s−r2(Ω−ω)2 . Note that the r dependency of Ω is not written for readability.

4.2.4 Results

Let us first find a homogeneous solution of the ordinary differential equation (4.8),
that is a solution where ∀m ∈ N, Wm = 0, even for m = 2.

We also work under the assumption that we are close to the white dwarf, that is r ≪ a.
This implies r2(Ω − ω)2 ≫ c2

s . We then have β ≈ −c2
s .

Furthermore, we use the additional assumption that the Mach number of the flow is
large. This means that β is a small parameter which we can use to produce a WKB
solution. We find, for the homogeneous equation, the following solution.

Xm(r) =
η1eiµ(r) + η2e−iµ(r)

Q(r)
(4.12)

η1 and η2 are integration constants determined by the boundary conditions.

Q(r) =
[
m2(Ω − ω)2 − Ω2]1/4 and µ(r) = −

∫ r1
r

√
m2(Ω−ω)2−Ω2

cs
dr, with r1 an arbitrary

radius.

From this homogenous solution, using the methods of variation of parameters, one
can find a general solution.

ξm(r) =
η1eiµ(r) + η2e−iµ(r)

Q1/4(r)

∫ r

r0

e−
∫ ρ

r0
(2 Ẋ

X +A)ds
∫ ρ

r0

D(R)Q1/4(R)e
∫ R

r0
(2 Ẋ

X +A)dx

η1eiµ(R) + η2e−iµ(R)
dRdρ (4.13)

This standing spiral-wave solution has a local dispersion relation given by the integ-
rand of µ(r).

k2(r)c2
s = m2[Ω(r)− ω]2 − Ω2(r) (4.14)

This allows us to compute the theoretical wavelength of the linear spiral wave. We
have, for m ≥ 2,

λ(r) =
2π√

m2 − 1
cs

Ω(r)
+O

(
ω

Ω(r)

)
. (4.15)
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This will be of use when choosing the resolution of my numerical discretisation.

4.3 collapse of linear theory : on the necessity of numerics

Let us now take a step back and look at what we have obtained so far. We have derived
a linear steady-state standing spiral wave solution of Euler equations One of the strongest
assumptions we made for linear theory to hold is that the amplitude of deviations from
the mean state has to remain small compared to the mean state. Otherwise, the non-
linear, higher-order terms that we have neglected will no longer be small.

I introduce σ = Σ′
Σ0

, a dimensionless parameter which quantifies whether we satisfy
this assumption. Linear theory holds if and only if σ ≪ 1.

I can estimate its value using the following approximations

∫ r

r0

dρ ≈ r and
d
dr

≈ 1
r

. (4.16)

I also use, Ω ≫ ω, with ω the angular frequency of the binary system, and Ma =
Ωr
cs

≫ 1, which I already assumed. I obtain

σ(r) =
3
4

GMs

a3c2
s

r2 =
3

4(1 + q)

(
ω

Ω(r)

)2

Ma2(r) (4.17)

where q = Ms
MWD

the mass ratio of the binary system.
For typical dwarf nova systems, the radius of a white dwarf is about one earth radius,

the mass of the companion star is around one solar mass, and the binary separation is
around one solar radius.

We obtain the following estimate.

σ(r) =
3
4

(
r

rWD

)2 (4000 m/s
cs

)2

≈ 3000 K
T

(
r

rWD

)2

, (4.18)

where rWD is the white dwarf radius. For typical quiescence regime where the temperat-
ure is such that T ≲ 3000 K, we obtain

σquiescence(r0) ≳ 1. (4.19)

This means the perturbations have amplitudes comparable to the mean state. Further-
more, note that this linear development should best hold at small radii; indeed we have
σ ∝ r2. We thus expect that linear theory fails to properly describe spiral waves in cold
quiescent discs.

Note that for the outburst regime, when the disc is much hotter with temperatures
upwards of 104 K, the linear theory should hold.

Solving exactly a non-linear system like (4.4) is unfortunately not possible analytically
without strong assumptions like we made here. It is thus necessary to use methods that
allow to study the full non-linear solution of the disc flow.
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Figure 4.3 – Wavelength of the spiral wave at different Mach numbers (dashed lines), compared
to the resolution used in most simulations (red).

4.4 numerical setup

To solve the non-linear Euler equations (4.4), I use the Idefix code presented in chapter
3. We solve the vertically integrated Euler equations in polar coordinates (R, φ) in a
global 2D geometry.

4.4.1 Grid and units

Here, I wish to study the dynamics driven by the shocks caused by the spiral waves.
To do so, one ought to satisfy the Nyquist criterion for these waves everywhere in the
disc. As computed in equation (4.15), this criterion is most constraining in the inner
regions of the disc.

I choose a grid with with logarithmic spacing in the radial direction, with ∆R ∝ R.
This enables me to have a fine resolution in the innermost regions, where it is required.
I use a uniform spacing in the azimuthal direction. This grid is such that the aspect ratio
of cells is constant with radius. Figure 4.3 compares the radial resolution I used to the
theoretical spiral-wave wavelength.

The units I use here are scaled on SS Cyg. The length unit is the binary orbital separa-
tion a ≈ 1.37 × 109 m, and the time unit is the binary period T0 ≈ 6.6 h.

The innermost radius of the grid corresponds to the outer radius of the white dwarf,
and the outermost radius corresponds to the radius of the first Lagrange point. In code
units, the radial range spans from r0 = 0.01 a to rL1 ≈ 0.6 a depending on the mass ratio
of the binary system. The whole azimuthal direction is solved for.

This grid is the first difference with previous works like Ju et al. (2016) or Pjanka and
Stone (2020). In this work, I describe the accretion disc down to the radius of the white
dwarf. In their work, their inner radius is twice as large with rin/a = 0.02. Going to
lower radii puts a stronger constraint on the time step via the CFL condition, because
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the Keplerian velocity increases at smaller radii vK ∝ r−1/2 and the cell size decreases
∆x = rdφ.

As shown in table 4.1, the resolution of my simulations changes with the mass ratio
q used. The integration domain extends to the Lagrange point in each case, but this
distance changes with q of the simulation. The modification of the grid between these
simulations is simply to remove or append cells. This way the inner region always has
the same grid, independently of the mass ratio.

4.4.2 Boundary conditions

I use periodic boundary conditions for the azimuthal direction. The radial boundary
conditions I use here are Keplerian outflow conditions, which are a modified version of
the usual outflow boundary conditions. These boundary conditions impose a no-inflow
condition by imposing vR = 0 in the ghost cells when there would be an outflow. When
there would be an inflow, these boundary conditions impose ∂RvR = 0. Additionally,
they impose the azimuthal velocity of the fluid to be the local Keplerian velocity in the

corotating frame vϕ(R) =
√

GMWD
R − ωR.

At the inner radius, the gravitational influence of the companion star is negligible
compared to the gravity of the white dwarf so this velocity is a good approximation of
the expected fluid velocity. This however does not take into account possible boundary
layer effects close to the white dwarf. For example matter close to the white dwarf could
possibly be corotating with the white dwarf. At the outer radius, this boundary condition
is not as good an approximation. I did not note any obvious numerical artefacts as a
consequence of this choice. At the outer radius, the effect of this boundary condition
is also mitigated by the very low density due to the tidal truncation of the disc. This
boundary condition is similar to the one used by Ju et al. (2016).

4.4.3 Initial condition

The initial condition of my simulations is an isothermal disc with constant surface
density Σ = 1 rotating at the local Keplerian velocity, with no radial flow. The isothermal
hypothesis is inspired by the results of the DIM for the quiescence phase. As can be
seen on figure 2.3 (bottommost dashed line of the top panel, after the propagation of
the cooling front), during the quiescence phase, the temperature of the disc does not
vary with radius. Moreover, as shown by Ju et al. (2016) and as presented later in this
chapter, when energy is solved for, a cooling mechanism has to be introduced because
otherwise spiral shock would heat the disc at temperatures much higher than the initial
temperature. To circumvent this they use an artificially low heat capacity ratio γ. I
discuss later in this chapter the case when this assumption is relaxed and energy is
solved for.

Regarding the density profile, an initially uniform surface density is not quite in agree-
ment with the DIM. Indeed, as shown on 2.3, during the quiescence phase, we expect
Σ ∝ R. This initial condition however allows for comparison with previous simulations
of Ju et al. (2016).

This initial flow is not an equilibrium state because of the tidal potential of the second-
ary star. It will relax to another state, which we hope to be a steady state. To reduce the
time spent in the transient state, I impose an external truncation of the disc. I apply to
following mask to the density profile.

µ(R) =
1
2

(
1 − tanh

(
R − rT

δT

))
(4.20)
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WI take rT the truncation radius to be approximately the truncation radius computed
in Paczyński (1977) depending on the mass ratio of the simulation, and δT = 0.01. This
initial truncation helped reduce the duration of the initial transient state compared to
preliminary simulations not using this initial truncation. I also note that the final trunca-
tion radius of the disc is the same whether I use this initial truncation or not, confirming
that this does not affect the disc after the initial transient regime.

4.4.4 Handling of the tidal truncation

As a consequence of the tidal truncation of the disc, there are regions of extremely low
density in my integration domain. To avoid the appearance of infinitely strong density
gradients at the outer edge of the disc, we impose a numerical density floor. If the
density in a cell reaches values below Σfloor = 10−6 we use this density value instead.
This density floor is implemented such that the momentum of each cell is conserved by
rescaling the amplitude of the fluid velocity, that is if the density Σ is below the floor
value, the velocity will become

vnew =
Σ

Σfloor
vold (4.21)

Note that for the initial condition, after the mask (4.20) is applied, regions with density
lower than the floor value are set to Σfloor. In this particular instance, the velocity of the
fluid is not modified.

4.4.5 Inertial forces

As before, here the equations are solved in a reference frame centred on the white
dwarf, and include the tidal potential (4.2).

Here I use a rotating reference frame. I specify to Idefix that the angular frequency of
the frame is ω = 2π in our units, and Coriolis, FC , and centrifugal, Fc, forces are added
in the solver. These forces read as follows.

FC = 2Σv ∧ ωeφ (4.22)

Fc = Σω2ReR (4.23)

These forces are included as source terms in the Riemann problem picture presented
in chapter 3.

4.4.6 List of simulations

Tables 4.1 and 4.2 present a list of the 2D non-magnetic simulations I produced. I
explored two directions in the parameter space.

The first direction is the temperature of the disc, with Mach numbers ranging from
80 to 550. With this range, we extend from previous works (namely Ju et al. (2016) at
Ma ≈ 80, i.e. T ≈ 2 × 105 K) to realistic temperature for quiescent discs with Ma = 550,
i.e. T ≈ 4000 K.

We then explore the effect of the binary mass ratio on the disc dynamics. For instance,
previous works have shown that systems with small mass ratios are prone to developing
an eccentric disc (Kley et al., 2008, for example).
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Inner radius Ma Resolution (NR × Nφ) q Note

80 1081 × 1024 0.3
140 1081 × 1024 0.3
250 1081 × 1024 0.3
370 1081 × 1024 0.3
550 1081 × 1024 0.3 Under resolved

250 1137 × 1024 0.05

250 1119 × 1024 0.1
250 1042 × 1024 0.7

250 1081 × 1024 0.3 WKZ 1

250 1081 × 1024 0.3 WKZ 2

550 4096 × 4096 0.3

Table 4.1 – List of the isothermal 2D hydro simulations presented in this chapter. The simulations
with ‘WKZ’ have a Wave Killing Zone as presented with equation (4.32).

Initial temperature Resolution (NR × Nφ) q γ Note

3000 K 4096 × 4096 0.3 1.4 constant κP

3000 K 4096 × 4096 0.3 1.4 tabulated Teff.

Table 4.2 – List of the non-isothermal 2D hydro simulations presented in this chapter.

4.4.7 Averaging methods

Here we want to have a time resolution fine enough to resolve the dynamics in the
entire disc. This means that the time resolution has to be at most 1/10 the Keplerian
timescale at the inner radius. As we wish to study the state reached during the quies-
cence phase, not the idealised initial condition, we need to carry out the simulation to
dozens of binary orbits. Both constraints together implies a time scale separation of at
least five orders of magnitude.

Producing outputs at this rate for a simulation of 100 binary orbits is not reasonable.
First, the amount of data produced would be enormous, of approximately 30 To per
simulation; and it would be very long to analyse thoroughly. Second, writing data, even
though parallelised with MPI is slow. Writing data at this frequency would slow the
code to a halt, being bottlenecked by output writing.

To circumvent this problem, I implemented on-the-fly averaging to readily output
reduced data. I store to memory the azimuthally averaged fields of interest every
1/10,000

th of binary orbits. These azimuthal averages are then averaged over 1/100
th

of a binary orbit. The time and azimuthal averages are then output every 1/100
th of a

binary orbit.
This proved to be a sufficient time sampling method to resolve the rapid inner region

dynamics of the disc.
Additionally, full snapshots are produced every 1/10

th of a binary orbit.

4.5 reproducing previous works

The first part of this numerical work was to make sure that the new, and at the time,
still under development, Idefix code could reproduce the results of previous works. This
step is especially important for a new code; together with the tests mentioned in chapter
3 this ensures us that we are able to produce sensible results.
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In this section, I present how I reproduce the results from Ju et al. (2016), which focus
on spiral shocks in dwarf novæ disc, albeit in much higher temperature regimes. In their
work, they use the Athena++ finite-volume code; even though the method is the same,
variation in implementation can produce measurable differences.

First, note that the time unit and the potential / reference frame used in that paper are
different from what I presented above. Indeed, in their units, T0 = 2π, whereas I chose
the more convenient T0 = 1 to count binary system orbits. They also use a time-varying
potential rather than working in the corotating frame. I modified the above-described
setup to match their work by using a non-rotating frame and a rotating tidal potential.

Even though my study focused on an isothermal model, I tried to reproduce the results
of the runs ‘iso cs = 0.1’ as well as the run ‘adi γ = 1.1’ (with and without matter stream
from the companion) from their paper. In the latter case, the code additionally solves
the energy equation, with adiabatic index γ = 1.1. This allows us to compare the shock
heating efficiency of both codes.

The results I obtain are very satisfactory. I am able to closely reproduce their results as
can be seen on Figure 4.4. I obtain the same density, accretion rate, and effective viscosity
profiles after the same integration time, and using the same averaging procedures. I also
note that a low-density cavity forms at the inner boundary. This drop in density is neither
visible on Figure 4.4 nor on the Figure of their paper, as the radial domain if the plot
stops at radii greater than their inner boundary.

We note some slight differences that can be attributed to implementation differences
between Idefix and Athena++. One of the measurable differences is clearly visible on
the top panel of 4.4 and is the fact that the density peak at around R/a = 0.2 is stronger
in their simulation than what I obtain with Idefix. The accretion rate and effective α
parameters also show slight differences but remain in good agreement overall.

To verify more precisely that Idefix is able to reproduce their data, I reproduce the an-
gular momentum balance shown on figure 4.5. I reproduce the total angular momentum
budget of both their non-isothermal runs with γ = 1.1, with and without matter inflow
from the companion star.

The different terms plotted on this figure correspond to the different terms of the
angular momentum balance equation. They read as follows using the writing convention
of chapter 2.

AMt(R) = ∂t⟨ρRvφ⟩JuR (4.24)

AMṀ(R) = −⟨RρvR⟩JuRṀ∂R(RvK) (4.25)

AMFH(R) = −∂R(R2⟨ρvRvφ⟩Ju) (4.26)

T(R) = ⟨R ∧ Fext⟩JuR (4.27)

where the average ⟨X⟩Ju =
∫ zmax

zmin

∫ 2π
0 Xdφdz∆R where zmax, zmin are the vertical bound-

aries of their simulation, and ∆R is the radial size of the cells at radius R. With these
terms, the angular momentum balance equation reads as follows.

AMt = AMṀ + AMFH + T (4.28)
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Figure 4.4 – Left: Selected panels of Figure 12 of Ju et al. (2016). Right: Reproduction of these
panels with the Idefix code.
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Figure 4.5 – Left: Figure 10 of Ju et al. (2016). Right: Reproduction with the Idefix code. Note
that a minus sign needed to be added to the dissipation term.
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where I dropped the radial dependency of every term. On figure 4.5 we first see that
angular momentum balance is verified, as the solid black line (left-hand side of (4.28) is
superimposed to the dashed red line (right-hand side of (4.28)). The dissipation term
plotted is −AMFH − T.

Here as well, the results produced by Idefix are in good agreement with their work. I
observe however that for the with-inflow simulation, my angular momentum budget is
noisier than theirs.

The ability to closely reproduce previous work gives us confidence in the new Idefix

code. I can now produce new simulations and explore regimes more relevant for the
quiescence phase of dwarf novæ.

alternative definition of α Before I present the results I obtain for the newly
explored quiescence regime, I want to discuss the definition of the α parameter used in
Ju et al. (2016) and in my work.

As presented in chapter 2, one usually quantifies accretion with the dimensionless α
parameter of Shakura and Sunyaev (1973). In Ju et al. (2016) however, they use a different
definition for their αeff.. They argue that for such binary systems, this quantity should
be defined from the accretion rate rather than from the Reynolds and Maxwell stresses.
They use

αeff. =
Ṁ

3πΣcsH
. (4.29)

Both this αeff. and the αSS from Shakura and Sunyaev (1973) can be obtained from the
angular momentum balance equation. In fact, we have.

αeff. =
2
3

αSS −
2
3

∫
R⟨R ∧ F⟩dR + C

ΣcsH
. (4.30)

with F any external force, here, the tidal force of the secondary star. C is an integration
constant. This is obtained assuming a steady state as well as no radial dependency for
the accretion rate Ṁ. Here, αSS corresponds to the α parameter defined earlier in equation
(2.40). In the following, I drop the subscript.

However, in my simulation, as will be discussed below, the disc does not reach a
steady state. In this case, the definition from the accretion rate no longer decomposes
easily in a stress term plus a torque term. Moreover, the measured accretion rate also
varies strongly with radius.

Nonetheless, this difference in definitions does not change the conclusions presented
in this chapter. As shown on figure 4.6, in both cases we measure α ≪ 10−2 at late times.

4.6 eccentric spirals

The density maps of Figure 4.7 clearly show the spiral waves in the accretion disc. We
can see, as expected, that the colder the disc is, the more tightly wound the spiral waves
are. The hottest simulation at Ma = 80 corresponds to the regime of Ju et al. (2016), and
I go to colder temperatures from there.

In the linear theory, we only examined the evolution of the m = 2 spiral mode because
it corresponds to the dominant potential mode, as shown on figure 4.2. Here, I see that
the dominant spiral mode is not an m = 2 spiral mode. On the density map, this is most
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Figure 4.6 – Comparison of the two definitions of the angular momentum transport parameter in
the run with Ma = 250 and q = 0.3 averaged over 10 binary orbits.

(a) Ma = 80 (b) Ma = 140

(c) Ma = 250 (d) Ma = 370

Figure 4.7 – Density maps for different simulations with decreasing temperature (a to d) 10 binary
orbits after the initial condition.
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clearly visible on the Ma = 370 panel in the inner part of the disc. The right column of
figure 4.7 is a de-projected plot of the density perturbation defined as follows.

Σ̃ =
Σ − ⟨Σ⟩φ

⟨Σ⟩φ
(4.31)

where ⟨Σ⟩φ is the azimuthal average of the surface density.
To quantify the amplitude of the different spiral modes, it is natural to do an azimuthal

Fourier transform of the density maps, as shown on Figure 4.8. Both on figure 4.7 and
4.8, we see that at all temperatures the m = 1 mode dominates over the m = 2 in the
inner parts of the disc. The transition radius at which the dominant mode changes
becomes larger in colder discs. In the Ma = 370 simulation, we see that the whole disc
is dominated by the m = 1 mode.

An m = 1 spiral wave is an eccentricity mode of the disc. However, the simulations
presented above are not expected to feature an eccentric instability, as discussed below.
To make sure that this one-armed spiral wave was not an effect of my inner radius
boundary condition I produced further test simulations at Ma = 250.

These simulations have a modified inner boundary condition tuned to damp waves
and prevent reflection and the artificial excitation of eccentric mode. To do so, I use a
wave killing zone type boundary condition.

We use a smooth mask

λ(R) =

1 − sin2
(

π

2
R − r0

rWKZ − r0

)
if R ≤ rWKZ,

0 if R ≥ rWKZ,
(4.32)

where r0 is the internal boundary radius and rWKZ is the radial extension of the wave
killing zone. This method is inspired by de Val-Borro et al. (2006)’s method to damp
planetary wakes in the context of protoplanatary disc-planet interaction. For a velocity
field in direction X the boundary condition is

δρ(R) = λ(R)
τWKZ

(ρ − ρt)

ρnew(R) = ρ(R)− δρ(R)dt

δFX(R) = λ(R)
τWKZ

ρ(R) (vX(R)− vt
X(R)) + vXδρ

Fnew
X (R) = FX(R)− δFX(R)dt,

(4.33)

where the superscript t denotes target values, τWKZ is the relaxation time. Note that
here, I modify the inter-cell flux from its value computed by the Riemann solver, not the
cell-centred values in the ghost zones.

Hence, the parameters of the wave-killing zone are its size, the relaxation time and the
target values. We use target values corresponding to a Keplerian flow. The relaxation
time is 1/10 Keplerian orbital time at the inner radius. For the radial extension, I use
1.2r0 and 2r0. The latter case is plotted on figure 4.9 for a comparison with the simulation
without wave-killing zone.

To be effective, the size of a wave-killing zone should be larger than the wavelength of
the wave one wishes to dampen. The theoretical wavelength of the spiral wave is plotted
on figure 4.3 with its Ma dependency. With a size of 1.2r0, no difference in the dynamics
is observed, which is why I tried a larger damping region. But here as well there was
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(a) Ma = 80

(b) Ma = 140

(c) Ma = 250

(d) Ma = 370

Figure 4.8 – Left: Amplitude of the azimuthal Fourier transform of the density maps of Figure
4.7. Right: De-projected density perturbation to the azimuthal average.
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(a) No WKZ simulation (b) Simulation with WKZ (rWKZ = 2r0)

Figure 4.9 – Comparison of the density profile with and without a wave killing zone.

no noticeable difference in the dynamics, as can be seen on figure 4.9. The inner edge
cavity is present in both cases, and the spiral structure is unaffected. I conclude from
this that the m = 1 mode is not due to a simple reflection of the excited waves on the
inner boundary.

4.6.1 Eccentricity growth and mass ratio

As discussed in the introduction SU UMa type cataclysmic variables feature super-
humps that have so far been explained by eccentric discs, as they are found in systems
with mass ratio q ≤ 0.3.

In binary systems with such mass ratio, the tidal truncation radius occurs at radii
sufficiently large such that the 3:1 resonance radius lies inside the disc. This radius
corresponds to the radius at which the Keplerian angular frequency (with respect to
the white dwarf) is exactly 3 times the binary orbital frequency. When this resonance
lies within the disc, it couples to the tidally excited waves to produce eccentricity. This
mechanism is depicted on figure 4.11. This mechanism driving eccentricity growth is
now well established and has been observed in several numerical works (Lubow, 1991b;
Kley et al., 2008; Oyang et al., 2021).

This mechanism can be understood as a second-order development to the linear theory
presented in section 4.2. As we did before, the fields describing the disc can be expan-
ded in azimuthal Fourier series ei(kφ−lωt) where ω is the binary angular frequency and
(k, l) is analogous to a wave vector. k corresponds to the azimuthal wave number and l
corresponds to a temporal wave number, i.e. a frequency. This (k, l) is the integer couple
represented on figure 4.11. On one hand, as the tidal forces are locked in phase with
the companion star, they will have a wave vector (m, m) with both wave numbers equal.
On the other hand, a stationary (in inertial frame) eccentric mode has wave vector (1, 0).
k = 1 corresponds to the azimuthal symmetry of eccentricity and l = 0 corresponds to
the stationarity of this mode.

These two may be non-linearly coupled, in this case, the produced mode corresponds
to the product of these modes. The resulting wave vector is the sum (or difference) of the
wave vectors of the interacting modes, that is (m − 1, m). In the case where m = 2, we
find a positive feedback loop: The tidal mode with wave vector (2, 2) interacts with the
eccentric mode (1, 0). Then, this produces a response in the disc with wave vector (1, 0),
i.e. an eccentric mode.

However, in my work, I do not observe a global growth of disc eccentricity, as can
be seen on figure 4.10. In my simulations with q = 0.05 and q = 0.1 we expected to
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(a) q = 0.05 (b) q = 0.1

(c) q = 0.3 (d) q = 0.7

Figure 4.10 – Density maps for different simulations with increasing mass ratio (a to d) 10 binary
orbits after the initial condition and Ma = 250. Because the tidal potential geometry
is not the same, the discs have different sizes depending on the mass ratio q; at lower
q the disc is truncated further away from the white dwarf. The cyan dashed circle
corresponds to the 3:1 resonance radius at each mass ratio. This radius lies inside
the disc only when q < 0.3.

Figure 4.11 – Coupling mechanism of an eccentric mode and tidal mode. The numbers represent
the wave number: the first one is the azimuthal wave number, and the second one
is the time wave number. The eccentric mode has a zero temporal wave number
because it is assumed to be stationary in an inertial reference frame. Figure from
Lubow (1991a).
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Figure 4.12 – Pitch angle measurement of the run with Ma = 250 for modes m = 1 and m = 2,
after 38.8 binary orbits. For the mth mode, the pitch angle θm is computed from the
phase of the Fourier transform of the density Σm and is such that tan θm = 1

R∂R arg Σm
.

Figure from Van den Bossche et al. (2023).

observe such a growth, as the resonance radius remains within the disc for 60 to 100

binary orbits. Kley et al. (2008) have simulations in comparable regimes of mass ratio
where they observe an eccentric instability on comparable timescales.

The main difference with their work is that my simulations are at much colder tem-
peratures as I want to model the quiescence phase, and not superhumps. Indeed, their
coldest simulation has H/R = 0.02, which translate to Ma = 50. In my case, the eccentric
spiral waves are very tightly wound around the disc with pitch angle of values < 5◦ for
the simulation Ma = 250, as shown on figure 4.12. This very small pitch angle possibly
explains why the eccentricity mode does not produce a globally eccentric disc. They note
that the eccentricity growth rate increases linearly with Ma, but are not able to conclude
on the final eccentricity state of low-temperature disc due to insufficient resolution. I did
not produce simulations with q < 0.3 at different temperatures than Ma = 250, so I can
not answer this question either.

The other important difference with their simulation is that my discs are inviscid. The
only contribution to an effective viscosity is the shocks produced by the spiral wave,
whereas they include a viscosity. In their setup, the viscosity’s main role is to ensure
that the disc viscously spreads beyond the resonance radius. Nonetheless, they note
that a lower viscosity produces a slower growth of the eccentricity. This is because their
argument is that viscosity is necessary for the disc to spread up to the 3:1 resonance
radius. As shown on figure 4.10, even with no viscosity included this radius remains
within my discs with q < 0.3.

As I will discuss below, I see that the relaxation behaviour of angular momentum
transport are different for the low mass ratio simulations. This suggests that the coupling
to the resonance might change the transport properties even without producing a global
eccentric disc.

4.6.2 Spiral pattern speed

The properties of the spiral wave have been extensively studied. For instance, their
pattern speed can be very informative of the process exciting them. For instance, the
coupling of the disc eccentricity and the tidal potential described above can be described
produced a wave of the form ei([m±1]ϕ−mωt) with phase velocity

Ωinertial
m =

m
m ± 1

ω. (4.34)
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Figure 4.13 – Pattern speeds of the different modes for several mass ratios at R = 0.2. Top: m = 1
mode. Middle: m = 2 mode. Bottom: m = 3 mode. The phases Φm are smoothed
over 1 binary orbit before taking their time derivative Ωm.

This pattern speed is in the inertial reference frame. To work in the rotating reference
frame, one needs to subtract the binary frequency ω. For comparison purposes, I work
in the rotating frame in the following. In the rotating frame, (4.34) becomes

Ωm =
∓1

m ± 1
ω. (4.35)

This pattern speed can be measured from the simulations using the time evolution of
the phase of the azimuthal Fourier transform of density profile Σm(R, t). For a mode m,

Φm(R, t) = arg Σm − ωt (4.36)

Ωm(R, t) =
d
dt

Φm(R, t). (4.37)

The measured pattern speed for the first azimuthal modes are shown on Figure 4.13.
There, we see different features.

— First, the m = 2 mode is locked in phase with the companion star. This is what is
expected from the linear theory, and previous numerical works (Ju et al., 2016). This
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differs from second-order coupling, but as it is a higher-order effect, this expected
amplitude is also expected to be lower. In previous simulations like in mine, very
visible two-armed spirals at outer radii remain stationary in the rotating frame.

— Second, there seem to be several intermittent regimes of pattern speeds for the
m = 1 mode. These modes do not match the theoretical ∓1

m±1 ω pattern velocities.
For q = 0.05 run, this eccentric mode appears to be mostly stationary in inertial
space (Ω1 = −ω).

— Lastly, looking at the 3:1 resonance radius for low mass ratio runs, the m = 3 mode
has an intermittent pattern speed of 0 − ω. This is not consistent with the effect of
the 3:1 resonance.

It seems that the theoretical pattern speeds at small mass ratios are not reproduced in
my simulations. This can be the result of one of several possibilities. The eccentricity can
already be saturated in a non-linear regime, or possibly, not have reached a stationary
state yet. Kley et al. (2008) integrate for several hundreds of binary orbits with an arbit-
rary viscosity. As I do not impose such a viscosity reaching such a state might take even
longer. It is also possible that strong non-linear coupling in my simulation, coupled with
the low effective viscosity, stabilises the disc with respect to the eccentricity growth.

However, from Figure 4.13 there seems to be something at play which could be disen-
tangled, in future works. The pattern speed almost always are integer (∈ Z) multiple
of the binary frequency hinting that there are some preferred mode or modes. We also
see that a lot of pattern speeds feature two or three regimes, and in some cases oscillate
between the two even at late times.

4.7 spiral transport

As discussed in the introduction, the accretion can be measured with the α parameter
introduced by Shakura and Sunyaev (1973). Here because we are using a finite-volume
method, we have access to the inter-cell flux as well as the reconstructed cell-centred
properties of the flow. To be more precise in the evaluation of the α parameter, we use
the stress provided by the inter-cell fluxes. We can write

α =
⟨ρvRv′φ⟩t,φ

⟨ρc2
s⟩t,φ

. (4.38)

like in chapter 2, v′ϕ = vφ − vK is the fluctuations in azimuthal velocity compared to
the local Keplerian velocity. I average over the whole azimuthal domain. I also use a
time-moving average to smooth the high-frequency dynamics’ variations.

4.7.1 Relaxation time

Figure 4.14 shows the time evolution of this parameter for different simulations. In
all simulations, we observe an initial transient regime. During this regime, angular mo-
mentum transport greatly increases to values of α ≈ 0.01.

However, this regime then relaxes to a state of low accretion. As the initial state of my
simulations is an idealised axisymmetric Keplerian disc, it is expected to observe a strong
initial transient state. The relaxation timescale appears to be very long and dependent of
the disc temperature. For colder discs, this timescale reaches hundreds of binary orbits,
the difference in relaxation time between the Ma = 250 and Ma = 370 simulations can
be seen on figure 4.14. For the simulation with Ma = 80 the relaxation time is less than
10 binary orbits.
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Figure 4.14 – Top: azimuthal average of the α parameter over radius and time for the simulation
with Ma = 250 and q = 0.3, smoothed over three binary orbits. Bottom: Radial
(for 0.02 ≤ R ≤ 0.1) and azimuthal average of the angular momentum transport
parameter for different runs. Figure from Van den Bossche et al. (2023).

This very long relaxation time has values comparable to the time between two out-
bursts in these systems. For example, SS Cyg has a recurrence time close to 200 of its
binary orbits. Here, we aimed to find a steady state for the quiescence phase, but if the
relaxation time is so long, this means that the disc may not be able to reach a steady state
between two outbursts. This can produce memory effects from one outburst to the next,
possibly modifying the observable emissions.

We also observe that the simulation with small mass ratio q = 0.1 reaches an α steady
state after approximately 40 binary orbits. As mentioned above, this can be due to the
coupling to the 3:1 resonance that lies within the disc at this mass ratio, and may increase
accretion.

4.7.2 Angular momentum transport

In order to minimise the effect of the idealised initial condition on my measurements,
I measure the final accretion regime of my simulations, averaged from t = 80 to t = 89.9.
The values obtained are shown on figure 4.15.

In all cases, we see that the final value of the α parameter is well below the 10−2 value
required by the DIM during quiescence. The state during which we measure the value
of the α parameter is not a steady state, as discussed in the previous section. However,
its value is decreasing during most of the simulation time. The value that we obtain at
this time is thus an upper estimation of the angular momentum transport parameter α.
Here too we see that the simulations with q = 0.05 and q = 0.1 have a 10× increased
accretion compared to the other at the same temperature. Even in this case, we barely
reach α = 10−3.
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Figure 4.15 – Measure of the angular momentum transport parameter at late time of the simu-
lation, averaged between t = 80 and t = 89.9 and over azimuth. The two panels
explore different parameter variations. Figure (a) from Van den Bossche et al. (2023).

Figure 4.16 – Departure from the azimuthal density average at different times for the simulation
restarted with no companion star. Left: Immediately after the restart. Right: After
50 binary orbits with no tidal potential.

4.7.3 Removing the secondary star

The results shown on Figures 4.14 and 4.15 for the simulations with q = 0.05 and
q = 0.1 were at first somewhat puzzling. Indeed, the spiral waves are excited by the tidal
potential. This means that we expect them to be weaker when the mass of the secondary
star decreases.

In order to more thoroughly examine this phenomenon, I produce a series of simula-
tions that start from the same state at t ≈ 49. I modify the potential such that the mass
of the white dwarf is unchanged but the mass of the companion star is set to zero.

The spiral waves obtained in this way are plotted on figure 4.16. We see that the spiral
regime dramatically changes. We still have clear m = 1 spiral wave, but this time they
are not as tightly wound as before. More surprisingly, we observe that the α parameter
increases again after the secondary star is removed as can be seen on figure 4.17.

This can be due to several phenomena which we explored.

outer and inner edge rwi Like in Lesur et al. (2015), I have an infall of the matter
surrounding the disc. This is due to the way I impose momentum conservation with the
density floor in the tidally truncated region. At the outer edge of the disc, I also have a
strong shear because of the density floor. This means that a Rosby Wave Instability (RWI)
might develop there. This instability is characterised by the growth of large-scale (m = 1)
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Figure 4.17 – Angular momentum parameter, similar to Figure 4.14. Here both panels correspond
to the simulation with no tidal potential. On the bottom panel, this simulation with
no tidal potential is denoted “q = 0”. The simulation denoted “q = 0 NF” is also
restarted with tidal potential, but without the FARGO scheme.

vortices. Lovelace et al. (1999) gives a criterion to recognise the RWI based on the local
vorticity of the flow.

L =
1
2

Σ
(∇ ∧ v) · ez

S2/γ (4.39)

where S is the local entropy, and γ is the adiabatic index of the gas. The criterion reads
as follows.

Unstable with respect to the RWI ⇒ L has a local extremum.

Note that this criterion is not an equivalence relation. It is thus possible for L to have
a local extremum without RWI.

In the simulation, I indeed see a local maximum in the inverse potential vorticity of the
flow at the outer edge of the disc. This is due to the strong shear, but also to the fact that
matter accumulated at the outer edge both because of the spiral waves and the matter
infall producing a local over density. I also note a maximum of the inverse potential
vorticity at the inner edge of the disc. This suggests that the RWI may be triggered at
these radii. This is however not a definitive proof as the criterion is not an equivalence
relation.

fargo ? I also observe that the inner edge eccentric cavity grows beyond its initial
size. As discussed in section 3.3.2, I suspected the Fargo advection scheme to change the
dynamics of discs. Here, I reran the same simulation with the Fargo scheme disabled to
measure its effect. We observed some differences in the measured α but we still observed
the same general behaviour when removing the tidal potential as shown on figure 4.17.
The α parameter increases after the restart in the same way whether FARGO is activated
or not.
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Figure 4.18 – Angular momentum parameter, similar to Figure 4.14. Here both panels correspond
to the simulation with no tidal potential from the beginning.

wave reflection I also produced a simulation implementing a wave-killing zone,
like described before. Here as well the results did not change. I still see the growth of
the inner edge eccentric cavity as well as an increased accretion regime.

no secondary star Finally, I produced simulations with no secondary star from
the beginning. In these simulations, we obtain results very similar to Lesur et al. (2015).
The resulting accretion of α < 10−4 is lower than what is observed after the presence of
the binary. The transport properties of this simulation are shown on figure 4.18.

The fact that a disc in a tidal potential has to relax to a different state after the grav-
itational potential is changed is not surprising. It is also consistent with the transient
accreting regime that I observed at the beginning of my simulation. In this case, as well
the disc is a stable state for a different gravitational potential and has to reshape to the
new potential.

This means that the outer edge instability drives only little accretion on its own, i.e.
when there is no companion star from the beginning. It is possible that the tidal potential
selects and excites a mode of this instability. This could possibly explain the dominant
m = 1 spiral mode I observe. This excited mode then relaxes when the secondary star is
removed as shown on figure 4.17.

4.7.4 Resolution test

As discussed in section 4.4, I chose the resolution of the numerical simulations using
the linear theory criterion. I showed in the above, that my results strongly deviate from
the linear theory predictions. I thus produced an additional simulation to verify that the
resolution used in the simulation was fine enough.

This resolution test was also motivated by the run with Ma = 550. According to
the linear theory, the resolution of 1081 × 1024 should have been sufficient to resolve
the spiral wave dynamics everywhere in the disc. However, its transport properties are

[ 7th October 2024 at 12:23 – classicthesis ]



4.8 spiral shock heating 95

10−2 10−1

R/a

−10−1

−10−2

−10−3

−10−4

0

10−4

10−3

10−2

10−1

100

A
v
er

a
g
ed

α

Ma = 80

Ma = 140

Ma = 250

Ma = 370

Ma = 550

Figure 4.19 – Same plot as 4.15 including the high resolution Ma = 550 run.

dramatically different from the other simulations: in this simulation, I obtain values
α ≫ 1. On figure 4.19 is plotted the higher resolution Ma = 550 run.

The resolution test simulation has an approximately (4, 4)× the resolution of the runs
presented so far. On this run, we see the same spiral behaviour as in the low-temperature
runs. I note that the relaxation time appears to be increased in the higher resolution run,
possibly due to the increase in numerical diffusivity. In this run too, I reach α ≪ 10−2

after 100 binary orbits consistently with the lower resolution runs, as can be seen on
figure 4.19. The rapidly oscillating behaviour is a consequence of the very tightly wound
spiral waves. This concludes that my resolution was sufficient and that the low accretion
obtained is not a resolution artefact.

4.8 spiral shock heating

In this part, I present simulations where the disc thermodynamics is solved for. First,
I study the thermodynamics of discs heated solely by spiral shocks. Then, I explore the
consequences of such heating.

4.8.1 On the importance of thermodynamics

Ju et al. (2016) showed in their work that the heating of spiral shocks is important in
their regimes. So much so that they could not produce long adiabatic simulations with
realistic adiabatic index γ because the disc heats up too quickly. This heating can be
clearly seen on their figure 7: the higher the γ they use, the less tightly wound the spiral
waves are. As shown in section 4.5, I was able to reproduce their adiabatic simulations
with the Idefix code.

This means that in order to run simulations on long timescales of several tens of binary
orbits, one needs to introduce some cooling of the disc matter. This amounts to adding
a cooling term to the energy equation.

In dwarf novæ systems, the dominant cooling channel of the disc is black-body radi-
ation of the fluid. The cooling can thus be included in the energy equation with a term
of the following form.
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Figure 4.20 – Time evolution of the disc temperature at different radii for the constant opacity
cooling function. As explained in the text, the cooling occurs at the same rate
everywhere in the disc.

dE
dt

= −4σκρT4 (4.40)

where σ is the Stefan constant and κ is the gas opacity, which may depend on different
parameters. As I am doing 2D simulations, I use ρ = Σ

H where H = cs
ΩK

the disc height
scale.

As presented with the DIM in section 2.2, one important question is to know whether
we are able to find an equilibrium state where the disc heating (here, by spiral shocks)
is balanced by the radiative cooling. The DIM only explored this question in a one-
dimensional approach, however, spiral waves are fundamentally non-axisymmetric fea-
tures. Their inclusion in thermodynamics remains open.

In the following, I start with the simplest model for a cooling function, that is with
constant opacity. I then refine this model using tabulated values of the opacity to better
match the actual opacity regime of the gas.

4.8.1.1 Constant opacity model

During the quiescence phase, the disc is expected to be marginally optically thin. My
first cooling model uses a constant opacity for an optically thin disc. As a consequence,
I use a Planck oppacity of κP = 7 cm2/g. This value is computed from typical density
and temperatures for the quiescence phase: Σ = 100 g/cm2 and T = 3000 K. I used
tabulated values of the opacity in Scepi (2019). For T ∈ [102.7, 104.5] K they are taken
from Ferguson et al. (2005), for T ∈ [103.75, 108.7] K they are taken from OPAL (Iglesias
and Rogers, 1996). Like in the latter, the opacity also depends on the medium density
through 1 log

(
ρ/(10−6 T)3) ranging from -8.0 to 1.0. Between the domains Scepi (2019)

used a linear interpolation, and a zero-gradient extrapolation outside the domains.
Figure 4.20 shows the evolution of the temperature of the disc. We can see that the

disc cools extremely rapidly to very low temperatures. This cooling is consistent with
theoretical expectations. For a gas cooling with no, or negligible, heating, one has the
following.

1. The quantities are expressed in CGS units.
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dT
dt

= −4
σκPµ

kB
(γ − 1)T4 (4.41)

with µ the molecular mass of the fluid, kB the Boltzmann constant, and γ the adiabatic
index. We obtain the following solution for the time evolution of the temperature.

T(t) = T0

(
3t
τ
+ 1
)− 1

3

(4.42)

where T0 is the initial temperature and τ is a typical cooling time computed from the
differential equation.

τ =
kB

4σκPµ(γ − 1)T3
0

. (4.43)

We see on figure 4.20 that the temperature evolution is very close to this prediction.
This means that the disc will eventually cool to 0 K if no heating occurs. Here, after a
few hundredths of a binary orbit, the disc already reaches temperatures of 200 K, which
are lower than quiescence disc temperature by an order of magnitude. The fact that there
is no dependency on the radius is explained by the fact that τ is the same everywhere,
because the disc is assumed to be globally isothermal.

This means that either the black body cooling with a constant opacity is a bad approx-
imation and overestimates the actual cooling, or that there is some heating process that
is not included in my simulation. As I want to focus on hydrodynamics-only simulations
in this part, I explore the first possibility.

I then slightly modify this cooling model to include a temperature background. This
is implemented as a cooling function of the form

dE
dt

= −4σκρ
(

T4 − T4
bg

)
(4.44)

This produces results very similar to those above, but the temperature stops decreasing
at Tbg = 500 K. This temperature background represents physical process that I ignore
in my simulations. For instance, it is expected that the irradiation from the stars of the
binary system heats the disc and prevents the gas from reaching a 0 K temperature.

It also turns out that the value of using a Planck opacity of κP = 7 cm2/g is not self-
consistent. Indeed, this assumes that the medium is optically thin, however for a typical
surface density of Σ = 100 g/cm2 (I assumed an initially constant surface density), this
would yield an optical depth of κPΣ > 1 which contradicts the optically thin assumption.

Moreover, as the disc cools the opacity is expected to drop significantly, as shown on
figure 2.1.

This indicates that the constant opacity model was too simplified to properly capture
spiral shock heating and the associated radiative cooling.

4.8.1.2 Tabulated effective temperature

Here, I modify the cooling model, to have a more realistic description of the thermo-
dynamics. I use a simple 1D radiative transfer model to compute the local equilibrium
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Figure 4.21 – Effective Teff. as a function of surface density and disc temperature, computed at
constant radius R = 109.7 cm.
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Figure 4.22 – Time evolution of the disc temperature at different radii for the tabulated effective
temperature cooling function. Note that R = 0.3 remains inside the disc at all times.

effective temperature of the disc depending on the radius away from the white dwarf, the
local surface density and midplane disc temperature. This model uses both Rosseland
and Planck opacities. We thus have the following cooling term.

dE
dt

= −4σκρ
(

T4
eff. − T4

bg

)
(4.45)

where Teff. is computed as a function of the local radius, temperature and surface
density, in a similar to Hameury et al. (1998) in the thick atmosphere approximation
(not the grey atmosphere approximation). A slice at constant radius of this effective
temperature function is shown on figure 4.21. To compute this effective temperature, we
assume vertical hydrostatic equilibrium.

The results obtained with this more realistic cooling function are shown on figure 4.22.
Here I also implement a temperature floor that changes with time. For the ten first binary
orbits, the temperature floor is set at 3000 K, the expected quiescence temperature. I do so
in order to let possible spiral waves form. I then lower the temperature background to 500

K to observe whether spiral shocks are able to produce sufficient heating to compensate
for the cooling.
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We see on figure 4.22 that the steady state temperature reached by the disc is > 1000 K,
that is not limited by the temperature background. This means that spiral shocks alone
are sufficient to produce enough heating to reach realistic quiescence temperature.

4.8.2 MRI unstable regions ?

On figure 4.22, I also observe that the outermost part of the disc reaches very high
temperatures, much higher than temperatures expected during the quiescence phase.
This is the case even after the temperature background is lowered.

This is an effect of the tidal truncation of the disc. The disc has a non-circular shape
because of the non-axisymetrical potential and strong shocks are produced at its outer
edge. This may be a consequence of my idealised circular disc initial condition and of
the infalling outer low-density regions. These non-axisymmetric features coupled to a
slight precession of the disc also explain the very strong spikes seen at R = 0.3 on figure
4.22.

However, if one were to include a matter stream from the companion star, there would
be a strong shock heating in these regions too.

If a quiescent disc reaches temperatures of 104 K in some regions, it means that the
gas may be ionised enough to produce MRI-driven turbulence. This possible ionising
effect was not taken into account in the argument of Gammie and Menou (1998). They
discard such effect on grounds that thin discs couple ‘only weakly to the tidal potential
and suffers no global instability.’

4.9 summary and consequences for future works

In this chapter, I presented my work on 2D hydrodynamics simulations of dwarf novæ
discs. The results can be summarised as follows.

1. The dominant spiral wave mode in cold quiescent discs is the m = 1 mode, not the
m = 2 predicted by linear theory, which fails in quiescent regimes.

2. The spiral waves I observe deviate strongly from quasi non-linear coupling theory.
The pattern speeds are integer multiples of the binary frequency but are yet to be
explained.

3. Spirals shocks drive only weak accretion, and fail to explain the α = 10−2 required
to explain recurrence times.

4. I observed a very long relaxation time in low-temperature disc, suggesting that the
quiescence state might not be a steady state. This implies that there can be memory
effects from one outburst to the next.

5. Spiral shocks alone are able to sustain quiescence disc bulk temperature of upwards
of 1000 K. The hot spot and tidal truncation may be able to produce MRI unstable
regions even during quiescence.

A new analytical framework needs to be developed to better understand the dynamics
of tidally excited spiral waves. The m = 2 spirals seem to merge into m = 1 due to
non-linear effects, which can not be captured in simple linear theories. Cimerman and
Rafikov (2024) observe a similar phenomenon in circumbinary disc. In their case too, the
region where the tidal torque is the strongest (for them: the inner disc) features m = 2
spiral waves, which evolve to a m = 1 spiral wave in the rest of the disc (for them: the
outer disc).

As discussed in the introduction, recent observational work (Ruiz-Carmona et al., 2020)
showed that for outbursting dwarf novæ, spiral waves are not seen as often as they
are expected. In this regime, the spiral waves are expected to have a wide opening
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angle. During the quiescence phase, the more tightly wound spiral waves would be even
more difficult to resolve; and for the time being, it would be very challenging to have
observational confirmation of the m = 1 spiral mode.

Additionally, the very long relaxation time that I observed in my cold simulations
raises caution about future numerical works. If the quiescence phase is not a steady state,
particular care will have to be paid to the initial condition of simulations. They will have
to reproduce as closely as possible the final state of an outbursting disc, otherwise one
might only measure the transient regime from an idealised initial state.
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In this chapter, I present three-dimensional simulations of dwarf novæ discs. As we
saw in chapter 4, spiral-driven accretion is not strong enough to explain the observed
accretion of these systems during quiescence. Here, I include the third dimension as
well as magnetic field to the picture of the previous chapter. This will allow me to study
possible wind launching from quiescent dwarf nova discs.

5.1 numerical setup

Here I solve the full three-dimensional Euler MHD equations with the Idefix code, as
presented in chapter 3. I work in spherical coordinates (r, θ, φ).

5.1.1 Plasma parameter definitions

As presented above, the main control parameter for both MRI and wind launching is
the plasma β parameter. The definition of this parameter is not the same across literature,
so for the sake of clarity, I present the precise definition I use in this work.

The relevant control parameter for the physical mechanisms at hand is the β parameter
of the mean field, that is

βmean =
2µ0⟨P⟩
⟨B⟩2 . (5.1)

This parameter is the ratio of the mean thermodynamical pressure and the magnetic pres-
sure of the mean field. Unless otherwise written, all β parameters in the following are

101

[ 7th October 2024 at 12:23 – classicthesis ]



102 magnetic winds in thin binary discs

defined as such. Note that with this definition, the plasma parameter does not take into
account local perturbation of the fields, for example, due to turbulence. The average ⟨. . . ⟩
are usually space averages. For β, we usually take an azimuthal average of its equatorial
value. In the following, I will always specify over which set the average is computed.

I then make the difference between the poloidal β parameter and the total β parameter.
The former is a relevant control parameter for accretion physics through the MRI and
magnetic winds, while the latter is simply the ratio of thermodynamical to magnetic
pressure.

β =
2µ0⟨P⟩
⟨B⟩2 (5.2)

is the total plasma parameter, taking into account all dimensions of the magnetic field
B = Brer + Bθeθ + Bφeφ, and B its magnitude

βp =
2µ0⟨P⟩2

⟨Bp⟩2 (5.3)

is the poloidal plasma parameter, taking into account only the poloidal dimensions of the
magnetic field, with Bp = Brer + Bθeθ the poloidal magnetic field, and Bp its magnitude.
It is often more relevant to look only at the poloidal component of the magnetic field as
the Bϕ is a consequence of the shear flow, and is not a relevant control parameter from
wind launching and MRI.

5.1.2 Equation of state

The Euler equations system is closed with a two-temperature barotropic equation of
state.

A two-temperature equation of state proved necessary from preliminary simulations
because I use a density floor. Indeed, because of the density floor, the isothermal ver-
tical hydrostatic equilibrium of the disc is not possible. Such a vertical profile requires
ρeq(r, z) ≈ ρ0(r) exp

(
− z2

2H2

)
with H = cs

ΩK
. For z ≫ H the density will inevitably be

lower than the imposed density floor. As a consequence of having ρ = ρfloor ≫ ρeq in the
atmosphere, the vertical hydrostatic equilibrium is not achieved, and the “massive” at-
mosphere is not supported by its lower layers. This means that the atmosphere collapses
onto the disc, while being continuously replenished by the density floor.

The chosen equation of state is the following.

p = c2
s(ρ)ρ, (5.4)

with

cs(ρ) = cd +
1
2

[
1 − tanh

(
log ρ

ρc

∆

)]
(cc − cd) , (5.5)

where cd and cc are the high-density (disc) and low-density (corona) sound speeds re-
spectively. ρc is the transition density, and ∆ is the transition width. This equation of
state corresponds to a cold disc at Td ∝ c2

d and a hot corona, or disc atmosphere, at
Tc ∝ c2

c . I choose ρc such that we have several orders of magnitude between the initial
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density profile and ρc, and likewise between ρc and the density floor of the simulation.
∆ is chosen such that ∂P

∂ρ > 0 for all densities to avoid instability. This two-temperature
equation of state is illustrated on figure 5.1. In the simulations of this chapter, I do not
solve the energy equation. Consequently, the fluid temperature is fully determined by
its density.
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Figure 5.1 – Equation of state used in the 3D Ma = 100 simulations. Note that ∀ ρ ∈ R+, ∂P
∂ρ > 0.

The density floor used is ρfloor = 10−15 and the initial disc density at the inner edge
is ρ = 10−4.

The choice of this equation of state is physically motivated by the fact that the low-
density material above the disc plane is heated (and ionised) by the white dwarf. In
the Ma = 100 simulations, I use cd such that Mad(rin) = vK

cd
= 100 and cc such that

Mac(rin) =
vK
cc

≈ 5. I use ρc = 10−10 such that there are several orders of magnitude of
density at high density and low temperature for an isothermal regime. I use ∆ = 1.2
such that for these sound speeds this equation of state is bijective.

5.1.3 Ohmic resistivity

The magnetic diffusivity defined in Eq. (2.25) is computed from tabulated solutions
of Saha equation. However, it is still too computationally expensive to produce disc
simulations with Mareal. ≈ 103 so I have to rescale the computed resistivity in order
to obtain a realistic magnetic Reynolds number for quiescence Rm = ΩK H2

η ≲ 100 in
the inner disc. The initial profile of the Reynolds number is shown on figure 5.2. The
rescaling procedure can be described as follows

ηcode = ϵ ηSaha(ρ, Tcode/ϵ), (5.6)

with ϵ =
(

Mareal.
Macode

)2
= Tcode

Treal.
the ratio of the realistic Mach number, and the Mach number

of the simulation Macode, related the aspect ratio of the disc defined in Eq. (5.9). I impose
η to be exactly zero in the cells adjacent to the axis, at θ ≡ 0 [π]. The regularisation
scheme used around the axis that was implemented in Idefix at the time (described in
the next subsection) is only known to be exact in ideal MHD.

5.1.4 Grid

For the simulations presented in this chapter, I use a logarithmic grid for the radial
dimension, with ∆r ∝ r. This non-uniform grid enables us to better capture the small-
scale dynamics of the inner regions without having a very fine, and computationally
expensive, grid at the outer edges where it is not necessary. The inner radius of the
domain is set at r0 = 0.01 a, at the outer radius of the white dwarf. The outer radius of
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Figure 5.2 – Initial profile of the magnetic Reynold number for resistive simulations. Close the
axis, the resistivity is zero, and the Rm = ∞. Left: Rm in the midplane of the disc.
Right: Azimuthal average of the magnetic Reynolds number, the high-density disc
is recognisable, at low Rm.
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Figure 5.3 – Left: Poloidal (x − z) slice of the grid. Right: Top view (x − y) of the grid. On the
latter, we see the θ − ϕ grid of the external radius of the grid. On the right panel,
only 1 in 10 azimuthal cells is represented for legibility.
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Figure 5.4 – Principle of the grid-coarsening method: at a given θ, adjacent cells with the same
colour have the same average quantity, with grouping size increasing closer to the
pole. This illustration is not a representation of the actual levels used in the simula-
tions. Here the level is ℓ = 4 adjacent to the pole, and decreases by one with each θ
step. White cells are not grouped.

the domain is set at r = a. This means that the simulation domain extends in regions
where the secondary star should be present, I comment on this choice in more detail in
Sect. 5.2.2.1.

For the latitudinal direction, I use a concatenation of stretched grids near the poles, and
a uniform grid around the equatorial plane. The stretched grid is used from the pole,
down to a latitude corresponding to 4 × h(r0)/r0 on either side of the midplane. For
the longitudinal direction, I use a uniform grid. The global grid has size (Nr, Nθ , Nφ) =
(512, 192, 640). With this grid, at r = r0, there are approximately 1.1 grid cell per scale-
height in the azimuthal direction, 1 point per scale-height in the radial dimension and 8

points per scale-height in the latitudinal direction.
For the azimuthal direction, in order to reduce the impact of the small cells close to

the axis, I use a static coarsened grid such that the coarsening level ℓ is

ℓ =

⌊
1 + log2

(
1

sin θ

)⌋
. (5.7)

The effect of this grid-coarsening is to average neighbouring cells by groups of power
of 2, and maintains ∇ · B = 0. Figure 5.4 illustrates the grouping method.

This method allows me to use a modified CFL condition, such that the time step is
limited by

dt = min

[
min

(
2ℓ−1dx

c

)
+ min

(
22(ℓ−1)

η

)]
. (5.8)

c is the fastest signal speed, and η is the Ohmic resistivity. In practice, the time step is
limited by the Alfvén velocity of the plasma rather than by the parabolic CFL condition
due to Ohmic resistivity.
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Table 5.1 – Runs presented in this paper.

Name Ma(r0) Resolution (Nr, Nθ , Nϕ) q Ohmic resistivity Initial βp

RB3 100 (512, 192, 640) 0.4 Yes 103

iB3 100 (512, 192, 640) 0.4 No 103

RB4 100 (512, 192, 640) 0.4 Yes 104

iB4 100 (512, 192, 640) 0.4 No 104

HD 100 (512, 192, 640) 0.4 N/A non − magnetic
R50 50 (512, 192, 640) 0.4 Yes 103

5.1.5 Units

In this chapter, the chosen time unit is the binary period T0 = 2π
ω = 2π

√
a3

G(Ms+MWD)
.

The natural length unit is the binary separation a. Like in chapter 4, these units are
scaled on the dwarf nova system SS Cygni, where T0 is approximately 6.6 hours and a is
1.37×1011 cm (Bitner et al., 2007).

In this paper, I use the Mach number at the inner edge as a reference for the thickness
of the disc, as Ma = r

h , the inverse of the disc aspect ratio.

Ma =
ΩK(r0)r0

cs
≈ 364

(
MWD

1 M⊙

)1/2 (109 cm
r0

)1/2 (104 K
T

)1/2

, (5.9)

where ΩK(R) =
√

GMWD/R3 is the Keplerian angular frequency for the white dwarf’s
potential. Note that this definition depends on the chosen inner boundary of the sim-
ulation; for instance, in an isothermal setup Ma ∝

√
r0. This must be kept in mind

when comparing to previous work. In particular, Pjanka and Stone (2020) set their inner
boundary further out, at r0 = 0.05 a, with a the binary separation.

5.1.6 Algorithm

Here, I use the HLLD approximate Riemann solver (Miyoshi and Kusano, 2005). The
parabolic terms of the Ohmic resistivity are solved using an explicit scheme.

5.1.7 Boundary conditions and density floor

In the azimuthal direction, I use periodic boundary conditions. In the latitudinal dir-
ection, I use the axis boundary condition described in Lesur et al. (2023), which follows
Zhu and Stone (2018). In the radial direction, I use a custom outflow boundary condition.
This condition is such that, at the inner radius, the azimuthal velocity is set to be Kep-

lerian, vϕ =
√

GMWD
r − ωR. The toroidal magnetic field is set to zero and all other fields

are set to have zero gradient. At the outer radius, we use the same condition, except
for the density, which I set to the density floor. This is such that the pressure gradi-
ent is always directed towards the exterior of the simulation domain. This is especially
important in order to model escaping winds.

Additionally, I use a density floor at ρfloor = 10−15 such that if the density of a cell
drops below this threshold, it is automatically set to this density.
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I also use an Alfvén speed limiter such that the Alfvén speed in a cell never exceeds
max(vA,max, dx/dtmin), where vA,max is set to the liberation velocity at the inner radius,
dtmin is specified by the user, and dx is the smallest edge of the cell, taking the grid-
coarsening procedure into account. When triggered, the Alfvén velocity limiter increases
the density of the cell such that the local Alfvén velocity abides by our criterion. Com-
pared to an Alfvén speed limiter using a uniform velocity ceiling, this criterion allows
for larger Alfvén velocity in larger cells, where a higher signal speed does not lower
the timestep of the simulation. Using this limiter limits greatly the quantity of mass
added by the Alfvén speed limiter compared to a limiter which limits the Alfvén velocity
everywhere.

Both the density floor and Alfvén speed limiter are implemented in such a way that
the poloidal momentum of the cell is always conserved. The azimuthal velocity is left
unchanged to minimise the effect of the density floor on the angular momentum of the
cell.

5.1.8 Initial conditions

The simulations in this chapter are all restarted from an axisymmetric 2.5D
hydrodynamics-only run. The hydrodynamics run is integrated for ten binary orbits
and is then restarted in full 3D with a magnetic field and a non-axisymmetric potential.

5.1.8.1 Hydrodynamics initial condition

The 2.5D hydrodynamics run is started with the density profile from the hydrostatics
isothermal vertical equilibrium. With the chosen equation of state, there is no radial de-
pendency of the sound speed inside the disc. This is, however, not the actual hydrostatic
equilibrium solution for our equation of state, because with such a density profile, there
is a vertical variation of temperature.

ρ(R, z) = ρ0

(
R
r0

) 3
2

exp
[

GMWD

c2
s

(
1√

R2 + z2
− 1

R

)]
, (5.10)

where (R, z) = (r sin θ, r cos θ) are the cylindrical coordinates. I use ρ ∝ R
3
2 such that

the initial surface density of the disc is Σ =
∫

ρdz ∝ R as predicted by the DIM during
quiescence (Hameury et al., 1998). At first non-vanishing order in z/R, this profile yields
ρ ∝ exp(−z2/2H2) where H = cs/ΩK(R) is the hydrodynamics vertical equilibrium
height-scale, related to the Mach number by Ma(R) = R/H(R).

I set the initial flow to be purely Keplerian, vϕ =
√

GMWD
r − ωR, with no vertical or

radial velocity. This does not exactly match the radial equilibrium of the disc, as it does
not compensate for any radial pressure gradient.

Following the same procedure as in chapter 4, I pre-truncate the disc at the tidal
truncation radius rT predicted for our mass ration (Paczyński, 1977). This step is done in
anticipation of the tidal potential introduced at the 3D restart with magnetic fields. The
mask I apply to truncate the disc is the same as before. As discussed in chapter 4, this
shortens the initial transient tidal truncation regime.

µ(R) =
1
2

(
1 − tanh

(
R − rT

δT

))
(5.11)

I use δT = 0.05
The simulation is then integrated for ten binary orbits in order to reach an axisym-

metric quasi-steady state, consistent with our initial truncated disc and the barotropic
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Figure 5.5 – Initial axisymmetric configuration at the 3D restart. The cyan streamlines show the
magnetic field lines from equation (5.12). Left: Global picture. Right: Zoom on the
inner regions of the simulation. Note that on this figure, the density colourbar goes
down to the density floor.

equation of state. During this step, a thermal wind is launched. Such a wind does not
contribute to angular momentum transport, as it imposes no torque on the disc.

5.1.8.2 3D Magnetic restart

After ten binary orbits, I restart from the state obtained from the 2.5D hydrodynamics
run. I add a slanted poloidal magnetic field adapted from Zanni et al. (2007). The
magnetic field is initialised with the potential vector A.

Ar = Aθ = 0, Aϕ =
4
3

B0

(
R
r0

)m+2

r2
0

κ5/4

(κ2 + z2/R2)5/8/R
(5.12)

where κ is the typical kink scale of the magnetic field line in units of the binary separation,
we use κ = 0.3. B0 is the magnetic field strength at the inner radius. m is the power law
index of the magnetic field in the midplane, we use m = 1/4 such that the initial plasma
β is constant in the disc midplane. With this magnetic field prescription, the initial
magnetic field is purely vertical in the disc midplane. The magnetic field geometry
corresponding to this vector potential is shown on figure 5.5.

I emphasise that the magnetic field is only included in the 3D simulation and not in
the 2D preliminary run to avoid the creation of rings due to the accumulation of the
magnetic flux due to the constrained geometry (Riols and Lesur, 2019).

5.2 magnetic accretion

5.2.1 Disc evolution

Here I describe the evolution of the disc in three dimensions, once the magnetic field
is added. This evolution is separated into two parts. In the present section, I present the
properties of the accretion disc during the first orbits after the magnetic field, tidal poten-
tial and third dimension are introduced. In a second evolution phase, the disc develops a
rapidly increasing tilt with respect to the binary orbital plane. During the first evolution
phase, that is for t < 14 − 15 T0 across all simulations, the tilt is small. Quantitatively,
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Figure 5.6 – Evolution of the vertical and azimuthal average of the density close the midplane,
between ±4 the hydrostatic scale-height. Left: Runs with resitivity. Right: Ideal
MHD runs. Top: Runs with initial β = 103. Bottom: Runs with initial β = 104.

this means that the angle the disc makes with the binary plane is indistinguishable from
the noise fluctuations due to the turbulent flow. I discuss the strong tilt phase in the next
section. In the present section, I focus on the first phase of evolution, at times t ≤ 14 T0.
Here, the disc lies in the binary orbital plane.

The disc density evolution is presented on figure 5.6. On this figure, we see that after
less than a binary orbit, the density in the inner region of the disc appears to be greatly
reduced compared to the initial hydrodynamics state across all four simulations. The
regions at radii r < 0.02 develop an eccentric cavity like the two-dimensional simulations
of chapter 4. The radius of this cavity is consistent with the two-dimensional simulations.
The radius of this low-density region is greater in the β = 104 simulations for a few orbits,
and settles to r ≈ 0.02 like the β = 103 after a few more binary orbits.

On figure 5.7 is plotted the vertical magnetic flux in the midplane. We can see that
the initial magnetic field is rapidly advected towards the inner regions of the disc. This
step comes together with a diminution of the density. As a consequence, the plasma
magnetisation in the inner regions of the disc dramatically increases from its initial value,
see figure 5.8.

After a few binary orbits, the disc has settled in a two-region state. The inner cavity
of the disc has low density and high magnetisation, with βp ≪ 1, i.e. a magnetically
dominated region. The outer region of the disc remains thermally dominated, with
βp ≫ 1, but lower than its initial value, and surface density closer to the initial state.

In both simulations with initial β = 103, we can see that after being initially advected
onto the white dwarf, the poloidal magnetic field lines are advected back into the disc
after a couple of binary orbits. In the lower magnetisation simulations, with β = 104,
this does not happen. On the contrary, the magnetic field flux further decreases because
poloidal magnetic field loops form close to the midplane. This also occurs at a lower rate
in the β = 103 simulations after some of the field lines are advected back in the disc.
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Figure 5.7 – Evolution of the vertical magnetic flux through the mid plane. The iso-contours
correspond to magnetic field lines. Left: Runs with resistivity.Right: Ideal MHD
runs. Top: Runs with initial β = 103. Bottom: Runs with initial β = 104.

Figure 5.8 – Evolution of the βp in the midplane. Left: Runs with resitivity. Right: Ideal MHD
runs. Top: Runs with initial β = 103. Bottom: Runs with initial β = 104.
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Figure 5.9 – Dimensionless number characterising the initial axisymmetric state, with added mag-
netic field. Top: Poloidal β parameter of the mean field. Middle: Mean magnetic
Reynolds number. Bottom: Ohmic Elsasser number.

I also note that even though the disc midplane is highly resistive, very clear MRI chan-
nel modes develop on both surfaces of the disc, both in resistive and ideal simulations.
There, the resistivity is lower and the β is lower; this allows for the MRI to develop as
the local Ohmic Elsasser number Λ = 2 Rm /βp > 1, as shown on figure 5.9. As a con-
sequence, and as will be discussed below, I see no major difference between the resistive
and ideal MHD simulations in terms of turbulent accretion. I will not further discuss
the MRI as the low disc resolution necessary for global simulation implies that MRI tur-
bulence will be poorly resolved, if at all. Indeed, in the ideal MHD case, Latter et al.
(2010b) shows that for β = 103, at least 50 points per scale-height are required to resolve
the fastest growing channel mode; here, I only have 8.

5.2.2 Disc vertical structure

5.2.2.1 Wind geometry

As shown on Fig. 5.10, a wind is launched above and below our disc. The wind
launching surface is somewhat far from the density bulk, at an altitude ranging from
|z| ≳ 0.1 in inner radii to |z| ≈ 0.2 at further radii. At lower altitudes, matter is falling
towards the midplane. This structure is somewhat reminiscent of Jacquemin-Ide et al.
(2021b) with the magnetic wind launching far above the disc. However, the flow inside
the density bulk appears to be different in here than in their simulations. As discussed
below, this difference in behaviour is also observed in the dominant pressure term inside
the disc (see figure 5.11).

As a consequence of the elevated wind launching surface, I extended the outer radius
of the simulation domain. Preliminary test runs with a smaller outer radius rout = rL1 for
the simulation zone (not shown here) showed that this outer radius was not far enough
for the wind to launch, because the outer boundary condition polluted the outflow.
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Figure 5.10 – Maps of the azimuthal and time average of the density. The over-plotted streamlines
correspond to the azimuthal and time average of the poloidal velocity field. RB3:
resistive simulation with β = 103. RB4: resistive simulation with β = 104. iB3:
ideal simulation with β = 103. iB4: ideal simulation with β = 104. For reference,
the first Lagrange point is around r/a = 0.6.

5.2.2.2 Vertical equilibrium

When it comes to the vertical equilibrium, I find that the disc can be separated in two
radial regions, as shown on figure 5.11. The two top panels correspond to the inner
region of the disc (but not to the cavity), where the vertical support of the disc is en-
sured by the magnetic pressure, both laminar and turbulent. There, the thermodynamic
pressure is smaller than the magnetic pressure.

The two bottom panels correspond to the outer disc. There, the disc is vertically
supported by the thermodynamic pressure. The laminar magnetic pressure reproduces
the expected behaviour, as previously shown on figure 2.6. In this region, the turbulent
magnetic pressure ⟨δB2⟩ is sub-dominant by a factor of about ten (see Fig. 5.11). This
outer region is similar to the simulations of Jacquemin-Ide et al. (2021b).

In this simulation, the transition radius between the magnetically dominated region
and the thermally dominated region is around R = 0.1− 0.2. At this radius, ⟨P⟩ = ⟨δB2⟩.

As a consequence of being magnetically supported, the inner disc structure dramatic-
ally changed from the initial hydrostatic profile. The inner regions of the disc become
strongly puffed-up or ‘elevated’, and lose some of their top-bottom symmetry. The ini-
tially thin disc now has effectively a much larger aspect ratio than the initial hydrostatic
Ma−1 = 0.01. This is clearly visible in figure 5.12. On this figure, we can see that the
vertical density profile at radii r ≤ 0.1 is much wider than the hydrostatic equilibrium at
this radius. On the contrary, in outer regions of the disc r ≥ 0.2, the disc density profile
corresponds to this hydrostatic profile. Note that the deviation from this profile at outer
radii away from the midplane is due to the barotropic equation of state; the low-density
matter is at higher temperature and is not expected to fit the isothermal hydrostatic
profile.

I define an effective height scale Hσ(R) from the vertically integrated density.

IR(Hσ) = ⟨
∫ z0+Hσ

z0−Hσ

ρ(z, R)dz⟩φ, (5.13)

where z0 is the vertical position of the maximum of the azimuthally averaged density at
fixed cylindrical radius R. The effective height scale is such that IR(Hσ) is approximately
68% of the total azimuthally averaged surface density. Formally, Hσ = I−1

R (0.68). I also
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Figure 5.11 – Pressure terms contributing to the vertical structure of the disc at different radii.
Averaged over 1 binary orbit of the RB3 simulation. Top: inner disc radii. Bottom:
Outer disc radii. The pressure terms are normalised to the maximum value of the
thermal pressure ⟨P⟩ at each radius.
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Figure 5.12 – Vertical density profile averaged over 1 binary orbit. The dotted lines show the
hydrostatic equilibrium profile at each radii (gaussian). The chosen radii are the
same as in figure 5.11.
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Figure 5.13 – Effective aspect ratio of the discs, averaged over 1 binary orbit. The dotted line
represents the isothermal aspect ratio for the chosen disc temperature ∝

√
r. The

regions beyond r = 0.6 are not shown as there can be no disc beyond the Lagrange
point. Left: Runs with resitivity. Right: Ideal MHD runs. Top: Runs with initial
β = 103. Bottom: Runs with initial β = 104.

define H2σ(R) corresponding to the height scale containing 95% the column density. In
the case of a thin steady locally isothermal hydrostatic disc, these would coincide with
the usual height scale H = cs/Ω.

On figure 5.13, we can see that the disc is puffed up in the inner regions. We see that
the actual aspect ratio of the disc is approximately constant with radius, with H/r ≈ 0.1
everywhere. with a very slight decrease with radius. This means that the disc is more
than ten times thicker in the inner magnetised regions, than in the hydrostatic case. This
is consistent with the pressure balance of figure 5.11; the inner regions differ from the
hydrostatic picture, whereas the outer disc is more or less in hydrostatic equilibrium.

We also see that H2σ(R) > Hσ(R). This means that compared to a Gaussian vertical
profile, the vertical density profile is less peaked, and more vertically spread. This is in
part due to the two-temperature equation of state. With this equation of state, the hydro-
static vertical profile is a Gaussian only close to the midplane. Moreover, the presence
of a magnetic wind changes the vertical density profile as matter from the disc will be
carried away from the disc to its atmosphere.

We see that the inner eccentric cavity region r < 0.02 also strongly differs from the
hydrostatic structure.

5.2.3 Outflow and accretion

The accretion rate plotted on 5.14, is defined as the radial mass flux integrated on
spherical shells.

Ṁ(r) = −
∫ ϑmax

ϑmin

∫ 2π

0
⟨ρvr⟩tr2dθ sin θdϕ (5.14)
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Figure 5.14 – Time-averaged accretion rate computed on spherical shells of radius r inside the
disc.

where ϑmin and ϑmax are the latitude position of the surface of the disc. This surface
is not taken from the hydrostatic scale-height H, as we saw that it did a poor job at
describing the actual vertical profile of density. Rather I take these angles to be such that
they form an angle corresponding to ±H/r = 0.1, in agreement with the results of figure
5.13, around the local density maximum. ⟨. . . ⟩t is a time average.

I take the outflow rate of the wind to be a similar integral over the complementary
latitude domain [0, π] \ [ϑmin, ϑmax]. I show the ratio of the wind outflow rate to the
accretion rate on figure 5.15. Note the wind outflow is positive when vr > 0, opposite to
the accretion rate. We see that the contribution of the wind to matter flow is comparable
to the accretion rate inside the disc. In fact, close to 50% of the mass loss of the disc
occurs through this outflow. This ratio is slightly less in the ideal simulation, closer to
30%, because in this simulation, the accretion rate is increased. This values are greater
than the values inferred from observations of a few percents of the disc accretion rate
(Hoare and Drew, 1993; Knigge and Drew, 1997) for outbursting dwarf novæ and nova-
like.

On this figure, we also see that in the inner region of the disc, at r < 0.1, the mass
flux above and below the disc are accretion flows rather than outflow. This is also what
happens in the less magnetised β = 104 simulations. This is because, as discussed
above, in these simulations, the winds is launched further away from the disc. This is
clearly visible on figure 5.16. This figure shows the azimuthally and time-averaged radial
matter flux ⟨ρvr⟩φ,t. There, we see that for the simulations with higher magnetisation
β = 103, this flux becomes an outflow at closer distance from the disc than in the β =
104 simulations. In the latter simulations, the accreting atmosphere (in blue) is more
vertically extended than in the former.

5.2.4 Disc magnetisation

In my simulations, the initial advection of the vertical magnetic field creates a strong
radial magnetic field. So much so that even though the magnetic flux remains more or
less constant inside the whole disc (as shown on figure 5.7), the magnetisation increases
everywhere inside the disc, as we can see on figure 5.8. In general, the midplane Br
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Figure 5.15 – Time-averaged outflow rate computed on spherical shells of radius r inside the disc.

Figure 5.16 – Time-averaged of the radial matter flux ⟨ρvr⟩φ,t.
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Figure 5.17 – Properties of the non-magnetic simulation. Left: Effective disc heightscale meas-
ured as in figure 5.13. Right: Density profile and poloidal velocity field as in figure
5.10.

caused by accretion is zero, because the magnetic field advection is symmetrical with
respect to the midplane.

Here I observe that the magnetic configuration of the disc is not symmetrical with
respect to the disc midplane. As a matter of fact, the Bφ = 0 surface does not coincide
with the vertical density maximum. This asymmetry is visible on figure 5.11. On this
figure, we can see that the magnetic pressure terms are not symmetrical with respect to
θ = π

2 . A consequence of this dissymmetry is that the wind launched from either surface
of the disc are not symmetrical either. This is noticeable on figure 5.10. This asymmetry
is further discussed in the next section.

5.2.5 Comparison with the non-magnetic case

In this subsection, I compare the above simulations to the same simulation without
magnetic field. This simulation is also restarted from the two-dimension hydrodynamics
simulation. The third dimension and tidal potential are introduced in the same way, but
no magnetic field is added.

We can see that this simulation is much closer to the hydrostatic equilibrium state as
shown on figure 5.17. The disc scale-height is very close to cs/ΩK, except in the inner-
most regions, because there some matter falls back onto the disc; it is not a hydrostatic
state. On the right panel of this figure, we also see that the disc density structure is less
elevated than the magnetic case. This is because there is no contribution of the magnetic
pressure to vertical structure. As a consequence, we only have a thermal wind, due to
the chosen equation of state for the gas. The disc mass loss due to this wind is more than
an order of magnitude less than in the magnetic case.

5.3 disc tilt

After a few binary orbits, all the magnetic simulations presented above develop a
tilted disc. Here I first describe the observed tilt, and then present tentative mechanisms
producing the tilt.
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Figure 5.18 – Density slice of a snapshot of simulation RB3 at φ ≡ π/4[π]. The grey dotted line
represents the orbital plane of the binary system.

Figure 5.19 – Altitude of the barycentre of a snapshot of simulation RB3. The grey dotted line
represents the slice of figure 5.18.

5.3.1 Description of the tilt

This tilt is illustrated by figure 5.18. On this vertical density slice, it is very clear that
the disc is tilted with respect to the orbital plane of the binary system. To describe this
tilt, I introduce the following quantity.

θbary(r, φ) =

∫ π
0 ρ(r, θ, φ)θdθ∫ π
0 ρ(r, θ, φ)dθ

(5.15)

and the corresponding altitude is zbary(r, φ) = r arctan(π
2 − θbary). This quantity is plot-

ted for a snapshot of simulation RB3 on figure 5.19. This figure shows us that the disc is
tilted rather than warped. The disc is still planar but no longer lies in the plane of the
binary system. This behaviour is observed in all simulations.
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Figure 5.20 – Measure and fit of the latitude of the barycentre, from the same snapshot as figure
5.18 and 5.19. The grey dotted line corresponds to the position of the slice of figure
5.18.

In this case, where the disc remains planar, the altitude of the barycentre is easily
parametrised. The following expression parametrises the latitude of a planar ring at
radius r.

λ
plane
bary (r, φ) = sign(sin(φ − ϖ))

π

2
− arctan


√

tan2(φ − ϖ − π
2 ) + cos2 A

sin A

 (5.16)

where λ
plane
bary = π

2 − θ
plane
bary is the latitude of the barycentre, A is the angle between the

ring and the equatorial plane, and ϖ is the angular position of the ascending node of
this ring, that is the azimuth at which it crosses the equatorial plane (θ = π

2 ) and where
∂λ/∂φ > 0. In general, both A and ϖ may be function of the radius. In the case where the
disc is exactly planar, we have no radial dependency on these parameters A′ = ϖ′ = 0.
When the tilt is small, |A| ≪ π

2 , this expression reduces to

λ
plane
bary (r, φ) = A(r) sin (φ − ϖ(r)) (5.17)

To quantify the disc tilt, I measure how A(r, t) and ϖ(r, t) evolve with radius and time
across the simulations. To do so, I measure θbary(r, φ) for each snapshot and I fit for each
time and radius to the expression of equation (5.17). As we can see on figure 5.20, the
assumption that each ring is planar is a good approximation, and the position of the
barycentre is well fitted by approximation (5.17).

Figure 5.21 shows the evolution of parameters A and ϖ for the simulation RB3. On this
figure, rather than fitting A in [−π

2 , π
2 ], I fit for its amplitude |A|. This means that the

orientation of the tilt is not defined with 2π periodicity but rather with π periodicity as
ϖ and ϖ + π are equivalent. On this figure, we see that at early times, that is for t < 15,
both the measured parameter values appear to be indistinguishable from noise. During
this phase, the measured A , 0 can be attributed to the turbulent behaviour of the disc.
For a disc with no tilt, the orientation of the tilt ϖ is ill-defined and any slight non-zero
tilt value, due to noise, will produce a random ϖ.

On the contrary, after t = 15 a coherent behaviour emerges. The tilt angle A grows
rapidly and in a coherent way at all radii. Concomitantly, the tilt orientation becomes
coherent and rotates at a constant angular velocity. The coherent behaviour of the tilt
direction starts around half a binary orbit earlier, but a that time the tilt angle behaviour
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Figure 5.21 – Time evolution of the tilt parameters for the disc of simulation RB3 at different radii.
The black dotted lines correspond to the fit of equation (5.18) for t > 15 T0, fitted
on the measure at radius r = 0.3.

change is not clear-cut. During this second phase, I fit the evolution of both parameters,
as shown by the black dotted lines. The fits are carried at the r = 0.3 radius. For the tilt
angle, I fit an exponential growth, and for the tilt orientation, I fit a linear evolution of
the following form.

Afit(t) = A0e−t/τ

ϖfit(t) = at + b
(5.18)

The obtained values of the fitting parameters are shown on figure 5.21. On this figure, it
may be argued that the tilt angle growth at r = 0.3 started at earlier times. It is possible,
but we also have to keep in mind that the local dynamical (keplerian) timescale is longer
at this radius than at more inner radii. This means that a possible transient regime, due
to the idealised initial condition is expected to relax slower there. This initial growth may
simply be taking longer than the initial transient growth taking place at inner radii.

The two relevant parameters to describe the tilt growth are its growth time τ and
the tilt rotation speed a. The growth time is very short compared to the typical binary
evolution time scales as it is close to one binary orbit. The fluctuation noise on the
measure tilt angle prevents me from having a more precise estimate. This value of τ
is similar for all four Ma = 100 simulations. On the other hand, a can be estimated
more precisely as there is little fluctuation on the behaviour of ϖ around the fit. In
all simulations, the rotation of the orientation of the warp is compatible with −ω, the
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opposite of the binary angular frequency. This means that the tilt orientation is fixed
in the non-rotating reference frame. A further refinement can be obtained thanks to the
very coherent behaviour of ϖ. In fact, the tilt orientation is slightly less than −ω. The
tilt orientation is retrograde with respect to the binary system, at a frequency of a few
precents of the binary orbital frequency. Such a frequency corresponds to a tilted disc
rotating in a few tens of binary systems orbits. This frequency is reminiscent of the
frequency of superhumps of SU UMa systems. One should however keep in mind that
the simulations did not run for as long as this period, as such I can not conclude on the
exact behaviour of the tilt on such timescales.

angular momentum measurements Another method to quantify the tilt of the
disc is to examine its angular momentum. Using the fact that the tilt appears to be
stationary in non-rotating frame, I use the frame (a, b, c) to describe this tilt. This frame
is such that it coincides with the rotating frame (x, y, z) when t ≡ 0[T0]. In each point of
the disc, I use the local angular momentum per unit volume

ℓ = ρr ∧ v. (5.19)

This quantity can then be integrated on the disc

L =
∫ rout

rin

∫
S(r)

ℓ dS dr =
∫ rout

rin

dL (5.20)

where I have decomposed the radial direction from the other directions, S(r) are the
spheres of radius r. dL(r)/dr is the integral over those spheres. As the density inside
the disc is much larger than outside the disc, contributions from outside the disc are
negligible. As such dL(r) is the angular momentum of the disc annulus at radius r and
of width dr.

Here, I assume that the disc is made of concentric planar rings, as previous results
suggested. This corresponds to a warp with no azimuthal modes m > 1. This also
corresponds to the picture of concentric misaligned circular (possibly Keplerian) orbits
around the white dwarf. If the disc lies inside the orbital plane of the binary system,
∀r, dL(r) ∥ z. Otherwise, dL(r) will have non-zero a and b components.

Figure 5.22 shows the evolution of dL(r) for the simulation RB3. We see that initially,
dL ∥ z as the disc lies in the binary plane. After less than a binary orbit, the local angu-
lar momentum has non-zero components that are not aligned with the binary rotation.
These values are initially small and oscillatory. As shown on this figure, the observed
patterns in local angular momentum are compatible with waves propagating at half the
speed of sound. This is the expected velocity of bending waves in an accretion disc (Pap-
aloizou and Lin, 1995). On this figure, we see a first regime, up to t = 15, where bending
waves propagate inside the disc, with non-zero tilt. Then after t = 15 the stationary tilt
grows. We see on this figure too, that the direction of the tilt is constant in this phase. In
all phases, the non z components of the angular momentum remain smaller than the z
component.

non-magnetic simulation Contrarily to the magnetic simulations, the non-
magnetic simulation HD does not feature this tilt, as shown on figure 5.23. On this figure,
only a very small tilt is visible and only very close to the white dwarf (see the zoomed-in
region of the left panel). On the altitude plot (right panel), this tenuous tilt is also some-
what visible. The scale used in both panels is the same as on figure 5.18 and figure 5.19

for comparison purposes. We can see that the tilt of this disc is negligible compared to
that of the magnetised discs.
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Figure 5.22 – Evolution of local angular momentum components for disc rings, with time. The
black dotted lines correspond to wave characteristics propagating at half the speed
of sound.
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Figure 5.23 – Same as figures 5.18 and 5.19 for the non-magnetic simulation HD. The green dotted
line on the left panel shows the equatorial plane. The inner region (zoomed-in inlet)
features a slight tilt.

Figure 5.24 better quantifies this absence of tilt. The fitted tilt angle A remains small
at all times and all radii, more precisely is |A(r)| ≪ H/r in most of the disc. Only in
the very inner parts of the disc do we have |A(r)| > 0.01 rad, but even then the tilt angle
is limited to ≤ π

64 ≈ 0.05 rad. In these inner regions, the tilt angle A reaches values
more than four times as large in the magnetised case. We also see that no coherent
pattern develops in ϖ as it was the case on figure 5.21. This shows that in any case,
the tilt regime in this simulation is different from the very coherent magnetised disc tilt
presented above.

On figure 5.25, we see the evolution of the local angular momentum of the disc dL.
The disc is initially planar and axisymmetric at t = 10. Here too, after less than a
binary orbit, bending waves propagate radially inside the accretion disc. As there are
no magnetic effects on the disc, namely no MRI, the wave patterns appear more clearly
than in the magnetics simulations. The chequerboard pattern that can be observed in this
figure is a telltale of a standing wave inside the disc. After t = 15, however, no global
tilt appears in this simulation. This suggests one of two things. Either the tilt growth
is entirely due to the presence of a magnetic field, and this would be why it does not
appear in this simulation. Or the growth of a disc tilt is possible in a non-magnetic disc,
but the presence of a magnetic field shortens its growth time dramatically. Indeed, from
this simulation alone, one can not exclude the possibility that a tilt grows on times scales
τ ≫ 10 T0 in a non-magnetic disc.

higher temperature simulation To further examine the tilt, I produce a higher
temperature simulation R50. This simulation with Ma = 50 is aimed at understanding
the effect of temperature on the tilt. For this simulation, I use the same radial and
azimuthal grids as the Ma = 100 simulations. This means that for those directions, the
number of points per disc height scale is doubled. For the latitudinal grid, I use the same
number of points (64) to cover the ±4H region, and the same number of points to reach
the poles (2× 64). In this direction, the number of grid points per disc height scale is kept
the same. The magnetic field geometry is the same, and the atmosphere temperature is
also kept to be the same. The resistivity scaling is tuned so that the magnetic Reynolds
number is the same. The initial β parameter is set to 103.

The tilt parameters of this simulation are plotted on figure 5.26. Similarly to the Ma =
100 simulation, we can observe that the disc is initially not tilted. During this phase, I also
observe bending waves propagating through the disc. After t = 15, in this simulation
too the disc becomes rapidly highly tilted. Here, it appears that the tilt first grows at
inner radii. The growth time of this tilt can be measured and its value is approximately
half of the growth time of the tilt in Ma = 100 simulations. The pattern speed of the tilt
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Figure 5.24 – Time evolution of the tilt parameters for the disc of the non-magnetic simulation HD
at different radii.
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Figure 5.25 – Evolution of local angular momentum components for disc rings, with time for the
non-magnetic simulation HD. The black dotted lines correspond to wave character-
istics propagating at half the speed of sound.
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Figure 5.26 – Tilt parameters of the Ma = 50 magnetic simulation.

is similar to the one observed at higher Mach number: retrograde at approximately 3%
of the binary frequency.

The growth time of the tilt appears to be related to the sound speed of the disc plasma.
In both cases, the extent of the disc is approximately rout/a = 0.3. From this length and
the bending wave propagation speed cs/2, one computes the radial crossing time for
these waves:

τ =
rout

cs/2
≈

1.1 if Ma = 100,

0.6 if Ma = 50,
(5.21)

The values of these typical bending wave crossing times are very close to the meas-
ured growth time of the tilts in both Ma = 100 and Ma = 50 magnetised simulations
respectively.

5.3.2 Understanding the tilt

Here, I present attempts at explaining the origin of the tilt observed in the magnetic
simulations, and try to understand the mechanism producing it.

5.3.2.1 Previous works

Tilted, or more generally warped discs have been studied in different contexts in the
past. Warped discs were studied because such a non-planar geometry could explain
observations. For instance, such geometries are directly observed in AGN (Miyoshi et
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al., 1995), and explain the behaviour of several X-Ray Binaries (Gerend and Boynton,
1976); they are also observed in younger binary systems like KH Tau (Stapelfeldt et al.,
1998), AA Tau (Bouvier et al., 2013), protoplanetary disc (Marino et al., 2015), ... From an
observational point of view, warped and tilted disc are often invoked.

As a consequence of these observations, some work has been carried out to understand
them from a theoretical point of view. The most studied warps and tilts are those around
black holes and neutron stars; these are due to relativistic frame dragging (Lense and
Thirring, 1918) close to the horizon of a misaligned black hole (Bardeen and Petterson,
1975). Here, I will ignore these works as they are not relevant to the study of dwarf novæ;
moreover, in my case, the spin of the white dwarf and of the binary system are aligned.

The origins of these warps differ from system to system. For instance, it is possible
that the tidal influence of a companion excites a warp (Lubow, 1992), through a reson-
ant coupling mechanism similar to the eccentricity growth I discussed in the previous
chapter. The presence of a wind, may also exert a sufficiently strong torque that warps
the accretion disc (Schandl and Meyer, 1994). A strong enough radiation from the ac-
creting object may also cause the disc to develop a warp (Pringle, 1996). Finally, if the
accreting object has a strong misaligned magnetic dipole, it may exert sufficient torque
to warp the accretion disc around it (Lai, 1999).

The first dynamical models of warps by Papaloizou and Pringle (1983) assumed that
the angular momentum transport parameter α > H/r the disc aspect ratio, and found
that in this case, the warp is described by a diffusion-like mechanism, and is diffused
on shorter times scale than the usual viscous timescale. Papaloizou and Lin (1995) then
showed that when α < H/r, the warp propagation becomes wavelike rather than dif-
fusive. These waves are the bending waves I mentioned in the previous section, and
propagate at cs/2. These theories were then refined to non-linear order by Ogilvie (1999).
Papaloizou and Terquem (1995) also showed that a distant companion could tidally ex-
cite a tilt in an accretion disc, and not necessarily relax towards coplanarity.

These theoretical models were confirmed by numerous numerical studies (Nelson and
Papaloizou, 1999; Lodato and Pringle, 2007; Lodato and Price, 2010). During the same
period, Murray et al. (2002) produced simulations where a global disc warp is excited
in a close binary system by the misaligned magnetic dipole of the secondary star. They
suggest that such geometry may explain negative superhump behaviours, that is super-
humps with a period less than the binary orbital period. Foulkes et al. (2006, 2010)
studied illumination-induced warps with numerical simulations. They concluded that
this mechanism likely explains the warped disc observed in low-mass X-ray binaries.

The previous numerical models made use of the smoothed particle hydrodynamics
(SPH) method. This method is well-suited to study systems with complex geometries,
but as discussed earlier, it requires the input of an ad-hoc viscosity and poorly cap-
tures sharp pressure structures like shock-waves. Ogilvie and Latter (2013b) developed a
warped shearing box framework, improving the traditional shearing box model for warped
discs. This allows to locally study flow properties in a warped disc. In a joint paper,
Ogilvie and Latter (2013a) used this framework to study local instabilities in this partic-
ular type of flow. They find that even discs with small warps, too small to be observable,
can be unstable to a linear hydrodynamical instability. As such, they can generate turbu-
lence and possibly enhance accretion.

More recently, Paris and Ogilvie (2018) included magnetic field in the warped shearing
box framework and studied its effects. They find that the magnetic tension detunes the
hydrodynamics resonance: with magnetic field the epicyclic frequency no longer matches
the orbital frequency. The magnetic field, however, introduces new Alfvenic-epicyclic
resonances that can be forced, but depend on the field strength and on the shear rate of
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Figure 5.27 – Euler angles nutation θ, precession ψ and intrinsic rotation ϕ. The ring corresponds
to the red circle. The u direction corresponds to the nutation axis.

the flow. Their work neglects the MRI and may be more relevant in high magnetisation
discs with β ≈ 1.

When it comes to specifically studying cataclysmic variable stars, Sheikhnezami and
Fendt (2015) studied the jet launching mechanism from warped disc, but did not focus on
the evolution of the disc warp. Pjanka and Stone (2020) also produced three-dimensional
CV disc simulations. They noted that the disc slightly deviated from the binary plane,
but did not measure any significant warp or tilt of the accretion disc.

The simulations I presented in the previous section do not fit well in the above-
mentioned scenarii. The disc is initially aligned with the orbital plane of the binary
system, the disc rotation is aligned with the white dwarf spin, the initial magnetic field
is top–bottom symmetric, the binary mass ratio is such that the disc is truncated well
below the 3:1 resonance radius, and the disc is magnetised but has β ≫ 1 almost every-
where.

As mentioned above, the comparison with the non-magnetic simulation suggests that
the tilt growth may be at least partly explained by the magnetic field. Magnetic simula-
tions focusing on the global study of warp are not numerous to this day.

5.3.2.2 Tidal disturbance

The first scenario I explore is a possible instability mechanism solely due to the tidal
potential. Here, I will describe the disc as nested circular rings centred on the white
dwarf. I describe the position of this ring with the Euler angles θ, ψ, ϕ of figure 5.27

1.
The rings at different radii are considered independent. I first assume that they have

axisymmetric linear mass µ(r). I will relax this assumption further in this section.
Rather than solving the full dynamical evolution of the rings, I study their potential

energy in terms of the tilt parameters. The potential, including both the tidal component
and the centrifugal force reads as follows.

1. Adapted from https://commons.wikimedia.org/wiki/File:Eulerangles-alternative2.svg
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Ψ = −GMNB

|r| − GMs

|r − a| +
GMs

a3 r · a − 1
2

ω2∆2 (5.22)

where ω is the angular frequency of the binary systems and ∆ is the distance to the z
axis.

It can be expressed in a modified cylindrical frame, coinciding with the vectors
(u, w, z′) of figure 5.27. I write the corresponding cylindrical coordinates (R′, ϕ′, z′). As
the Euler angle ϕ corresponds to ϕ′ of these cylindrical coordinates, I drop the prime on
this coordinate. Moreover, this coordinate is only relevant to parametrise the ring and
will only appear to be integrated over.

The ring lies in the z′ = 0 plane; in this plane, the potential is

Ψ′(R′, ϕ, z′ = 0) = −GMWD

R′ − GMs√
R′2 + a2 − 2R′a(cos ϕ sin ψ + sin ϕ cos θ cos ψ)

+
GMs

a2 R′(cos ϕ sin ψ + sin ϕ cos θ cos ψ) +−1
2

ω2R′2 (cos2 ϕ + sin2 ϕ cos2 θ
)

(5.23)

The potential energy of the ring of radius R is thus the following integral.

Ep =
∫ 2π

0
µRΨ′dϕ. (5.24)

The first term of the potential yields a constant when integrated, as it is spherically
symmetric. The third term yields zeros, by symmetry. Only the potential of the compan-
ion star and the centrifugal energy contribute non-trivially to this potential energy. The
latter can be easily evaluated analytically, and yields

Ecfg =
π

2
µR3ω2 sin2 θ + cst (5.25)

The total potential energy landscape is numerically integrated and computed on fig-
ure 5.28. On this figure, we retrieve the top-bottom symmetry of the potential, which
translates in θ ∼ π − θ, and ψ ∼ ψ + π. We also note that for θ ≡ 0[π] the system is
degenerated, as in this case, ψ is ill-defined. This is exactly the same degeneracy as we
saw for ϖ when A = 0 in the previous section.

On this figure, we see that there are two equilibrium configurations for the ring ∂ϕEp =
∂θEp = 0. The first one is unstable, as it corresponds to a maximum of Ep and is at θ = π

2
and ψ � 0[π]. This configuration corresponds to a disc normal to the position of the
secondary star a. The other equilibrium configuration, stable this time, corresponds to a
disc lying in the binary system plane with θ = 0[π]. The stability of this configuration
corresponds to the expected position of a disc in these systems.

However, if I now relax the assumption that the ring has uniform mass, this picture
changes. This is motivated by the presence of spiral density wave in this kind of disc, as
I extensively studied in chapter 4.

Like for spiral waves, it is natural to write the linear mass µ as a Fourier expansion.

µ(ϕ) =
∞

∑
m=0

µmeimϕ (5.26)
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Figure 5.28 – Potential energy landscape for an uniform ring at radius R′/a = 0.3 and binary
systems mass ratio q = 0.4.

with µm ∈ C. In fact, as µ is a real-valued function, we can write this expansion as

µ(ϕ) =
∞

∑
m=0

|µm| cos (mϕ − ϕm) (5.27)

where ϕm is some real phase.
With this new linear mass, we have changes in the total potential energy. The first term

of the potential does not contribute, as for m > 0 the integral cancels out. The third term
of the potential is non-vanishing only for m = 1 by symmetry and yields

Em
3 =

R2

a2 GMsπ|µm| cos ϕm if m = 1,

0 otherwise.
(5.28)

The centrifugal energy term only contributes to the m = 0 and m = 2 modes and
yields:

E(m)
ctf =


π
2 |µm|R3ω2 sin2 θ + cst, if m = 0

−π
4 |µm|R3ω2 sin2 θ cos ϕm + cst, if m = 2

cst, otherwise.

(5.29)

From the results discussed in chapter 4, I also know that the m = 2 spirals are in
co-rotation with the companion star. As a first approximation, let us assume that this is
true for all m.
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Figure 5.29 – Potential energy landscape for a non-axisymmetric ring at radius R′/a = 0.3 and
binary systems mass ratio q = 0.4, for m = 1 and δ = 0.3 rad.

This means that the phase of the mth mode is

ϕm = m
(π

2
+ δ − ψ

)
(5.30)

where δ is the angle between the x axis and the first density maximum of the mth mode.
Figures 5.29 and 5.30 show the potential energy landscapes for a m = 1 and m = 2 ring

respectively, with δ = 0.3 rad. In both cases, we see consequent changes in comparison
with the uniform disc. First, we see that the ψ ∼ ψ + π symmetry is broken by the m = 1
mode, this is expected. We also see that the θ ∼ π − θ symmetry is broken in both cases.
This is because when θ crosses π

2 , the density maxima are also change in azimuth. In this
case, the periodicity is 2π for θ rather than π.

On these figures, we see that θ ≡ 0[π] no longer is a stable equilibrium position. In
the m = 2 case, one stable equilibrium position is reached for θ = π

2 , that is a maximally
tilted ring. Furthermore, this configuration corresponds to the global potential energy
minimum. This means that a disc with a corotating density non-axisymmetric density
structure is not at gravitational equilibrium when lying in the binary system plane.

It is however unlikely that the disc will actually stabilise at θ = π
2 . Indeed, this simple

model assumes that the spiral pattern is fixed in the disc, but as the tilt angle becomes
large, this assumption is likely to be wrong. Moreover, the exact stable equilibrium
configuration depends on the spiral location δ which is not constant with radius for
spiral density waves. This means that interactions between the different rings of the disc
will also change this picture.
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Figure 5.30 – Potential energy landscape for a non-axisymmetric ring at radius R′/a = 0.3 and
binary systems mass ratio q = 0.4, for m = 2 and δ = 0.3 rad.

It is however quite interesting that, because of the non-axisymmetric potential, first
density waves are excited, and these density waves, in turn, destabilise the disc with
respect to tilt.

Nevertheless, it is important to note several shortcomings of this analysis. First, the
Coriolis force is not included in this energetic approach as this force does not derive from
a potential, unlike the centrifugal force. Second, for the disc to find a configuration with
minimal potential energy and stabilise at the bottom of the potential well, some of its
energy must be lost through some dissipation process. Otherwise, the ring will merely
oscillate around a potential energy minimum, and never settle. Finally, for the disc to
change inclination, its angular momentum is required to change. This is actually not a
problem as a tidal potential produces a non-zero torque and is not expected to conserve
angular momentum, unlike a central potential. It remains to be shown, however, that
this torque is compatible with leading the ring to a configuration of minimum potential
energy.

5.3.2.3 Torques on the disc

For a disc tilt to develop, there necessarily is a torque exerted on the disc that induces
its rotation. In this section, I present the diagnostic on the torques exerted on the disc.
For the plane to be pushed out of the binary plane, there needs to be a non-axisymmetric
force exerted on the disc at the origin of this torque.

I can compute the different forces on the disc from the MHD equations local body
forces f as follows. I am only interested in their component in the θ direction, as it is
what will push the disc away from the binary plane, and then induce an out-of-plane
rotation of the disc.

∆F =
∫ θmax

θmin

f rdθ (5.31)
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For the thermodynamics and magnetic pressure forces, these integrals are straightfor-
ward to evaluate:

∆FP = P(θmin)− P(θmax) (5.32)

∆FPm = Pm(θmin)− Pm(θmax) (5.33)

After evaluating these forces for both pressures, the gravitational force and magnetic
tension, it appears that the dynamics is mostly driven by the magnetic pressure force,
as its amplitude is larger than that of the other forces. This comparison is shown on
figure 5.31. There we see that the strongest torque is that of the magnetic pressure. Its
general distribution corresponds to the distribution of the total torque, moreover, this
torque contribution is the largest in most of the disc. In the following, I focus on the
magnetic pressure contribution as it is the dominant contribution to the torque. Here the
disc is defined as the regions where the density exceeds ρmax/1000, where ρmax is the
density maximum of the snapshot. This definition of the disc allows me to treat the disc
in the same way whether it is tilted or not. This method is also agnostic on the shape of
any possible deformation of the disc. θmin and θmax max are then detected automatically
from this definition.

Figure 5.32 shows maps from these quantities. On this figure, we see that even though
not rigorously axisymmetric, ∆Pm is not as polarised as a strong m = 1 tilt would suggest.
This remains true even when the disc is very tilted, at t = 18 T0. At this time, the
magnetic pressure remains mostly axisymmetric.

The origin of this non-zero net magnetic pressure force originates in the broken sym-
metry in the non-vertical magnetic field. The azimuthal averages of the toroidal magnetic
field shown on 5.33. On this figure, we see that the altitude of the ⟨Bφ⟩φ = 0 surface
does not lie in the binary plane z = 0. Rather it is elevated above this plane. In the
inner disc region, where this effect is strongest, this region is much higher than both the
hydrostatic height scale cs/ΩK and the effective disc height scale of figure 5.13, such that
Heff./r ≈ 0.1. At further radii, this effect is less strong, and the ⟨Bφ⟩φ = 0 surface is
closer to the binary plane, but is still elevated by a noticeable fraction of the disc height
scale. This type of magnetic configuration has been observed in the past in shearing box
simulations (Lesur et al., 2014; Bai, 2015), as well as in global simulations (Béthune et al.,
2017; Suriano et al., 2018). This geometry produces weak accretion and wind on the side
of the ⟨Bφ⟩φ = 0 surface and an enhanced outflow on the other side. This means that
the wind torque exerted on the disc is not top–bottom symmetric, consistently with the
difference in magnetic pressure. In previous works, this symmetry is broken because the
disc is highly resistive. Here I see this effect on both resistive and ideal simulations.

This symmetry is better quantified with a Fourier decomposition of the pressure dif-
ference. This is shown on figure 5.34. In order to smooth out the rapid fluctuation, I
smooth the magnetic pressure force over one binary orbit; this time is comparable to
the timescale of the tilt growth. The spectra of this figure show that at both times, the
axisymmetric m = 0 mode is larger than the higher order modes, in particular the m = 1
mode. This means that the effect of the magnetic pressure is mostly axisymmetric. It
remains possible that an axisymmetric force still destabilises the disc with respect to tilt.
As I presented above, the geometry of the potential makes it so that it is not clear that
the binary plane is a stable equilibrium position for a disc with non-uniform density.

5.3.2.4 Non-magnetic experiments

Here I present additional simulations to explore to possibility that the disc tilt is pro-
duced by the differential magnetic pressure. To do so, I use a modified non-magnetic
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Figure 5.31 – Computed torques of corresponding to the different forces for a snapshot of RB3 at
time t = 14 T0. The different rows correspond to different forces: thermodynamics
pressure, magnetic pressure, magnetic tension, gravity, total torque. The last row
shows which component is the larger at each point. Left: x component of the torque.
Right: y component of the torque.
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Figure 5.32 – Vertical pressure forces on the disc at for simulation RB3, before the tilt growth. Left:
At t = 13.6 T0, when the tilt is still negligible. Right: t = 18 T0, when the tilt is very
strong.

Figure 5.33 – Azimuthal average of the toroidal magnetic field for two snapshots of the RB3 simu-
lation. The different lines show different altitudes relevant to the disc scale, which
were discussed above. Left: At t = 13.6 T0, when the tilt is still negligible. Right:
t = 15 T0, when the tilt is starting its rapid growth.
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Figure 5.34 – First modes of the Fourier transform of vertical pressure forces on the disc for sim-
ulation RB3. Top left: Averaged between t = 13 T0 and t = 14 T0, when the tilt is
still negligible. Top right: Averaged between t = 16 T0 and t = 17 T0, when the tilt
is very strong. Bottom: Same a top panel of figure 5.21 with averaging time span
highlighted in the same colour as the corresponding spectrum.

setup. As the non-magnetic simulation never develops a strong tilt like the magnetic
ones, the aim is to manually add to these simulations magnetic-like effects to find which
effect causes the tilt to grow.

modified equation of state In this setup I change the equation of state to have a
locally isothermal disc, rather than a globally isothermal disc. This change is motivated
by two reasons. First, this allows us to include the fact that Heff/r is approximately
constant in the magnetic simulations. This requires that T ∝ 1/r. Second, a larger H/r at
the inner radius allows me to have larger cells at this radius and thus larger integration
timestep, hence shorter integration time for these experiments. The equation of state I
use is the following:

cs(ρ, r) = cd

(
r
r0

)− 1
2

+
1
2

[
1 − tanh

(
log ρ

ρc

∆

)](
cc − cd

(
r
r0

)− 1
2
)

, (5.34)

Note that here, r is the spherical radius and not the cylindrical radius as is usually
the case for locally isothermal equation of states. This is because, if the disc tilts the
cylindrical radius is no longer relevant, but the spherical radius still is. This equation of
state is shown on figure 5.35.

grid The grid for these simulations is adapted to the new H/r = 0.1. This allows to
have a fine resolution up to higher latitudes, compared to the grid of simulations with
Ma = 100 presented above. The new grid uses 384 radial logarithmically spaces points
for r ∈ [0.01, 0.6], and 640 uniformly spaced azimuthal points. This radial grid is the
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Figure 5.35 – Modified equation of state for the locally isothermal non-magnetic simulations. Dif-
ferent colours correspond to different radii. The minimum and maximum radii are
labelled.

Name Mach number Resolution (Nr, Nθ , Nφ) Body force Note

NBF 10 (384, 144, 640) No reference run
WBFw 10 (384, 144, 640) Uniform ε = 0.1
WBFs 10 (384, 144, 640) Uniform ε = 1
WBFR2 10 (384, 144, 640) 1/r2 ε = 1
WBF2R2 10 (384, 144, 640) 1/r2 ε = 2
WBF4R2 10 (384, 144, 640) 1/r2 ε = 4
WBF32R2 10 (384, 144, 640) 1/r2 ε = 32
WBF100R2 10 (384, 144, 640) 1/r2 ε = 100

IT 10 (384, 144, 640) No Initial tilt
50WBF 50 (512, 192, 640) 1/r2 ε = 300

Table 5.2 – List of the non-magnetic 3D simulations presented in this section.
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Figure 5.36 – Tilt parameters of the reference simulation NBF. The increased point density at
t = 10 corresponds to an increased output frequency to study shorter timescale
phenomena.

same as the Ma = 100 simulation, truncated at lower outer radius. In the latitudinal
direction 80 points cover uniformly the ±4H/r angular region, and 32 points on either
side extend geometrically to the poles.

The list of simulations presented here is shown in table 5.2. I discuss the added phys-
ics below. Apart from the grid, the temperature, and the body force, all other parameters
(initial truncation, boundary conditions, density floor) are kept identical to the simula-
tions presented above.

reference simulation For comparison purposes, I first produce a purely hydro-
dynamic simulation with no added physics. As expected and like the Ma = 100 non-
magnetic simulation, no tilt develops in ten binary orbits, and bending waves propagate
inside the disc (see figure 5.39). On the ϖ plot, we also see no coherent behaviour.

Like in the simulations of chapter 4 as well as the Ma = 100 simulations presented
above, in these simulations, I observe the growth of an inner cavity at radii r ≤ 0.05 a.
As a consequence, I ignore any tilt that may be measured in these regions as their density
is negligible compared to that of the disc.

adding a body force To mimic the effect of the net vertical force of the magnetic
pressure measured above, I introduce a body force to the simulation. This force is as
follows. This force is oriented along the latitudinal direction in hopes of producing a tilt.
Note that in the equatorial plane ez ∥ eθ .

f = − f0eθ = − ∆P0

a∆θ0ρ0
εeθ (5.35)

where f0 is the amplitude of this force, and is computed from typical values of the
pressure difference ∆P0 and density ρ0 taken from the Ma = 100 simulation. ∆θ0 is taken
to be 0.1 to rescale the force to the adapted Mach number. ε is a normalisation factor
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to tune the amplitude of the force. I use ρ0 = 10−6 and ∆P0 = 10−5 consistently with
previous measures. Technically speaking f is an acceleration and ρ f is a body force.
However, I abusively use the ‘body force’ terminology to match the implementation of
Idefix for user-defined body forces, where f and not ρ f is defined by the user.

I produce two simulations with this body force, one with ε = 1 (WBFs) and one with
ε = 0.1 (WBFw). The tilt parameters of these simulations are shown on figure 5.37. We see
that neither simulation develops a long-lived tilt on such time scales.

I note however that in simulation WBFw, an initial transient tilt develops for t ≤ 2 T0.
This initial tilt is shown on figure 5.38. This tilt is present only in regions r ≤ 0.2 a. In
outer regions, most of the disc is above the equatorial plane, and mostly axisymmetric.
This tilt is noticeable on the top panel of figure 5.37 at early times t ≤ 2 T0. It is however
short-lived and is likely attributable to the relaxation from the idealised initial state.

If like above, the growth time of the tilt corresponds to the crossing time of a bending
wave, we would have:

τ =
∫ rout

rin

dr
cs(r)/2

=
4

3cd
√

r0

[
r3/2

out − r3/2
in

]
(5.36)

For our value of cd and assuming, 0.3 = rout ≪ rin = r0, we get τ ≈ 0.4. This means
that the tilt is expected to grow faster, because the disc is hotter. The initial tilt growth is
consistent with this faster growth. The life span of this initial tilt is of only a few τ.

The WBFs simulation ends up with a bowl-shaped disc, as the force pushes in a uniform
fashion, in regions where the gravity is less strong. There is no noticeable tilt on the disc
of this simulation, even at early times.

Note that the slow tilt growth at late times that can be seen at r = 0.3 for the WBFs

simulation is an artefact of my measuring method. The disc no longer lies around the
equatorial plane (as it is bowl-shaped). There is no actual increase in tilt at this radius.

bending wave propagation On the simulation WBFw, I examine the propagation of
bending waves inside the disc. I find a chequerboard pattern similar to the one observed
in the Ma = 100 simulation and in the magnetic simulations.

This proves that bending waves propagate inside the disc, as expected. However, no
link between these waves and the body force can be easily drawn. It is possible that
they are simply a remnant of the relaxation of the idealised initial condition of the disc.
Figure 5.39 shows the local angular momentum defined above for this simulation and
the reference simulation. The wave characteristics at cs/2 match the observed patterns.

1/r2
body force To refine the previous simple model, I change the radial depend-

ency of the body force. Now I take a 1/r2 radial dependency, such that the ratio of the
white dwarf’s gravity to this body force is constant with radius. This is to prevent the
disc ending up bowl-shaped like it was the case for WBFs. This radial profile is consistent
with the actual radial dependency of the magnetic pressure difference, as can be seen on
the top panels of figure 5.34.

fr = − f0

(
r
r0

)−2

eθ = − ∆P0

a∆θ0ρ0
ε

(
r
r0

)−2

eθ (5.37)

I produce five simulations with this force, with ε = 1, ε = 2, ε = 4, ε = 32, ε = 100. All
these simulations have the same behaviour with respect to the tilt: that is not tilt growth.

The runs WBF32R2 and WBF100R2 with the strongest forces feature an initial transient
tilt over a few binary orbits. After that, all runs reach a tilt A ≤ 10−2 rad everywhere.
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Figure 5.37 – Top: Tilt parameters of the simulation WBFw. Bottom: Tilt parameters of the simula-
tion WBFs. The increased point density at the final times corresponds to an increased
output frequency to study shorter timescale phenomena.
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Figure 5.38 – Left: altitude plot of the WBFw simulation at t = 1 T0. The grey dotted line corres-
ponds to the slice of the right panel. Bottom: Density slice of the WBFw simulation
at t = 1 T0. The grey dotted line corresponds to the binary plane.

Figure 5.39 – Bending wave propagation in the non-magnetic Ma = 10 simulations. Top: NBF
simulation. Bottom: WBFw simulation. The position of the characteristics is chosen
by hand to match the most visible features.
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This state appears to be steady for the 30 binary orbits integration time. This evolution
is shown on figure 5.40 for the two extreme values of ε chosen.

With the simulations presented above, it appears that a force comparable to the mag-
netic pressure is not able to reproduce a disc tilt in a similar timescale, even when the
force magnitude is the same. A fundamental shortcoming of the constant body force
approach is that it lacks the positive feedback that the exponential growth suggests.

initially tilted disc I now present a simulation with no body force, but where
the initial condition is a tilted disc. The aim of this simulation is to study the stability of
such a state from a hydrodynamics perspective. I integrate this simulation for 30 binary
orbits.

The tilt parameters are plotted on figure 5.41. There we see that on a ten-orbit timescale,
the initial tilt is stable. There are small fluctuations to this tilt angle, but it remains
constant. The pattern speed of the tilt ϖ can thus be very accurately measured. This
tilt is retrograde in the non-rotating frame, at 2.5 ± 0.3% of the binary frequency. This
pattern speed is consistent with the pattern speed measured for the magnetised tilted
disc.

We can see on figure 5.41 that at later times, beginning around t = 15 the tilt angle
start to change. Its value starts oscillating around its initial value. The amplitude of
this oscillation appears to grow, but its growth time is longer than the integration time
of the simulation. For instance, I can not distinguish whether this oscillation is due to
some beating phenomenon and would decrease at later time, like would be the case
for Kozai-Lidov type oscillations (Kozai, 1962; Lidov, 1962), or if it is a slow monotonic
growth.

lower temperature simulation To make sure that there is not threshold effect
in the temperature of the disc, and that the modified equation of state does not interfere
with the growth of a tilt, I produce a last simulation. This simulation is the same as the
Ma = 50 without magnetic field and where I add the previously described body force. I
use ε = 300.

The measured tilt parameters of this simulation are shown on figure 5.42. There we see
that no large amplitude tilt develops. In fact, the disc ends up in a slight axisymmetric
V shape. Here too, we see the initial tilt growth during the first binary orbit after the
restart. Here we see that the growth rate of the tilt is much faster than the global tilt
growth scale of figure 5.26.

With this simulation, I conclude that the tilt growth mechanism can not be simply
reproduced in non-magnetic simulations, even when including an axisymmetric body
force to the disc. It is possible that even though subdominant, the higher-order compon-
ents of this force induce the tilt. But then, there must be some filtering mechanisms that
prevent the apparition of a m > 1 warping mode.

5.4 summary

In this chapter, I presented the global three-dimensional MHD and non-magnetic simu-
lations I produced during my PhD. The results I obtained can be summarised as follows.

1. A global MHD wind can be launched from low-temperature (Ma = 100) resistive
(Rm ≤ 100) dwarf novæ discs.

2. The effect of resistivity on the disc is small compared to the overall presence of
magnetic field, both with respect to the MRI and to the wind launching.

3. The winds launched from these discs appear to break the top–bottom symmetry.
This asymmetry exerts an axisymmetric net vertical force on the disc.
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Figure 5.40 – Top: Tilt parameters of the reference simulation WBFR2. Bottom: Tilt parameters of
the reference simulation WBF100R2.
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Figure 5.41 – Tilt parameters of the simulation IT.
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Figure 5.42 – Tilt parameters of the simulation 50WBF.
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4. After a few binary orbits time, I see an exponentially growing disc tilt. The growth
timescale of this tilt appears to be related to the crossing time of bending waves.

5. The tilt is rotating much slower than the binary systems at about 3% of its angular
frequency, in the opposite direction.

6. A non-axisymmetric ring (e.g. due to spiral density waves) is likely to be unstable
when lying in the orbital plane of a binary system.

7. Using non-magnetic simulations, I was not able to determine the origin of the
tilt growth. An axisymmetric net force, even when combined with the non-
axisymmetry tidal potential does not drive a global disc tilt.

8. A purely hydrodynamics tilted disc is stable on bending wave crossing timescales.

The mechanism driving the tilt growth is yet to be elucidated. It is possible that in
addition to the axisymmetric net force imposed by the non-top-bottom-symmetric wind,
additional higher order forcing forces the tilt growth. The exponential nature of the tilt
growth however suggests that an additional feedback mechanism could be present to
sustain such growth.

The tilt I measure in the tilted simulations all have a very particular pattern speed.
The tilt has a rotation period (in the non-rotating frame) of around 30 to 40 binary orbits.
These frequencies are the frequencies at which superhumps are observed in SU UMa
systems. This explanation for superhumps was originally proposed by Bonnet-Bidaud
et al. (1985). Simulation works using SPH method (Wood and Burke, 2007; Thomas and
Wood, 2015) showed that the precession frequencies matched the observed frequencies.
The present work further confirms this possibility.
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T
hanks to their short recurrence times-scale, cataclysmic variable stars, and
especially dwarf novæ are key elements of accretion disc theory. They en-
able us to probe accretion driving mechanisms in both hot disc and cold disc

regimes and put strong constraints on the efficiency of these mechanisms. The mechan-
isms studied in dwarf novæ disc are then often directly translatable to other accreting
systems, like X-ray binaries in outburst, AGN discs or inner regions of protoplanetary
disc, for the hot disc regime, and outer parts of X-ray binary discs or the dead zone of
protoplanetary discs for the cold disc regime.

In this thesis, I focused on the problem of accretion during the quiescence phase of
dwarf novæ. As presented, during this phase, the accretion disc of these systems is cold
at temperature T ≈ 2000K. As a first consequence, the disc is razor thin, with aspect ratio
of H/R ≈ 10−3. Second, the plasma of the disc is poorly ionised and highly resistive,
with magnetic Reynolds number Rm ≲ 100 in the disc bulk. Under these conditions, the
usual accretion driving mechanism of hot discs, and of the outburst phase, the Magneto-
rotational Instability is quenched inside the disc, and can not sustain sufficient turbulence
to produce the anomalous viscosity required to explain recurrence times between two
outbursts. Hence, I focused on other possible accretion-driving mechanisms for this
phase.

First, I examined the possibility that quiescent accretion could be driven by a purely
non-magnetic mechanism: the transport of angular momentum due to the presence of
tidally excited spiral shocks in the accretion disc. These shocks have been extensively
studied in the past through linear theory and numerical simulations. However, they
were never explored the quiescence temperature regime. During this phase, the disc
is very thin, and the tidally excited spirals are all the more tightly wound rendering
their numerical study computationally expensive. Thanks to the new GPU-accelerated
code Idefix, I was able to explore this regime down to realistic temperature regimes.
In this work, I first showed that the analytical linear theory poorly describes this low-
temperature regime. Indeed, the dominant spiral mode I observed in my simulation is
not the two-armed mode expected by the linear theory, but rather a one-armed spiral
mode. Moreover, I showed that the spiral pattern speed in my discs did not match the
quasi non-linear (order two) theory either. However, the pattern speeds did not take
random values, rather their values are integer multiples of the binary angular frequency.
When it comes to the angular momentum transport achieved by these spiral shocks, I
obtained the three following results. First, for isothermal discs, the spiral shocks drive
accretion at a far weaker rate than the rate required by the Disc Instability Model for the
quiescence phase. This means that in quiescent dwarf novæ, another angular momentum
transport mechanism is at play. Second, I showed that at low-temperature, a very long
transient regime, close to a hundred binary orbits time, takes place. This time is compar-
able to the recurrence time of some dwarf novæ. This suggests that the quiescence phase
could be too short for a steady state to be reached, implying that there could be memory
effects from one outburst to the next. Third, I showed that spiral shock heating is able
to sustain a disc temperature ≥ 1, 000 K during quiescence, without requiring any other
heating mechanisms. I also observed very hot regions in the disc, T ≈ 104 K, namely at
the external tidal truncation radius. If these very high temperatures are indeed reached
in actual quiescent discs, this may have a huge impact, as the MRI could be sustained in
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the outermost disc region during this phase. Most of these results are published in Van
den Bossche et al. (2023).

In the second part of this work, I focused on the other relevant accretion-driving mech-
anism for quiescent dwarf novæ discs: magnetic wind-driven accretion. Such winds arise
in a wide variety of accreting systems and exert a surface torque on the disc, allowing for
accretion in the disc. Local shearing box simulations including realistic magnetic resistiv-
ity suggested that such winds could be launched even from a poorly ionised disc (Scepi
et al., 2018a,b). At that time, it remained to be shown that this picture was valid for a
global disc geometry. With the Idefix code, I was able to produce global simulations of
discs that are thinner than what had been achieved before. I modelled discs with aspect
ratio H/R = 0.01 and a realistic resistivity to describe the quiescence phase. In these
simulations, I observed that a wind is indeed launched from a global, cold, resistive disc.
This wind increased accretion by more than an order of magnitude compared to the non-
magnetic case. I also observed that MRI is triggered at the surface of the disc, where the
resistivity is lower and the magnetisation is higher. Due to the numerical cost of global
simulations, however, I could not further study the MRI because of too low a resolution.
Finally, I observed that the winds produced in these thin discs, both ideal and resistive,
were not top-bottom symmetric. As a consequence, they exert a net vertical force on the
disc.

At later times, in these magnetic simulations, I observe the rapid growth of a global
disc tilt. This tilt arise in all magnetic simulations with similar properties whether the
disc is resistive or ideal. However, the comparison non-magnetic simulation never devel-
ops any significant tilt. This suggests that this tilt is due to the coupling to the magnetic
field. A comparison with a simulation at higher temperature allowed me to understand
that the growth time of this global disc tilt is related to the disc crossing time of a bending
wave, propagating at half the speed of sound. Furthermore, I observe that the disc tilt is
almost stationary in the non-rotating reference frame. The disc tilt is retrograde at close
to 3% of the binary system angular frequency. This frequency matched the observed
period of superhumps in SU UMa systems, and tilted discs have been proposed to ex-
plain them (Bonnet-Bidaud et al., 1985). To try and understand the physical origin of this
tilt growth, I examined the gravitational stability of density rings in a binary potential.
From an energetic approach, I showed that a disc with non-axisymmetric density fea-
tures was not always at equilibrium when lying in the binary orbital plane. Comparison
to the non-magnetic simulation, however, suggests that this instability does not occur on
as short a timescale as the tilt growth I observe in magnetic simulations. I then explored
the effect of a net vertical force exerted by the magnetic wind by including this effect
in non-magnetic simulations. I observed that an axisymmetric vertical forcing did not
produce a global disc tilt even in a non-axisymmetric potential. This is possibly due to
the lack of positive feedback in this simple model. As a consequence, the mechanism at
the origin of the disc tilt remains to be understood. I also showed that on the timescales
relevant to the propagation of bending waves, a global tilt is stable in a binary potential.
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I
n this last chapter, I present perspectives for continuing the work presen-
ted in this thesis. Some of the perspectives presented here are projects I
plan on carrying out at some point, while others are just ideas that would

be interesting to explore.

First, it would be interesting to follow up on the promising results of chapter 4 on disc
thermodynamics and spiral shock heating.

In order to match observations, the Disc Instability Model predict the dwarf novæ
disc to have temperatures of a roughly constant 2,000 K during quiescence. However,
several mechanisms like spiral shocks are expected to heat the disc, as observed by Ju
et al. (2016) and myself. Yet a proper global treatment of thermodynamics in realistically
thin quiescent discs has never been done; previous works (Ju et al., 2016; Pjanka and
Stone, 2020; Van den Bossche et al., 2023) were limited to either isothermal discs or
discs with no cooling. Preliminary unpublished results presented in chapter 4 showed
that non-magnetic tidal shocks alone are able to sustain the disc at a realistic quiescent
temperature of around 1,000 K. Moreover in the external parts of the disc could reach
much higher temperatures of a few 104 K. In this regime, the magnetic instability that
was thought to be quenched by low temperature could survive even in quiescence. In
semi-detached binaries, this region could be sustained by the hot spot, where the matter
flux from the companion star hits and heats the disc on secular times scales. Better
understanding this hot region is key to understanding the transition from quiescence to
outburst in variable stars, be it compact binaries or FU Orionis-type stars.

A first step to continue this study is to produce similar simulations as the one presen-
ted in chapter 4, including proper thermodynamics treatment, and including a temperat-
ure dependant viscosity. Such an α(T) would model the fact that when the disc temperat-
ure is low, the bulk MRI is quenched by resistivity but when the disc reaches high enough
temperatures, MRI can reappear. Preliminary work using such a model has been done by
a masters intern, Remi Zerna, and already show promising results. Thanks to this type of
sub-grid model for turbulent viscosity, these simulations can be integrated for hundreds
of binary orbits and allow for the study of several complete outburst-quiescence cycles.
One of the questions that can be answered with such simulations is to know where the
outburst starts. At this point in time, we have no general model to know whether out-
bursts are triggered in the inner regions, and produce inside-out outbursts, or if they are
triggered in the outer disc, producing outside-in outbursts. These simulations will also
allow me to examine possible memory effects between outbursts, suggested by the very
long relaxation time observed in chapter 4.

The study of global dwarf novæ disc presented in chapter 5 can also be further ex-
plored.

During the first phase of my simulations, I observe the launching of a global MHD
wind. It would be interesting to better study them. For instance, it would be possible
to post-treat these simulations with a Monte Carlo radiative transfer code. Such a study
could be carried out using the python code developed by Long and Knigge (2002) es-
pecially for winds of cataclysmic variables. This would allow me to compare the winds
obtained in my simulations with actual observations of dwarf novæ. A such comparison
is crucial to ensure the validity of theoretical and numerical models. The first parameter
that should be compared with such a study is the wind loss rate estimated from observa-
tions to the wind loss rate measured in the simulation. To further refine this comparison,
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it would be best to include a proper thermodynamics treatment of the fluid, rather than
using a barotropic two-temperature equation of state as presented here.

Second, the geometry and amplitude of magnetic field in dwarf novæ systems is not
constrained at all, and in order to launch an efficient wind, a large-scale vertical magnetic
field is required. A weaker assumption for the magnetic configuration of the systems
is that magnetic loops are advected from the companion star through the matter flux.
Pjanka and Stone (2020) included this in their model at higher temperatures. Recent sim-
ulations by Jacquemin-Ide et al. (2023) showed that a large-scale magnetic field required
to launch outflows can be produced by non-linear disc dynamo. It is not clear whether
this mechanism can also play a role to produce such fields in much thinner cataclysmic
variable discs. If this is the case, this would allow us to relax the very strong assumption
of ad hoc large-scale vertical magnetic field used in most numerical works. This would
also allow to apply these results to black-hole X-rays binaries, where the large-scale mag-
netic field can not come from the dipole of the central object and needs to be transported
through the disc.

Finally, further investigating the growth of the disc tilt is key. Warped discs have been
greatly studied in the non-magnetised case. Here, it appears that the presence of a mag-
netic field dramatically changes the picture. Such warps or disc tilt can trigger accretion-
driving instabilities and modify their efficiency compared to a planar, non-warped disc
(Aly et al., 2023). This can have an influence beyond the case of cataclysmic variable
discs. For instance, in the context of protoplanetray discs, if the accretion driven by the
warp is strong enough, the disc can empty on timescales shorter than planet formation
timescales. Recent observations, relying on different techniques, have shown that such
distortions are common in protoplanetary discs (e.g. Rosenfeld et al. (2012) and Marino
et al. (2015)). To further investigate warp in cold magnetised discs, a first step would
be to produce local simulations of distorted discs in the warped shearing box model
(Ogilvie and Latter, 2013b). Using the recent addition of magnetic effects to this model
(Paris and Ogilvie, 2018), I would examine how the warping of a magnetised disc influ-
ences the different local disc hydrodynamics and magnetohydrodynamics instabilities.
To resolve these instabilities in numerical simulations, at least 50 grid points per disc
height scale are required (Latter et al., 2010b). Hence, local simulations are better suited
than entire disc simulations to understand how these instabilities develop and saturate.
Global simulations with such fine resolution are still too expensive for current computing
power. Then, the local shearing box model could be refined to better describe the effect
of a secondary star’s gravitational potential on the protoplanetary disc. As the shear-
ing box model describes the shear flow at a given radius around the star, the potential
of the secondary star can be included using a time-varying perturbation of the central
gravitational potential. As long as the secondary star is not too close to the disc, this
perturbation can be approximated by a sine function. Finally, it would be interesting to
include non-ideal magnetic effects that arise because the disc’s low temperature, namely
Ohmic resistivity, and possibly ambipolar diffusion to use this model for protoplanetary
discs. These effects are known to suppress some accretion-driving instabilities, like the
MRI, but allow new instabilities to develop (Latter et al., 2010a). These shearing box sim-
ulations will provide information on which magnetic and non-magnetic instabilities can
take place in cold warped discs. This would allow me to quantify how local turbulence
is changed, compared to well-studied planar isolated discs.

To further hone our comprehension of warped discs, this study could be continued
with global, entire disc simulations. Indeed, local simulations are a powerful tool to ex-
amine local properties of the flow but they are limited in the description of large-scale
turbulence (see, for example, King et al. (2007)). Global simulations are crucial to obtain
a precise picture of disc evolution. The shearing box models will provide us with values
of the turbulence locally achieved in different regions of warped protoplanetary discs.
These first results will then be used to produce global 3D simulations of such systems.
The decrease in the resolution required to describe a full 3D disc would be compensated
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for by prescriptions on the small-scale physics informed by the shearing box simulation
produced beforehand. This can be done by imposing a local effective viscosity that de-
pends on the local properties of the flow, mimicking the effects of unresolved instabilities.
This way we would be able to couple the small-scale flow description of shearing box
simulations with the large-scale description of entire disc simulations. A global descrip-
tion of such systems would also allow, in the later stages of this project, to include global
effects such as radiative transfer. A strong warp in the inner region of a protoplanetary
disc can cast a shadow on the outer parts of the disc (see e.g. Casassus et al. (2019)) or en-
hance irradiation. This can dramatically change the local thermodynamical properties of
the disc, namely its ionisation state. Such shadowing effects can only be captured using
radiative transfer. Moreover, in multiple star systems, UV irradiation from the compan-
ion stars can also heat the disc to higher temperatures than what would be the case in
isolated protoplanetary discs. This can lead to increased ionisation of the disc or even
increase the local sound speed of the gas above the local escape velocity (Johnstone et al.,
1998), depleting the disc. Modelling radiative transfer would also furnish a quantitative
way of comparing those results with observations of warped discs. This is crucial as it
provides strong constraints on the validity of the theoretical models used.

To conclude, we now have a better idea of how accretion is driven in quiescent discs.
The tidally excited spiral shocks can be definitely ruled out as driving enough accretion
during quiescence to explain the recurrence times of dwarf novæ. Moreover, it is now
clear that even in cold, highly resistive, quiescent discs magnetic field plays a crucial
role. It allows surface Magneto-rotational instability to develop and produce a strong
accretion-driving wind. It also appears that the presence of a magnetic field produces
a highly asymmetrical torque on the disc, leading to the growth of a global disc tilt.
The coupling to magnetic field, even weak, produces discs with widely different global
properties compared to purely hydrodynamic discs. As a consequence, magnetic effects
need to be included in more accretion disc models; magnetic winds dramatically change
both the accretion properties of discs as well as their geometrical properties.
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AS TAT I S T I C O N T H E B I B L I O G R A P H Y

This PhD thesis cites 311 articles (not including references of the appendixes), all listed
in the bibliography. The statistics of a sample of this size can hint at general trends of
the domain. In this appendix, I present and discuss some of the statistics I was able to
draw from this article pool.

first author . Here, I focus on properties of the first author of each paper only. I
do so for two main reasons. The first reason is that a paper is often associated, and even
assimilated to the first author’s name & publication year pair. As a matter of fact, in most
of the articles I cited throughout this thesis, and in this thesis the citation format is this
one, e.g. (Zuckermann, 1961). This means that, in most cases, the results presented in the
paper will be associated with this author, while the following ones may be often forgotten,
or less strongly mentally associated with the results. This effect is even stronger when the
authors are unknown to the reader. The second reason is that other authors are strongly
correlated to the first author and would not increase the sample size of ‘independent’
items.

publication year . Figure A.1 shows the time distribution of the articles of the bibli-
ography. Most articles (286 articles, or 92%) I cite are published in 1950 or more recently.
25% of the citations date from before 1980. The median citation year is 1998, and the
third quartile of the distribution is 2012.

affiliation country. A second easily accessible piece of data of the bibliography
is the affiliation country of the first author. Here, I only look at the first affiliation of
the first author in case of multiple affiliation. Note that the affiliation of the author may
be correlated to their nationality, but is in no way a measure of the nationality of the
authors.

I did not look into the language in which the articles are written, since almost all
of them are written in English. Notable exception are older articles written in French
(e.g. Zuckermann (1961)), in German (e.g. McCrea (1929)), in Latin (e.g. Brahe (1573))
and Russian (e.g. Godunov (1959), although the cited reference is actually an English
translation).

The country distribution is plotted on figure A.2. There ‘N’ stands for Not Applicable.
This is the case for consortium papers like for example MPI Forum (2021), with no
geographic affiliation.

journal . The last easily accessible information I looked into is the journal in which
the article is published. Here, a lot of small journals have a few publications while most
are shared between a few journals. These few are The Astrophysical Journal (APJ), Monthly
Notices of the Royal Astronomical Society (MNRAS), Astronomy & Astrophysics (AnA) and
their affiliated journals for letters and supplements. The distribution is plotted on figure
A.3. There ‘N’ stands for Not Applicable. This is the case for online published papers
like for example MPI Forum (2021), or books.

assumed gender . Finally, I also looked into the gender of the first author. Contrarily
to the previous information, this one is not easily accessible as it is not written on the
article. To determined out the gender of the first author I used the following method.

— If the first name of the author is gendered, I use this gender. Note that this only
works with Western European names I am familiar with.
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Figure A.1 – Histogram of the publication year of the articles of the Bibliography.
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Figure A.2 – Histogram of the affiliation of the first author of the articles of the Bibliography.
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Figure A.3 – Histogram of the journal of the articles of the Bibliography.

— If I was able to determine the gender from a photo from a reliable source, like a
personal webpage, or an institutional webpage, I use this gender.

— If a colleague (from the Sherpas team at IPAG) knows the gender of the author, I
use this gender.

— If all previous methods do not yield satisfactory result, I remain agnostic on the
gender.

There is no priority order in the above points. Because, I stopped as soon as I obtained
a satisfactory answer, I am not able to obtain contradictory genders. Note also that the
gender I determine with this method may differ from the gender to which the author
identifies, as I never found a first hand (from the author themselves) indication of the
gender. Note also that for sake of simplicity, I only used two binary gender. This means
that any non-binary or gender-fluid authors will be incorrectly labelled as either female
or male. This is why I refer to this gender as the assumed gender. Finally, I can not
confidently rule out mistakes on either points of my determination method.

All things considered, this should give us an estimate in gender representation
amongst the first authors of the cited articles. Figure A.4 shows the assumed gender
distribution. ‘?’ stands for unknown gender, that is authors for which I was not able to
determine a gender. ‘N’ stands for Not Applicable, for example for large consortia.

Note that when I cite multiple articles from a same first author, they are counted as
many times as the number of different articles. I assume that each article represent a
different contribution to physics and a counting authors individually would produce a
poor estimation of gender representation in the domain.

On figure A.4, we see that 83 % (258) of first authors are males (M), while only 12.5 %
(39) of first authors are females (F). This is much less than the ≈ 50 % of females in the
general population. This stark under-representation has been well studied and is mostly
due to sexist and gender-associated educations starting at least from primary school all
the way up to university, and then awarding faculty positions (Sheltzer and Smith, 2014;
Way et al., 2016; Huang et al., 2020; Ross et al., 2020; Ductor et al., 2023)

On figure A.5, we can see that since the 1990s, the proportion of cited female first
authors is strongly increasing. There are even a few years in the last decades with 50%
of female first authors. Note however, that the sample size are very small here (≤ 5)
meaning that the measure frequencies may strongly depart from what can be observed
in the global astrophysics community.
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Figure A.4 – Histogram of the assumed gender of the first authors of the articles of the Biblio-
graphy. Non-binary authors are incorrectly assigned a gender for this plot.
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Note that the choice in the articles I cite in this work may result from an involuntarily
biased bibliographical choice, by reproducing the bias of the community. For instance, I
used several reviews and textbooks to find appropriate references, and I reproduce the
bias of these here.

The aim of this short appendix is to establish a lie of the land at the scale of the
bibliography of this work. It would be very interesting, but much more difficult, to
compare this to the actual population of researchers contributing to this field. This could,
for example, further highlight the fact that women are less cited than men (Caplar et al.,
2017; Kong et al., 2022; Lerman et al., 2022; Teich et al., 2022).

The csv file containing the bibliography, with added country of first affiliation of first
author, and assumed gender of first author is available on my personal webpage http:

//vandenbossche.eu. This way, mistakes can be corrected and this study can be carried
further by anyone eager to do so.

[ 7th October 2024 at 12:23 – classicthesis ]

http://vandenbossche.eu
http://vandenbossche.eu


[ 7th October 2024 at 12:23 – classicthesis ]



BC A R B O N F O O T P R I N T

numerical simulations

The work presented in this thesis mostly relies on results obtained by large scale nu-
merical simulations. The use of High-Performance Computing (HPC) methods, like the
ones presented in this work, requires a large amount of energy, and as such has a signi-
ficant environmental footprint. Here, I present the total amount of energy consumed for
the simulations of this work, and estimate the carbon footprint of this PhD work.

Simulations Consumption (GPUh) Cluster (Architecture)

Spiral shocks simulations of
chapter 4

370,000 GRICAD (Nvidia V100)

MHD wind simulations ofchapter 5

345,000 IDRIS (Nvidia V100)
517,000 CINES (AMD Mi250)

Table B.1 – Amount of computing time used for the simulations of this work.

As mentioned in section 3.4, this work was carried out on different computing clusters.
Table B.1 lists the total amount of GPU hours (GPUh) used on the different computing
centres. From these values, we can estimate the amount of energy consumed. GENCI
(Grand équipement national de calcul intensif), the French national entity in charge of
HPC centres, estimated that one hour of computation using Nvidia V100 GPU produces
32.18 gCO2

1. They also estimate that one hour of computation with AMD Mi250 GPU
produces twice this amount.

These estimates take into account all other required infrastructure to compute of those
GPUs, namely the associated CPU, networking interfaces, and other less consuming com-
ponents. Note however, that these estimates do not include the environmental footprint
of the creation of these component, nor does it include the environmental footprint of
building the computing centre. As such, these estimates provide only a lower estimate
of the footprint of this work.

From those values, I estimate that the carbon footprint of the simulations presented in
this work is approximately 56 tCO2, that is approximately 19 tCO2/year.

conferences

Flight Emission (tCO2)

CDG-HER 0.9
LYS-FCO 0.4

LYS-FRA-BER 0.7

Table B.2 – Carbon footprint of professional flight (round trip) taken for this PhD.

As a comparison, table B.2 lists the carbon footprint of the flights I took to go to
different conferences during my PhD. Professional travels by train are not listed as their
carbon footprint is negligible in comparison.

1. This value is specific to France, where the produced electricity has a relatively low carbon footprint.
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The total carbon footprint due to professional flights is approximately 2 tCO2, that is
approximately 0.7 tCO2/year.

Note that the carbon footprint due to simulations is almost 30 times larger than the
footprint due to professional flights over the same time period. The fact that most of
the carbon footprint can be attributed to research activity rather than to travels has been
shown in previous works (Knödlseder et al., 2022; Martin et al., 2022). This is a further
illustration of that fact, here for numerical work. This means that further reducing the
number of professional flights can only help us reduce the carbon footprint down to a
certain point (Achten et al., 2013).
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C
R É S U M É E N F R A N Ç A I S

contexte

c.1 introduction

L’observation du ciel a depuis longtemps été un passe-temps des êtres humains. En
effet, les plus anciennes cartes du ciel que nous avons retrouvées datent de la même
époque que les premières traces d’écriture, il y a environ 5000 ans (Kansas, 2007). Dis-
poser de telles cartes est souvent pratique puisque les positions de la plupart des étoiles
sont facilement prédictibles, et ces positions n’évoluent que sur des échelles de temps de
dizaines de milliers d’années.

Cette régularité avait déjà été remarqué empiriquement à l’époque, et les cartes du
ciel étaient employées pour établir des calendriers et voyager de nuit. Cette régularité
a même inspiré des traditions philosophiques et religieuses, mais aussi les premières
tentatives de modélisation du ciel comme l’Harmonie des sphères des pythagoriciens.

Dans cette thèse de doctorat, je vais au contraire m’intéresser à certains objets qui
sortent de cette constance, dont les propriétés observationnelles changent bien plus rapi-
dement, et dont les variations sont appréciables à l’échelle d’une vie humaine.

Je me concentre sur un type particulier d’étoiles variables, les variables cataclysmiques.
Ces systèmes sont un type de système à deux étoiles dont l’une d’entre elles est une
naine blanche. Ces systèmes ont des variations de luminosités telles qu’ils peuvent de-
venir visibles à l’œil nu alors qu’ils sont invisibles le reste du temps. Les variations de
luminosité dans ces systèmes sont dus à l’interaction entre la naine blanche et l’autre
étoile, dite secondaire. Les augmentations soudaines de luminosité sont en général dues
à de la matière de la secondaire qui tombe sur la naine blanche ; c’est ce qu’on appelle
l’accrétion.

Le type particulier de variables cataclysmiques sur lequel je me penche dans cette
thèse est appelé novæ naines. Ces systèmes ont des éruptions régulières avec un contraste
de 2 à 5 magnitudes. Chaque système possède un motif éruptif propre, mais de ma-
nière générale, le temps entre deux éruptions varie d’une dizaine de jours à une dizaine
d’années. Un exemple de courbe de lumière d’une nova naine est montré sur la figure
1.1. Les novæ naines sont séparées en trois sous-catégories dont le nom d’usage est ce-
lui du système prototypique (Warner, 2003). Premièrement les Z Cam, qui possèdent
restent parfois bloquées dans un état de luminosité intermédiaire pendant des jours à
des années, comme sur la figure 1.2. Ensuite, les SU UMa entrent occasionnellement en
super-éruption qui sont plus brillantes que les éruptions normales et environs cinq fois
plus longues, comme sur la figure 1.3. Durant ces super-éruptions, on observe aussi des
épi-éruptions appelées super-bosses qui sont de plus faibles amplitudes et à plus haute
fréquence. Enfin, les U Gem sont la catégorie qui rassemble toutes les autres novæ naines.
Ces systèmes ont été observés en continu depuis Wells (1896) et sont assez brillants
pour être observés par des astronomes amateurs, comme celles et ceux de l’AAVSO.

Dans ce travail, je m’intéresse tout particulièrement aux U Gem ; ces systèmes qui ne
possèdent que deux états de luminosité qui diffèrent d’environ quatre magnitudes. L’état
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de faible luminosité est appelé la phase de quiescence, tandis que l’état brillant est appelé
éruption.

Dès les années 1920, le défi principal pour ces systèmes a été de comprendre l’origine
physique des variations régulières de luminosité. Dans les années 1950 et 1960, Joy (1954),
Walker (1954), Joy (1956), Walker (1956) et Kraft (1962) proposèrent que toutes les va-
riables cataclysmiques puissent être en réalité des systèmes binaires composés d’une
naine blanche et d’une étoile rouge, plus froide. Cette hypothèse fait maintenant consen-
sus (Ritter, 2008 ; Zorotovic et Schreiber, 2020).

Une conséquence de la binarité de ces systèmes est que lorsque ces systèmes évoluent,
ils finissent par tant se rapprocher (Kraft et al., 1962 ; Verbunt et Zwaan, 1981 ; Mestel

et Spruit, 1987) que les couches externes de la secondaires sont aspirées par la gravité de
la naine blanche ; on parle alors de débordement du lobe de Roche de la secondaire. Comme
illustré sur la figure 1.4, cette matière forme ensuite un disque autour de la naine blanche.
La région où le flux de matière de la secondaire tombe sur ce disque est appelé le point
chaud (Smak, 1971 ; Warner et Nather, 1971).

Après plusieurs aller-retour dans les théories, il a finalement été établi par Osaki (1974)
que l’origine des éruptions dans ces systèmes était le disque d’accrétion et non la secon-
daire. Il propose qu’avec un flux de matière constant en provenance de la secondaire, la
matière s’accumulerait dans le disque jusqu’à qu’« une sorte d’instabilité » y soit déclen-
chée et que cette instabilité permettrait au disque de se déverser sur la naine blanche
rapidement, libérant ainsi une grande quantité d’énergie potentielle.

En effet, lorsque qu’une particule massive descend dans le puits de potentiel de la
naine blanche, elle perd de l’énergie potentielle. Une partie de cette énergie potentielle
est transformée en énergie cinétique, mais il est possible qu’une partie de cette énergie
libérée soit aussi relâchée sous la forme de lumière ; la lumière que l’on observe lors des
éruptions. Ainsi la luminosité mesurée nous renseigne sur le taux d’accrétion, c’est-à-dire
le flux de matière qui tombe sur la naine blanche.

En supposant que la quantité de matière accrétée pendant une éruption correspond à
la quantité de matière accumulée entre deux éruptions (équation (1.3)), et en estimant le
taux d’accrétion de la secondaire grâce à la luminosité du point chaud (équation (1.4)), on
peut obtenir une prédiction théorique du contraste éruption/quiescence. L’équation (1.6)
montre que cette valeur théorique correspond aux valeurs observées. C’est seulement
dans les années 1980, que l’on comprendra l’origine physique de l’instabilité supposée
par Osaki (1974), comme je le présente au chapitre 2.

Pour étudier la structure des novæ naines, il existe deux principales méthodes obser-
vationnelles qui sont propres à ce type de système.

La première est l’imagerie par éclipse (Horne et Stiening, 1985 ; Baptista, 2016). Le
principe de base de cette méthode est, sur un système donné, d’utiliser l’évolution tem-
porelle de la luminosité mesurée due à l’éclipse du disque et de la naine blanche par la
secondaire. Cette méthode n’est applicable que sur les systèmes vu sous une inclinaison
assez grande. Cette technique a permis de confirmer les changements de tailles supposés
du disque d’accrétion entre la quiescence et l’éruption (Patterson, 1981 ; Smak, 1984 ;
Wood et al., 1989a ; Wood et al., 1989b ; Rutten et al., 1992a,b ; Baptista et Catalán,
2001 ; Vrielmann et al., 2002 ; Vrielmann et Offutt, 2003 ; Shafter et Misselt, 2006 ;
Baptista et al., 2007). De plus, en supposant que la température effective du disque est
une fonction de la distance à l’étoile et du taux d’accrétion (équation 1.7) il est alors
possible d’obtenir une estimation du taux d’accrétion dans ces systèmes. Ainsi on estime
que le taux d’accrétion pendant la quiescence est d’environ 10−14M⊙/an à 10−10M⊙/an,
et d’environ 10−9M⊙/an à 10−8M⊙/an pendant les éruptions. La figure 1.8 est une ob-
servation avec cette méthode.

La deuxième méthode est la tomographie Doppler (Marsh, 2001 ; Echevarría, 2012).
Cette technique repose sur le décalage Doppler des lignes d’émission ou d’absorption
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des spectres de ces systèmes pendant une période de rotation dans les systèmes inclinés.
Avec cette méthode, on obtient une carte du système dans un espace vitesse-vitesse, que
l’on peut traduire en espace réel à condition de connaitre les paramètres géométrique
du système. Cette méthode a permis de découvrir la présence de structures en spirale
dans les disques de ces objets (Steeghs et al., 1997 ; Groot, 2001 ; Baba et al., 2002), mais
aussi dans d’autres type de variables cataclysmiques (Hartley et al., 2005 ; Neustroev

et al., 2011). Ces spirales pourraient être liées aux ondes spirales étudiées par la théorie
et les simulations (Savonije et Papaloizou, 1983 ; Savonije et al., 1994 ; Ju et al., 2016)
et pourraient jouer un rôle déterminant dans l’accrétion durant la phase de quiescence.
Ces spirales ne sont cependant pas présentes dans tous les systèmes observés (Ruiz-
Carmona et al., 2020).

En plus de l’accrétion observée à l’intérieur du disque d’accrétion dans les novæ naines,
des écoulements cohérents s’échappant du système ont été observés dans plusieurs sys-
tèmes. Ces écoulements sont généralement observés grâce à leur signature Doppler ca-
ractéristique (Maury et Pickering, 1897 ; Beals, 1929 ; McCrea, 1929). Un type de tels
écoulements sont les vents, peu collimatés, observés pendant les éruptions (Cordova et
Mason, 1982 ; Mauche et Raymond, 1987 ; Drew, 1990), et les vitesses mesurées corres-
pondent aux vitesses d’échappement de ces systèmes. Hoare et Drew (1993) et Knigge

et Drew (1997) ont estimé que quelques pourcents de la masse accrétée s’échappent dans
ces écoulements.

Durant la phase de quiescence, aucune observation directe de vent n’a été réalisée.
Perna et al. (2003), Hakala et al. (2004) et Hernández Santisteban et al. (2019) pro-
posent, par des conséquences indirectes, que des vents pourraient être présents tout de
même pendant cette phase. De plus, les simulations de Scepi et al. (2018b) et Scepi et al.
(2019), par exemple, suggèrent que les conditions pour qu’un tel vent soit lancé sont
réunies durant la quiescence.

Enfin, les jets, c’est-à-dire de tels écoulements collimatés, sont en général détectés dans
les longueurs d’onde radio. En effet, ces émissions sont généralement attribuées à de
l’émission synchrotron dans les jets. Körding et al. (2008), Harrison (2014), Coppejans

et al. (2015, 2016), Russell et al. (2016), Fender et al. (2019) et Webb (2023) ont détecté
des émissions dans ces longueurs d’onde pour des novæ naines et d’autres types de
variables cataclysmiques. Cependant, la présence de tels écoulements n’est absolument
pas certaine pour la majorité des systèmes (Coppejans et Knigge, 2020).

Enfin, on observe aussi dans ces systèmes des rayonnements à plus haute énergie. Pen-
dant la phase de quiescence, quand le taux d’accrétion est faible, on observe des rayons
X. Cette émission est remplacée par une émission a plus faible énergie pendant les érup-
tions, dans les Ultra-Violet Extrêmes (Patterson et Raymond, 1985a,b ; Wheatley et al.,
1996 ; Wheatley et al., 2003 ; McGowan et al., 2004 ; Wheatley et Mauche, 2005 ; Fertig

et al., 2011 ; Balman, 2015). Les conditions pour chacun de ces deux types d’émission per-
met d’avoir une nouvelle estimation des taux d’accrétion pendant chacune des phases.
Par exemple, pour le système SS Cyg, Wheatley et al. (2003) et Pandel et al. (2005)
estime un taux d’accrétion de 10−12M⊙/an à 10−10M⊙/an pendant la quiescence, et
d’environ 10−8M⊙/an pendant les éruptions.

c.2 hydrodynamique et magnétohydrodynamique des disques d’accré-
tion

Comme vu ci-dessus, l’objet de mon étude est le disque de matière formé autour de la
naine blanche dans les novæ naines.

Le cadre adapté à l’étude de ces disques est celui de la mécanique des fluides, consi-
dérés comme étant un milieu continu et collisionnel. En particulier, quand il existe un
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couplage entre le fluide du disque et un champ magnétique extérieur, les approximations
de la magnéto-hydrodynamique (MHD) sont vérifiées pour ces systèmes. En effet

, les échelles de temps et d’espaces étudiées sont des ordres de grandeur plus grandes
que celles de la microphysique électrostatique. Ainsi les équations pertinentes pour dé-
crire l’évolution des disques de novæ naines sont les équations d’Euler, avec force de
Lorentz, et les équations de Maxwell, et Ohm (résistive) pour décrire l’évolution d’un
possible champ magnétique. Ce sont les équations (2.14) à (2.27). En réalité, dans les
disques d’accrétion froids, le niveau d’ionisation des particules peut être assez faible.
C’est pour cette raison qu’est inclue une résistivité Ohmique dans les équations de la
MHD, dite MHD résistive. Il peut exister d’autres effets dits non-idéaux dans les disques
froids, mais pour les disques de novæ naines, seule la résistivité est pertinente.

Depuis Weizsäcker (1948), ces équations ont été appliquées aux disques d’accrétions.
La difficulté principale rencontrée dans les modèles de disques d’accrétion est depuis
les premiers modèles de comprendre comment le moment cinétique est redistribué au
sein du disque. Sans cette redistribution, il ne peut pas y avoir d’accrétion. Shakura et
Sunyaev (1973) et Lynden-Bell et Pringle (1974) comprirent que cette redistribution
pouvait être due à une viscosité turbulente dans le disque d’accrétion, et qu’elle pouvait
être quantifiée par un paramètre adimensionné α (équation (2.32)). Avec le formalisme
de la turbulence faible, pour les disques minces, Balbus et Papaloizou (1999) ont montré
que ce paramètre α pouvait être rapporté aux différentes contraintes hydrodynamique
et magnétiques dans le fluide (équation (2.40)). Plus récemment, Lesur (2021) propose
un paramètre analogue υ pour quantifier l’importance des vents dans le transport de
moment cinétique du disque.

Plus précisément pour les novæ naines, il existe un modèle théorique unidimensionnel
pour décrire l’alternance entre les phases de quiescence et d’éruption comme un cycle
d’hystérésis thermo-visqueux, c’est le Modèle d’Instabilité du Disque, ou DIM (Hōshi,
1979 ; Meyer et Meyer-Hofmeister, 1981 ; Cannizzo et al., 1982 ; Smak, 1982 ; Faulkner

et al., 1983 ; Mineshige et Osaki, 1983). Ce modèle est une description axisymétrique du
disque d’accrétion auquel est ajouté une description de la thermodynamique des disques
de novæ naines, ainsi que l’apport de matière par la secondaire. D’une part, est ajouté
un terme de chauffage visqueux du disque, lié à α, et d’autre part est ajouté un terme
de refroidissement pour modéliser les pertes radiatives aux surfaces du disque, lié à
l’opacité du gas du disque.

La particularité du régime des novæ naines réside dans ce terme de refroidissement.
En effet, comme illustré sur la figure 2.1, l’hydrogène du gas s’ionise dans la plage de
températures typiques pour les disque de novæ naines. Cela a pour conséquence une
abrupte variation de l’opacité avec la température et produit ainsi non pas un mais
trois états d’équilibre pour le disque à une température donnée (figure 2.2). Seulement
deux de ces trois états sont stables, et ils correspondent respectivement aux phases de
quiescence et d’éruption.

En estimant les temps caractéristiques de chacune des phases de ces systèmes, il est
possible d’évaluer le paramètre α pour chacune d’elles. Ainsi on obtient αquiescence =
0.02 − 0.04 (Cannizzo et al., 1988, 2012) et αoutburst = 0.1 − 0.2 (Smak, 1999 ; King et al.,
2007 ; Kotko et Lasota, 2012).

Grâce à ce modèle, il est possible de reproduire des cycles quiescence-éruption (figure
2.4) et de les comparer aux observations pour en ajuster les paramètres. Par exemple,
Scepi et al. (2019) ajouta l’effet d’un vent au DIM et mesura son effet sur les courbes de
lumières ainsi obtenues.

Un des manques du DIM est cependant qu’il ne fournit pas d’origine physique à la
viscosité α ad-hoc que l’on doit y inclure. Cette question dépasse les novæ naine et le
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DIM, et l’origine physique de cette viscosité turbulente est commune à tous les disques
d’accrétion.

C’est seulement Balbus et Hawley (1991) qui identifièrent analytiquement une insta-
bilité linéaire comme possible origine de cette turbulence ; c’est l’instabilité magnéto-
rotationnelle (MRI). Elle repose sur un couplage entre le disque d’accrétion et un champ
magnétique extérieur vertical de faible amplitude. Dans cette instabilité, la tension ma-
gnétique agit comme un ressort entre deux particules fluide et permet un transport radial
de moment cinétique (figure 2.5). Cette instabilité sature en turbulence dont la viscosité
effective dépend de l’amplitude du champ magnétique (équation (2.60)).

Comment mentionné plus haut, un vent magnétique peut aussi contribuer au transport
de moment cinétique dans le disque. Un tel vent est lancé par une suite de dynamo Ω
puisant son énergie dans la rotation différentielle du disque d’accrétion.

Cependant, dans les disques froids et peu ionisés, ces deux effets peuvent être modérés
par la résistivité. En l’occurrence, la MRI ne peut pas se développer dans les disques trop
résistifs.

Pour aller plus loin que le modèle unidimensionnel qu’est le DIM, il est possible de
réaliser des simulation bi- ou tridimensionnelles de l’écoulement du disque d’accrétion.

Notamment, pour étudier les propriétés locales du l’écoulement turbulent et de la MRI,
a été développé un paradigme de simulation local : la boîte de cisaillement (Hawley et
al., 1995). Ce modèle correspond à une version numérique de l’approximation de Hill.
Cependant, il a été constaté que des effets numériques pouvaient influencer les résultats
de telles simualtions, comme une dépendance du paramètre α dans la résolution de la
simulation (Fromang et Papaloizou, 2007 ; King et al., 2007 ; Davis et al., 2010 ; Bodo

et al., 2014 ; Shi et al., 2016 ; Ryan et al., 2017). Il a aussi été constaté que les valeurs du
nombre de Prantl magnétique de ces simulations n’était pas comparables aux valeurs
dans les systèmes réels et que les résultats des simulations changeait avec ce nombre
(Fromang et al., 2007 ; Meheut et al., 2015 ; Guilet et al., 2022). Cependant, les résultats
de ce genre de simulations sont satisfaisant et permettent de reproduire les observations
de novæ naines (Latter et Papaloizou, 2012 ; Hirose et al., 2014) et ce, même dans des
régimes très résistifs (Scepi et al., 2018a,b).

Il est aussi possible de réaliser des simulations dites globales de l’entièreté du disque
d’accrétion, en sacrifiant cependant la physique aux petites échelles de la turbulence.
La première génération de simulations de systèmes binaire utilisa une méthode à base
de macro-particles de fluide, le SPH (Gingold et Monaghan, 1977 ; Lucy, 1977) pour
étudier les propriétés géométriques générales de ces disques (Vogt, 1982 ; Osaki, 1985 ;
Whitehurst, 1988a,b ; Lubow, 1991b). Ensuite, pour étudier des propriétés comme chocs
spiraux dans les disques, les simulations changèrent de paradigme en faveur des mé-
thodes aux volumes finis. Ces études montèrent notamment que la contribution à l’accré-
tion par les ondes spirales décroissait quand la température diminuait (Savonije et al.,
1994 ; Ju et al., 2016). Cependant, parce que simuler des disques froids donc fins est ex-
trêmement coûteux, les régimes étudiés n’ont jamais atteint les température de la phase
de quiescence. Ainsi produire des simulations tridimensionnelles de disque entier avec
un champ magnétique comme celles de Pjanka et Stone (2020) ne permet à ce stade pas
d’étudier la quiescence.

C’est dans ce contexte que se place mon travail de thèse : Le régime de quiescence
n’a jamais été étudié quantitativement avec des simulations globales. Avec les méthodes
présentées au chapitre suivant, c’est le problème auquel je m’attèle ici.

c.3 méthode des volumes finis pour la mécanique des fluides

Les méthodes dites des volumes finis sont des méthodes utilisées pour résoudre des
systèmes d’équation différentielles de la forme d’équation de conservation (équation
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3.1). Dans ce travail de thèse, j’utilise le code Idefix (Lesur et al., 2023) qui est une
implémentation numérique d’une méthode au volumes finis de type Godunov.

Le principe de ces méthodes est de discrétiser le domaine d’études en une collection
de volumes de tailles finies et de s’intéresser aux quantités contenues dans ces volumes
ainsi qu’un flux aux interfaces de cellules. Les quantités dans ces volumes, comme la
vitesse ou la densité du fluide, sont approximées. La méthode originale de Godunov
Godunov (1959) choisit d’utiliser la valeur moyenne dans la cellule comme approxima-
tion. De nos jours, on utilise des approximations d’ordre supérieur, plus raffinées, ici une
approximation affine de ces quantités dans les cellules (figure 3.1). Ensuite, calculer les
flux aux interfaces des calculer revient à se ramener au problème idéaliser de Riemann

(1860). Un fluide étant séparés en deux états à une interface : la question est de trouver
l’état final du fluide.

Pour ce faire, on utilise des solutioneurs de Riemann approchés. Ces algorithmes per-
mettent d’obtenir une solution approchée pour l’état du fluide à l’interface de la dis-
continuité initiale. Il existe différentes approximations comme HLL, ou HLLC (Harten

et al., 1983 ; Toro et al., 1994), mais le principe de base de ces solutionneurs est le même :
On suppose que des ondes se propagent depuis la discontinuité initiale, et que l’état
du fluide entre deux fronts d’ondes consécutifs est uniforme. Par exemple, le solution-
neur HLL utilise deux ondes, tandis que le solutioneur HLLC en utilise trois. Pour la
MHD,il faut inclure les ondes liées au couplage avec le champ magnétique et le solu-
tionneur HLLD utilise cinq ondes (Miyoshi et Kusano, 2005). Dans ces solutionneurs,
pour assurer la stabilité du schéma numérique, il faut respecter la condition Courant-
Friedrichs-Lewy (CFL) condition (Courant et al., 1928) (équation 3.15). Elle permet de
s’assurer qu’aucun front d’onde ne parcourt plus que la taille d’une cellule en un pas de
temps (figure 3.3).

Plus particulièrement pour les disques d’accrétion, il est aussi possible d’utiliser l’al-
gorithme d’advection orbitale Fargo (Masset, 2000). Cela est utile pour modérer l’effet
de la condition CFL lorsque l’écoulement dévie peu par rapport à une advection orbitale
connue, en pratique képlerienne. J’utilise cette méthode pour accélérer les simulations
présentées au chapitre 4.

Dans le cas de la MHD, en plus de l’évolution du fluide, il faut aussi faire évoluer le
champ magnétique comme l’équation d’induction le dicte. Pour ce faire tout en conser-
vant une divergence nulle, le code utilise l’algorithme du transport contraint (Evans et
Hawley, 1988). Ici contrairement à la méthode des volumes finis présentée ci-dessus, les
valeurs des champs ne correspondent pas aux valeurs au centre des cellules. En effet,
le champ magnétique est défini sur les surfaces des cellules tandis que le champ élec-
trique est défini sur les arêtes des cellules. Cependant, cette méthode ne conserve pas
parfaitement la divergence du champ magnétique lorsque le nombre de pas de temps
d’intégration est très grand. Pour compenser cet effet, je choisis pour mes simulations
MHD d’évoluer le potentiel vecteur plutôt que le champ magnétique. Pour modéliser la
résistivité du plasma dans mes simulations, j’utilise une table pré-calculée de valeurs que
j’utilise en fonctions des conditions locales du fluide (Grevesse et Sauval, 1998 ; Scepi

et al., 2018a).

La force principale de ce type de méthode pour la mécanique des fluides est sa capacité
à résoudre des écoulements très compressibles comme c’est le cas des disques d’accrétion.
Cependant, les solutionneurs de Riemann n’offrent pas une grande précision lorsque le
plasma est fortement magnétisé, ce qui peut mener à des solutions non-physiques.

J’ai d’ailleurs rencontré des difficultés numériques liées aux limitations des algo-
rithmes que j’utilisais. La première a été liée à l’utilisation de l’algorithme d’advection
Fargo. En effet, dans les disques de système binaires, les régions les plus externes du
disque sont tronquées par les forces de marée de la secondaire. Dans cette région, le gas
n’a aucune raison d’être à une vitesse proche de la vitesse képlérienne associée à la naine
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blanche. J’ai donc souhaité inclure cette dépendance radiale à la vitesse d’advection de
Fargo. Cependant, bien que les conditions théoriques sur cette vitesse soient réunies, j’ai
obtenu des résultats non-physiques d’excitations d’ondes parasites (figure 3.4).

Ensuite, dans les simulations MHD, dans les régions de forte magnétisation, j’ai
constaté l’excitation de structures oscillantes non résolues (figure 3.5). Une solution
usuelle pour résoudre ce problème est de changer le solutionneur de Riemann dans
ces zones. Cela n’étant pas possible avec Idefix à ce stade, j’ai implémenté une condition
de lissage de chocs qui peut cibles les régions de forte magnetisation uniquement.

résultats

À présent, on comprend bien le problème : les observations montrent qu’il y a de
l’accrétion pendant la phase froid et sombre de quiescence, mais nous ne connaissons
pas de mécanisme physique capable de l’expliquer.

Dans cette partie, je présente deux mécanismes pertinents pour l’accrétion en quies-
cence. Le premier est un effet non-magnétique : l’excitation de chocs spiraux dans le
disque d’accrétion par les forces de marées de la secondaire. Le second nécessite la pré-
sence d’un champ magnétique vertical à grande échelle : le lancement de vents magné-
tiques depuis le disque.

c.4 chocs spiraux dans les disques minces de systèmes binaire

Durant la phase de quiescence le disque est froid, peu ionisé, et mal couplé au champ
magnétique extérieur. Ici, je néglige, en première approximation, complètement tout cou-
plage au champ magnétique.

L’effet de la présence d’une secondaire est la présence d’importantes forces de marée
dans la région du disque d’accrétion autour de la naine blanche. En effet, il est possible
que dans les régions externes du disque, les forces de marée atteignent un tiers de la
gravité de la naine blanche.

Le premier effet de la présence de la secondaire et de ces forces de marées est que
le disque d’accrétion va être tronqué avec une extension radiale maximale. En pratique
pour étudier ce genre de systèmes, il est pratique de se placer dans le référentiel en
rotation synchrone avec la secondaire, afin d’avoir un potentiel gravitationnel constant.

Ensuite, comme vu plus haut, la secondaire va aussi fournir continuellement de la ma-
tière au disque d’accrétion. En pratique lorsque que l’on étudie l’écoulement du disque
sur des échelles plus courte que la durée d’une phase de quiescence, l’influence de ce
flux de matière est assez faible. La seule façon de mesurer son effet dans des simulations
et d’artificiellement augmenter le flux de matière par des ordres de grandeurs. Je choisis
donc de ne pas inclure ce flux de matière dans cette étude.

La présence de la secondaire va aussi exciter des ondes spirales stationnaires dans
le disque. Ces ondes sont des ondes de choc stationnaire et contribuent à redistribuer le
moment cinétique dans le disque. Pour les étudier, j’utilise d’abord l’approche analytique
de Savonije et Papaloizou (1983) et Savonije et al. (1994).

Cette approche est une approche perturbative dans laquelle on résout les équations
d’Euler bidimensionnelles polaire autour d’un état « moyen ». Cet état correspond à
un état d’équilibre hydrostatique radial du disque, dans lequel l’écoulement est quasi-
képlerien. On choisit alors de trouver une solution perturbative à l’écoulement lorsqu’on
ajoute la secondaire. On décompose les solutions perturbatives en modes de Fourier azi-
mutaux – ces modes correspondent aux différents modes de spirales – et on se limite
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au premier ordre dans les perturbations. Avec une approximation WKB dans le rapport
d’aspect du disque, supposé petit, on peut trouver des solutions analytiques aux équa-
tions.

Une fois cette méthode établie, je commence par vérifier la validité des hypothèses
faites dans le contexte du régime de quiescence. Il s’avère qu’en réalité, dans le régime
de quiescence, quand le disque est très froid et très mince, l’approximation linéaire n’est
plus valide. En effet, l’amplitude de la perturbation, supposée petite par rapport à celle
de l’état moyen, devient comparable à celle de l’état moyen. Cela signifie que les effets
non-linéaires, négligés par cette approximation, ne seront en fait pas négligeable. Physi-
quement, cela est dû au fait qu’à basse température, les spirales sont des structures de
plus en plus fines, et que les chocs correspondants sont de plus en plus raides.

C’est pour cette raison que je continue l’étude de ces ondes avec le code Idefix, qui
reflète intrinsèquement les effets non-linéaires. Pour la suite de cette étude, je réalise des
simulations bidimensionnelles polaires.

Je choisis de discrétiser la région qui contient le disque d’accrétion de manière uni-
forme en azimut, et de manière logarithmique en rayon, avec des cellules plus fines
proche de la naine blanche. Je prends SS Cyg comme système de référence et utilise ce
système pour définir les unités de base.

Pour les conditions aux limites, j’impose un flux sortant avec une vitesse azimutal
keplérienne incluant la rotation du référentiel.

Pour l’état initial des simulations, je chois de pré-tronquer le disque au rayon de tronca-
tion attendu. Cela permet de gagner du temps d’intégration en raccourcissant le régime
transitoire initial.

Je réalise des simulations de disques à différentes températures, partant des travaux
de la littérature jusqu’au températures de quiescence, ainsi que des simulations avec des
masses de secondaire différentes.

La première étape de ce travail est de vérifier que le code Idefix est en mesure de
reproduire les résultats établis avec d’autres codes. Ici, je reproduis une partie des simu-
lations de Ju et al. (2016) obtenues avec le code Athena++. Les figures 4.4 et 4.5 sont des
reproductions de l’article en question avec le code Idefix. On y constate que les résultats
obtenus avec les deux codes sont très proches tant pour la simulation isotherme que
pour la simulation adiabatique. Notamment, les valeurs mesurées du paramètres α sont
en adéquations.

Une fois cette vérification effectuée, je me concentre sur les simulations à plus basses
températures (figure 4.7) et à différents rapports de masse (figure 4.10). Avec ces simu-
lations, j’observe tout d’abord que les spirales excitées ne correspondent pas à celles
étudiées par la théorie linéaire discutée plus haut. En effet, les spirales dans mes simula-
tions sont des spirales à un bras, tandis que la théorie linéaire n’étudie que les spirales
à deux bras. En effet, c’est ce second mode qui est le plus fortement excité par les forces
de marée.

J’observe que les spirales à deux bras sont présentes seulement dans les régions ex-
ternes des disques de mes simulations, tandis que les régions internes sont dominées
par des spirale à un bras. De plus plus la température du disque est basse, plus la région
dominée par les spirales à deux bras est réduite. Dans la simulation la plus froide que
je réalise – correspondant à la quiescence–, la quasis-totalité du disque est dominée par
une spirale à un bras.

Une spirale à un bras peut être interprétée comme un mode excentrique de spirale. La
croissance d’excentricité ayant déjà étudiée dans ce type de disque (Lubow, 1991b ; Kley

et al., 2008 ; Oyang et al., 2021), je compare mes résultats aux travaux précédents. Ce-
pendant, la croissance d’excentricité, selon les mécanismes étudiés précédemment, n’est
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possible que si la masse de la secondaire est suffisamment faible par rapport à celle de
la naine blanche, de sorte qu’une résonance orbitale puisse se situer dans le disque. Or,
j’observe ces spirales excentriques dans toutes mes simulations, indépendamment du
rapport de masse. Je constate aussi, que dans les régimes de rapport de masse où cette
croissance a été observée par le passé, je ne l’observe pas. La différence principale avec
mes simulations étant qu’elles sont plus froides. Je constate aussi que les vitesses de
phases des spirales ne sont pas cohérentes avec le mécanisme de croissance de l’excentri-
cité usuel.

Je m’intéresse ensuite au transport de moment cinétique produit par ces ondes spi-
rales. Le premier résultat que j’obtiens concerne le temps de relaxation par rapport à
l’état initial. Je constate que les simulations à basse température n’atteignent pas d’état
stationnaire en une centaine d’orbite de système binaire. Cette durée est comparable à
la durée d’une phase de quiescence dans les systèmes réels. Cela signifie que le disque
n’atteint peut-être jamais d’état stationnaire avant de revenir en éruption. Cela suggère
qu’il pourrait y avoir des effets de mémoires entre plusieurs éruptions consécutives.

Ensuite, je mesure la valeur du paramètre α. Pour ce faire, j’attends quatre-vingts
orbites de système binaire afin d’être aussi peu influencé que possible par l’état initial.
Dans toutes mes simulations je mesure des valeurs de α significativement plus faible
que les valeurs estimées pour les systèmes quiescents réels. Cela signifie que pendant la
phase de quiescence, l’accrétion est due à un autre phénomène que ces ondes spirales.

Les simulations effectuées avec un petit rapport de masse ont cependant montré des
valeurs de α plus grandes que celles avec une secondaire plus lourde. La gravité de la
secondaire étant à l’origine de ces spirales, ce résultat semble contre-intuitif. Pour m’as-
surer de leur sens, je réalise une simulation sans secondaire, et je constate que l’accrétion
est bien réduite à nouveau. Cependant, lorsque je redémarre la simulation en enlevant la
secondaire en cours de route, je redémarre un état transitoire pendant lequel l’accrétion
est augmentée.

Je réalise aussi des simulations additionnelles afin de vérifier que l’excitation des ondes
spirales à un seul bras n’était pas un artéfact ni dû à la résolution de la simulation, ni
aux conditions aux bords. Notamment, j’implémente une condition au bord de relaxa-
tion des ondes incidentes. Malgré une grande extension radiale de cette zone, les ondes
excentriques subsistent.

Enfin, j’ai réalisé des simulations additionnelles afin d’étudier les conséquences des
ondes spirales sur la thermodynamique du disque. Pour ce faire, je résous désormais
l’équation de conservation de l’énergie. Pour compenser de manière cohérente le chauf-
fage dû aux spirales j’implémente une fonction de refroidissement pour modéliser les
pertes par rayonnement de corps noir. J’approxime d’abord l’opacité du disque comme
étant constante, mais cela mène à un refroidissement trop rapide du disque. Ensuite, je
choisis d’utiliser des valeurs tabulées de l’opacité avec un modèle simplifié de transfert
radiatif vertical. Avec cette simulation, j’obtiens qu’à des températures réalistes de quies-
cence, les ondes spirales fournissent un chauffage suffisant pour compenser les pertes
radiatives. Cela signifie que la température du disque en quiescence est possible due
uniquement aux chocs spiraux.

c.5 disques minces magnétiques dans les systèmes binaires

Dans ce chapitre, je présente les simulations tridimensionnelles de disques magnétisés
que j’ai réalisé, afin d’étudier le lancement d’un vent magnétique et ses propriétés.

Le paramètre de contrôle pertinent pour réaliser des simulations MHD de vent, pour
quantifier l’importance du champ magnétique est le paramètre addimentionné β corres-
pondant au champ moyen poloïdal (équation 5.2).
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Pour compléter les équations d’Euler tridimensionnelles, j’utilise une équation d’état
barotropique (équation (5.5)) afin de modéliser le changement de température du gas
quand sa densité change.

La résistivité Ohmique que j’utilise provient de tables, comme présenté dans l’introduc-
tion. Ces valeurs sont cependant re-dimmensionnées afin d’avoir un nombre de Reynolds
magnétique réaliste même si le disque est plus épais qu’un disque réel en quiescence.

Ici, aussi j’utilise une grille uniforme pour la dimension azimutale, et des grilles non
uniformes pour les autres dimensions. Ces grilles non-uniformes sont concentrées sur la
région d’intérêt de la simulation : le plan équatorial du système binaire, là où le disque
se situe (5.3). Cela est couplé à un algorithme de dé-raffinement proche de l’axe des
coordonnées sphériques.

Les conditions aux limites sont des conditions d’écoulement sortant, en imposant une
densité inférieure à l’extérieur du domaine pour que le gradient de pression soit toujours
dirigé vers l’extérieur.

Le disque initial est le résultat d’une simulation non-magnétique antisymétrique sans
secondaire, afin que l’équilibre hydrostatique associé à l’équation d’état choisi soit
d’abord atteint avant l’introduction simultanée du champ magnétique et de la secon-
daire en trois dimensions. Comme au chapitre précédent, le disque hydrodynamique
initial est aussi pré-tronqué, et le champ magnétique imposé au redémarrage est pure-
ment poloïdal.

Dans la première phase d’évolutions des simulations magnétiques, j’observe la création
d’une cavité intérieur à basse densité au voisinage de la naine blanche. Cette cavité est
comparable à celles observées dans les simulations du chapitre précédent. Une grande
partie du champ magnétique initial est advecté dans cette zone, qui devient par consé-
quent très fortement magnétisée. J’obtiens ainsi une région interne avec β ≈ 1 et un
disque externe avec β ≪ 1.

J’observe aussi que dans ces simulations, des modes propres à la MRI se développent
malgré la grande résistivité du disque d’accrétion. En réalité, ces modes ne se déve-
loppent pas dans le plan médian du disque car la résistivité y est en effet trop grande, ils
se développent aux surfaces du disques là où, la densité étant plus faible, le gas est plus
magnétisé et moins résistif (figure 5.9)).

Dans ces simulations, un vent magnétique est lancé depuis les surfaces des disques. La
surface de lancement est cependant à plus haute altitude que l’échelle de hauteur caracté-
ristique hydrostatique du disque. De manière concomitante, les disques sont plus épais
que ce que l’équilibre hydrostatique dicte. Cela est dû à la contribution additionnelle
du champ magnétique. La composante de pression magnétique de la force de Lorentz
s’ajoute à la pression thermodynamique pour compenser la gravité verticale. Dans les
régions internes de mes simulations, c’est cette pression magnétique qui domine le bilan
des forces vertical. Cela a pour conséquence de produire un disque bien plus épais. En
quantifiant ce changement d’épaisseur, je constante que le rapport d’aspect du disque est
à peu près constant et vaux un dixième à tous les rayons ; pour les rayons internes, cela
correspond à un disque dix fois plus épais que le profil hydrostatique.

Je mesure que le taux d’accrétion de ces simulations, comparé à une simulation de
référence non-magnétique, est augmenté d’un facteur mille. Je constate aussi que les
simulation idéales et résistives ne diffèrent que peu. Par contre varier le paramètre β pro-
duit des taux d’accrétion différent, avec un plus grand taux d’accrétion pour un champ
magnétique plus important.

Ainsi je constate qu’un vent magnétique global parvient à être lancé même depuis un
disque d’accrétion très mince et très résistif. Ce vent augmente significativement l’accré-
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tion, mais produit aussi un disque interne fortement magnétisé et très épais par rapport
au profil hydrostatique.

Après environ cinq orbites de système binaire après le redémarrage tridimensionnel
des simulations, je constate que tous les disque de mes simulations magnétisées s’in-
clinent. Cette inclinaison est globale, de telle sorte que le disque n’est pas gauchi et reste
quasi-plan.

La façon dont je quantifie cette inclinaison est la suivante. Je calcule pour tous les
rayons et tous les azimuts la latitude du barycentre du disque. Ensuite, je fait une ré-
gression sinusoidale de cette latitude en fonction de l’azimut ; une sinusoïde est la forme
attendue pour une faible inclinaison de disque. J’observe ainsi que la croissance de cette
inclinaison globale du disque par rapport au plan du système binaire est exponentielle
et quasi-simultanée à tous les rayons. Une fois cette croissance exponentielle lancée, tous
les rayons sont en phase et le disque précesse. L’orientation azimutale de l’inclinaison
n’est pas synchrone avec la secondaire, au contraire elle est quasi-stationnaire dans le ré-
férentiel non-tournant. Cette croissance prend la même forme exponentielle dans toutes
les simulations magnétiques que je réalise. Indépendamment de la résistivité et du para-
mètre plasma. Dans toutes les simulations cette croissance démarre à un temps similaire,
après quatre à cinq orbites de système binaire, après le redémarrage en trois dimensions,
et l’ajout du champ magnétique.

Une autre façon d’étudier cette inclinaison est de regarder l’orientation du vecteur
moment cinétique local, qui est relié au vecteur d’inclinaison. Dans les diagrammes
espace-temps de cette quantité (figure 5.22), on peut voir cette inclinaison à la fin de
la simulation. Cependant, on y voit aussi la propagation d’ondes de flexions dans la
phase initiale durant laquelle le disque n’est pas incliné. La simulation de référence sans
champ magnétique, quant à elle, ne s’incline jamais de la sorte, mais la propagation
d’ondes de flexions est clairement visible. Je réalise une simulation magnétisée à plus
haute température, avec un disque deux fois plus épais, et je constate la croissance de
l’inclinaison du disque aussi. Avec cette simulation je constate que le temps de croissance
de l’inclinaison des disques de toutes les simulations semble correspondre au temps de
traversée du disque pour les ondes de flexion.

Après avoir décrit l’inclinaison des disques, je m’attèle maintenant à comprendre son
origine. Les travaux sur de telles géométries de disques sont rares et il existe à ce jour peu
de mécanismes connus qui permettent d’expliquer ces inclinaisons, et encore moins dans
le contexte des novæ naines. Par exemple, il est connu qu’un disque de binaire X autour
d’un trou noir non-aligné avec l’axe du système binaire peut produire une inclinaison du
disque interne (Lense et Thirring, 1918 ; Bardeen et Petterson, 1975). De même si le
champ magnétique de l’objet central n’est pas aligné avec le disque, une inclinaison peut
se développer (Lai, 1999 ; Murray et al., 2002). Mais mes simulations ne correspondent
à aucun de ces scénarios. Lubow (1992) propose un mécanisme d’inclinaison du disque
à partir des forces de marées de la secondaire, semblable à la croissance d’excentricité
discutée au chapitre précédent. Cependant, ici aussi le régime dans lequel ce mécanisme
est possible est à petit rapports de masse, or je ne suis pas dans ce régime. Foulkes et
al. (2006, 2010) propose un autre mécanisme d’inclinaison produit par l’illumination de
l’objet central, cependant les luminosités nécessaires à cet effets ne sont pas atteignable
dans les disques de novæ naines. Enfin, Ogilvie et Latter (2013a,b) ont développé un
nouveau paradigme pour étudier ces disques gauchis. Ils proposent une version modifiée
de la boîte de cisaillement, avec des conditions aux limites adaptées aux disque non-
plans. Paris et Ogilvie (2018) ajoutent les effets du couplage au champ magnétique
à ce modèle, mais ne se concentrent que sur les disque très fortement magnétisés. Ces
différents scénarios ne s’appliquant pas à mes simulations, je cherche alors un mécanisme
de croissance différent.
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Premièrement, je réalise un étude de stabilité des disques inclinés. J’étudie l’énergie
potentielle d’un anneau de matière à rayon fixée par rapport au potentiel gravitationnel
total du système. Je confirme que pour un anneau axisymétrique, le plan du système
binaire est un point d’équilibre stable. Ensuite, j’étudie le cas d’un anneau dont la distri-
bution azimutale de masse n’est pas uniforme, comme c’est le cas quand il y a des ondes
spirales de densité dans le disque. Dans ce cas, le plan du système binaire n’est plus le
minimum global d’énergie. Cependant, comme la simulation sans champ magnétique ne
s’incline jamais, cela suggère que le temps liée à cette instabilité est plus long que celui
de la croissance que j’observe.

J’explore ensuite la possibilité que la croissance de l’inclinaison soit due à une asymé-
trique du vent magnétique. Cette asymétrie entre le haut et le bas du disque est claire-
ment visible et mesurable. Une telle dissymétrie implique que le vent exerce une force
nette sur le disque, qui tend à le sortir localement du plan du système binaire. Je constate
que cette force est largement axisymmétrique et est due à la pression magnétique. Même
si l’inclinaison est un effet non-axisymétrique, il est possible qu’avec le potentiel de la
secondaire, cet effet produise un inclinaison. Je réalise donc une série de simulations
additionnelle. Ces simulations sont non-magnétiques, mais inclue une force modélisant
la différence de pression magnétique mesurée dans les simulations magnétiques. Ces
simulations sont tridimensionnelles et incluent la secondaire. Avec ces simulations, je
ne parviens pas à reproduire l’inclinaison mesurée dans les disques magnétisée. Ce qui
confirme que l’effet purement axisymmétrique ne permet pas d’obtenir une inclinaison
globale. Enfin je réalise une simulation avec un disque initialement incliné, afin d’étudier
la stabilité de cette configuration. Je constate qu’un tel disque est stable sur les échelles de
propagation des ondes de flexion. L’origine de cette inclinaison reste donc à comprendre.

c.6 conclusion

La question à laquelle cette thèse propose une réponse est celle de l’accrétion pendant
la phase de quiescence des novæ naines. Les travaux présentés ici, sont cependant appli-
cable à une plus grande variété d’objets. En effet l’accrétion dans les disques froids reste
une grande question de l’astrophysique aussi bien pour les binaires X, les AGN ou les
disques protoplanétaires.

Dans ce travail, j’ai commencé par explorer la piste du transport de moment cinétique
pas les ondes spirales excitées par le potentiel de marée. Les résultats de cette partie
peuvent être résumés comme suit :

1. Le mode de spiral dominant est le mode de spirales à un bras, contrairement au
mode à deux bras que la théorie linéaire étudiait.

2. Les vitesses de phase de ces ondes spirales ne sont pas en accord avec la théorie
quasi-non linéaire, mais prennent des valeurs qui sont des multiples entiers de la
fréquence du système binaire.

3. Les chocs spiraux produise de l’accrétion, mais des ordre de grandeur en dessous
des valeurs nécessaire pour reproduire les observation en quiescence.

4. J’observe un temps de relaxation très long pour les disques avec des températures
de quiescence réalistes. Cela suggère qu’il pourrait y avoir des effets de mémoire
d’une éruption à la suivante dans ces systèmes.

5. Les chocs spiraux sont capables de maintenir une température réaliste pour la
quiescence dans ces disques.

Ainsi les chocs spiraux sont définitivement éliminés comme explication de l’accrétion
en quiescence.

Dans la deuxième partie, j’ai étudié la possibilité que l’accrétion soit dominée par des
vents magnétisés. Les résultats de cette partie sont les suivants :
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1. Il est possible de lancer des vents magnétique depuis un disque froid, mince et
résistifs en quiescence.

2. L’effet de la résistivité s’avère petit par rapport à l’ajout du champ magnétique, en
ce qui concerne la MRI et le lancement du vent.

3. Les vents ainsi lancés depuis des disques minces sont dissymétriques haut-bas,
exerçant ainsi une force nette axisymmétrique sur le disque.

4. Après quelques orbites de systèmes binaires, les disques s’inclinent de manière
globale. Le temps de croissance de cette inclinaison semble lié au temps de traversée
des ondes de flexion.

5. L’orientation de l’inclinaison est quasi-stationnaire dans le référentiel non-tournant.
Plus précisément, elle est rétrograde à environ 3% de la fréquence du système
binaire.

6. Un anneau de matière non-axisymmétrique (par exemple dû à des ondes spirales)
n’est pas stable dans le plan du système binaire.

7. En réalisant des simulations non-magnétiques, je n’ai pas pu déterminer l’origine
de la croissance exponentielle de l’inclinaison. Il apparaît qu’un force axisymmé-
trique couplé au potentiel de marée n’est pas suffisant.

8. Un disque non-magnétique incliné est stable sur les échelles de temps de propaga-
tion des ondes de flexion.

Ainsi l’origine de l’inclinaison reste incomprise à ce stade. Cependant, la fréquence de
rotation de l’orientation de l’inclinaison des disques est compatible avec les observations
de super-bosses dans certains systèmes (Bonnet-Bidaud et al., 1985).

c.7 perspectives

Dans cette dernière partie, je présente rapidement des perspectives pour les travaux
de cette thèse.

Premièrement, il serait intéressant de continuer la piste ouverte par l’étude thermo-
dynamique des ondes spirales. L’idée serait de réaliser des simulations telles que celle
présenté à la fin du chapitre 4 mais sur des échelles de temps plus longues, en incluant
le flux de matière de la secondaire. Cela permettrait d’étudier des cycles quiescence-
éruption complets. Cela permettrait aussi de mesurer précisément les possibles effets de
mémoire évoqués plus haut. Des simulations préliminaires ont été réalisées avec un sta-
giaire de M1, en incluant un α ajouté à la main qui dépend de la température locale du
disque. Cela permet de modéliser le lancement de la MRI quand le disque devient assez
chaud et ionisé.

Ensuite, il serait intéressant de comparer les résultats des simulations magnétiques
avec des observations de systèmes réels. Cela peut être fait, en traitant les sorties du
code Idefix avec un logiciel de transfert radiatif, comme par exemple python (Long et
Knigge, 2002).

Réaliser des simulations avec une hypothèse moins forte sur la géométrie initiale du
champ magnétique permettrait aussi de généraliser ces résultats. Jacquemin-Ide et al.
(2023) a récemment montré qu’un champ vertical peut être généré dans les disques à
partir de champ magnétique sans flux net. La question se pose donc de savoir si les
résultats serait les mêmes avec un champ magnétique initialement advecté par la secon-
daire, comme dans Pjanka et Stone (2020).

Enfin, continuer à explorer la dynamique des disques inclinés et gauchis est nécessaire.
Une façon de procéder est de poursuivre l’étude de Ogilvie et Latter (2013a,b) et Paris

et Ogilvie (2018) avec la boîte de cisaillement gauchie. Il s’agirait de continuer à inclure
les effets magnétique afin d’explorer des régimes plus proches de ceux des disques d’ac-
crétion faiblement magnétisés. Ensuite, il serait possible d’inclure les effets non idéaux
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pertinent, comme la résistivité Ohmique pour les novæ naines. Une deuxième partie
de ce projet serait d’utiliser les résultats obtenus par cette première étude avec la boîte
de cisaillement gauchie pour réaliser des simulations globales. Les résultats de la pre-
mière parties pourraient être incorporées comme un modèle sous-maille des simulations
globales. Cela permettrait d’étudier plus précisément l’effet d’une inclinaison ou d’un
gauchissement du disque sur la dynamique de l’accrétion. En effet, il a été montré qu’un
tel changement de géométrie pouvait changer les instabilités qui se développent dans le
disque (Aly et al., 2023).

En conclusion, nous avons maintenant une meilleure idée de l’origine de l’accrétion
dans les disques quiescents. Les chocs spiraux excités par les forces de marée peuvent
être définitivement écartés comme étant à l’origine d’une accrétion suffisante pendant
la quiescence pour expliquer les temps de récurrence des novæ naines. De plus, il est
maintenant clair que même dans les disques froids, fortement résistifs et quiescents, le
champ magnétique joue un rôle crucial. Il permet à l’instabilité magnéto-rotationnelle de
se développer aux surfaces du disque et de lancer un fort vent magnétique. Il apparaît
également que la présence d’un champ magnétique produit un couple fortement asymé-
trique sur le disque, conduisant à l’apparition d’une inclinaison globale du disque. Le
couplage avec le champ magnétique, même faible, produit des disques dont les proprié-
tés globales sont très différentes de celles des disques purement hydrodynamiques. En
conséquence, les effets magnétiques doivent être inclus dans un plus grand nombre de
modèles de disques d’accrétion. Les vents magnétiques modifient considérablement les
propriétés d’accrétion des disques ainsi que leurs propriétés géométriques.
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