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Chapter 1

Introduction

1.1 Context and Rationale

Walking is the most human common activity of daily living and, at the same time, a very complex one.
It encompasses various aspects of the nervous system, musculoskeletal apparatus, and cardiorespiratory
system. The way a person walks is signiőcantly impacted by factors such as age, personality, mood
but also various comorbidities. Gait and balance disorders become more prevalent with aging, often
exacerbated by neurodegenerative diseases such as Parkinson’s disease (PD).

In this thesis, we focus on neurological diseases that are not necessarily age-related, such as Multiple
Sclerosis (MS) [4], traumatic brain injury (TBI), spinal cord injury (SCI), cerebral palsy (CP), and
stroke. These conditions impact gait in various ways, leading to disorders such as fatigue, weakness,
sensory loss, ataxia, and spasticity. Consequently, doctors often recommend rehabilitation therapy
alongside pharmacologic treatments for patients with these impairments. Spasticity is a symptom of
movement disorders, characterized by an increase in speed-dependent tonic stretch reŕexes (muscle
tone), causing overactive stretch reŕexes and exaggerated tendon jerks. This condition is a component
of upper motor neuron syndrome [5].

Their impacts on gait cover several gait disorders: fatigue, weakness, sensory loss, ataxia, and spas-
ticity. As a result, doctors frequently advise patients with these impairments to receive rehabilitation
treatment in addition to their ongoing pharmacologic care. A rise in tonic stretch reŕexes (muscle
tone) that depends on speed is a symptom of the movement disorder spasticity. The stretch reŕexes
become overactive, causing tendons to jerk more than usual. This is one part of the upper motor
neuron syndrome [5]. Intramuscular injections of Botulinum Toxin type-A (BTX-A) are a common
treatment for spasticity, shown to improve BTX-A both lower and upper limb functions [6], thereby
enhancing movements such as walking [7] (see Figure 1.1).

In practice, decision-making is based on a patient’s medical history, physical examination, and
Clinical Movement Analysis (CMA). CMA consists of studying movement troubles and identifying
their plausible causes based on the biomechanical interpretation of instrumental measures [8]. If
certain quality criteria are fulőlled, CMA data are sufficiently reliable for clinical interpretation [9].
CMA techniques can be used to analyze lower limb movement (e.g., walking, climbing stairs, running,
etc.). Several research studies have shown that CMA, especially CGA, helps a lot with the diagnosis
and treatment of many neurological diseases, including CP [10], MS [11], and hemiparesis after a stroke
[7].

Artiőcial Intelligence (AI) and Machine Learning (ML) techniques have become almost ubiquitous
in our daily lives by supporting or guiding our decisions and providing recommendations. Therefore,
it is not surprising that ML approaches are becoming increasingly popular in precision medicine and
fulőll an increasing demand for new healthcare solutions, in particular, a better understanding of
pathological processes. Among AI and ML methods, Deep Neural Network (DNN) [12] have already
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• Determining the most important features among all the available data.

• Designing several DL models to determine a mathematical relationship, given the MTD, between
the pre-and post-treatment CGA data.

• Exploiting MTL-based models to improve post-treatment gait prediction.

• Assessing comparatively performance of all the prediction methods considered.

1.3 Thesis Outline / Organization

This document is structured into two main sections. Part I focuses on the context, state-of-the-art
developments, data description, and conditioning. Part II is dedicated to the experimental works
conducted for predicting post-treatment gait using various deep learning (DL) and multitask learning
(MTL) techniques. Below is a brief description of the content in each chapter

• Chapter 2: provides a comprehensive review of the literature on the most widely used DL
and MTL algorithms in gait analysis. This chapter discusses various methods and applications
relevant to gait analysis, evaluates the strengths and weaknesses of each study based on the latest
research, and examines the most commonly used datasets for gait analysis.

• Chapter 3: Outlines the relevant information considered for the experiments, including de-
tails on medical treatments and kinematics. It also describes the processes involved in data
preprocessing and preparation for the models.

• Chapters 4, 5, 6, and 7: Detail the experimental procedures conducted for post-treatment
gait prediction. These chapters present the results of each experiment and provide comparisons
with other related studies.

• Chapter 8: Summarizes the key őndings and contributions of this research, serving as a general
conclusion. This chapter also offers recommendations for future work and constructive feedback
aimed at further enhancing the contributions already made.
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Summary

Over the past few years, there has been notable advancement in the field of Quantified Gait Analysis
(QGA), thanks to machine learning techniques. QGA and gait prediction are areas where DL techniques
are gaining popularity. There has been a significant amount of attention from the scientific community
on the application of gait analysis in various fields. Based on our understanding, there is a noticeable
absence of a comprehensive review and current understanding of gait analysis utilizing DL and MTL
models. Therefore, this chapter provides a comprehensive assessment of the current application of DL
algorithms for QGA. This chapter takes a systematic approach to explore this topic in depth. We
conducted a thorough search of three databases, namely Web of Science, IEEEXplore, and Scopus, to
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identify relevant papers published from 1989 to October 2023. A total of 55 papers were considered
eligible and included in this review. Approximately 46% of the studies that were identified utilized
classification models to categorize gait phases and locomotion modes. Additionally, a significant portion
of the studies (45%) utilized regression models to estimate and predict various kinematic and kinetic
parameters, including joint angles, trajectories, moments, and torques. Interestingly, a notable 9% of
the studies employed the use of MTL techniques in the realm of DL for gait analysis. We have also
provided information on the most commonly utilized datasets for QGA.

The content of this chapter is based on the following paper:

• A. Khan, O. Galarraga, S. Garcia-Salicetti and V. Vigneron, "Deep Learning for Quantiőed Gait
Analysis: A Systematic Literature Review," in IEEE Access, doi: 10.1109/ACCESS.2024.3434513.

2.1 Introduction

Gait analysis is a őeld of study in human bio-mechanics, aiming at quantifying the elements inŕuencing
the functionality of gross motor functions in locomotion. Measuring or estimating a variety of param-
eters is essential in gait analysis. This includes spatiotemporal parameters, electromyography (EMG)
activity, kinematic, and kinetic parameters, which are observed during walking or other locomotion
activities [17]. Applications for gait analysis are numerous, ranging from athletics to medical research.
Gait analysis is frequently used in sports to evaluate athlete performance, avoid injuries, and give a
training schedule [18, 19]. Gait analysis is used in clinical settings to describe certain gait disorders,
track the progress of recovery, and judge how well certain treatments work [20, 21, 22]. Gait anal-
ysis has further uses, such as predicting the likelihood that an elderly individual may fall [23, 24].
Gait analysis can assist in the treatment planning process for individuals suffering from a variety of
conditions, including MS [25], Stroke, TBI, CP [26], and SCIs [27].

Moreover, with the help of QGA, one can design and develop numerous wearable robotic systems,
such as exoskeletons and orthoses, to help people with gait-related issues. An electromechanical system
called an exoskeleton is made up of actuators, sensors, and controllers that work together to provide
torque to joints [28]. Another class of assistive and corrective technology is orthoses, which are occa-
sionally used interchangeably with exoskeletons. There is a distinction between the two, though. Herr
claims that, in contrast to exoskeletons, which improve human capacities in all circumstances, orthoses
are meant to help those who already have diseases [29].

The gait analysis can be carried out in several ways. The majority of clinical settings use a com-
bination of patient self-reported assessments, qualitative evaluations conducted by professionals, and
observation [30, 31]. Clinical observations, such as those made by physicians or physical therapists, can
yield quantitative information about gait characteristics, including cadence, speed, distance traveled,
and total walking time.

In a lab setting, QGA is frequently carried out utilizing gold standard measuring techniques, such
as force plate and motion capture devices together. While force plates offer dynamic elements like
ground response forces and moments, motion capture allows for accurate tracking of the spatial infor-
mation of human movements in three dimensions. It is now feasible to evaluate gait outside of the
lab using wearable sensor systems because of recent signiőcant advancements in sensor systems and
computational techniques[32, 33].

QGA is essential for identifying postural instabilities, detecting abnormal gait patterns, and evalu-
ating clinical interventions and rehabilitation plans. The clinicians anticipate using QGA for diagnosis
and treatment decision-making.

In this context, AI methods would be useful for gait analysis. These methods can effectively han-
dle complicated, temporal, high-dimensional data [34, 35] and extract pertinent features. They create
models that automatically learn from accessible sources, generate precise predictions, and exhibit in-
telligent behavior [36, 37]. DL, a subset of ML, is widely utilized in various őelds, including medical
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diagnosis [38, 39], pattern recognition [40, 41], image processing [42, 43], classiőcation [44, 45], pre-
diction analysis [46], and monitoring [45]. DL techniques have been used in various applications in
the őeld of QGA, for the diagnosis of gait disorders [47, 48], the prediction of early intervention for
fall-related risks associated with a disability or aging [49, 50, 23], the determination of motor recovery
tasks [51, 52], and the planning of therapeutic or rehabilitation interventions [39].

DL approaches are used to analyze data, and images, and recognize patterns by developing al-
gorithms that assist doctors in promptly and properly diagnosing a particular disease or disorder.
Additionally, these algorithms may continuously learn, which enhances the diagnostic outcomes. How-
ever, there are situations when doctors must concurrently take into account the patient’s symptoms,
treatment options, probable side effects, another condition with similar symptomatology, past medical
history, and several other factors. In turn, DL technology offers a way to help doctors by analyzing
a very large amount of data and ensuring a comprehensive grasp of patient health records. Even DL
methods can foretell the start of disease by analyzing the vast amounts of data amassed over time
from tracking a person’s health. The development of DL approaches for disease treatment is evidenced
by the arrival of surgical robots to undertake numerous difficult operations. As a result, DL models
can speed up diagnosis, improve patient monitoring, and help clinicians choose the best course of ac-
tion, but they need computational resources at the implementation site. Additionally, early detection
can stop mobility loss [35] and can lower healthcare expenditures, which are a growing concern for
developing nations [53].

However, DL models performed well when they were provided with a sufficient amount of data.
But, as we know, in medical applications this is not true, due to the complexity and cost of acquiring
large amounts of real data from patients. On the other hand MTL can be used in QGA to cope with
the problem of few data. MTL can indeed handle sparse data issues and create a more reliable model
by utilizing information from various tasks [16]. Furthermore, MTL has been widely used in ML and
biomedical areas [16] to handle the variability of data. For all these reasons, we are also reviewing
studies that used MTL for QGA.

2.1.1 Related Surveys

A few surveys have been published on gait analysis, as described in Table 2.1. Only two of the őve
review studies analyzed were systematic reviews. Prasanth et al. [32] systematically reviewed wearable
sensors and methods for real-time gait analysis. They focused on the most widely utilized sensors and
methods in clinical settings for pathological gaits. The limitations of this study are: (i) the authors
didn’t mention the period of works included in the paper, (ii) 19 studies out of 113 were using ML (and
fewer of them DL), (iii) commonly used datasets for gait analysis are not discussed. Kolaghassi et al. [54]
performed a systematic review of gait analysis and prediction for lower limb robotic systems using
intelligent algorithms. The limitations of this study are: (i) 3 studies out of 41 used DL, (ii) commonly
used datasets for gait analysis are not discussed. Cicirelli et al. [55] reviewed a highly consistent work
tackling gait analysis-related challenges: sensors, characteristics, and processing approaches have all
been analyzed. Their paper lists the most popular processing methods for classiőcation and clustering
as well as feature extraction and selection. Nevertheless, this paper has some limitations: (i) it mostly
reviewed those studies that covered neurodegenerative diseases (NDDs), (ii) only 3 studies using DL for
gait analysis are reported, (iii) commonly used datasets for gait analysis are not discussed. Hutabarat
et al. [33] provides a comprehensive overview of the latest developments in wearable sensors for gait
analysis. The review covers a range of topics, including the utilization of wearable gait analysis systems,
the types of sensor systems and their corresponding attachment locations, as well as the algorithms
employed for analysis. Most of the studies in this article use inertial measurement unit (IMU) sensors to
collect data. Finally, Khera et al. [56] aims to provide readers with an overview of the main approaches
utilizing ML techniques for gait analysis and rehabilitation. It is worth noticing that few studies in
this review discuss papers using DL for gait analysis.
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Table 2.1: A summary of related surveys

No Ref Year Studies
included

Type of survey Databases Discussed
datasets

Studies
included
using DL

Studies
included

using
MTL

No. of
stud-
ies

1 [32] 2021 Not
mentioned

systematic
review

Scopus, WOS,
Cochrane, and PubMed

No Less than 5% No 113

2 [54] 2021 1989 ś May
2020

systematic
review

IEEE Explore and
Scopus

No Around 7% No 41

3 [55] 2021 2011-2020 review IEEE Explore,
ScienceDirect, Scopus,
PubMed, and ACM

No Less than 5% No Not
men-
tioned

4 [33] 2021 2011 ś 2020 review IEEE Explore, PubMed,
Scopus, and WOS

No Less than 5% No 76

5 [56] 2020 1980 - 2019 review IEEE Explore, WOS,
PubMed, Mendeley,

Elsevier, ScienceDirect,
Springer Link,

Cochrane, Wiley Online
Library

No Around 10% No 43

From these observations summarized in Tab. 2.1, we propose to conduct a systematic and compre-
hensive review of gait analysis using DL. Therefore, our study focuses on articles published between
1989 to October 2023.

The primary contributions of this chapter are outlined below:

1. A systematic map of 55 primary studies based on the Preferred Reporting Items for Systematic
literature review and Meta-Analysis (PRISMA) framework;

2. An assessment of the literature on gait analysis across four dimensions: DL approaches, datasets,
quality metrics, and the impact of MTL techniques;

3. An overview of the challenges, opportunities, and recommendations for future research in the
őeld.

This systematic literature review (SLR) offers a comprehensive and up-to-date examination of gait
analysis across őve key research areas. The analysis is thorough and provides valuable insights into
the major challenges facing the őeld, as well as potential avenues for future research. To the best of
our knowledge, no existing SLR comprehensively addresses all aspects of gait analysis.

The remainder of the article is structured as follows: Section 2.2 summarizes the research design
of this SLR. The results of the systematic mapping study, along with the most pertinent publications
based on quality assessment criteria, are covered in Section 2.3.Section 2.4 lists the problems and
research gaps. Section 2.5 provides recommendations and future research topics. Finally, Section 2.6
summarizes the SLR.

2.1.2 Background Information

2.1.2.1 Quantified Gait Phases: Related Information

Gait describes how we walk.Gait analysis is the study of walking patterns, applicable not only to
humans but also to other beings [57]. Multiple parameters are observed and evaluated in QGA. These
parameters often fall within the normal ranges of healthy gait, which vary according to anthropometric
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characteristics such as age, height, and limb lengths [58]. Parameters in abnormal gait often diverge
from these ranges. Each of the parameters provided in this section has been detected, predicted, and
examined using different methodologies in QGA.

Gait Phases: Gait is a periodic activity, with each period referred to as the gait cycle. The gait
cycle, illustrated in Figure 2.1, consists of two main phases: the stance, , where the lower limb is in
ground contact, and a swing phase, where there is no contact.
There are four segments to the stance phase: (1) initial contact: which starts with a heel strike,
also known as the loading response, (2) midstance: the moment the foot is on the ground due to a
dorsiŕexion moment (3) terminal stance: when the heel starts to lift off the ground; and (4) pre-swing:
the ő ground point of contact before the swing phase begins. The swing phase is divided into three
segments: (1) initial swing, (2) mid-swing, and (3) terminal swing. In total, there are seven segments
in a gait cycle, as shown in Figure 2.1. Forward movement is achieved by alternating between the right
and left feet. There are periods of single support, where only one leg is in contact with the ground,
and periods of double support, where both legs are in contact with the ground [58].

Figure 2.1: Phases in the gait cycle. [1]

Anatomical Planes in a Human: our body moves in three anatomical planes that can be used
to explain exercise and other activities:

• The coronal (frontal) plane divides the body’s anterior and posterior halves.

• The sagittal (longitudinal) plane divides the body’s left and right halves.

• The body’s top (superior) and lower (inferior) halves are divided by the transverse (axial) plane.

Joint Angle: Every gait cycle results in a periodic change in the hip, knee, ankle, and foot joint
angles for the three planes. Most of the movement is visible in the sagittal plane [58]. Joint angles
are thought to be a kinematic part of walking [17]. Their second-time derivatives, angular acceleration
and velocity, are also often seen and recorded.

Moment (Gait Kinetic): Moments fall under the category of kinetic gait parameters. During
the gait, muscles generate moments of force across joints.

2.1.2.2 Deep Learning Algorithms

Our focus in this study is on those studies that are using DL for gait analysis. In this section, we will
describe DNNs that are commonly applied for gait analysis.
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components: a cell, an input gate, an output gate, and a forget gate. This forget gate was not originally
part of the LSTM network, but was later introduced by Gers et al. [63] to enable the network to reset
its state. The cell in an LSTM unit serves as a memory mechanism, capable of retaining values over
arbitrary time intervals. The three gates (input, output, and forget) regulate the ŕow of information
associated with the cell. This structure allows LSTM networks to effectively manage and process
sequential data with long-term dependencies, making them particularly useful for tasks involving time
series or sequential information [62].

Attention Mechanism: DL approaches, such as attention models, are employed to provide
enhanced focus on speciőc components of input data [64]. In DL, the attention mechanism mimics
the human brain’s ability to concentrate on particular elements and recognize their importance. This
mechanism is typically implemented in one of two ways within a network’s architecture: self-attention
which focuses on maintaining and quantifying interdependent relationships between input elements
and general attention which concentrates on the relationships between input and output elements.

For instance, when observing an image, the human brain initially focuses on a speciőc aspect with
high resolution while perceiving the surrounding areas with lower resolution. As the brain begins to
comprehend the image, it dynamically adjusts its focal point to thoroughly understand all components.
The attention mechanism in DL models operates similarly, allowing the network to prioritize certain
parts of the input data dynamically. This approach enables the model to allocate computational
resources more efficiently and effectively, leading to improved performance on various tasks, especially
those involving complex or long-range dependencies in the data.

2.2 Research Design

In this study, we have applied systematic mapping as a research methodology for reviewing the lit-
erature [65]. This review is a ‘systematic’ way of exploring existing literature on gait analysis using
DL. This SLR consists of four essential steps: planning and searching for primary studies, collecting
studies, extracting data, and synthesizing data. The őrst step is to come up with research questions
and goals. The criteria for choosing studies, selecting studies, coming up with keywords for research
and search queries, and judging the quality of extracted studies are all part of the second step. In this
step, we choose a group of keywords and boolean operators to extract only the most relevant papers
from the literature. The data extraction step (third step) uses strategies for getting data from speciőc
studies. The quality assessment of selected studies is the last step.

This methodical approach ensures a comprehensive and unbiased review of the literature, providing
a clear overview of the current state of research in the őeld.

2.2.1 Research Questions

This literature review’s primary goal is to investigate various DL techniques applied in gait analysis.
Table 2.2 lists the research questions (RQs) to achieve the primary goal.

Table 2.2: Research questions for a literature review

RQ Research Questions

RQ1 Which DL techniques have been used for QGA?
RQ2 What are the major databases used in QGA?
RQ3 What are the various metrics for evaluating the performance

of different models used in QGA?
RQ4 How MTL can improve the performance of models in QGA?
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2.2.2 Research Objectives

The research objectives of this literature review are given below:

• To investigate the existing traditional and advanced DL techniques and approaches for QGA.

• To explore the existing databases used for QGA.

• To investigate various evaluation metrics used to measure the performance of QGA.

• To investigate how MTL can help in better analysis of QGA.

2.2.3 Search strategy to retrieve primary studies

This part starts with choosing a set of keywords that reŕect the topic of this literature review, along
with Boolean operators. All authors participated in selecting keywords that helped us extract all
related literature on gait analysis using DL. Table 2.3 shows the keywords we applied to databases
to extract related studies. Query 1 was used to select all studies on gait analysis that used DL, and
Query 2 was used to determine those studies that used MTL. In the end, we combine both queries
using the OR operator. Three databases, IEEE, Web of Science, and SCOPUS have been searched
for publications using the search query mentioned in Table 2.3. The search query was used to őnd
relevant publications from the chosen databases published in English between 1989 and October 2023.
It was applied to the article title, abstract, and keywords. We applied Query 1 and Query 2 separately;
Query 1 identiőed 293 studies, and Query 2 identiőed 75 studies. The identical studies from different
databases were removed; only distinctive copies were retained, reducing the number of papers to 203.

2.2.4 Article Screening and Selection Criteria

After duplicate records were eliminated, the remaining 203 studies were examined. The retrieved
publications were screened based on their title, abstracts, and keywords. The authors decided on
inclusion and exclusion criteria to őnd these studies. Articles were added or removed based on a
majority vote on all inconsistencies. A őnal decision was also made in the event of a tie between all the
authors. The screening of all articles using the title, abstract, and keyword-based screening method is
shown in Figure 2.4. Additionally, only 55 publicationsÐout of a total of 145Ðwere chosen for primary
studies; the remaining articles were disregarded.

We use the following inclusion criteria:

• The article must be published before October 2023.

• The article must be published in a journal, but concerning Query 2, we also selected conference
papers due to limited studies that are using MTL techniques.

• The article exploits DL.

• The article must use a sensor(s) to collect gait data.

• The article must use only gait data.

• The purpose of the article must be QGA.

We use the following exclusion criteria:

• The article does not use DL.

• The article’s domain is not the őeld of machine learning for QGA.

• The article does not use any other type of data except gait (like speech).
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algorithm exhibiting exceptional accuracy in detecting various gait events across diverse pathologies,
surpassing state-of-the-art heuristic methods with detection rates above 99% for initial contact (IC)
events and over 95% for FO events, achieved within milliseconds. Collectively, these studies show that
DL methods can accurately őnd gait events in people with a variety of pathologies. They do this
quickly and with great accuracy, which is important for accurate assessment and intervention plans.

Di et al.[75] aimed to devise a MLP architecture exclusively using knee-joint angle data from
electrogoniometers to accurately identify gait phases and events. Conducted on 23 healthy adults
without prior pathologies or orthopedic surgeries impacting leg mechanics, the study assessed average
participant characteristics: mean height (173±10 cm), mass (63.3±12.4 kg), and age (23.8±1.9 years).
By using MLP architecture, their method showed high accuracy (90.6±2.9%) in evaluating the timing
of heel-strike and toe-off, working well even for people who were not in the initial training dataset.
Meanwhile, Ling et al.[76] proposed a domain adaptive CNN (DACNN) model for gait phase and
event recognition using surface EMG data. This model was designed to pre-train on a comfortable
gait speed and adapt quickly to new gait speeds. Their study involved four healthy volunteers without
muscle conditions, with an average age between 23 and 26 years. Using different CNN-based backbone
models that had already been trained on comfortable walking speed data, the model was able to
adapt to different walking speeds using architectures such as LeNet, AlexNet, and fusion-data-CNN
(FDCNN). Their evaluation showcased promising accuracy in identifying gait phases at different speeds,
underscoring its potential application across varied gait scenarios after minimal recalibration.

2.3.1.2 Classification of Healthy and Pathological gait

In the past, IMUs have shown a high success rate of around 95% in detecting abnormalities of gait,
which accurately predict gait abnormalities with a high asymmetry score[56]. The ML models utilized
in past studies included the hierarchical clustering algorithm [77], SVM [43], LDA [78], KNN [79],
and Bayesian network [80]. Currently, CNNs and LSTMs have become popular choices for classifying
healthy and abnormal gait patterns. Nowadays, data is collected using IMU, ECG, EMG, and GRF.

El Maachi et al. [81] proposed a new intelligent system for detecting PD, which utilizes the 1D-
Convnet to analyze gait data. This study made use of the PhysioNet public database, consisting
of 166 participants, 93 individuals with PD, and 73 control subjects. Eight sensors were positioned
beneath each foot for every participant to measure vertical GRF. Their method also predicts PD
severity. They employed the uniőed Parkinson disease rating scale (UPDRS), the most common PD
assessment system [82]. The proposed algorithm achieved an accuracy of 98.7% for PD detection and
85.3% accuracy in predicting the severity of PD.

Alharthi et al. [83] proposed a 2D-DCNN model to classify PD and healthy subjects using GRF.
They used the open-access benchmark dataset, PhysioNet [84]. Four convolutional layers, an average
pooling layer, two fully connected layers, and 10 stacked layers comprise a 2D-DCNN model created for
PD severity classiőcation. Another network (parallel DCNN) produces the best classiőcation accuracy,
with mean performance and standard errors of 95.5% and 0.28%, respectively.

Sadeghzadehyazdi et al. [52] proposed an end-to-end CNN-LSTM model that captures spatiotem-
poral patterns for gait anomaly recognition using Kinect skeleton data. The sequence of normalized
skeletons was used in the study, with a length of 50 frames per sequence. Three different datasets
were used to evaluate the performance of the proposed model: the walking gait dataset, the MMGS
dataset, and the pathological gait dataset. On the walking dataset, the CNN-LSTM model achieved
90.57% accuracy. On the MMGS dataset, it achieved 82.71%, and on the pathological gait dataset, it
achieved 89.83% accuracy.

Zhu et al. [51] proposed a two-stream CNN for classifying healthy and pathological subjects. The
authors claimed existing work mostly applied DL on individual joint features, and they don’t consider
inter-joint features due to the complexity of smaller-scale medical datasets. So the authors proposed
an approach that explicitly takes individual and inter-joint features. One stream of CNN was used to
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Table 2.4: Detection of Gait Phases and Gait Events

Research
Article

Purpose Model
[Architecture]

Type of
Data

Dataset Performance
Metric

Results

Morbidoni
et al. [69]

Gait phase
prediction

5 MLPs [1, 2, 3, 4,
and 5 FCLs,
respectively.]

sEMGS
signals

23 Healthy
adults

Accuracy 94.9% for seen subjects and
93.4% on unseen subjects

Su and
Gutierrez-

Farewik [70]

Gait phase
prediction

LSTM-based [LUs
and FCLs depends
on the number of
future steps to

predict]

IMU 12 healthy
subjects
(thighs,

shanks, feet,
and pelvis)

Accuracy 95%

Di et al. [75] Gait phases
and event
detection

MLP [3 FCLs with
512, 256, and 128

neurons]

electrogoniometer,
foot-switches
(for foot-ŕoor-
contact), and

sEMG

23 healthy
subjects Mean

Absolute
Error (MAE)
and Accuracy

MAE: 29.4±13.7ms for HS
and 99.5±28.9ms for TO

detection, Accuracy:
90.6%±2.9% for gait phase

detection

Filtjens et
al. [72]

Gait event
detection

Temporal CNN retro-reŕective
markers

15 patients
with PD

F1-Score For FOG-trials, F1 scores of
0.995 and 0.992 were

obtained for IC and EC,
respectively. For functional

gait trials, F1 scores of 0.997
and 0.999 were obtained for

IC and EC, respectively.

Lempereur
et al. [47]

Gait event
detection

DeepEvent [3 BLs
(800 units)]

GRF 226
pathological

children

Time and
Conődence

Interval (ms)

Foot Strike: 5.5 [0.9; 10.2]
and Foot Off: 10.7 [5.4; 15.9]

Wu et
al. [71]

Gait phase
prediction

GCMM goniometers
and FSRss

10 Healthy
subjects

Accuracy 97.34%

Ling et
al. [76]

Gait phases
and event
detection

Domain Adaptive
CNN

sEMG 4 healthy
subjects

MAE and
Accuracy

Accuracy: 58.13% for
AlexNet, 81.56% for LeNet,

and 81.53% for FDCNN. The
average MAEs for gait event
identiőcation are 48, 85, and

66 ms, respectively.

Arshad et
al. [73]

Gait event
detection

CNN, RNN,
CNN-RNN with

and without
attention

mechanism

IMU 169 (94
healthy and 75
pathological)

subjects

Accuracy Highest accuracy were
99.73% for the

CNN-BiGRU-Att model

Dumphart
et al. [74]

Gait event
detection

LSTM-based [3
BLs (200 units) +

DrL + DL]

force plates 1272 (61
healthy and

1211
pathological)

subjects

MAE Detection rate for IC events
is above 99% and for FO

events is above 95%

Note: FCL = Fully Connected Layer, BL = Bi-LSTM Layer, DrL = Dropout Layer, and LU = LSTM units

learn the joint position, and another was responsible for learning the relative joint displacement. After
that, they implemented a mid-layer fusion module to concatenate the results of both streams for better
classiőcation. They used a dataset of skeletons from 45 subjects, including four classes. 10 are healthy,
4 have joint problems, 18 have muscle weakness, and the rest 13 have neurological defects. The ages of
the subjects range from 61 to 91 y.o.. Five of them were male, and 40 were female. 20 main joints were
considered to form the subject’s skeleton for input to the model. 5-fold cross-validation was used for
the evaluation. Using their proposed methodology, they got an overall 95% accuracy, 92% precision,
92% recall, and 92% F1-measure.

Kaur et al. [85] introduced a data-driven methodology for stride classiőcation in individuals with
MS, PD, and healthy older adults (HOA). They involved 33 participants across different age groups
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and conditions, performing two walking tasks on a sensor-equipped treadmill. The study utilized
sixteen ML algorithms, including traditional supervised ML and ML models, to establish baseline
performance. Multi-Scale RNN exhibited high accuracy in distinguishing between walking conditions
but the 1D CNN model achieved the highest accuracy, scoring 79.3%.

J. Yu et al. [86] developed a real-time motion data-based AI system using RF and LSTM to predict
geriatric stroke. The data were obtained from elderly Koreans walking with affixed wearable sensors.
Shoulders and quadriceps were targeted for the placement of the sensors. After processing the data,
they got 12 motion attributes, including angles and acceleration. The proposed system achieved high
prediction accuracy: from 98.25% for the C4.5 DT model to 98.72% for RF, 96.60% for XGBoost, and
98.99% for LSTM.

Chen et al. [87] proposed a CNN model for recognizing sarcopenia disease comprising both hardware
and software. The hardware is made up of multiple sensor modules (MSM), worn behind the ear and
used to collect EMG and gait (EAG) data. Biomedical and motion sensor algorithms (Bodi algorithm)
and leg health classiőcation net (LCNet) are the parts of the software. 21 men and 34 women between
20 and 81 y.o. participated in this study. Their weights range between 38 and 112 kg, with between 12
and 29 kg of total muscle mass. Patients with serious damage to their legs or spines were turned away.
We found that 19 successful subjects were at a high risk of sarcopenia. They used the Bodi method
to őgure out the gait features that feed an LCNet model, composed of a convolutional layer and two
FC layers. LCNet has 94.41% accuracy, 91.58% precision, 95.81% speciőcity, and 91.58% sensitivity.

D. Thakur and S. Biswas [88] proposed an attention-based DL system utilizing smartphone ac-
celerometer and gyroscope data to predict hemiplegic gait. They collected data from 28 participants,
divided into normal and hemiplegic groups. The hemiplegic individuals, who had experienced a stroke,
walked more than 15 steps on a ŕat surface. A novel Android smartphone application with tri-axial sen-
sors collected data at a frequency of 50 Hz. A CNN-LSTM architecture automatically learns features
from sensory data, leveraging the strengths of both CNN and LSTM for effective feature extraction and
pattern recognition. The study recommended combining automatically learned and hand-engineered
features from sensory data. An attention network adjusted the importance of the different features,
achieving an impressive accuracy rate of 86%, a precision rate of 80%, a recall rate of 100%, and an
F1-score of 88.89% on an unseen dataset, demonstrating the model’s effectiveness.

2.3.1.3 Fall-risk Assessment

Tunca et al. [49] developed a Bi-LSTM model aimed at predicting fall risk in geriatric populations with
neurological disorders. This study involved 76 subjects, with 37 categorized as high-fall-risk due to a
history of falls within the year before data collection. They compared their model to other algorithms
like MLP, RF, hidden Markov model (HMM), and SVM. The Bi-LSTM model utilized complete data
sequences within a given window for sequence-to-label classiőcation and achieved an accuracy of 89%,
an AUC of 94.3% on the validation set, and 92.1% accuracy and 98.7% AUC on the test set.

Savadkoohi et al. [50] explored the recognition of human balance characteristics using One-One-One
architecture to predict fall risk. Their study included 163 participants with diverse ages and health
conditions. Assessing balance involved a protocol where participants maintained a stationary balance
on a force plate for 60 seconds across various conditions. The One-One-One architecture comprises a
1D-convolutional layer, an LSTM layer, and a dense layer. The authors employed the Falls Efficacy
Scale (FES) results to categorize falling into low, moderate, and high classes. The proposed model
exhibited outstanding efficiency, showcasing precision, sensitivity, and accuracy rates of 100%, 100%,
and 99.9% respectively.
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Table 2.5: Classiőcation of Healthy and Pathological Gait

Research
Article

Purpose Model [Architecture] Data Type Dataset Performance
Metric

Results

El
Maachi et

al. [81]

Detection of PD 1D-Convnet-based [two
parts: the őrst part

comprises 18 parallel 1D
CNNs, while the second

part is an FCN that
operates on the

concatenation of the 18
1D-CNNs]

vertical
GRF

PhysioNet:
imbalance dataset
of 350 walks with
70% of PD walks
(healthy subjects:
73 versus PD: 93)

Accuracy 98.70%

Alharthi
et al. [83]

Classiőcation of
PD and healthy

subjects

2D-DCNN [4 CLs +
APL + 2 FCLs]

GRF 166 healthy and
pathological

subjects

Accuracy 95.5±0.28%

Sadeghzad-
ehyazdi

et al. [52]

Gait anomaly
recognition

CNN-LSTM-based [3
CLs + MPL + FCL +

BL]

skeleton
images

Walking Gait
dataset (9

participants),
MMGS dataset (27
participants), and
Pathological gait

dataset (10
participants)

Accuracy Accuracy on
Walking Gait

dataset: 90.75%,
MMGS dataset:

83.64%, and
Pathological gait
dataset: 90.83%

Zhu et
al. [51]

Classiőcation of
healthy and
pathological

subjects

Two-stream CNN [2
parallel CLs + fusion

network (2 CLs + MPL
+ FCL)]

motion
capture suit

45 subjects
(healthy: 10,

patient with joint
problems: 4,

muscle weakness:
18, patient with

neurological
defects: 13)

Accuracy,
Precision,
Recall, and
F1-score

95% accuracy, 92%
precision, 92%
recall, and 92%

F1-measure

Kaur et
al. [85]

Classiőcation of
strides in

individuals with
MS, PD, and

HOA

Nine traditional ML
algorithms (LR, SVM,
and RBF SVM kernels,

DT, RF, AdaBoost,
XGBoost, GBM, and

MLP) and 7 DL
algorithms (1D-CNN,
ResNet, MSResNet,
TCN, Vanilla RNN,
LSTM, and Gated

Recurrent Unit (GRU))

two digital
cameras

33 subjects
(healthy:14,

patients with MS:
10, and patients

with PD: 9)

AUC 1D CNN AUC:
79.3%, residual
network: 78.1%

J. Yu et
al. [86]

Prediction of
geriatric stroke

C4.5 DT model, RF,
XGBoost, and LSTM

motion,
ECG,

EMG, and
foot sensor

Elderly Korean
subjects

Accuracy C4.5 DT model:
98.25%, RF:

98.72%, XGBoost:
96.60%, and

LSTM: 98.99%

Chen et
al. [87]

Recognition of
sarcopenia

disease

CNN-based [CL + 2
FCL]

IMU and
EMG sensor

55 Pathological
subjects

Accuracy,
Precision,
Speciőcity,

and
Sensitivity

94.41% accuracy,
91.58% precision,
95.81% speciőcity,

and 91.58%
sensitivity.

D.
Thakur
and S.

Biswas [88]

Prediction of
hemiplegia gait

CNN-LSTM with an
attention mechanism

accelerometer
and

gyroscope
signals

28 subjects
(healthy and
pathological)

Accuracy,
Precision,
Recall and
F1-score

Accuracy: 86%,
Precision of 80%,
recall (sensitivity)
100% and F1-score

of 88.89%
Note: BL = Bi-LSTM Layer, CL = Conv Layer, FCL = Fully Connected Layer, MPL = Max Pooling Layer, and
APL = Average Pooling Layer
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Table 2.6: Prediction of fall-risk and Freezing of Gait (FOG)

Research
Article

Purpose Model
[Architecture]

Data Type Dataset performance
Metric

Results

Tunca et
al. [49]

Prediction of
fall-risk

assessment

LSTM-based [2
architectures: one
with BL(10 units)
+ FCL(10 units),
another with 2
BLs(100 and 20
units) + FCL(10

units)]

IMU,
accelerometer,
and gyroscope

76 pathological
subjects

Accuracy 92.10%

Shalin et
al. [89]

Prediction of
FOG

LSTM-based [2
LLs(16 units)]

plantar
pressure
images

11 pathological
subjects

Sensitivity
and Speciőcity

Mean sensitivity:
82.1% (SD 6.2%)

and mean
speciőcity: 89.5%

(SD 3.6%)

Savadkoohi et
al. [50]

Prediction of
fall-risk

assessment

One-One-One Deep
Neural Networks
[Conv1D + LL +

FCL]

force plates 163 pathological
subjects

Accuracy,
Precision, and

Sensitivity

Accuracy: 99.9%,
Precision: 100%,
and Sensitivity:

100%

El-ziaat et
al. [90]

Prediction of
FOG

Deep Conv-LSTM
[3 CLs + MPLs +

3 LLs]

sensors (IMU
and

accelerometer)
data converted

into
spectrogram

images

Daphnet (10
subjects) and
Opportunity
Dataset (12
subjects) -

Healthy and
pathological

subjects

Accuracy 93.5%

Li et al. [91] Prediction of
FOG

Multimodal fusion
strategy consisting
Conv1D and LSTM

IMU and FSI 32 pathological
subjects

Sensitivity,
speciőcity,
accuracy,

AUC, EER,
and F1 value

Sensitivity: 0.924,
Speciőcity of:

0.983, Accuracy of:
96.3%, and F1
value of 0.943.

Note: LL = LSTM Layer, BL = Bi-LSTM Layer, CL = Conv Layer, FCL = Fully Connected Layer, and MPL =
Max Pooling Layer

2.3.1.4 Prediction of Freezing of Gait

Several research projects have looked into using advanced DL methods, like LSTM models and hybrid
architectures, to őnd and predict FOG in people who have been diagnosed with PD. Shalin et al. [89]
conducted a study centered on LSTM utilization based on plantar pressure data. Their investigation
included 11 male volunteers, focusing on real-time wearable applications and achieving impressive
accuracy in FOG detection. The best FOG detection model achieved a mean sensitivity of 82.1%, a
mean speciőcity of 89.5%, and 95% identiőcation of freeze episodes. El-ziaat et al. [90] proposed a deep
Conv-LSTM model with novel spectrogram image inputs derived from angular axes features. They
evaluated their approach on benchmark datasets (Daphnet and Opportunity datasets, see Table 2.12)
and achieved noteworthy accuracy, indicating potential advancements in FOG prediction accuracy. The
best results from DL models were 97.6% for 2D CNN and 93.5% for hybrid Conv-LSTM. Li et al [91]
adopted a multimodal fusion strategy, integrating force-sensitive insole (FSI) and IMU data from 32
individuals. Their feature-fusion-weighted model showcased excellent performance in predicting FOG
duration and frequency, emphasizing robustness in monitoring FOG occurrences. The feature-fusion-
weighted model yielded the best performance with a sensitivity of 92.4%, a speciőcity of 98.3%, an
accuracy of 96.3%, and an F1 value of 0.943. In conclusion, these studies show that DL-based methods
have a lot of potential for improving FOG detection and prediction. They also give us important
information that can help doctors better manage and treat people with PD.
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2.3.1.5 Other classification studies

The study [92] aimed to explore the effectiveness of a LSTM model using IMU sensor data to dif-
ferentiate between age groups and walking surfaces. Participants walked on ŕat and uneven surfaces
wearing athletic shoes while tethered to a safety harness in a motion-capture lab. Hu et al. classiőed
the data into ŕat or uneven surfaces and young or elderly categories. This study included seventeen
older (71.5±4.2 years, 165.7±9.3 cm, 67.6±12 kg) and eighteen young (27.0±4.7 years, 171.6±8.8 cm,
69.5±14.7 kg) adults. Two LSTM layers extracted information and the model predicted the most prob-
able walking surface. Evaluation metrics, including accuracy, precision, recall, and F1-score, showed
highly accurate and precise models, achieving 96.3% and 94.7% accuracy for type of surface and age
prediction, respectively. With high AUC values of 0.97 and 0.96 for surface and age, these models
demonstrate reliability for future research and applications.

Girka et al. [93] formulate the prediction of the appearance of the impact peak of GRF as a bi-
nary classiőcation problem. They utilized kinematic data as predictors, speciőcally raw signals in the
sagittal plane, which were collected using the Vicon motion capture system. 135 healthy individuals
participated in the study, comprising both elite and recreational runners who underwent measurements.
In total, the dataset was comprised of 1196 trials. This study aimed to investigate the anthropomet-
ric characteristics of the participants (body weight was 71.6±11.4 kg; height was 174.8±9.0 cm; leg
length was 91.8±5.4 cm; Body-Mass Index (BMI) 23.3±2.3 kg/m2). They proposed three layers CNN
each subsequently followed by a spatial pooling layer. The accuracy and F-measure metrics were
81.09%±2.58% and 82.07%±2.31%, respectively.

Hernandez et al. [94] proposed a CNN architecture for detecting and predicting walking activity
and gait period utilizing wearable sensors. Twelve healthy male individuals (from 24 to 34 y.o., between
1.74 and 1.79 meters tall, and weight between 77.6 and 85 kg) without abnormal gait were selected
at the University of Leeds’ Institute of Design, Robotics, and Optimization (iDRO). The authors
gathered information from three IMU sensors mounted to the subjects’ feet, shanks, and thighs. The
IMU sensors possess nine degrees of freedom and can supply data from the accelerometer, gyroscope,
and magnetometer. CNN was used for recognizing the walking activity and gait phases. Two layers
CNN identiőed from these wearable sensors level ground walking, ramp ascent, and ramp descent and
recognized walking activity and gait period with 100% and 98.63% accuracy, respectively.

Yen et al. [95] aimed to develop an LSTM model to accurately identify and categorize dynamically
the data of the center of pressure (COP) and GRF to distinguish between straight walking and turns.
Furthermore, the study seeks to uncover gait traits that have the potential to substitute EEG in
forecasting walking directional intentions. Following that, the gait intention classiőcation in the LSTM
model would involve treating GRF and COP as characteristics. A total of ten healthy individuals (age
of 24.3±1.79 years, height of 176±3.80 cm, and mass of 72±11.78 kg) were selected for the study. The
sliding window achieved a maximum accuracy of 94.8% within a time frame of 0.7s.

2.3.2 Regression Studies

In this section, we review the studies that worked on the prediction of kinematic or kinetic sequences
and the severity prediction of NDD (shown in Figure 2.7). In this part, a total of 24 studies were con-
ducted to investigate the use of various neural network architectures in different applications. In the
past, except DL, the kernel recursive least square method, principal component analysis, and best lin-
ear unbiased estimation were used for joint torque prediction [96], joint trajectory prediction [97, 98],
generation of trajectories [99], and limb motion estimation [100]. Currently, LSTMs, CNNs, and a
combination of both are the most used models. Other studies also utilized diverse DL models, includ-
ing generative adversarial network (GAN), MLP with CNN, and LSTM with an attention mechanism
(shown in Figure 2.7).
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Kolaghassi et al. [104] predicted the next 200-time steps based on the walking patterns of children
in two groups: typically developing (TD) and patients with CP. The authors compared four DL
models: FCN, CNN, LSTM, and Transformer. A dataset of hip, knee, and ankle ŕexion-extension
angles was measured concurrently for both lower limbs. Training and validation were performed with
TD data, whereas both TD and CP data were used for testing. According to the results, Transformer
(1.17◦) has the lowest MAEs for one-step-ahead TD gait prediction, whilst LSTM outperformed the
other methods in long-term predictions for both CP and TD data (MAE of 13.41◦ and 9.36◦ for 200
time-steps ahead, respectively).

Karakish et al. [105] proposed an intelligent embedded micro-controller for foot angular velocity
prediction using MLP and CNN. The input was the angular velocity and acceleration of the shank
based on IMU data. Sliding windows were used for prediction, with 5 time-frames as input and 10 time-
frames as output (about 200ms ahead). Five subjects from the human gait database (HUGaDB) were
used in the study (those with non-corrupted gyroscope data). Two experiments were performed with
and without current gait phase (CGP) information. The authors found that without CGP information,
CNN obtained better results (R2 of 0.944), but both achieved equivalent performance with CGP (R2

of 0.956 and 0.952 for CNN and MLP respectively).
Kolaghassi et al. [106] investigated the efficiency of deep MLPs in accurately predicting gait angles

of the hip, knee, and ankle in the sagittal plane at different speeds. The purpose of this research is
to control exoskeletons. The online gait dataset provided by Camargo et al. [107] served as the basis
for training the deep MLPs in our study. The dataset comprises gait data obtained from 22 physically
őt individuals. Participants were recorded as they walked on a treadmill at 28 different speeds.The
data was divided into three different speed ranges for training purposes: low, medium, and high. Each
model had an identical architecture, including the number of layers and nodes per layer. Four models
were trained using gait data at different speeds to predict gait data. According to the őndings, when
evaluated on the excluded speeds, the MAE found that the low- and high-speed models both showed
a decline in performance ranging from roughly 43.7% to 90.7%. Conversely, when evaluated on the
medium speeds that were not initially considered, the low high-speed model demonstrated a 2.8%
enhancement in short-term predictions and a 9.8% improvement in long-term predictions.

Song et al. [108] suggested a way to use surface EMG and an LSTM network to predict joint angles
online. Five healthy subjects took part in the data-collection experiment. The TrignoTM Wireless
EMG System from Delsys was used in this investigation to collect sEMG signals. Simultaneous data
collection was done on the plantar pressure signals, three joint angles (hip, knee, and ankle), and eight
muscles of the right leg of őve patients. For training the model, different inputs were used: sEMG
(unimodal) and sEMG combined with plantar pressure (multimodal). The input sliding window was
20points (about 16.7ms) to predict four different predicted time intervals (50, 100, 150, and 200 ms).
The range of the RMSE, MAE, and PCC obtained from the input of sEMG data were [1.63◦, 3.20◦],
[1.27◦, 2.36◦], and[0.9747, 0.9935], respectively.

2.3.2.2 Sensor-to-sensor sequence estimation

This category includes studies that estimate kinematic or kinetic sequences from sensors based on re-
gressions where the target output is computed with other types of sensors, usually to simplify compu-
tation and experimental settings (i.e., reduce the number of sensors). A typical example is a regression
task between a kinematic signal computed with an optoelectronic system based on a biomechanical
model and raw data from other sensors (i.e., IMU or accelerometers). In this case, the purpose is not
to predict future values of the sequence but to estimate another sequence based on another one in the
same time frame.

Senanayake et al. [109] aimed to utilize GAN to accurately transform IMU data into ankle joint
angles that are comparable to those obtained through motion-capture-based inverse kinematics. The
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Table 2.8: Future sub-sequence forecasting regression studies

Research
Article

Purpose Model
[Architecture]

Data Type Dataset performance
Metric

Results

Su and
Gutierrez-
Farewik [70]

Prediction of the
angular velocity
of the shank,

foot, and thigh
segments (next 5

and 10
time-steps)

LSTM-based [LUs
and FCLs depends
on the number of
future steps to

predict]

IMU 12 healthy
subjects
(thighs,

shanks, feet,
and pelvis)

RMSE and
correlation
coefficient

RMSE: 2.4±0.55
and correlation
value > 0.98

Gholamie
al. [101]

Forecasting gait
trajectories of

the ankle, knee,
and hip up to

300ms

CNN-based [4 CLs
+ MPL]

IMU 10 healthy
subjects

RMSE < 3.5 and 6.5 in
intra- and

inter-participant
scenarios

Sharma
and Rom-

bokas
[102]

Prediction of the
knee and ankle
motion (next 1

gait cycle)

LSTM-based [2
parallel LLs + FL]

egocentric vision
data using eye
tracker and

Xsens Awinda
suit, consisting
of 17 body-worn

sensors

23 healthy
subjects

RMSE and
PCC

RMSE of knee and
ankle: 0.129±0.057
and 0.119±0.052.
PCC of knee and
ankle: 0.799±0.205
and 0.637±0.264

Kolaghassi
et

al. [103]

Forecasting gait
trajectories of

the ankle, knee,
and hip up to

200ms

CNN-based [4 CLs]
and LSTM-based [4

LLs(128 units)]

VICON (motion
capture system)

Gillette
Children’s
Speciality
Healthcare

dataset

MAE 0.095ś2.531 degrees
for the LSTM and
0.129ś2.840 degrees

for the CNN

Kolaghassi
et

al. [104]

Forecasting gait
trajectories of

the ankle, knee,
and hip up to

200ms

LSTM-based [2
LLs(100 units) +
FCL], FCN [FCLs
+ sigmoid layer],
CNN [4 CLs + 2

MPLs + FCL] and
Transformer

IMU 10 typically
developing

children (TD)
and 11 CP
patients

Mean Squared
Error (MSE)
and MAE

FCN and
Transformer with

MAEs for
one-step-ahead
predictions are

between
1.17◦-1.63◦.

Karakish
et

al. [105]

Angular velocity
prediction up to

200ms

MLP-bases and
CNN-based

IMU Five healthy
subjects

Human Gait
Database

(shank and
foot)

Bias, MAE,
RMSE, R2,
and PCC

R
2 of 0.956 and

0.952 for CNN and
MLP respectively

Kolaghassi
et

al. [106]

Prediction of
gait angles of the

hip, knee, and
ankle in the

sagittal plane at
different speeds

FCNN [5 FCLs(100
neurons) + FCL]

OpenSim’s
inverse

kinematics tool
(motion capture

data)

22 healthy
Subjects

MAE and
MSE

please see the
section for details

Song et
al. [108]

Prediction of
joints angles at
four different
time intervals
(50, 100, 150,
and 200 ms)

LSTM-based sEMG 5 healthy
subjects

RMSE, MAE,
and PCC

[1.63°,3.20°], [1.27°,
2.36°], and [0.9747,

0.9935]

Note: FCL = Fully Connected Layer, CL = Conv Layer, LL = LSTM Layer, and MPL = Max Pooling Layer
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study recruited nine participants with no prior history of lower limb pathology. The authors trained
a GAN using gait data collected at two different walking speeds. The objective was to predict ankle
kinematics solely from IMU data for a third walking speed. The results showed that the RMSE
difference for ankle dorsiŕexion was 3.8◦, inversion was 2.1◦, and axial rotation was 3.5◦.

Rapp et al. [110] proposed a CNN and LSTM for estimating joint kinematics (hip, knee, and
ankle) using IMUs. The authors used marker-based motion capture data. After removing data with
marker-tracking errors, 420 subjects of walking trials and 580 subjects of running trials were chosen for
further analysis. Separate predictive models were developed for each joint. To predict lower extremity
kinematics on left-out subjects with a mean RMSE of less than 1.27◦±0.38◦ in ŕexion/extension, less
than 2.52◦±0.98◦ in adduction/abduction, and less than 3.34◦±1.02◦ in internal/external rotation.

Hernandez et al. [111] proposed a DeepConvLSTM (combining convolutional layers and LSTM
modules) to estimate marker-based kinematics from IMU data during walking and running at different
speeds. A total of 27 healthy participants were recruited. For each DOF, the average r, MAE, and
mean error (ME) ranged from 0.67 (0.23) to 0.99 (0.01), 2.2 (0.9) to 5.1 (2.7), and -0.29 (2.06) to 0.85
(5.58), respectively, when all speed circumstances were taken into account. A signiőcant connection
(r: 0.7-0.9) is seen for the hip left rotation and ankle right/left inversion, while all other DOFs showed
a signiőcant association (r: 0.9). Moderate correlation (r: 0.4ś0.7) is seen for the right hip rotation
and lumbar extension.

Hossain et al. [112] presented a DeepBBWAE-Net (ensemble technique using base learners) for
mapping joint angles using a reduced number of IMU sensors. Their study optimizes the sensor setup
to achieve accurate joint angle estimation. Ten healthy individuals participated in the study. Two
IMU sensors were utilized and placed on the participants’ shoes. Multiple trials were conducted for
each participant in different conditions: treadmill, overground, stair, and slope. They utilized the
sagittal plane angles of the hip, knee, and ankle for both lower limbs. The authors implement őve
networks combining CNNs and GRU-based RNN as base learners for their framework. DeepBBWAE-
Net achieved RMSE values of 3.77◦, 4.62◦, and 3.22◦ degrees for hip, knee, and ankle joints, resp.,
during treadmill walking and RMSE values of 4.32◦, 4.28◦, and 3.09◦ for the hip, knee, and ankle
joints, resp., during overground walking.

Tan et al. [113] utilized 2 or 4 IMUs sensors for capturing data from 17 individuals with knee
osteoarthritis to forecast knee ŕexion/extension via stacked Bi-LSTM. A total of 28 retroreŕective
markers were affixed to the pelvis and lower limbs of the participant. The performance of a single-leg
model was compared to that of a double-leg model in terms of prediction error. The results indicated
that the single-leg model exhibited signiőcantly lower prediction error than the double-leg model. The
RMSE was found to range from 7.04 (2.6) to 11.78 (6.04), while the MAE ranged from 5.99 (2.34) to
10.37 (5.44). R2 score was also calculated and ranged from 0.85 to 0.99.

Heeb et al. [114] proposed ML and DL models to measure the power of the ankle joint using force-
myography (FMG) sensors. Nine young, healthy men took part in this study and gave information that
was used in it. Before the experiment, each person was given an FMG strap with eight FSR devices that
they wore around their waist. About 2 inches above the ankle, the FMG strap was wrapped around
the participant’s right leg. During the experiment, each person walked on the force-plate-equipped
treadmill for one minute at each of the őve different speeds (0.4, 0.7, 1.0, 1.3, and 1.6 m/s). The
authors implemented LSTM, 1-D CNN, and Cat Boost Regressor (CBR) to achieve the purpose of the
study. Results showed that the LSTM model using time-domain features got a correlation coefficient
of over R = 0.91±0.07, and the CNN model using raw features got R = 0.89±0.13.

Hossain et al. [115] introduced a new DL model called Kinetics-FM-DLR-Ensemble-Net. The
model is designed to predict the moments of the hip, knee, and ankle joints, as well as the 3-D
GRFs, using data from three IMU sensors placed on the thigh, shank, and foot. The model was
tested under various walking conditions commonly encountered in daily life, including treadmills, level
ground, stairs, and ramps. The primary component of the Kinetics-FM-DLR-Ensemble-Net model is
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the Kinetics-FM-DLR-Net model. They utilized bagging methodologies by employing Kinetics-FM-
DLR-Net to construct Kinetics-FM-DLR-Ensemble-Net. Kinetics-FM-DLR-Net is mostly made up of
two Kinetics-FM-Nets. Each model was trained using two different loss functions, and then they were
combined using a new method called Double Loss Regression (DLR). Kinetics-FM-Net is constructed
by combining Kinetics-Net with a fusion module (FM) component. Kinetics-Net is constructed by
incorporating various DL layers such as GRU, Conv1D, Conv2D, and fully connected dense layers.
This study utilized two openly accessible datasets, Dataset A [107] and Dataset B [116]. Dataset A
has data from twenty participants and it was employed to train a model. Dataset B has seventeen
participants. The proposed model achieved RMSE of 4.32±0.81 and 7.43±0.71 for Dataset A and
Dataset B, respectively.

2.3.2.3 Condition/joint translation

This category is similar to the previous one, but instead of estimating from different types of sensors
for the same segment or joint movement, they estimate from another joint data (i.e., estimating knee
kinematics from foot kinematics) or another condition (i.e., estimating running kinematics from gait
kinematics) using the same type of sensors.

He et al. [117] proposed an LSTM-based model to investigate the relationship between upper and
lower limb movements. They predicted the hip and knee movements on one side of the lower limb
using the shoulder and elbow movements on the other side of the upper limb. The authors recruited
10 healthy participants. A unique Kinect-Treadmill data collection platform was created for walking
at various velocities (3.0, 3.5, 4.0, and 4.5km/h). The average RMSE of the prediction of the lower
limb for all velocities was around 2.4◦±0.55◦.

Chow et al. [118] compared accelerometer and gyroscope in forecasting level-ground running kine-
matics (hip and knee ŕexion/extension) from treadmill running kinematics using a CNN model. The
training data for treadmill running kinematics were measured using a single IMU on the anteromedial
side of the right tibia and level-ground running kinematics were measured by four IMUs placed on the
lower extremities. Ten healthy recreational runners were included in the study.The results showed that
the R2 scores ranged from 0.85 to 0.96 for intraparticipant comparisons and 0.7 to 0.92 for interpar-
ticipant comparisons. The RMSE values of running kinematics ranged from 3.2◦ to 7.1◦ and from 6.3◦

to 6.8◦ in intraparticipant and interparticipant tests, respectively.
Shariő Renani et al. [119] proposed a Bi-LSTM-based model to predict the three-dimensional

hip and knee kinematics during gait using either experimentally measured IMU data, synthetically
generated IMU data, or a combination of both (pelvis, left thigh, left shank, and left foot). The study
used 30 participants. Two separate neural network models were developed to predict joint angles from
the related IMU data, one for the knee and one for hip kinematics. Both architectures consist of a
Bi-LSTM layer followed by two fully connected layers. The authors concluded that using synthetic data
for training and prediction improves hip and knee results compared to measured data from subjects
(RMSE of the hip: 2.3◦ and knee: 2.9◦). When trained using synthetic data and measurements, models
got better results than when using only IMU synthetic data (RMSE of the hip: 1.9◦ and knee: 1.7◦).

Dey & Schilling [120] introduced an online or offline foot angle trajectory prediction network (FATP-
N), which is based on temporal convolution. They predict the sagittal foot angular locations during
natural walking (different speeds, cadences, and not necessarily in a straight line) based on the shank
angular position measured with a single wearable IMU motion tracker sensor. They also evaluated their
method with various baseline and cutting-edge data-driven methods (LSTM, GRU, LR, and GPR) for
predicting gait trajectories. Shank and foot angular positions were measured on seven healthy people.
Wireless motion tracker sensors (MTw Awinda, Xsens) were used to collect data at 100 Hz from
the subject’s shank and foot center of mass. A correlation coefficient of 0.98±0.01, an R2 score of
0.95±0.01, and an NRMSE of 4.7±0.9% were recorded by the offline-trained FATP-N. Compared to
offline forecasts, the performance of the online predictions was marginally worse.
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Table 2.9: Sensor-to-sensor sequence estimation regression studies

Research
Article

Purpose Model
[Architecture]

Data Type Dataset performance
Metric

Results

Senanayake
et

al. [109]

Prediction of
ankle joint angles
from IMU data

GAN IMU 9 healthy
subjects

RMS 3.8◦, 2.1◦ and 3.5◦

for dorsiŕexion,
inversion, and axial

rotation,
respectively.

Rapp et
al. [110]

Prediction of
hip, knee, and

ankle joint angles
from IMU data

Conv1D and
LSTM-based

IMU 420 healthy
subjects

RMSE RMSE < 1.27
(0.38) in

ŕexion/extension,
< 2.52 (0.98) in ad-
duction/abduction,
and < 3.34 (1.02)

in internal/external
rotation

Hernandez
et

al. [111]

Estimation of
marker-based

kinematics from
IMU data

DeepConvLSTM [2
CLs + 2 LLs]

IMU 27 healthy
subjects

MAE and R MAE for the DOFs
ranged from
2.2(0.9)° to

5.1(2.7)° with an
average of 3.6(2.1)°.

Hossain
et

al. [112]

Prediction of
hip, knee, and

ankle joint angles
from IMU data

CNN-GRU IMU 10 healthy
subjects

RMSE 6.93-29.0

Tan et
al. [113]

Prediction of
knee ŕex-

tion/extension
from IMU data

Bi-LSTM-based [2
BLs + DrL + FCL]

IMU 17
pathological

subjects

RMSE , MAE,
and Pearson’s

R

RMSE, MAE, and
R ranged from

7.04(2.6) to
11.78(6.04),
5.99(2.34) to

10.37(5.44), and
0.85 to 0.99,
respectively.

Heeb et
al. [114]

Prediction of
ankle joint power

using FMG

LSTM-based
[LL(1024 neurons)
+ 4 FCLs(256, 128,

64, and 1
neurons)], and

CNN-based [3 CLs
+ 2 DrLs + 1D AP
+ 2 FCLs(128 and

1 neurons)]

FMG sensor 9 healthy
subjects

R, RMSE ,
and MAE

LSTM: R =
0.91±0.07 and

CNN: R =
0.89±0.13

Hossain
et

al. [115]

Prediction of
joint moments
and 3D GRFs
from IMU data

Kinetics-FM-DLR-
Ensemble-Net

consists of GRU,
Conv1D, Conv2D,

and FCLs

IMU Dataset A (20
healthy

subjects) and
Dataset B(17

healthy
subjects)

NRMSE and
PCC

4.32 and 0.929 for
Dataset A. 7.43
and 0.886 for
Dataset B

Note: FCL = Fully Connected Layer, CL = Conv Layer, LL = LSTM Layer, and MPL = Max Pooling Layer
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Ding et al. [121] proposed the LSTM-based model with an attention mechanism for motion predic-
tion of a subject’s limb using the motion of complementary limbs. Twenty-one subjects’ data were used
in that study for experiments. A total of six modes of walking were measured: ground-level walking,
stopped, ramp descent, ramp ascent, stair descent, stair ascent, and transition between them. Five
sensors, consisting of a gyroscope and an accelerometer, are placed on the subject’s body to extract the
data. The authors implemented four different models: two without an attention mechanism and two
with an attention mechanism. Two of them were using LSTM, and two of them were using Bi-LSTM.
The study used two joints, the left ankle, and the left hip, for motion predictions (linear accelera-
tion). Results showed that adding attention layers made 57% of the model parameters unnecessary.
At the same time, the prediction error was lower than with the LSTM model without the attention
mechanism. The NRMSE for the attention model was 9.06% for ankle acceleration and 7.64% for hip
acceleration. The MAE was 1.43m/sec2 and 3.20m/sec2 for the ankle and hip, respectively.

Lee and Asbeck [122] presented a foot placement prediction method based on GRU. This method
involves analyzing data from three IMU sensors, which are attached to the pelvis and feet, sequentially.
Two DL models were developed, with the őrst model focused on estimating the progression of gait and
the second model dedicated to predicting the next foot placement. Both models used GRU. The IMU
data and the ground truth foot placement data are gathered using an XSens MVN Link suit. A total
of ten healthy participants (8 male and 2 female) took part in the experiment. During the study,
participants were instructed to walk naturally on a treadmill. The pre-trained, base, and őne-tuned
models achieved mean distance errors of 6.99cm, 3.32cm, and 3.22cm, respectively.

Bajpai et al. [123] implemented an ANN called "foot2hip" that can accurately record gait kinemat-
ics over an extended period. Foot2hip utilizes foot kinematics and kinetics during walking to accurately
predict the angles of the ankle, knee, and hip joints in the sagittal plane. The CNN-LSTM-DNN-based
model (foot2hip) was composed of a series of layers, including convolution, max-pooling, LSTM, and
dense layers. A locally created insole and an outsole were utilized to analyze the dynamics and move-
ments of the foot, respectively. Data was gathered from a group of seven healthy male participants.
The knee joint had an RMSE of 3.04±0.20 and a correlation coefficient of 0.97±0.01. The hip joint
had an RMSE of 1.7±0.09 and a correlation coefficient of 0.95±0.01. Lastly, the ankle joint had an
RMSE of 1.32±0.08 and a correlation coefficient of 0.91±0.02.

2.3.2.4 Clinical scores prediction

In this category, we regroup studies that predict continuous clinical variables (i.e. pathology severity
scores) from gait data.

Berke Erdaş et al. [124] introduced a method for developing a disease severity grading system
for NDDs, including amyotrophic lateral sclerosis (ALS), huntington’s disease (HD), and PD. The
proposed approach utilizes 1D and 2D CNN and gait data represented by a Quick Response code to
achieve high levels of effectiveness and reliability. The PhysioNet database was utilized to evaluate the
efficiency of the developed algorithms. The disease severity grades of Parkinson’s patients from the HY
scale, a worldwide scale, and the TFC degree of Huntington patients from the UHDRS scale, which
measures symptom severity, were estimated. Since ALS patients have no disease degree information,
the number of months since diagnosis has been estimated. They computed the R values for ALS, HD,
and PD and found them to be (0.61, 0.39, and 0.7) and (0.88, 0.83, and 0.79), respectively for 1D and
2D CNN. The study also computed the R2 value for three subsets, which resulted in values of (0.37,
0.15, and 0.49) and (0.79, 0.69, and 0.62), respectively.

Eguchi et al. [125] utilized gait videos to predict the score on the PD rating scale. They obtained
737 consecutive gait videos of 74 patients with PD and their corresponding neurologist-rated UPDRS
scores retrospectively. A CNN model was used to predict the total UPDRS part III score and four
subscores related to axial symptoms, bradykinesia, rigidity, and tremor. For the entire UPDRS part
III score and the subscores of axial symptoms, bradykinesia, rigidity, and tremor in the test dataset,
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the R2 values between the model-predicted and neurologist-rated values were 0.59, 0.77, 0.56, 0.46, and
0.0, respectively. They reported that the performance was relatively low for patients with signiőcant
symptoms.

2.3.3 Gait analysis using Multi-task learning

Most of the studies using MTL are devoted to gait-based identiőcation and authentication, not for
clinical gait analysis. We could only őnd 5 studies, that come under the inclusion criteria of this
review.

A study by Nait Aicha et al. [126] compared how well CNN, LSTM and a combined ConvLSTM
used raw accelerometer data to predict falls in older adults. By incorporating auxiliary tasks like
gender and age, the models showed improved performance. The dataset consisted of 296 subjects, 191
of whom had experienced at least one fall in the past six months. Their experiments involved various
data divisions at both subject and sample levels, incorporating MTL to evaluate fall risk (primary
task), and subject identiőcation, age, gender, weight, and height prediction (auxiliary tasks). The
ConvLSTM architecture generally outperformed CNN and LSTM, with the AUC of 0.75.

Yu et al. [127] came up with a Deep Multi-source Multi-task Learning (DMML) approach that
gives a framework for assessing fall risk and PD severity based on accelerometer and gyroscope data.
The goal of MTL is to improve performance of every single task by simultaneously evaluating the fall
risk and PD severity. The authors used timed up-and-go (TUG) test data to evaluate the model. Five
IMU sensors were put on 22 PD people aged 65 or over to track how they moved during the test. The
training had a total of three stages: in stage 1, multi-layer CNN extract features that are speciőc to a
source. In stage 2, these networks pull out general features that are common to all sources. Finally,
the last layer is for MTL, where each task learns its features from the generic features learned in stage
2. Their model greatly outperforms the benchmark approaches, achieving an F-measure of 0.940 for
assessing fall risks and an RMSE of 0.060 for measuring PD severities.

Zhang et al. [128] proposed a multi-task CNN for age estimation using gait. They used gender
information as another task to improve age estimation. This study used a Large Population Dataset
with Age (OULP-Age) dataset consisting of gait energy image (GEI). 28,923 subjects were used for
training, 3000 for validation, and 31,923 for testing the model. The residual architecture of ConvNet
was adopted for the model, following fully connected layers of each task. They got the 5.47 MAE for
age estimation and 96.26% CCR.

Aoki et al. [129] implemented multi-task RNN (MRNN) to classify physically fatigued and non-
fatigued gait cycles. According to the authors, there are signiőcant intra-class variations in the gait
cycle due to differences in the stance phase (which foot is swinging or supporting). One branch of
MRNN is responsible for detecting the supporting foot as an auxiliary task, and the other is for the
main task of fatigue classiőcation. Eight healthy subjects were used for the experiments. The input
for the model was the gait cycle, represented as 3-D coordinates of body joints. The model contains
four independent RNN (IndRNN) layers, two common for both tasks, and two task-speciőc layers. The
overall AUC in leave-one-subject-out validation was 0.86±0.019, and in leave-one-day-out was 0.915.

Khan et al. [39] proposed a framework for patients with neurological diseases to optimize treatment
outcomes. A regression strategy was used to predict how patients’ joints would move after treatment
using a multi-task architecture with LSTM and Bi-LSTM models. Medical treatment data (MTD)
was added for context modeling, and a gating mechanism was used for model treatment interaction.
A total of 38 patients were used in the study with different neurological diseases, e.g., CP, MS, SCI,
stroke, or TBI. Data was collected using an optoelectronic Codamotion system. A total of 23 patients
were bilaterally affected, and the rest of them were unilaterally affected. Only the sagittal plane of
knee and ankle trajectories was used for the experiments. Seven models were used in the study; three
were without MTL, and four used MTL in their architecture. In all models, there were őve layers of
LSTMs or Bi-LSTMs in a serial architecture (without MTL) or a parallel one (with MTL). Leave-one-
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Table 2.10: Condition/joint translation and remaining regression studies

Research
Article

Purpose Model
[Architecture]

Data Type Dataset performance
Metric

Results

He et
al. [117]

Prediction of
lower limb using

upper limbs

LSTM-based Kinect sensor 10 healthy
subjects

RMSE 2.4±0.55

Chow et
al. [118]

Prediction of
level-ground

running
kinematics (hip

and knee
ŕexion/extension

values) by
treadmill
running

kinematics

CNN-based [4 CLs
+ MPL]

IMU data +
accelerometer
and gyroscope

10 healthy
subjects

R
2 and

Normalized
RMSE

Intraparticipant
and

interparticipant R
2

values: 0.85 to 0.96
and 0.7 to 0.92,
NRMSE values:

3.6% to 10.8% and
from 7.4% to

10.8%, respectively.

Shariő
Renani et
al. [119]

Prediction of hip
and knee

kinematics using
measured and
synthetically

generated IMU
data

BiLSTM separate
for Hip and Knee
[BL + 2 FCLs]

IMU 30 healthy
subjects

RMSE Hip: 1.9 degrees
and Knee: 1.7

degrees

Berke
Erdaş et
al. [124]

Severity
prediction of

NDD

1D CNN-based [1
CL + DrLs +
FCLs] and 2D

CNN-based [2 CLs
+ MPL + FCLs]

GRF data
converted into

QR images

PhysioNet (46
Healthy and
pathological

subjects)

R, R2, MAE,
Median
Absolute

Error
(MedAE),
MSE, and

RMSE

R and R
2 values

for ALS & Control:
0.88 and 0.79, HD
& Control: 0.83

and 0.69, and PD
& Control: 0.79

and 0.62.

Dey &
Schilling.

[120]

Prediction of
foot angular

locations during
natural walking
based on shank
angular position

FATP-N (TCN) [3
temporal

CLs(kernel size: 16,
32, and 64,

respectively) +
FCL]

Wireless motion
tracker sensors
(MTw Awinda,

Xsens)

7 healthy
subjects

R
2, NRMSE,

and
correlation
coefficient

R
2 score:

0.95±0.01,
NRMSE:

4.7±0.9%, and a
correlation

coefficient of
0.98±0.01.

Ding et
al. [121]

Prediction of the
motion of

subject’s leg
using

complementary
limbs

LSTM with an
attention

mechanism

IMU Bath Narual
Environment
HAR dataset
(21 healthy
subjects)

Mean
Absolute

Percentage
Error

(MAPE),
MAE and
NRMSE

Hip ś Ankle (MAE
(m/sec2): 1.43 ś
3.20, NRMSE:

7.64% ś 9.06%, and
MAPE: 13.37% ś

21.99%

Lee &
As-

beck [122]

Foot placement
prediction

GRU
(single-layered)

IMU 10 healthy
Subjects

RMSE and
mean distance
error (MDE)

please see the
section for details

Bajpai &
Joshi [123]

Prediction of the
ankle, knee, and
hip joints in the

sagittal plan
using foot

kinetics and
kimenatics

CNN-LSTM-DNN
based model

(foot2hip) [CL +
MPL + LL +

FCLs]

goniometer,
pressure insole,
and outsole with

six
Vertical-Cavity

Surface-Emitting
Laser (VCSEL)

sensors

7 healthy
subjects (

kinetics and
kinematics of

the foot)

RMSE and
PCC

3.04±0.20 and
0.97±0.01 for knee
joint. 1.7±0.09 and
0.95±0.01 for the

hip joint.
1.32±0.08 and

0.91±0.02 for ankle
joint.

Eguchi et
al. [125]

PD disease
rating scale score

prediction

CNN-based gait video 74 patients R
2 the R

2 values for
the total UPDRS
part III score was

0.59.
Note: LU = LSTM unit, BL = Bi-LSTM Layer, CL = Conv Layer, LL = Lstm Layer, FCL = Fully Connected
Layer, MPL = Max Pooling Layer, BNL = Batch Normalization Layer, DrL = Dropout Layer, and FL = Fusion Layer
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Table 2.11: Gait analysis using MTL

Research
Article

Purpose Model
[Architecture]

Data Type Dataset Performance
Metric

Results

Nait
Aicha et
al. [126]

Prediction of falls in
older adults

CNN, LSTM, and
ConvLSTM [5 CLs +

LL + DL]

triaxial ac-
celerometer

Fall risk
assessment in
older adults

(FARAO) 296

AUC (10-fold
cross-validation)

0.75

Yu et
al. [127]

Prediction of the fall
risk and severity of
conditions of PD

Multi-source
Multi-task Learning
(DMML) - CNN [4

parallel layers (2 CLs
+ 2 non-linear layers

+ 2 MPLs) +
DL(1000 neurons) +
2 parallel DLs (500

neurons)]

video timed up and
go (TUG)
dataset

For fall risk,
precision, recall,
and F-Measure.
For PD Severity
RMSE (10-fold
cross-validation)

Precision: 0.925,
Recall: 0.958,

FMeasure: 0.940
and RMSE: 0.060

Zhang et
al. [128]

Age estimation using
gait.

Multi-task CNN [CL
+ 2 parallel FCLs for

each task]

Gait Energy
Images

OULP-Age,
63,846

subjects

MAE and
Correct

Classiőcation
Rate (CCR)

MAE: 5.47 and
CCR: 98.10%

Aoki et
al. [129]

Classiőcation of
physically fatigued

and non-fatigued gait
cycles

Multi-task RNN kinect
sensor

8 healthy
subjects

AUC, Sensitivity,
and Speciőcity

(Leave-one-
subject-out

Cross-validation)

AUC: 0.860±0.019
Sensitivity:
0.763±0.045
Speciőcity:
0.812±0.035

Khan et
al. [39]

Optimize treatment
outcomes (predicting
post-gait trajectories

of the knee and
ankle).

MTL using LSTM
and Bi-LSTM

optoelectronic
Codamotion

system

38
pathological
patients with

different
diseases

RMSE and R
2 lowest RMSE of

5.60◦ for the knee
and 3.77◦ for the

ankle

Note: DL = Dense Layer, CL = Conv Layer, LL = Lstm Layer, FCL = Fully Connected Layer, and MPL = Max
Pooling Layer

out cross-validation was used to assess the models’ performance. Results showed that MTL models
outperformed other models. The authors achieved the best results (lowest RMSE) of 5.60◦ for the knee
in TBI patients and 3.77◦ for the ankle in CP patients. In conclusion, the MTL models had the best
RMSE, ranging from 5.24◦ to 6.24◦.

2.3.4 Major Datasets Used in Gait Analysis

The present section provides an overview of the primary publicly-available datasets utilized for DL
applied to QGA. The majority of gait datasets available for research purposes consist of healthy sub-
jects. Few databases contain both information on healthy and pathological gait. Most pathological
gait datasets are not publicly available, usually for clinical data protection issues.
Two types of data are primarily available: (1) Vision-based: Images of skeletons, gait energy, silhou-
ettes, and other objects. (2) Wearable sensor-based: IMU data, accelerometer, gyroscope, magnetome-
ter, temperature, and other sensors are included in the sensor-based dataset. It is worth noting that
only one dataset offers optoelectronic marker-based data (Rueangsirarak et al. [130]).

2.3.4.1 OULP-Age “OU-ISIR Gait Database, Large Population Dataset with Age”

OULP-Age [131] is a large population dataset of human gait for gait-based age estimation. It is an
extended version of the OULP dataset. The databases consist of 63,846 subjects, with a balanced
gender ratio of 32,753 females and 31,093 males. The ages of the participants ranged from 2 to 90 y.o..
The database is a collection of GEIs of subjects. The total length of video contained in this dataset is
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44.3 hours. Each subject had a 2.5-s walking image sequence taken, with 640×480 pixel images and a
30 frames per second rate. More subjects belong to the age group 6ś10, and fewer subjects belong to
the age group 86ś90.

2.3.4.2 Bath Natural Environment HAR Data Set

Bath Natural HAR dataset was published by Sherratt in 2020 [132]. The dataset consists of a total of 22
participants. All of them were healthy subjects. Five nine-axis IMU sensors consisting of a gyroscope,
accelerometer, and magnetometer are placed onto the body: two on the legs at the ankles, two on
the torso at the hips, and one on the chest. The three axes’ linear acceleration, angular velocity, and
magnetic őeld were measured with each IMU sensor. The vector sum of the three linear accelerations
of the triaxial accelerometer was used to calculate the resulting acceleration. The sampling rate was
100 Hz, and 1.25 million samples were collected, corresponding to 209 minutes of data and 10,440
strides.

2.3.4.3 3d gait database

The dataset, published by Rueangsirarak et al. [130] in 2018, was collected from 45 senior Thai vol-
unteers residing in Chiang Mai retirement villages and nursing institutions. The study protocol was
approved by the Faculty of Associated Medical Sciences Ethics Council at Chiang Mai University.
Three medical professionals from the university’s College of Associated Medical Sciences evaluated
the participants and categorized their gait conditions into four groups: healthy, muscle weakness,
joint issues, and neurological defects. The participants, aged from 61 to 91, included 5 males and 40
females. The breakdown of gait conditions was as follows: 18 with muscle weakness, 13 with neurolog-
ical defects; 4 with joint problems, 10 healthy individuals. Data collection involved a motion capture
suit with reŕective markers attached to the participants’ bodies [133], producing temporal 3D marker
placements. Following [134], the walking protocol consisted of four attempts along a 10-meter corridor
at the subjects’ typical gait speed, with two-minute rest periods between attempts: the őrst and last
trials were designated for practice and cooling down, respectively, only the second and third trials were
included in the őnal dataset. This comprehensive dataset provides valuable information for studying
gait patterns in older adults with various musculoskeletal and neurological conditions, contributing to
the development of automated diagnostic tools and interventions for age-related mobility issues.

2.3.4.4 Walking gait dataset

The walking gait dataset was designed by Nguyen and Meunier [135] in 2018. The dataset has nine
categories of healthy and altered gait data. They instructed the test subjects to wear soles with 5, 10,
and 15 cm padding, once on the right foot and once on the left. The individuals once wore a 4-kg
weight ankle on each ankle to collect various anomalies. Each participant also walks with a normal
gait. There are nine subjects in total. Each participant walks through eight abnormal and one normal
sequence, each with 1200 frames. The dataset was represented in silhouette, skeleton, and point clouds.
There were a total of 291,600 frames in the dataset.

2.3.4.5 Multi-modal gait symmetry (MMGS) dataset

The MMGS dataset was designed by Khokhlova et al. [136] in 2019. They collected the data using a
single Kinect v.2 sensor placed before the test individual. Each individual approached the camera. The
experiment involved 27 subjects, with 19 males and 8 females participating. The participants’ average
age is 30±7 y.o. The gait classes include normal walking, limping gait imitated by each participant
wearing a 7-cm padding sole, and gait with knee injury-related issues, including a prosthesis worn
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or after-fracture recovery gait. The latter category is replicated by instructing participants to walk
without bending their right knee.

2.3.4.6 Pathological gait dataset

This dataset was designed by Jun et al. [137] in 2020. A system consisting of six calibrated Kinect
sensors was used to capture the data for this set. To collect reliable data from various directions, the
sensors have been calibrated to ensure they continuously acquire the same XYZ coordinate. A total
of ten healthy participants acted out őve distinct types of pathological gait, including antalgic, stiff-
legged, lurching, steppage, and Trendelenburg gait. Every subject went through each gait class twenty
times. This dataset includes six classes of normal and pseudo-pathological gait, with 120 sequences for
each subject. These classes are in addition to the normal class. This dataset has the most signiőcant
number of frames overall, as well as the largest number of frames for each class, compared to the other
datasets for skeleton-based gait anomaly recognition (SGAR) that are publicly available.

2.3.4.7 The Daphnet dataset

The Daphnet dataset was designed by Bachlin et al. [138] in 2009. Participants were people with
idiopathic PD who had a history of FOG and could walk without help. Patients were not allowed to
participate if they had serious problems with their eyesight or hearing, dementia, or signs of other neu-
rological or orthopedic diseases. The local Human Subjects Review Committee permitted the study,
which was done per the ethical rules of the Declaration of Helsinki. Ten people with PD took part
in this study. The average age was 66.5±4.8 years. The average time of their disease was 13.7±9.67.
Participants were asked to walk in a straight line (back and forth), do random walks, and do walking
activities such as getting something to drink and entering the room. Two sessions were recorded for
said activities. 500 minutes of data were recorded, equivalent to 8 hours and 20 minutes. 237 FOG
events are identiőed in the dataset.

2.4 Identified Gaps

This section aims at identifying and discussing the signiőcant gaps in gait analysis research. Speciőcally,
we focus on a few aspects that require further investigation and development.

• Upon conducting a thorough review of the existing literature on gait analysis datasets, it has
been determined that there is a limited number of datasets available on pathological gait (see
Table 2.12). Speciőcally, only one dataset has been identiőed that pertains to pathological gait,
and it includes only 10 subjects. The existing literature has extensively explored normal gait
patterns over the past few years. However, there is a dearth of research studies that focus on
pathological gait. Furthermore, the few studies that have been conducted in this area have
predominantly utilized subjects as their primary research participants. The absence of publicly
available datasets is a notable limitation in this area of research.

• The current body of literature on gait trajectory prediction is characterized by a lack of studies
that utilize pathological gait. The majority of research studies have exploited normal gait for
prediction purposes.

• The present study also aims to contribute to the existing literature on gait analysis by considering
the MTL approach. Speciőcally, we seek to build upon the limited body of research in this area, as
only őve studies have been identiőed in the literature that have employed an MTL methodology
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Table 2.12: Detail of Datasets

S#No. Name Type Size Healthy/
Pathological

Pathology Detail

1 OULP-Age GEIs 63,846
subjects

Healthy This dataset is used for
age estimation.

2 Bath Natural
Environment HAR

Dataset

IMU 22 subjects Healthy This dataset is used to
predict the motion of the

leg.

3 3D Gait Database Marker-based 45 subjects Healthy+
Pathological

muscle weakness,
joint issues, and

neurological
defects

This dataset is used to
classify healthy and

pathological subjects.

4 Walking gait
dataset

pointcloud,
skeleton, and

silhouette

9 subjects Healthy+
Abnormal

The individuals
once wore a 4-kg
weight ankle on
each ankle to
collect various

anomalies.

This dataset is used to
classify healthy and

pathological subjects.

5 MMGS dataset skeleton and
silhouette

27 subjects Healthy+
Pathological

wearing a 7-cm
padding sole,
and gait with

knee
injury-related

issues, including
a prosthesis worn
or after-fracture
recovery gait.

This dataset is used to
classify healthy and

pathological subjects.

6 Pathological gait
dataset

skeleton 10 subjects Healthy+
Pathological

őve distinct
types of

pathological gait,
including
antalgic,

stiff-legged,
lurching,

steppage, and
Trendelenburg

gait.

This dataset is used to
classify healthy and

pathological subjects.

7 The Daphnet
dataset

accelerometer 10 subjects Pathological idiopathic PD This dataset is used to
classify patients with FOG

problem.
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for gait analysis. In recent years, the use of MTL has gained widespread success in various
őelds, including the őeld under consideration (see Table 2.11), as it offers a promising solution
to address diverse problems.

• The present SLR has found that the availability of a public dataset containing information on
pre-treatment gait and post-treatment gait is currently lacking. Most datasets on gait analysis
were exploited for research studies on action recognition (out of the scope of this SLR). There are
few datasets containing pathological gait data, and these are mainly employed to automatically
distinguish between healthy and pathological gait patterns.

• Most of the studies used a very limited number of subjects, usually around ten. It makes it
difficult to generalize methods used in the studies due to the huge variability in human gait.

• The present literature review has identiőed a single study [39] that focuses on the prediction of
treatment outcomes through the utilization of gait analysis using DL. This study stands as the
sole example of research in this area.

2.5 Discussion and Future Research Direction

The present study is an SLR that aims to provide an overview of DL algorithms and speciőcally MTL
techniques that have been utilized for gait analysis. This paper delves into the topic of gait analysis
and explores the major datasets that have been utilized in the existing literature. The present section
presents a comprehensive discussion of our research őndings and identiőes several research directions
on gait analysis.

2.5.1 Gait Applications

In all gait applications encountered in this SLR (see Pie charts 2.5 and 2.7), namely as phase detection,
gait events detection, prediction of FOG, classiőcation of healthy and pathological gait, future sub-
sequence forecasting, and sensor-to-sensor sequence estimation, we note the increasing importance and
strong potential of DL for prediction purposes, in particular in healthy gait, and classiőcation tasks as
well.

Speciőcally, CNN and LSTM networks have been identiőed as the major DL algorithms.

2.5.2 Multi-task learning

MTL has seen extensive use across a variety of scientiőc domains. Other gait-based applications, such
as identiőcation, authentication, and emotion recognition, which are out of the scope of this SLR, have
also made use of this technology in the past.

All the reported studies using MTL for QGA concern classiőcation tasks. The addition of MTL would
be of great interest for regression purposes since auxiliary tasks usually improve the performance of the
model for the principal tasks [129]. The MTL framework has two advantages: (a) it follows the divide
and conquer principle and makes triggering the model easier; (b) it helps with model explainability.
The price to pay is that the model is greedy, and the primary task’s identiőcation must be carried out
very carefully.

2.5.3 Datasets

The majority of datasets that are publicly accessible are utilized for the classiőcation of healthy and
pathological gait. The availability of datasets for speciőc applications, such as age estimation and
treatment outcome prediction, is limited.
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2.5.4 Future Recommendations

We note that a signiőcant amount of work on gait analysis utilizing DL has been done in recent years.
After conducting an SLR, the following are some suggestions for the years to come:

• The utilization of MTL for gait analysis has been the subject of limited research studies. The
utilization of the MTL approach has been proposed as a potential solution to address the challenge
of gait analysis with increased complexity. This methodology has shown promise in its ability
to effectively handle multiple tasks simultaneously in gait analysis, in particular because of the
numerous variables to consider. By leveraging MTL, it may be possible to improve the accuracy
and efficiency of gait prediction, ultimately leading to better outcomes for patients.

• The majority of gait analysis studies have utilized normal gait data for their analyses. However,
there is a dire need for studies that examine pathological gait to better understand and address
related issues.

• The scarcity of datasets about pathological gait is a signiőcant constraint for research in the őeld
of Clinical Gait Analysis. The production of a comprehensive public dataset covering pathological
gait data is a challenge for researchers in this őeld. Such dataset would serve as a valuable resource
for further research and analysis of gait-related disorders.

• The present study aims to address a gap in the existing literature by examining treatment
outcome prediction. The ultimate purpose of CGA is to improve the patient’s gait during reha-
bilitation. The treatment is a complex, personalized, data-driven decision process in personalized
medicine. This decision relies on the experience of medical staff. In this context, AI can be an
added value for decision aid.

Speciőcally, it is noteworthy that only one reported study here has been conducted on this topic to
date [39]. Therefore, the current investigation seeks to expand upon this limited body of research
and contribute to a more comprehensive understanding of treatment outcome prediction. The
current state of research in this area reveals a signiőcant gap that requires further investigation.

• No publicly accessible dataset containing pre-treatment and post-treatment gait data has been
identiőed. This lack of available data poses a signiőcant challenge for researchers seeking to
investigate the effects of treatment on gait patterns. Further exploration and potential collabo-
ration with relevant institutions may be necessary to address this issue. The production of this
particular dataset is also a crucial area of focus for researchers. Closer collaborations between
clinicians, computer scientists, and engineers would help in this progress.
Also, the use of synthetic pathological data using generative models could be a hint to overcome
this limitation.

2.6 Conclusion

In the present work, we performed a comprehensive SLR and provided a broad overview of applications,
DL methods, and datasets used in QGA. The őndings of this review are divided into two major parts:
classiőcation and regression studies. Most of the classiőcation studies focus on the classiőcation of
healthy and pathological gait, as well as gait event detection. On the other hand, the regression
studies span future sub-sequence forecasting, sensor-to-sensor sequence estimation, condition/joint
translations, and clinical scores prediction. CNN and LSTM have been mostly used as DL methods in
these studies.

After literature screening, it has been depicted that more than half (around 55%) of current studies
are mainly focusing on healthy gait. Most of the studies considering pathological gait use proprietary
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datasets with a relatively small number of patients and a lack of external validation. Due to ethical
constraints, most of these datasets are not publicly accessible. An effort for patient data sharing is to
be made. Researchers can also work in the direction of synthetic gait data by using generative models.

In terms of applications, treatment outcome prediction applications, which are considered the
"holy grail" in rehabilitation, are rare. In addition, whereas many QGA applications are based on
classical Machine Learning algorithms [139, 56] considerably fewer AI-based QGA applications utilize
DL approaches. Given the predictive potential of DL-based approaches, an effort should also be made
towards studying treatment outcome prediction using DL. In this context, MTL approaches should
also play a role in improving the performance of gait studies.
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Chapter 3

Gait Analysis: from Aquisition to Data

Analysis
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Summary

This chapter provides a comprehensive overview of the data used in this project and is divided into
three main sections. The first section offers a detailed description of the data, including the acquisition
process, protocols followed, the number of patients involved, and additional relevant information. The
second section focuses on kinematic data, discussing its significance in this project and the preprocessing
steps undertaken. The third section delves into the MTD given the pathological conditions of the patients
involved, treatment-related information was incorporated into our models to enhance results. Detailed
descriptions are provided in this section. While our research follows a specific direction, not all acquired
laboratory data were utilized. This chapter includes all pertinent details.

3.1 Dataset Description

In this retrospective study, data was collected in the Movement Analysis Laboratory of the Rehabil-
itation Centre of UGECAM Coubert in France. In this laboratory, every single patient was an adult
who was experiencing a variety of gait-related difficulties. Patients with central nervous system prob-
lems, such as CP, SCI, MS, stroke, or TBI, are included in this database. All of these patients had
previously received treatment for spasticity using BTX-A injections and are followed-up at UGECAM
Coubert. Patients who had an incomplete rehabilitation or who experienced complications throughout
their recovery were excluded from the study. For patients who use various walking aids, trials with the
same walking aid were selected for both the preoperative and postoperative phases of the study.

Concerning this study, every piece of information considered came from patients who took part
in therapeutic activities. In total, Npat = 38 patients at the start of the study were subjected to
CGA both before and after receiving treatment for spasticity with botulinum toxin. The institution’s
research ethics committee approved utilizing these data after reviewing them. Although they were
informed about the research, the patients did not object to the utilization of their data for research
purposes.
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The database is continuously expanding due to the new patients being brought into the UGECAM
Laboratory regularly. For this reason the number of patients in some trials conducted during the
three-year thesis research varied. The őrst experiments were conducted with 38 patients, as stated in
Chapter 4. Later, the database was extended to 43 patients, corresponding to the most recent version
of the database.

More precisely, in the őrst set of experiment (Experiment protocol 1 on 38 patients), a total of
Nlimbs = 61 lower limbs were treated, with Nuni = 15 patients (39.47%) being affected unilaterally
(the right lower limb was impacted in 6 of them, and the left lower leg for the other 9). On the other
hand, Nbil = 23 patients (60.53%) were affected bilaterally. The data sets include the CGA prior to
treatment, speciőcs regarding medical treatment, and the CGA of patients following treatment. At the
time of pre-treatment CGA, the average age of the patients was 46.67 years old, respectively. At the
time of injection, the average age of the patients was 46.76 years old, and at the time of post-treatment
CGA, the average age was 46.93 years old. The dataset contains individuals ranging in age from 21
to 75 years old. The comparison of the pre-treatment CGA to the post-treatment CGA took place
roughly three months after the treatment. All patient information for the experiments is included in
Table 3.1.

Table 3.1: Patient database description.

Total Patients 43
Age (Mean ± SD) 46.67 ± 13.43
Males/Females 26/17
Unilaterally/Bilaterally affected 19/24
Cerebral Palsy 4
Stroke 11
Multiple Sclerosis 12
Traumatic Brain Injury 3
Spinal Cord Injury 13

The number of gait cycles per patient when the database was extended to 43 patients can be seen
in Figure 3.1. The minimum number of gait cycles for any patient was 12, and the maximum was 72.
The average number of gait cycles per patient was 29. In the őrst experiment, we processed the full
gait cycle, and in other experiments (Chapter 5), gait cycles were divided into two phases: the stance
phase and the swing phase. Usually, a healthy person has 60% of the stance phase and 40% proportion
of the swing phase. However, this work deals with pathological patients having different diseases, so
we have different proportions for each phase. It can be seen in Figure 3.2.

3.2 Kinematic Data

Records of all CGA examinations carried out since 2016 can be found in the Movement Analysis
Laboratory of the Rehabilitation Centre at the UGECAM. The acquisition of joint kinematics is
commonly accomplished through the utilization of optoelectronic systems [8] or IMU systems [140].
In this work, kinematic data have been acquired using a Codamotion system that consists of four CX1
cameras at a frame rate of one hundred frames per second (fps) (see Figure 3.3). The participants
walked straight, with or without technical aids (i.e., cane, rollator, tripod, etc.), through a 10-meter-
long laboratory room. Patients walked back and forth throughout the gait hallway (trials). Each
patient’s multiple trials are recorded depending on the patient’s capability. These data have been
saved in a Matlab őle.

Kinematic signals are not quite regular due to the variability of biomedical data [141]. This is the
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Because of these factors, optimizing BTX-A treatment by selecting the appropriate muscles to be
treated and the dose distribution is a complex undertaking that is of considerable importance and
requires a comprehensive analysis of the patient’s condition.

For this study, we examined the effects of injections into four different muscles: soleus, gastrocne-
mius (medial and lateral), semitendinosus, and rectus femoris. In addition, we established a separate
category called "other muscles" to encompass all the remaining muscles that were included in our study
(refer to Table 3.2). There were 24 different combinations of BTX-A injections of these four muscles.

A treatment binary code vector:

sj = (sj
1
, . . . , sjc)

T , sji ∈ {0, 1}, i = 1 . . . c(c = 5 as shown in Table 3.2)

was attributed to each lower limb i, with sji = 1 if muscle i was injected in limb j, 0 otherwise, and

dj = (dj
1
, . . . , dj

5
)T , dji ∈ {0, 1}

is a binary vector for the disease of patient’s limb j. There are őve diseases: CP, MS, TBI, SCI, and
stroke. T is the transpose operator.

Table 3.2: Considered injected muscles and their frequencies in the database (43 patients).

Muscle Number Muscle/Category
Injections limbs

Number Proportion

1 Soleus 53 28.3%
2 Gastrocnemius (Medialis and/or Lateralis) 51 27.2 %
3 Rectus Femoris 22 11.7%
4 Semitendinosus 14 7.4%
5 Other Muscle 47 25.1 %
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Summary

This section presents an innovative predictive framework that utilizes MTL to enhance the accuracy
of treatment outcome predictions for patients undergoing rehabilitation for spasticity—a common motor
disorder often treated with Botulinum toxin type A (BTX-A). The main focus of the research in this
section is on using a multi-task architecture made up of LSTM models, which are great for dealing with
the fact that gait data in clinical settings is sequential and time-dependent. One of the key innovations
of this study is the incorporation of MTD into the LSTM models, which includes detailed information
about the types of treatments administered, specifically the muscles injected and the dosages used.

By integrating MTD, the study demonstrates that MTL models can significantly reduce prediction
errors, as measured by the RMSE, for both knee and ankle kinematics. This was particularly notable
in patients with TBI and CP, where the models achieved the lowest RMSE values, highlighting the
potential of MTL to provide more accurate and clinically relevant predictions. The study’s findings
suggest that MTL, when paired with detailed treatment data, can outperform traditional approaches in
predicting post-treatment trajectories, thus supporting better-informed clinical decisions and potentially
improving rehabilitation strategies.

The content of this chapter is based on the following paper [39]:
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• Khan, A.; Hazart, A.; Galarraga, O.; Garcia-Salicetti, S.; Vigneron, V. Treatment Outcome
Prediction Using Multi-Task Learning: Application to Botulinum Toxin in Gait Rehabilitation.
Sensors 2022, 22, 8452. https://doi.org/10.3390/s22218452

4.1 Introduction

Common motor impairments caused by neurological diseases like MS, TBI, SCI, and CP include fa-
tigue, weakness, sensory loss, ataxia, and spasticity. Physicians often recommend rehabilitation as a
supplement to pharmacologic treatment for individuals with impairments. Due to hyper-excitability,
people with spasticity, a motor disorder related to upper motor neuron syndrome, have stronger tonic
stretch reŕexes and more pronounced tendon jerks. BTX-A intramuscular injections are a common
spasticity treatment. Although BTX-A is a costly pharmaceutical product, its consumption has risen
recently. Although its effect on muscle function is considered reversible, BTX-A treatment presents
risks (i.e., undesirable effects), and injection sessions should be spaced at least 3 months apart. To
optimize BTX-A treatment, it is crucial to carefully study the patient’s condition and select the ap-
propriate muscles and dose distribution.

AI and ML techniques have become commonplace in our daily lives, guiding decisions and offering
recommendations. ML approaches are gaining popularity in precision medicine to meet the demand for
new healthcare solutions, particularly in understanding pathological processes. Several CGA studies
have used DL to predict gait trajectories, primarily for healthy gaits. For exoskeleton design, Su et
al. [70] used LSTM to predict gait trajectories and phases (loading response, mid-stance, terminal
stance, pre-swing, and swing). Zhu et al. [148] utilized an attention-based CNN-LSTM to predict knee
and ankle joint trajectories in 60 milliseconds using lower and upper limb data. Zaroug et al. [149]
developed an LSTM auto-encoder for predicting linear acceleration and angular velocity trajectories.
Hernandez et al. [111] developed DeepConvLSTM, a hybrid network combining LSTM and CNN, to
estimate kinematic trajectories. Jia et al. [150] developed a DNN for trajectory prediction using LSTM
units and a feature fusion layer. Liu et al. [151] developed an LSTM-based model to predict two-time
steps in the future using kinematic data from 35 subjects. Recent research by Kolaghassi et al. [103]
examined the gait trajectories of children with neurological disorders. In this study, the complex issue
involves the effects of multiple treatments (BTX-A) on gait trajectories.

Our contribution in this chapter consists of proposing a new solution to predict the BTX-A post-
treatment gait trajectory of the patient and possibly the interaction between different treatments. This
solution is an MTL architecture, alleviating the previously mentioned drawbacks: dataset size (number
of patients), sample size (number of features), and feature diversity. To our knowledge, this is the őrst
time MTL has been used for post-treatment gait trajectory prediction. This architecture comprises
a collection of LSTM-shaped sub-models arranged in parallel or series. Each sub-model is used for
one treatment, and each treatment corresponds to an injected muscle. These muscles are attached to
the left and right knees and ankles. This MTL model learns to map pre-treatment gait sequences to
post-treatment sequences. A gating mechanism with different architectures is proposed to control the
inŕuence of the treatments on the őnal prediction.

4.2 Data

In this section, we use the dataset already discussed in Section 3. The database comprises Npat = 38
patients that underwent CGA before and after spasticity treatment with botulinum toxin. The details
of the patients are listed in Table 3.1. In this work, we considered injections into four muscles: soleus,
gastrocnemius (medial and lateral), semitendinosus, and rectus femoris. We also deőned a őfth category
called łother musclesž, which groups all the other treated muscles (see Table 3.2).

62





The LSTM equations are deőned by the following set of matrix equations:

A = ht∥1xt (4.1)

ldft = σ(WfA+ bf ) (4.2)

it = σ(WiA+ bi) (4.3)

ot = σ(WOA+ bO) (4.4)

dt = tanh(WdA+ bd) (4.5)

ct+1 = ldft ◦ ct + it ◦ dt (4.6)

ht+1 = ot ◦ tanh (ct+1) (4.7)

where ∥1 is the concatenation operator, ◦ is the Hadamard product, σ is the logistic function, W are
weight matrices, and b are biases. The basic idea is that the model takes the input xt and the previous
prediction of the current input ht, updates its internal memory ct to ct+1, and then makes, a new
prediction ht+1 based on ct+1, ht, and xt.

The original LSTM could have multiple parallel memory cells ct, but in practice, mostly only
one memory cell is used; the description of the LSTM was limited to one ct. All the gate functions
(Equations (4.2)ś(4.4)) are fully connected layers, y = f(Wx+ b) with a sigmoid activation function.
The data ŕow in the LSTM is illustrated in Figure 4.2).

Figure 4.2: LSTM unit. The gates, which decide which part of the information to pass on, are orange. Green is the
update to the memory cell.

Furthermore, the role of ht is not strictly őxed to predict xt. It can be any prediction series
connected to the input series xt. For example, if xt was the number of people who entered (or left)
a building in the last hour, then ht could be the current number of people inside the building (with
appropriate scaling, so it őts the output range [−1, 1]).

For this study, we used several variants of LSTM. The őve categories of treatments are reported
in Table 3.2: BTX-A injection of the őrst four muscles and the őfth category of injections in all other
muscles. An LSTM layer represents each treatment. According to the DL architecture used, hidden
states represent the presence or absence of treatments by BTX-A in the őve muscles.

While the LSTM is well suited to prediction tasks of time series, knowledge about future events is
sometimes necessary for the correct prediction. Therefore, the term łfuturež is relative to t and means
the following data points. Of course, the next/future data points must already be known to be included
in the prediction. Salehinejad et al. [153] identiőed two strategies to integrate the knowledge of future
events into an LSTM model: bi-directional recurrent neural network (RNN) [154] and delayed input,
the second approach consisting of delaying the signal by a delay τ :
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Table 4.1: Hyper-parameter selection for LSTM, Bi-LSTM, and other architecture variants. The MTD column is used
for medical treatment data (included/not included).

Model No. Model Type MTD LSTM Layers
(Units)

Conv.
Layer

FC Layers (Units) Learning Rate

Model 1 LSTM (serial) No 5 layers (51) None 1(102) 0.005
Model 2 LSTM (serial) Yes 5 layers (51) None 1(102) 0.005
Model 3 Bi-LSTM (serial) No 5 layers (51) None 1(102) 0.005
Model 4 MTL, 5 Bi-

LSTMs
Yes 1 layer per

sub-model (51)
None 2 (1020 & 102) 0.005

Model 5 MTL, 5 gated Bi-
LSTMs

Yes 1 layer per sub-
model (51)

None 2 (1020 & 102) 0.005

Model 6 MTL, 5 Bi-
LSTMs + Conv
Layer

Yes 1 layer per sub-
model (51)

Kernel
(5,2), stride
(3,2)

1(102) 0.005

Model 7 MTL, 5 gated Bi-
LSTM + Conv
Layer

Yes 1 layer per sub-
model (51)

Kernel
(5,2), stride
(3,2)

1(102) 0.001

RMSE =

√

√

√

√

1

nflout

n
∑

i=1

f
∑

j=1

lout
∑

k=1

(yi,j,k − ŷi,j,k)
2 (4.8)

We also calculated the standard error (SE) to measure the variation of the RMSE with respect to
each disease and the R2 score to check how well the data őt the regression model. SE is calculated
using

SE =
s√
n
. (4.9)

where s is the standard deviation of prediction with respect to a particular disease and n is the total
number of patients having a particular disease. The coefficient of determination (R2) as follows:

R2 = 1−
∑

i(yi − ŷi)
2

∑

i(yi − ȳi)2
, (4.10)

can be interpreted as the proportion of the variance in the dependent variable that is predictable from
the independent variables (worst value −∞, best value= +1), opposite the MSE, which magniőes the
error if the model outputs a very bad prediction (worst value +∞, best value= 0). We compared and
evaluated the models’ performance using these measures.

4.4 Results

We evaluated Models 1 to 7 on our dataset with the above-mentioned metrics and displayed the results
in Table 4.2. The lowest average RMSE values and the highest R2 scores are displayed in bold; they
correspond to the best prediction model according to the diseases reported in Table 4.2. From Table
4.2, we noticed that Model 4 outperformed other models in predicting post-treatment gait trajectories
for patients with MS and TBI. Furthermore, Model 6 performed better for SCI patients than all other
architectures. Model 7 outperformed other models of patients having stroke and CP. We noticed
that, in all cases, the MTL architectures achieved better performance globally on both knee and ankle
signals.

Tables 4.3 and 4.4) report the performance scores of the prediction of gait trajectories for knee and
ankle, respectively. In Table 4.3, the best prediction for the knee angle was obtained for TBI patients
by Model 5 with an average RMSE of 5.60°and R2 = 0.72. Furthermore, for all diseases, the MTL
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architectures outperformed the others. Model 6 gave the best prediction for MS and SCI regarding
RMSE and Model 4 gave the R2 score for the same pathologies. On the other hand, for stroke patients,
Model 7 had the best average RMSE, and Model 6 had the best coefficient of determination. We notice
in Table 4.4 that the best RMSE for the ankle was 3.77°, which is lower than that obtained for the knee
(5.60°). However, even though the RMSE was usually lower (thus better) for the ankle, the R2 scores
were also lower (thus worse). In particular, all the R2 of the ankle angle were negative for stroke.

Table 4.2: Performance of different models in predicting post-treatment gait trajectories with respect to different
diseases.

Model
No.

Model Type SCI MS Stroke CP TBI

No. of Patients
11 12 9 3 3

No. of Cycles
474 530 322 148 148

RMSE Mean° ± Standard Error
R

2 Score

Model 1 LSTM (serial) 6.82 ± 0.79 6.89 ± 1.18 8.11 ± 1.04 7.66 ± 1.09 5.87 ± 0.84
0.53 0.54 0.53 0.61 0.63

Model 2 LSTM (serial) 6.71 ± 0.5 6.77 ± 0.97 8.03 ± 1.07 7.23 ± 1.0 7.63 ± 0.94
0.46 0.52 0.65 0.58 0.64

Model 3 Bi-LSTM (serial) 6.9 ± 1.17 6.38 ± 1.17 7.06 ± 1.04 7.2 ± 1.07 7.78 ± 1.04
0.60 0.65 0.65 0.68 0.51

Model 4 MTL, 5 Bi-LSTMs 6.26 ± 1.12 5.8 ±
1.01

6.99 ± 1.04 6.57 ± 1.24 5.24 ±
0.77

0.66 0.66 0.66 0.67 0.67

Model 5 MTL, 5 gated Bi-LSTMs 6.67 ± 1.26 6.11 ± 1.43 7.73 ± 1.04 6.22 ± 1.71 6.07 ± 0.94
0.59 0.55 0.68 0.64 0.56

Model 6 MTL, 5 Bi-LSTMs + Conv Layer 5.75 ±
1.12

6.08 ± 1.11 7.16 ± 1.12 6.2 ± 1.22 6.58 ± 0.57

0.61 0.61 0.65 0.69 0.60

Model 7 MTL, 5 gated Bi-LSTMs + Conv Layer 6.31 ± 1.21 7.59 ± 1.46 6.24 ±
1.0

6.00 ±
1.75

7.02 ± 0.66

0.52 0.52 0.60 0.60 0.42

Bold entries denote the lowest average RMSE and maximum R
2 over all limbs having a given disease.

From a different perspective, Figures 4.6 and 4.7 illustrate the pre-treatment, real post-treatment,
predicted post-treatment of the patient, and standard course trajectories (healthy subject) of two
patients. The Y-axis represents the ankle dorsiŕexion or knee ŕexion, and the X-axis represents the
gait cycle of a patient.

Figure 4.6 compares the prediction of different models on the knee and ankle joints of a patient
diagnosed with CP. These őgures differentiate the prediction between the MTL models and others.
Figures 4.6aśc illustrate the predictions on the knee angles made by Model 1, Model 2, and Model
3, which are not MTL models. Figure 4.6d shows the corresponding prediction of Model 7, an MTL
model. The predictions of post-treatment gait from Model 7 were better than others. In other words,
it was closer than that patient’s expected post-treatment gait trajectory (average of all his/her target
gait cycles in the training set). On the other hand, Figure 4.6e-h compares the prediction of the ankle
joint of the same patient. Figure 4.6g,h illustrates the prediction of Model 1 and Model 3, respectively.
Figure 4.6g,h show the predictions of Model 4 and Model 7, respectively, which are MTL models.
We noticed that the predicted post-treatment trajectory in Figure 4.6g was better than the őrst two
models, which were serial, and we see in Figure 4.6h the signiőcant improvement of the prediction at
the end of the gait cycle, between 80% and 100%, compared to Figure 4.6g. On this patient, the MTL
models also performed better on the ankle joint.

Figure 4.7 compares the trajectories of the knee and ankle joints of another patient diagnosed with
MS. Figures 4.7a,b represent the predictions of the knee angles made by Model 1 and Model 2, which
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Table 4.3: Performance of different models in predicting post-treatment knee gait with respect to different diseases.

Model
No.

Model Type SCI MS Stroke CP TBI

No. of Patients
11 12 9 3 3

No. of Cycles
474 530 322 148 148

RMSE Mean° ± Standard Error
R

2 Score

Model 1 LSTM (serial) 7.73 ± 0.09 8.05 ± 0.11 8.62 ± 0.21 10.16 ±
0.13

6.66 ± 0.09

0.67 0.65 −0.08 0.70 0.59

Model 2 LSTM (serial) 7.58 ± 0.08 8.26 ± 0.09 7.85 ± 0.17 8.56 ± 0.12 8.05 ± 0.27
0.72 0.62 0.04 0.70 0.55

Model 3 Bi-LSTM (serial) 8.11 ± 0.13 7.41 ± 0.12 7.77 ± 0.21 7.42 ± 0.11 7.89 ± 0.28
0.67 0.73 0.16 0.78 0.41

Model 4 MTL, 5 Bi-LSTMs 7.51 ± 0.08 7.23 ± 0.14 7.14 ±
0.018

6.75 ±
0.11

5.81 ± 0.13

0.76 0.77 0.26 0.80 0.61

Model 5 MTL, 5 gated Bi-LSTMs 7.62 ± 0.10 7.23 ± 0.11 8.02 ± 0.25 7.00 ± 13 5.60 ±
0.06

0.71 0.64 0.45 0.77 0.72

Model 6 MTL, 5 Bi-LSTMs + Conv Layer 6.94 ±
0.09

6.78 ±
0.14

7.19 ± 0.25 8.63 ± 0.18 8.24 ± 0.17

0.69 0.70 0.48 0.79 0.62

Model 7 MTL, 5 gated Bi-LSTMs + Conv Layer 8.14 ± 0.12 8.52 ± 0.13 6.21 ±
0.14

7.82 ± 0.14 5.94 ± 0.07

0.59 0.66 0.08 0.78 0.34

Bold entries denote the lowest average RMSE and maximum R
2 over all limbs having a given disease.

are not MTL models. Figures 4.7c,d represent the prediction of the knee angles made by Model 4 and
Model 6, respectively, which are MTL models. We can see that MTL models had better predictions
than the őrst two. The predicted post-treatment trajectories were closer to the real post-treatment
trajectories. The last four Figures 4.7eśh compare the trajectories of the ankle joint. Figures 4.7e-g
represent the predictions of Model 1, Model 2, and Model 3. Although Model 3 is not an MTL model,
its predictions were much better than the őrst two serial models. However, the MTL model (Model 5)
prediction in Figure 4.7h was better than all other models for this particular patient. In general, as
shown by Tables 4.2-4.4, MTL performed better for almost every patient.

4.5 Discussion and Conclusion

In this study, we used MTL to design an LSTM model and its variants to predict the post-treatment
trajectory of adults with an abnormal gait. To the best of our knowledge, this speciőc prediction task,
which exhibits greater inter- and intra-subject variability compared to the courses of normal adults,
has not been addressed before in the literature using MTL.

To forecast the trajectories of the knee and the ankle in the sagittal plane, we used LSTM-based
models. LSTM was chosen because it has been successfully applied to sequential data, and it can
capture long-term dependencies through its learning [59]. To better evaluate the performance of MTL
on a given problem, we also implemented serial models using LSTM.

The RMSE was used to compare the results of both sorts of models. The RMSE of the MTL models
was lower for all types of patients (different pathologies). The MTL models also gave the highest R2,
better explaining the total variance of the target than the serial models. The MTL models performed
better than the serial models in our problem of multiple treatment combinations. MTL architectures
allow the introduction of medical treatment metadata into the model. Instead of performing a simple
post-pre regression task, our results imply that introducing the treatment information (i.e., muscles
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Table 4.4: Performance of different models in predicting post-treatment ankle gait with respect to different diseases.

Model
No.

Model Type SCI MS Stroke CP TBI

No. of Patients
11 12 9 3 3

No. of Cycles
474 530 322 148 148

RMSE Mean° ± Standard Error
R

2 Score

Model 1 LSTM (serial) 5.91 ± 0.08 5.73 ± 0.08 7.61 ± 0.16 5.16 ± 0.14 5.09 ± 0.13
0.52 0.50 -3.75 0.49 0.08

Model 2 LSTM (serial) 5.85 ± 0.07 5.29 ± 0.07 8.21 ± 0.21 5.89 ± 0.10 7.22 ± 0.36
0.19 0.37 −4.48 0.37 0.15

Model 3 Bi-LSTM (serial) 5.69 ±
0.007

5.35 ± 0.07 6.34 ± 0.15 6.99 ± 0.09 5.66 ± 0.15

0.40 0.68 −3.94 0.44 0.34

Model 4 MTL, 5 Bi-LSTMs 5.01 ± 0.08 4.38 ±
0.08

6.85 ± 0.19 6.4 ± 0.12 4.68 ±
0.13

0.54 0.69 −4.13 0.37 0.54

Model 5 MTL, 5 gated Bi-LSTMs 4.56 ± 0.06 5.39 ± 0.10 7.14 ± 0.22 3.77 ±
0.05

4.93 ± 0.10

0.44 0.47 −4.20 0.50 0.37

Model 6 MTL, 5 Bi-LSTMs + Conv Layer 5.72 ± 0.06 5.00 ± 0.06 7.44 ± 0.32 5.45 ± 0.14 6.54 ± 0.36
0.46 0.63 −5.14 0.47 −0.03

Model 7 MTL, 5 gated Bi-LSTMs + Conv Layer 4.49 ±
0.06

6.66 ± 0.19 6.26 ±
0.26

4.17 ± 0.09 10.63 ±
0.26

0.25 0.46 −4.85 0.23 −0.83

Bold entries denote the lowest average RMSE and maximum R
2 over all limbs having a given disease.

treated by BTX-A) improves performance.

Overall, the best prediction was obtained for TBI using the Bi-LSTM with MTL (Model 4) architec-
ture. Table 4.2 shows only a 5.24°average difference in actual and predicted trajectories and R2 = 0.73.
The best maximum average RMSE error between actual and predicted trajectories was 6.24°for stroke
patients, using the MTL architecture with gated Bi-LSTM and a convolutional layer (Model 7). For
the knee and ankle, the best results were 6.75°(R2 = 0.80) and 3.77°(R2 = 0.5), respectively, for CP
patients. The RMSE was usually higher for the knee than the ankle, despite having higher coefficients
of determination. This suggests that the models could explain the variance of the knee angle better,
but the amplitudes in the knee were higher than in the ankle. Moreover, no proposed model could
adequately explain the variance of the ankle angle for patients with strokes (only negative R2 scores).

4.5.1 Comparison to Previous Works

Since this is the őrst time that the whole kinematic signals for the knee and ankle on the sagittal plane
were predicted for botulinum toxin treatment, it is difficult to compare our performance to other works.
Nevertheless, we can compare our methods for the predictions of peak knee and ankle on sagittal planes
reported by Roche. [7] for rectus femoris botulinum toxin injection of patients with stroke (Table 4.5).
In this case, the R2 score of the proposed method for stroke was better for peak knee ŕexion but worse
for peak ankle dorsiŕexion. Since the compared models were not trained and tested with the same
databases, this comparison must be taken with caution.

We also compared our performances to the predictions of the whole postoperative kinematic curves
for patients with CP. Even though the proposed methods were not tested on the same databases, these
performances were better than the postoperative predictions for CP reported by Galarraga et al. [15],
Niiler et al. [155], and Niiler [156], as shown in Table 4.5.
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Table 4.5: Performance comparison of the prediction methods. LinReg and MLinReg correspond to linear regression
and multiple LinReg, respectively, in [7, 15]. PCA stands for principal component analysis. NN99 and NN01 correspond
to feedforward neural networks, respectively, in [155, 156].

Model Knee Flexion Ankle DorsiFlexion

R2 score

Model 5 Stroke † 0.62 −4.69
Model 6 Stroke † 0.49 −4.24
LinReg Stroke † [7] 0.24 0.43

Mean RMSE (◦)

Model 4 CP 6.8 6.4
Model 5 CP 7.0 3.8
PCA+MLinReg CP [15] 9.0 7.5
NN99 CP [155] 9.7 6.7
NN01 CP [156] 9.2 not reported

† Only peak ŕexion and not over the whole time series.

4.5.2 Limitations

Besides the lack of external validation, the main limitation of the proposed models is the relatively
small size of the database. DL models usually need large amounts of data to be properly trained.
Unfortunately, this is rarely the case in biomedical databases. Another limitation of the model is that
it does not consider other aspects of the patient, such as psychological factors, age, stress, and social
environment, which play a major role in the rehabilitation and, thus, in the treatment outcome.

4.5.3 Conclusion

It was concluded from the results that the number of patients and type of disease did not directly affect
the model’s performance. More precisely, we can say that inter- and intra-subject variability affected
the model’s performance more than the number of patients (samples) and type of disease. Table 3.1
gives a detailed description of the number of patients with each disease. The minimum number of
patients was 3 with CP and TBI diseases, while the maximum number of patients was 12 with MS
disease. We noticed that the RMSE of CP and TBI patients were 6.00°and 5.24°, respectively. On the
other hand, the RMSE of MS patients was 5.8°. This showed that having four times more patients for
a given disease than others did not signiőcantly affect the RMSE value.

Finally, Bi-LSTM combined with MTL was highly effective at increasing the total quantity of
information accessible to the model, enhancing the context provided to the algorithm. Future work will
focus on MTL models with Bi-LSTM networks to exploit more precise information about treatments,
such as the dose information, to further enhance the context given to the model.
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Phase-based Gait Prediction after
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Summary

In this section, based on the good results obtained in Chapter 4, we study splitting the learning
process between stance and swing phases rather than processing the full gait cycle. The two best models
from Chapter 4 were used to predict the stance and swing phases of the post-treatment gait cycle. Indeed,
as we work on pathological gait, signals show more variance than in normal gait. This is especially the
case in the swing phase. We observe that the stance phase lasts longer for patients than for healthy
subjects given that the swing phase is more challenging for patients. This fact increases variance in
the swing phase compared to the stance phase for pathological cycles. For this reason, in this chapter,
we devote an MTL model to each phase separately. This proposal increases the capability of the global
model to predict the complete cycle after treatment accurately. We perform this study based on the
segmentation done on the pre-CGA data, then exploited on post-CGA. In other words, we combine both
phases of each cycle using the proportion of stance and swing phases found pre-CGA. In this section,
five more patients are added to the database (Npat = 43).

The content of this chapter is based on the following paper:

• Khan, A.; Galarraga, O.; Garcia-Salicetti, S.; Vigneron, V. Phase-Based Gait Prediction after Bo-
tulinum Toxin Treatment Using Deep Learning. Sensors 2024, 24, 5343. https://doi.org/10.3390/s24165343.
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5.1 Introduction

In this chapter, we split the learning process into stance and swing phases for to adapt to the parallel
architectures proposed in [39]. Indeed, as we work on pathological gait, signals show more variance
than in normal gait [157]. We note that the duration of the stance phase is often longer for patients
than for healthy subjects, for example, in post-stroke Hemiparesis [158]. It is a fact that stance and
swing phases obey different biomechanical constraints; therefore, we propose in this section to train
separate models on each phase to enhance post-treatment CGA prediction. This strategy increases the
global model’s capability to predict the post-treatment full gait cycle accurately. The following section
shows a signiőcant improvement in prediction quality on pathological gait cycles.

5.2 Data

The Npat = 43 patients who participated in the experiments performed in this chapter. Twenty-six
of them were male, and seventeen were female. Their ages ranged from 21 to 75 years old. The time
lag between pre- and post-treatment CGA was between 3 and 6 weeks. The lower limbs of individuals
had undergone treatment, with Nuni = 19 patients (44.18%) were affected unilaterally (10 right limbs
and 9 left limbs), and Nbil = 24 patients (55.82%) bilaterally. Four categories of injected muscles were
considered: soleus, gastrocnemius (medial and lateral), semitendinosus, and rectus femoris. A őfth
category called łother muscle(s)ž groups all the other treated muscles [see Table 3.2].

The participants were recorded walking straight, with or without technical aids (i.e., cane, rollator,
tripod, etc.), through a 10-meter-long laboratory room. Four CX1 motions tracked the coordinates of
anatomical markers the patients wore in 3-DÐcapture units. Patients walked back and forth through-
out the gait hallway (trials). Each patient’s multiple trials are recorded depending on the patient’s
capability. 3-D gait kinematics were computed following the recommendations of the International So-
ciety of Biomechanics, based on the marker coordinate data. Each trial was divided into cycles, which
were then divided into stance phases from initial contact to toe-off and swing phases from toe-off to
subsequent initial contact [see Figure 5.2]. We found gait events, like őrst contacts and toe-offs, from
force platform data and by using the HPA algorithm to extract them automatically [142]. A human
expert validated and modiőed all gait events as necessary. The process of extracting cycles from trials
to normalized phases is shown in Figure 5.1.

Figure 5.1: Flowchart of data pre-processing for experiment 2. We acquired trajectories of patient trials from the
database and extracted all cycles from trials for knee and ankle joints. After that, we selected each cycle and segmented
them into stance and swing phases. At last, we applied normalization to the phases.

We consider a person’s right and left cycles as different samples. Each pre-treatment cycle phase is
associated with a target post-treatment cycle phase of the same patient and phase, leading to n = 2518
samples. Note that the number of cycles per patient varies from one patient to another. The data
are centered and reduced by the standard deviation for normalization purposes. The goal is to use
g(x) to make a model that maps ŷ = g(x), where ŷ is an estimation of y. x is the input vector (an
angular time series of pre-treatment gait kinematics) and y is the target vector (an angular time series
of post-treatment gait kinematics) with size m = 51× 2 = 102.
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Each layer is responsible for treatment according to the őve categories of injected muscles, as reported
in Table 3.2. Each Bi-LSTM layer has 51 units. Note that each unit gets a pair of inputs for the
knee and ankle, respectively. We train separate models for stance and swing phases. For comparison
with our previous experiment, we combined both predictions using the proportion of stance and swing
phases of the pre-treatment gait cycle. Thereby, we retrieve the prediction for a full cycle of the knee
and ankle joints.

MTD-Driven Model (MTD-DM) : The input vectors x and s are sent to the őve Bi-LSTM
sub-models in this architecture. The pre-treatment knee and ankle kinematic signals are represented
by vector x. The Medical Treatment Data (MTD) are represented by vector s. We initialize the cell
states of the LSTM as 0. The MTD (vector s) is handled by the treatment supervisor and was used
to set the values of the hidden states h. For example, if a patient had injections in muscles 1 and 3
(Table 7.1), then the states h1,t, h2,t in Bi-LSTM, layers 1 and 3 are set to 1, and the other layers’ (2,
4, and 5) hidden states are set to 0. The results of the őve Bi-LSTM sub-models are concatenated to
form a single tensor ’output,’ a one-dimensional vector, and reshaped. The reshaped output is then
processed through two subsequent fully connected layers (FC1 and FC2) to predict the post-treatment
kinematics (see Figure 5.3a).

MTD-Gated Model (MTD-GM) : This architecture uses a gating mechanism to handle MTD.
Instead of passing the MTD as a hidden state of each sub-model, the treatment supervisor is exploited
downstream, multiplying each sub-model’s output by the associated binary value of the MTD. Figure
5.3b shows that if there is a treatment, it will be used in the model, but if there is none, it will be
neglected (multiplied by 0). The results of the remaining Bi-LSTM sub-models are concatenated and
reshaped. The reshaped output is then processed through two subsequent fully connected layers (FC1
and FC2) to predict the post-treatment kinematics (see Figure 5.3b).

Experimental setup
Leave-one-out cross-validation is used to assess model performance. For each iteration, Ntrain =

Npat − 1 patients were used to train the model and one to test it. Mini-batches with bs = 16 samples
were used during the training process. The ADAM optimizer [159] controlled the MSE loss function
for training DL models. RMSE [160], Standard Error (SE) [161], and coefficient of determination (R2)
[162] are used to evaluate the performance of the proposed models.

Table 5.1: Hyper-parameter selection for for both models.

Model No. Model Type LSTM Layers
(Units)

FC Layers
(Units)

Learning Rate

Model 1 (MTD-
DM)

MTL, 5 Bi-LSTMs 1 layer per sub-
model (51)

2 (1020 & 102) 0.005

Model 2 (MTD-
GM)

MTL, 5 gated Bi-LSTMs 1 layer per sub-
model (51)

2 (1020 & 102) 0.005

5.4 Results

5.4.1 Analysis on gait phases and whole cycle

43 participants are included in this study, of whom 38 were already included in our previous experiment
(Chapter 4), and 5 new ones are added. We evaluate the two DL models on the new dataset using the
above-mentioned evaluation metrics. Tables 5.2, 5.3, 5.4, 5.5 report the performance of both models in
the prediction of post-treatment gait kinematics of the stance phase, swing phase, and complete gait
cycle with respect to the disease: the bold entries in the following tables represent the best predictions
(lowest RMSE and highest R2). We notice the performances of both models are equivalent in the
stance phase for the knee and ankle joints (average RMSE between 1.79°and 3.17°). On the contrary,
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Table 5.2: Performance of both models in predicting post-treatment gait trajectories of stance phase with respect to
different diseases.

Model Model Type Body
Joint

Spinal
Cord
Injury
(SCI)

Multiple
Sclerosis
(MS)

Stroke Cerebral
Palsy
(CP)

Traumatic
Brain In-
jury
(TBI)

No. of Patients
13 12 11 4 3

No. of Cycles
400 351 260 138 74

RMSE Mean (°) ± Standard Error
R

2 Score

MTD-DM
MTL, 5
Bi-LSTMs

Knee
2.6 ± 0.76 2.48 ± 0.73 2.65 ±

0.78
2.62 ±
1.08

3.17 ± 1.23

0.54 0.79 0.64 0.62 0.18

Ankle
2.09 ± 0.79 1.83 ± 0.64 2.02 ± 0.5 1.99 ± 0.8 2.44 ± 0.78
0.87 0.93 0.67 0.85 0.84

MTD-GM
MTL, 5
gated
Bi-LSTMs

Knee
2.59 ±
0.84

2.48 ±
0.7

2.7 ± 0.78 2.65 ± 1.08 2.89 ±
1.03

0.52 0.80 0.62 0.46 0.32

Ankle
2.09 ±
0.75

1.79 ±
0.61

2.01 ±
0.49

1.96 ±
0.82

2.25 ±
0.75

0.85 0.93 0.68 0.85 0.86

5.4.2 Visualizing predictions of the best model (MTD-GM)

Figures 5.4 represent the average predictions on all cycles of őve patients, each suffering from different
diseases. The ankle dorsiŕexion or knee ŕexion is shown on the Y-axis, and the patient’s gait cycle
is shown on the X-axis. In all these graphs, we observe that each patient’s average predicted gait
trajectory is very close to the average actual trajectory. Hence, it shows that our model performs well
in predicting the post-treatment gait trajectory of disabled patients, as reported in Table 5.4.

However, in a few patients, post-treatment CGA kinematics are very difficult to predict. We report
in Figure 5.5 that the post-treatment cycles for these patients show more variability between cycles than
before treatment. This is not the case for most of the other patients. We investigate this phenomenon
in the following. Figure 5.5a shows the trajectories of the right limb of a patient with SCI. The knee
kinematics of this patient show more inter-cycle variability than most patients. The MTD-GM model
predicted this patient’s post-treatment kinematics with an average RMSE of 6.06°and R2 of -0.16
for the knee joint. This is worse than the average RMSE of 3.05°. In Figure 5.5b, we notice that
the prediction error for the stance phase is higher than for the swing phase. Figures 5.5c show the
trajectories of a patient with CP. Both pre- and post-treatment gait kinematics of this patient show
high variance between cycles. The prediction of this patient shows an average RMSE of 3.02°and an
R2 score of 0.27 for the knee joint. It is difficult for our DL models to predict the post-treatment gait
trajectories, which show so much variance.

5.4.3 Comparison between cycle-based prediction, phased-based prediction, and
related works

It is difficult to compare the performance to other research because this is the őrst time that the entire
knee and ankle kinematic signals on the sagittal plane have been anticipated for BTX-A treatment,
except for our own work, which was reported in the last chapter. In this chapter, we worked on
kinematic prediction per phase (stance and swing) of gait cycles, while in Chapter 4, complete cycles
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Table 5.3: Performance of both models in predicting post-treatment gait trajectories of swing phase with respect to
different diseases.

Model Model Type Body
Joint

Spinal
Cord
Injury
(SCI)

Multiple
Sclerosis
(MS)

Stroke Cerebral
Palsy
(CP)

Traumatic
Brain In-
jury
(TBI)

No. of Patients
13 12 11 4 3

No. of Cycles
400 351 260 138 74

RMSE Mean (°) ± Standard Error
R

2 Score

MTD-DM
MTL, 5
Bi-LSTMs

Knee
6.23 ± 2.05 7.01 ± 2.2 7.0 ± 1.73 6.72 ± 2.29 6.8 ± 1.17
0.31 0.59 -1.56 -3.86 0.26

Ankle
5.15 ± 2.05 5.15 ± 2.2 4.36 ± 1.73 5.3 ± 2.29 3.08 ± 1.17
-3.35 -1.18 -5.16 -4.36 -1.34

MTD-GM
MTL, 5
gated
Bi-LSTMs

Knee
3.52 ±
1.2

3.89 ±
1.24

2.85 ±
1.04

2.88 ±
1.49

4.86 ±
1.28

0.72 0.84 0.52 0.63 0.57

Ankle
2.62 ±
1.2

2.29 ±
1.24

2.63 ±
1.04

1.71 ±
1.49

2.43 ±
1.28

0.06 0.53 -1.45 0.15 -0.25

were considered. The results of the complete cycles of this chapter and the last chapter are compared
in Table 5.6. It is important to note that őve additional patients are considered in this chapter. Thus,
the datasets are similar but not identical. For MS and TBI diseases, we had the same patients in both
studies, but the difference in prediction performance is evident. We can see that the R2 score for stroke,
TBI, and CP was negative in the last chapter, and in our new approach, there is an improvement in
achieving more than 0.7 in the R2 score.

Furthermore, we compare our results with those described by [7] for forecasts of peak knee and
ankle on sagittal plane for rectus femoris BTX-A injection in patients with stroke [see Table 5.6]. In
this case, our proposed method (MTD-GM) for stroke had a higher R2 score for knee ŕexion and ankle
dorsiŕexion. However, since the models were not trained and tested with the same databases, this
comparison should be taken into account. In addition, we also compare how well our model predicted
the whole post-treatment kinematics for patients with CP. Different databases were used to test the
proposed methods. Still, the results were better than what Galarraga et al. (2017) [163], Niiler et
al. (1999) [155], and Niiler (2002) [164] said would happen with CP after surgery, as shown in Table
5.6. MTD-GM predicted knee ŕexion and ankle dorsiŕexion with an average RMSE of 2.9°and 1.92°,
respectively.

5.5 Discussion and Conclusion

In this chapter, we used two DL models using Bi-LSTM modules to predict the effects of BTX-A
injections on gait kinematics. As far as we know, except for our previous experiments in Chapter 4, no
other study in the literature has used DL to look at this speciőc prediction task. The prediction task we
assess in this chapter is more challenging than predicting normal gait due to the high variability existing
between and within subjects in pathological gait. DL architectures make it possible to add information
about medical treatments to the model. Previous studies have shown that adding information about
the treatmentÐspeciőcally, which muscles received BTX-A treatmentÐimproves performance instead
of performing a straightforward post-to-pre regression task.
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Table 5.4: Performance of both models in predicting post-treatment gait trajectories of a complete cycle with respect
to different diseases.

Model Model Type Body
Joint

Spinal
Cord
Injury
(SCI)

Multiple
Sclerosis
(MS)

Stroke Cerebral
Palsy
(CP)

Traumatic
Brain In-
jury
(TBI)

No. of Patients
13 12 11 4 3

No. of Cycles
400 351 260 138 74

RMSE Mean (º) ± Standard Error
R

2 Score

MTD-DM
MTL, 5
Bi-LSTMs

Knee
4.18 ± 0.97 4.58 ± 1.11 4.58 ± 1.09 4.82 ± 1.23 4.26 ± 0.77
0.70 0.85 0.69 -0.17 0.72

Ankle
3.61 ± 0.99 3.35 ± 0.8 2.92 ± 0.85 3.6 ± 1.02 2.86 ± 0.73
0.55 0.81 0.47 0.44 0.75

MTD-GM
MTL, 5
gated
Bi-LSTMs

Knee
3.05 ±
0.7

3.08 ±
0.69

2.9 ±
0.79

2.88 ±
0.99

3.28 ±
0.78

0.80 0.93 0.88 0.80 0.80

Ankle
2.37 ±
0.8

2.02 ±
0.54

2.3 ±
0.44

1.92 ±
0.72

2.44 ±
0.49

0.83 0.94 0.70 0.86 0.82

In this chapter, we predict knee and ankle kinematics in the sagittal plane, but we perform this
prediction per gait phase separately and only by exploiting the best DL architectures proposed in Chap-
ter 4. These best architectures are based on Bi-LSTM sub-models. The best DL model incorporates
the presence or absence of treatments thanks to a gating mechanism (MTD-GM model). This model
predicts post-treatment gait kinematics with a lower RMSE and higher R2 score than the MTD-DM
model and for all the considered pathologies. MTD-DM introduces treatments as the initialization of
hidden units of each Bi-LSTM sub-model. In MTD-GM instead, we perform random initialization of
hidden units and apply the gating mechanism to the outputs of Bi-LSTM sub-models, each devoted to
a unique muscle treatment. In our previous experiment, this model (gated model) was not the best in
all situations. This improvement is due to the approach proposed in this work: splitting the learning
process of each DL architecture between the stance and swing phases. This proposal allows for coping
with the high variance present in pre-treatment and post-treatment gait, both between individuals and
within each individual. We notice the effectiveness of our approach by exploiting the advantages of DL
architectures for each gait phase separately. We note that the gated model reaches a relative improve-
ment of around 55% on both joints. We have thus proven the increased capability of the global model
(after combining the predictions of both phases) in accurately predicting the complete gait cycles after
treatment.

If we examine results per phase, for the stance phase, both models’ performances (MTD-DM and
MTD-GM) are equivalent. For the swing phase, the difference between both models is important. The
gated model (MTD-GM) is much better: it often divides the RMSE by a factor of 2. The R2 score
is generally good for the knee (higher than 0.7), but close to 0 for the ankle. Moreover, no proposed
model was able to adequately explain the variance of the swing phase of the ankle joint (note that
MTD-DM performed badly, as shown with negative R2 scores).

We conclude that using treatment data as an initialization of hidden variables in each Bi-LSTM
sub-model is not enough to cope with the strong variance encountered in the data, especially in the
swing phase. Indeed, for this phase we remark that a more drastic treatment supervisor on the outputs
of the Bi-LSTM sub-models is required. In this work, we do not address the segmentation between
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Table 5.5: Performance of both models for both joints in predicting post-treatment gait trajectories with respect to
different diseases.

Model Model Type Body
Joint

Spinal
Cord
Injury
(SCI)

Multiple
Sclerosis
(MS)

Stroke Cerebral
Palsy
(CP)

Traumatic
Brain In-
jury
(TBI)

No. of Patients
13 12 11 4 3

No. of Cycles
400 351 260 138 74

RMSE Mean (°) ± Standard Error
R

2 Score

MTD-DM
MTL, 5
Bi-LSTMs

Knee
and
Ankle

4.02 ± 0.76 4.12 ± 0.79 3.91 ± 0.79 4.33 ± 1.02 3.76 ± 0.61
0.87 0.91 0.89 0.77 0.86

MTD-GM
MTL, 5
gated
Bi-LSTMs

2.78 ±
0.61

2.65 ±
0.53

2.65 ±
0.57

2.48 ±
0.75

2.97 ±
0.57

0.94 0.96 0.95 0.94 0.90

phases of gait cycles and focus on the prediction quality of our models, by exploiting the segmentation
of pre-treatment gait cycles on post-treatment gait cycles.
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Table 5.6: Performance comparison to related works.

Model Model Type Body
Joint

Spinal
Cord
Injury
(SCI)

Multiple
Sclerosis
(MS)

Stroke Cerebral
Palsy
(CP)

Traumatic
Brain In-
jury
(TBI)

RMSE Mean (°) ± Standard Error
R

2 Score

Model 1 4
MTL, 5
Bi-LSTMs

Knee
7.51 ± 1.67 7.23 ± 1.69 7.14 ± 1.08 6.75 ± 1.73 5.81 ± 1.33
0.63 0.63 0.01 0.7 0.54

Ankle
5.01 ± 0.99 4.38 ± 1.15 6.85 ± 1.61 6.4 ± 1.19 4.68 ± 0.82
0.38 0.55 -3.58 -0.01 0.4

Model 2 4
MTL, 5
gated
Bi-LSTMs

Knee
7.62 ± 1.89 7.23 ± 2.01 8.02 ± 1.09 7.00 ± 2.42 5.60 ± 1.4
0.53 0.48 0.21 0.68 0.65

Ankle
4.56 ± 1.05 5.39 ± 1.37 7.14 ± 1.44 3.77 ± 1.41 4.93 ± 1.0
0.27 0.28 -3.65 -0.16 -0.5

MTD-DM
MTL, 5
Bi-LSTMs

Knee
4.18 ± 0.97 4.58 ± 1.11 4.58 ± 1.09 4.82 ± 1.23 4.26 ± 0.77
0.70 0.85 0.69 -0.17 0.72

Ankle
3.61 ± 0.99 3.35 ± 0.8 2.92 ± 0.85 3.6 ± 1.02 2.86 ± 0.73
0.55 0.81 0.47 0.44 0.75

MTD-GM
MTL, 5
gated
Bi-LSTMs

Knee
3.05 ±
0.7

3.08 ±
0.69

2.9 ±
0.79

2.88 ±
0.99

3.28 ±
0.78

0.80 0.93 0.88 0.80 0.80

Ankle
2.37 ±
0.8

2.02 ±
0.54

2.3 ±
0.44

1.92 ±
0.72

2.44 ±
0.49

0.83 0.94 0.70 0.86 0.82

LigReg
Stroke* [7]
(R2 Score)

Linear
Regression

Knee - - 0.24 - -

Ankle - - 0.43 - -

MLinReg CP
[15]
(RMSE(°))

Multiple
Linear
Regression

Knee - - - 9.0 -

Ankle - - - 7.5 -

NN99 CP [155]
(RMSE(°))

NN
Knee - - - 9.7 -

Ankle - - - 6.7 -

NN01 CP [156]
(RMSE(°))

NN
Knee - - - 9.2 -

Ankle - - - - -
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Summary

In this chapter, we exploited attention mechanisms to enhance the learning process for post-treatment
gait predictions on the full gait cycle. In chapter 4, we processed the full gait cycle, but the results were
not so good compared to the prediction results in 5, when we split the gait cycle into two phases: the
stance and swing phases. But as we have seen in chapter 5, after processing both phases separately, the
combination of both phases of the gait cycle was done using the segmentation done on pre-CGA data.
So, in this chapter, an attention mechanism has been integrated into DL models to process the full gait
cycle to solve this problem. In this chapter, forty-three patients were used for experiments, the same as
last chapter 5. The difference is only that full cycles are processed in this chapter rather than splitting
the cycle into two phases. The two best models from the previous two chapters underwent modification
(addition of an attention mechanism).

The content of this chapter is based on the following paper:

• Post-Treatment Gait Prediction after Botulinum Toxin Injections Using Deep Learning with
an Attention Mechanism (accepted for presentation and publication at The 10th International
Conference on Machine Learning, Optimization, and Data Science)

6.1 Introduction

The incorporation of an attention mechanism is one of the enhancements that have been made to the
two best architectures discovered in Chapters 4 and 5. Concentrating on essential time steps makes
this mechanism superior to an LSTM layer when it comes to the processing of long-time sequences.
The attention mechanisms assist neural networks in processing information by enabling them to focus
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on particular aspects of complex input. Particularly noteworthy is that Arshad et al. [73] improved
gait event recognition in older individuals by utilizing Bi-LSTM and an attention mechanism with an
accuracy of 99.73%. Similarly, D. Thakur and S. Biswas [88] utilized attention-based deep learning
to improve hemiplegic gait prediction by using smartphone accelerometers and gyroscope data. Ding
et al. [121] also used LSTM with attention to increase the accuracy of limb motion prediction for
subjects. This methodology demonstrates signiőcant advancements in predicting abnormal gait cycles
and signiőcantly improves the model’s capacity to predict the entire gait cycle after treatment.

RNNs, speciőcally LSTM [62] and GRU [165] neural networks, are widely recognized as the most
advanced methods for sequence modeling and transduction problems. These methods excel in language
modeling and machine translation [166, 167, 60]. Self-attention, also known as intra-attention, is an
attention mechanism that connects different positions within a single sequence to calculate a repre-
sentation of the sequence. Self-attention has proven effective in reading comprehension, abstractive
summarization, textual entailment, and learning sentence representation tasks [168, 169, 170, 171].

In this thesis, when dealing with pathological gait sequences, the attention method is particularly
interesting to enhance important time steps in the signal, especially when it is complex and also
combines MTD coming from different models (different muscles). Furthermore, when all information
is combined, this leads to long-time sequences. The attention mechanism works better in dealing with
long-time sequences than just using an LSTM layer because it gives more weight to essential time steps
[172]. They let the network focus on different parts of the complex input, one at a time [172]. The
goal is to break up big jobs into smaller, more manageable chunks, done one after the other. This
method is like how our minds deal with new problems: they are broken down into smaller jobs that
can be done more efficiently. Focusing models on speciőc tasks can help them improve and pay more
attention to important information.

In the context of NLP, one way to describe an attention function is by mapping a query (a group
of questions packed into a matrix, Q) and a set of key-value (K,V ) pairs to a weighted output. In this
mapping, all the elements involvedÐthe "query," "keys," "values," and outputÐare represented as
vectors in an embedded space [172]. Self-attention constructs in adding up the weighted values, where
the weight measures how close Q and K match. The input includes queries and keys of dimension dk,
along with values of dimension dv. We calculate the dot products of the query with all keys, divide
each by

√
dk, and then use a softmax function to determine the weights on the values (see Figure 6.1).

We calculate the output matrix as follows [172]:

Attention(Q,K, V ) = softmax(QKT /
√

dk)V (6.1)

In this thesis, we exploit a self-attention mechanism to process the pre-treatment gait kinematics
(the knee and ankle joint signals) and focus on pertinent weights (attention scores) to important parts
of signals for a given gait angular kinematics sequence (α1, α1, . . . , αn). We construct the matrix QKT

as follows: [<αi,αj>] and normalize it by its dimension and apply on each element a Softmax function.
We obtain this way the weights (w1, w2, . . . , wn) in the [0,1] interval. Therefore, the őnal weighted
sequence is <w1α1, w2α2, . . . , wnαn> which is an enhanced version of signal. In the following, I
explain how it is exploited in the models’ architecture.

6.2 Description of Models

Five parallel layers of Bi-LSTM are used in both models (see Figure 6.2). As stated in Table 3.2,
each layer is in charge of a particular treatment. The őve categories of injected muscles correspond to
the őve treatments. Bi-LSTM layers each contained 51 units. Remember that every unit receives two
inputs for the ankle and knee, respectively.

MTD-Driven Model with an Attention Mechanism (MTD-DM-Att)
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patients’ post-treatment gait trajectory effectively.

The őrst column in both őgures shows MTD-DM-Att model predictions. The last column provides
MTD-GM-Att model predictions for the same patient. The plots show that both models predict
slightly differently. Both models have similar mean predictions but different SDs. Unless two ankle
joint predictions are similar, MTD-DM-Att models predict knee and ankle joints with more deviation
from the mean. The MTD-GM-Att model performed better.

Comparison to previous works

Except for our previous study [39], it is difficult to compare our results to other studies because
this is the őrst time that the whole knee and ankle kinematic signals on the sagittal plane have
been anticipated for botulinum toxin treatment. So, in Table 6.2, we compare the outcomes of this
investigation to the previous study. The results show that adding an attention mechanism to models
improves the results signiőcantly. We had the same patient in both MS and TBI disease tests, but the
difference in predictions is clear.

Table 6.1: Performance of both models in predicting post-treatment gait trajectories concerning different diseases.

Model Body
Joint

SCI MS Stroke CP TBI All Pa-
tients

No. of Patients
13 12 11 4 3 43

No. of Cycles
400 351 260 138 74 1223

RMSE Mean (°) ± Standard Error
R

2 Score

MTD-DM with
an Attention
Mechanism

Knee
2.96 ±
0.69

3.45 ± 0.8 2.89 ±
0.83

2.62 ± 0.93 3.15 ± 0.81 3.06 ± 0.79

0.85 0.91 0.84 0.86 0.87 0.87

Ankle
2.15 ±
0.65

2.21 ± 0.52 2.27 ±
0.49

1.97 ± 0.97 2.2 ± 0.56 2.18 ±
0.59

0.87 0.92 0.66 0.84 0.83 0.83

Knee &
Ankle

2.63 ±
0.57

2.94 ± 0.58 2.65 ±
0.59

2.38 ± 0.78 2.75 ± 0.6 2.71 ± 0.6

0.95 0.95 0.94 0.95 0.91 0.94

MTD-GM with
an Attention
Mechanism

Knee
3.02 ± 0.64 3.43 ±

0.77
2.93 ± 0.8 2.57 ±

0.45
2.45 ±
0.83

3.03 ±
0.76

0.82 0.91 0.84 0.88 0.93 0.87

Ankle
2.17 ± 0.6 2.2 ± 0.49 2.29 ± 0.53 1.87 ±

0.91
2.28 ± 0.66 2.18 ±

0.56
0.86 0.92 0.64 0.87 0.82 0.83

Knee &
Ankle

2.68 ± 0.52 2.92 ±
0.56

2.68 ± 0.6 2.82 ±
0.78

2.18 ±
0.56

2.69 ±
0.58

0.94 0.95 0.94 0.96 0.94 0.95
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Last time we used MTD-GM to predict MS patients, we had an RMSE of 7.23°and an R2 of 0.48. In
this investigation, the RMSE was 3.43°, and the R2 was 0.91. Using MTD-GM, we obtained an RMSE
of 5.60°and an R2 of 0.65 for TBI. However, this time, we got the best RMSE of 2.45°and R2 of 0.93.
We can observe that the R2 score for stroke, TBI, and CP patients was negative in the previous study
for ankle joints, but this time, we have made signiőcant progress and achieved more than a 0.8 R2 score.

Additionally, we can contrast our results with those from [7] for predicting peak knee and ankle
on sagittal planes for rectus femoris botulinum toxin injections in stroke patients (Table 6.2). In this
situation, the proposed approach for stroke (MTD-GM-Att) showed a higher R2 score for both peak
knee ŕexion and peak ankle dorsiŕexion. Because the models being compared were not trained and
tested on the same databases, this comparison should be approached cautiously.

Furthermore, we investigated how well our model predicted entire postoperative kinematic trajec-
tories for people with CP. Even though the proposed approaches were not tested on the same datasets,
their results were signiőcantly better than those of Galarraga et al. [173], Niiler et al. [155], and Niiler
[156], as shown in Table 6.2. MTD-GM-ATT model had an average RMSE of 2.57°for knee ŕexion and
1.87°for ankle dorsiŕexion.

6.4 Conclusion

In this chapter, we used two models using Bi-LSTM modules and attention mechanisms to predict the
effects of BTX-A injections on gait trajectories. As far as we know, except for our previous work [39],
no other study on the subjects in pathological gait. This study introduced novel MTL architectures
incorporating attention mechanisms to predict post-BTX-A treatment gait trajectories in patients
with musculoskeletal and neurological disorders. By leveraging CGA data and treatment speciőcs, the
proposed models, MTD-DM-Att and MTD-GM-Att, demonstrated signiőcant enhancements in post-
treatment forecasting knee and ankle joint movements. The results showcased the efficacy of these
models across various pathologies, with both demonstrating comparable predictive performance but
excelling in speciőc patient cohorts. Comparison with previous studies underscored the superiority
of our proposed approaches in predicting postoperative kinematic trajectories, showcasing substantial
improvements in accuracy, particularly in predicting abnormal gait cycles post-BTX-A treatment. The
őndings of this study pave the way for more precise and personalized treatment strategies for indi-
viduals with musculoskeletal and neurological impairments, offering a promising avenue for enhancing
rehabilitation outcomes.
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Table 6.2: Performance comparison of the study with other prediction studies. LinReg and MLinReg correspond
to linear regression and multiple LinReg, respectively, in [7, 173]. NN99 and NN01 correspond to feedforward neural
networks, respectively, in [155, 156].

Model Model
Type

Body
Joint

SCI MS Stroke CP TBI

RMSE Mean (°) ± Standard Error
R

2 Score

Model 1 [39]
MTL, 5
Bi-LSTMs

Knee
7.51 ± 1.67 7.23 ± 1.69 7.14 ± 1.08 6.75 ± 1.73 5.81 ± 1.33
0.63 0.63 0.01 0.7 0.54

Ankle
5.01 ± 0.99 4.38 ± 1.15 6.85 ± 1.61 6.4 ± 1.19 4.68 ± 0.82
0.38 0.55 -3.58 -0.01 0.4

Model 2 [39]
MTL, 5
gated
Bi-LSTMs

Knee
7.62 ± 1.89 7.23 ± 2.01 8.02 ± 1.09 7.00 ± 2.42 5.60 ± 1.4
0.53 0.48 0.21 0.68 0.65

Ankle
4.56 ± 1.05 5.39 ± 1.37 7.14 ± 1.44 3.77 ± 1.41 4.93 ± 1.0
0.27 0.28 -3.65 -0.16 -0.5

MTD-DM-
Att Model

MTL, 5
Bi-LSTMs

Knee
2.96 ± 0.69 3.45 ± 0.8 2.89 ± 0.83 2.62 ± 0.93 3.15 ± 0.81
0.85 0.91 0.84 0.86 0.87

Ankle
2.15 ± 0.65 2.21 ± 0.52 2.27 ± 0.49 1.97 ± 0.97 2.2 ± 0.56
0.87 0.92 0.66 0.84 0.83

MTD-GM-
Att Model

MTL, 5
gated
Bi-LSTMs

Knee
3.02 ± 0.64 3.43 ± 0.77 2.93 ± 0.8 2.57 ± 0.45 2.45 ± 0.83
0.82 0.91 0.84 0.88 0.93

Ankle
2.17 ± 0.6 2.2 ± 0.49 2.29 ± 0.53 1.87 ± 0.91 2.28 ± 0.66
0.86 0.92 0.64 0.87 0.82

LigReg
Stroke* [7]
(R2 Score)

Linear
Regression

Knee - - 0.24 - -

Ankle - - 0.43 - -

MLinReg CP
[173]
(RMSE(°))

Multiple
Linear
Regression

Knee - - - 9.0 -

Ankle - - - 7.5 -

NN99 CP [155]
(RMSE(°))

NN
Knee - - - 9.7 -

Ankle - - - 6.7 -

NN01 CP [156]
(RMSE(°))

NN
Knee - - - 9.2 -

Ankle - - - - -
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Summary

In previous chapters, we tried to increase the performance of post-treatment gait prediction using
different models and techniques. In this chapter, we are exploiting the MTL technique to see how it
performs in predicting post-gait treatment trajectories. We are exploring the prediction of two tasks
instead of just one task (prediction of post-treatment gait trajectories). Three different types of experi-
ments are performed in this chapter. The main task of predicting post-gait trajectories is the same, but
auxiliary tasks are changed. In experiment 1, post-treatment gait and treatment output (presence or
absence of treatment) are predicted. In experiment 2, the prediction of BTX-A treatment dosage with
the main task is performed. In the last experiment, the auxiliary task predicted the gait phase (stance
or swing). The best models from previous chapters are modified to perform two tasks simultaneously
(MTL). The input of the models is pre-treatment gait (knee and ankle joint), and the outputs are
post-treatment gait and treatment information or gait phase. In this chapter, forty-three patients were
used for experiments, the same as in the last chapter 6.

The content of this chapter is based on the following paper:

• Post-Treatment Gait and Treatment Prediction after Botulinum Toxin Treatment Using Multi-
task Learning to be published

7.1 Introduction

Multi-task learning (MTL) aims to enhance generalization by utilizing domain-speciőc information
found in the training signals of related tasks [174]. In the era of deep learning, MTL refers to creating

101



networks that can learn shared representations from multiple supervisory signals. This is in contrast to
the single-task scenario, where each individual task is handled separately by its own network. Multi-
task networks offer a range of advantages. Firstly, the amount of memory needed is signiőcantly reduced
due to the layer sharing inherent in the system. Additionally, by avoiding the need to repeatedly
calculate the features in the shared layers for each task, they are able to achieve faster inference speeds.
One key aspect to consider is the potential for enhanced performance when the tasks involved share
complementary information or act as a regularizer for each other. MTL has been widely used across
all applications of ML, including computer vision [175], speech recognition [176], natural language
processing [177], drug discrovery [178], and biomedical areas [16].

In quantiőed gait analysis (QGA), we face the problem of few data. MTL can indeed handle sparse
data issues and create a more reliable model by utilizing information from various tasks [16]. Nait
Aicha et al. [126] used MTL and compared how well CNN, LSTM and a combined ConvLSTM used
raw accelerometer data to predict falls in older adults. By incorporating auxiliary tasks like gender
and age, the models showed improved performance. Yu et al. [127] came up with a Deep Multi-source
Multi-task Learning (DMML) approach that gives a framework for assessing fall risk and PD severity
based on accelerometer and gyroscope data. The goal of MTL is to improve the performance of every
single task by simultaneously evaluating the fall risk and PD severity. Zhang et al. [128] proposed
a multi-task CNN for age estimation using gait. They used gender information as another task to
improve age estimation. Aoki et al. [129] implemented multi-task RNN (MRNN) to classify physically
fatigued and non-fatigued gait cycles. They achieved improved results compared to state-of-art.

Within the őeld of DL, MTL is commonly achieved through either hard or soft parameter sharing
of hidden layers. Hard parameter sharing is the predominant method for MTL in neural networks
and has been used since [179]. Typically, it is implemented by sharing the hidden layers across all
tasks while maintaining multiple task-speciőc output layers. Implementing hard parameter sharing
signiőcantly mitigates the likelihood of overőtting. Indeed, in [180] the authors demonstrated that
the possibility of overőtting the shared parameters is considerably lower by a factor of N (where N
represents the number of tasks) compared to overőtting the task-speciőc parameters, speciőcally the
output layers. From an intuitive standpoint, it is logical that as we increase the number of tasks we learn
simultaneously, our model needs to discover a representation encompassing all tasks. Consequently,
our likelihood of overőtting on the original task decreases. Conversely, in soft parameter sharing, each
task is equipped with a model with distinct parameters. The parameters of the model are regularised
to promote similarity among them. In this chapter, we have used a hard parameter-sharing approach
to predict, on one hand, post-gait and MTD, and on the other hand, post-gait and gait phase.

7.2 Description of Experiments

In all experiments, there are two outputs for models: one is primary tasks (post-treatment gait trajec-
tories prediction), and the other is a prediction of MTD (presence/absence or full dosage) or prediction
of gait phase (stance or swing). In this chapter, we have used Npat = 43 patients for experiments.
In the őrst experiment, only the presence or absence of treatment in different muscles is predicted
along with post-treatment gait. The second experiment predicted the dosage of BTX-A treatment per
muscle with the main task. The last experiment predicted the gait phase (stance of swing) along with
the main task. In our dataset, three types of molecules were used for treatment: Dysport, Xeomin, and
Botox. These molecules differ in units; one unit of Botox is equivalent to 2.5 units of Xeomin/Dysport.
We rescale the botox molecule and normalize values of different molecules on the same scale from 0 to
1.

A hard parameter-sharing method is used in all models. Five parallel layers of Bi-LSTM are shared
in all models. Table 7.1 states that each layer controls a particular treatment. The őve categories of
injected muscles correspond to the őve treatments. Bi-LSTM layers each contained 51 units. Remem-
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ber that every unit receives two inputs for the ankle and knee, respectively.

Table 7.1: Considered injected muscles and their frequencies in the database (43 patients).

Muscle Number Muscle/Category
Injections limbs

Number Proportion

1 Soleus 53 28.3%
2 Gastrocnemius (Medialis and/or Lateralis) 51 27.2 %
3 Rectus Femoris 22 11.7%
4 Semitendinosus 14 7.4%
5 Other Muscle 47 25.1 %

7.2.1 Experiment 1: Presence/Absence of MTD as auxiliary task

Following two models (show Figure 7.1) are responsible for the prediction of the presence/absence of
treatment with post-treatment gait trajectories.

Model 1. MTL-based Model (Presence/Absence of MTD): In this architecture, the input
vector x is directed towards the őve Bi-LSTM sub-models. The cell states and hidden states of the
LSTM are initialized at 0. The results of the őve Bi-LSTM sub-models are concatenated and then
processed through a dense layer. Next, the output of the dense layer is fed into task-speciőc layers for
each task. There is one task-speciőc dense layer before output. Task 1 (the primary task referred to
as FC2 in 7.1a) is a regression task responsible for predicting post-treatment gait trajectories. Task 2
(auxiliary task) is a binary classiőcation task with őve units (referred to as FC3 in 7.1a) responsible
for checking the presence/absence of treatment in muscles (see Table 7.1).

Model 2. MTL-based Attention-Model (Presence/Absence of MTD): The őrst part of
this architecture is the same as the last architecture, having őve Bi-LSTM sub-models. The results
of the őve Bi-LSTM sub-models are concatenated and then processed through an attention layer to
enhance the accuracy of the predictions. Next, the output of an attention layer is fed into a dense
layer (FC1 in Figure 7.1b). Finally, the output of the dense layer is fed into task-speciőc layers (FC2
and FC3) for each task. This architecture is also responsible for the same tasks as the previous model.

Leave-one-out cross-validation is employed to evaluate the performance of all models. During each
iteration, the model was trained using Ntrain = Npat - 1 patients, while one patient was reserved for
testing purposes. Throughout the training process, mini-batches consisting of 16 samples were utilized.
The ADAM optimizer, MSE (Task 1) loss function and binary cross-entropy (Task 2) were the basis for
training DL models [159]. The performance of the proposed models is evaluated using accuracy (Task
2), RMSE [160], standard error (SE) [161], and the coefficient of determination R2 (Task 1) [162].

Results

Table 7.2 shows how well Models 1 and 2 predicted knee, ankle, and both joints post-treatment
gait trajectories. These models also predicted the presence/absence of MTD. The bold items in the
tables below represent the most accurate predictions, with the lowest RMSE, highest R2 values, and
best accuracies.

In predicting of presence/absence of MTD, both models (Model 1 and 2) performed similarly with
the same accuracy (%), except for TBI patients. When predicting TBI patients, Model 2 outperforms
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(a)

(b)

Figure 7.1: MTL models with two outputs (prediction of treatment and prediction of post-treatment gait trajectories)
(a) MTL-based Model, and (b) MTL-based Attention-Model (Att-Model)

Model 1 with an accuracy 100.0. Regarding the prediction of post-treatment gait trajectories, Model
2, with an attention mechanism, performed better than Model 1 in terms of knee, ankle, and both
joints. The average RMSE and R2 scores on all patients for both joints using Model 2 are 2.73 ± 0.6
and 0.95, respectively. However, R2 scores for both models are similar in most cases, except for TBI
patients. It is noted that there is only a major difference in the results of TBI patients. Otherwise,
there are very minor differences in the results of both models (Models 1 and 2). Furthermore, the
ankle joint is better predicted for both models than the knee joint with RMSE of 2.31 ± 0.59 and 2.22
± 0.57 for Model 1 and 2, respectively. Additionally, we can see that the accuracy of stroke patients
in predicting the presence/absence of MTD is 100.0 for both models. On the other hand, the accuracy
of CP patients is 75.0 for both models.

7.2.2 Experiment 2: Predicting MTD dosage as auxiliary task

The following two models are responsible for dosage value prediction of treatment with post-treatment
gait trajectories.

Model 3. MTL-based Attention-Model (Predicting MTD Dosage): The architecture of
this model is the same as Model 2. The difference is only in the output of Task 2. Task 2 is a regression
task with four units responsible for checking the treatment dosage in the őrst four muscles (see Table
7.1). We don’t consider the last category because it combines different muscles.

Model 4. MTL-based MTD-driven Attention-Model (Predicting MTD Dosage): The
architecture of this model is the same as Model 2. The one difference is the output of Task 2, as
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Table 7.2: Performance of both Model 1 and Model 2 in predicting the presence/absence of MTD and post-treatment
gait trajectories (Experiment 1 results).

Model Body
Joint

SCI MS Stroke CP TBI All Patients

No. of Patients
13 12 11 4 3 43

No. of Cycles
400 351 260 138 74 1223

RMSE Mean (°) ± Standard Error
R

2 Score

MTL-based
Model
(presence/
absence of
MTD)

Knee
3.08 ± 0.68 3.5 ± 0.86 2.96 ± 0.79 2.81 ± 0.98 4.14 ± 0.77 3.22 ± 0.79
0.85 0.90 0.84 0.83 0.70 0.85

Ankle
2.34 ± 0.66 2.3 ± 0.54 2.3 ± 0.5 1.96 ± 0.98 2.62 ± 0.67 2.31 ± 0.59
0.84 0.91 0.64 0.86 0.75 0.81

Knee &
Ankle

2.78 ± 0.59 3.01 ± 0.61 2.7 ± 0.57 2.46 ± 0.8 3.5 ± 0.6 2.84 ± 0.61
0.94 0.95 0.94 0.95 0.83 0.94

Accuracy 95.38 80.0 100.0 75.0 86.67 89.77

MTL-based
Att-Model
(presence/
absence of
MTD)

Knee
2.93 ± 0.7 3.48 ± 0.79 2.89 ± 0.85 2.66 ± 0.99 3.24 ± 0.8 3.07 ± 0.8
0.87 0.91 0.84 0.85 0.85 0.87

Ankle
2.19 ± 0.63 2.28 ± 0.52 2.27 ± 0.49 1.96 ± 0.92 2.2 ± 0.59 2.22 ± 0.57
0.86 0.92 0.65 0.86 0.83 0.83

Knee &
Ankle

2.63 ± 0.56 2.98 ± 0.56 2.65 ± 0.62 2.38 ± 0.78 2.8 ± 0.59 2.73 ± 0.6
0.95 0.95 0.94 0.95 0.91 0.95

Accuracy 95.38 80.0 100.0 75.0 100.0 90.7

Bold entries denote the best Accuracy (%), lowest average RMSE, and maximum R
2 over all limbs having a given

disease.

reported in Model 3. Another difference is that MTD is processed as input using hidden layers of
Bi-LSTM, and full dosage is predicted (see Figure 7.2). The őrst four categories of Table 7.1 are used.
If there is any treatment, we feed 1 into a hidden layer of the respective submodel; otherwise, we feed
0.

(a)

Figure 7.2: MTL model with two outputs (prediction of MTD dosage and prediction of post-treatment gait trajectories):
MTL-based MTD-driven Attention-Model

Remaining experiment protocol is the same for this experiment as well. But as Task 2 (prediction
of BTX-A dosage) is a regression task here so, instead of binary cross-entropy, MSE is used as a loss
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function for Task 1.

Results

Table 7.3 reports the results of Models 3 and 4 in the prediction of dosage of MTD and post-
treatment gait trajectories. The bold items in the tables below represent the most accurate predictions,
with the lowest RMSE, MAE, and highest R2 values. It is interesting to see while predicting dosage
of MTD with Task 2, Model 3 (without adding treatment information in hidden layers of Bi-LSTM
submodels) performed better than Model 4 (with added information). The best results for the knee
joint and ankle joint for all patients by Model 3 are (RMSE: 3.02 ± 0.78 and 2.19 ± 0.58 R2 score:
0.88 and 0.83, respectively). Model 3 predicted all patients with RMSE of 2.68 ± 0.59 on both joints
and R2 score of 0.95. Results with prediction of MTD dosage are little better than prediction of
presence/absence of MTD with post-treatment gait trajectories.

For MTD dosage prediction, Model 3 outperformed Model 4. Model 3 predicted a dosage of MTD
for all patients with an average RMSE or MAE of 0.01. On the other hand, Model 4 was predicted to
have an average RMSE or MAE of 0.02.

Table 7.3: Performance of both Model 3 and Model 4 in predicting dosage of MTD and post-treatment gait trajectories
(Experiment 2 results).

Model Body
Joint

SCI MS Stroke CP TBI All Patients

No. of Patients
13 12 11 4 3 43

No. of Cycles
400 351 260 138 74 1223

RMSE Mean (°) ± Standard Error
R

2 Score

MTL-based
Att-Model
(Predicting
MTD
dosage)

Knee
2.87 ± 0.63 3.39 ± 0.8 2.89 ± 0.8 2.56 ± 0.95 3.23 ± 0.88 3.02 ± 0.78
0.89 0.91 0.85 0.88 0.85 0.88

Ankle
2.12 ± 0.62 2.22 ± 0.52 2.31 ± 0.49 1.91 ± 0.94 2.37 ± 0.69 2.19 ± 0.58
0.87 0.92 0.64 0.87 0.80 0.83

Knee &
Ankle

2.56 ± 0.53 2.9 ± 0.58 2.66 ± 0.59 2.31 ± 0.75 2.87 ± 0.68 2.68 ± 0.59
0.95 0.96 0.94 0.96 0.91 0.95

RMSE 0.01 0.01 0.01 0.02 0.02 0.01

MAE 0.01 0.01 0.01 0.01 0.02 0.01

MTL-based
MTD-driven
Att-Model
(Predicting
MTD
dosage)

Knee
2.86 ± 0.61 3.43 ± 0.78 2.87 ± 0.80 2.62 ± 0.91 3.58 ± 0.72 3.05 ± 0.75
0.89 0.91 0.85 0.88 0.81 0.88

Ankle
2.32 ± 0.62 2.24 ± 0.55 2.33 ± 0.53 1.85 ± 1.02 2.55 ± 0.64 2.28 ± 0.59
0.84 0.92 0.64 0.87 0.77 0.82

Knee &
Ankle

2.65 ± 0.53 2.94 ± 0.58 2.66 ± 0.61 2.31 ± 0.82 3.13 ± 0.57 2.74 ± 0.59
0.88 0.96 0.94 0.96 0.88 0.94

RMSE 0.02 0.02 0.01 0.02 0.03 0.02

MAE 0.01 0.02 0.01 0.02 0.02 0.02

Bold entries denote the lowest average RMSE, MAE, and maximum R
2 over all limbs having a given disease.
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7.2.3 Experiment 3: Gait phase prediction as auxiliary task

Experiment 3 differs from the previous experiment. Because in both those experiments, we were trying
to predict MTD with post-treatment gait trajectories. However, in this experiment, we are trying to
predict the gait phase (stance and swing) that may help us increase performance for the main task.
Normal/healthy person has 60% of the stance phase and 40% of the swing phase in one gait cycle.
However, we are working on patient data in this project, which is not the case here. If you can refer
to Figure 3.2, it is visible almost all patients have different proportions of each phase. It will increase
some of the performance of our main task if we can predict the gait phase correctly.

Model 5. MTL-based Model (gait-phase): The architecture of this model (see Figure 7.3a)
is the same as Model 1. The difference is only in the output of Task 2. Here, Task 2 has 51 units and
is responsible for predicting the gait phase at each time point. Our gait cycles have been normalized
to 51 points; this has already been discussed in the chapter on Data.

Model 6. MTL-based Att-Model (gait-phase): The architecture of this model (see Figure
7.3b) is the same as Model 2. The difference is only in the output of Task 2, as reported in Model 5.

The experimental protocol for this experiment is also the same as in Experiment 1 because, in both
tasks, Task 2 is a classiőcation task.

(a)

(b)

Figure 7.3: MTL models with two outputs (prediction of gait-phase and prediction of post-treatment gait trajectories)
(a) MTL-based Model, and (b) MTL-based Att-Model

Results

Table 7.4 reports the results of Models 5 and 6’s results in predicting gait-phase and post-treatment
gait trajectories. The bold items in the tables below represent the most accurate predictions, with the
lowest RMSE, highest R2 values, and best accuracy. As we have seen in Experiment 1, Model 2 (with
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an attention mechanism) outperformed Model 1 (without an attention mechanism); the same scenario
repeats here. Model 6 (with an attention mechanism) performed better overall as well. The best results
for the knee joint and ankle joint for all patients by Model 6 are (RMSE: 3.09 ± 0.84 and 2.23 ± 0.6
R2 score: 0.87 and 0.83, respectively). Model 6 predicted all patients with RMSE of 2.74 ± 0.62 on
both joints and R2 score of 0.99. Interestingly, we can note the signiőcant difference in TBI patients
for both models, as we have seen in previous experiments. Model 5 predicted TBI patients with an
RMSE of 3.48 ± 0.6 and R2 score of 0.84. On the other hand, Model 6 predicted an RMSE of 2.89 ±
0.62 and R2 score of 0.90.

For gait-phase prediction, both models performed similarly, with only a minor difference (0.14%).

Table 7.4: Performance of both Model 5 and Model 6 in predicting gait phase and post-treatment gait trajectories
(Experiment 3 results).

Model Body
Joint

SCI MS Stroke CP TBI All Patients

No. of Patients
13 12 11 4 3 43

No. of Cycles
400 351 260 138 74 1223

RMSE Mean (°) ± Standard Error
R

2 Score

MTL-based
Model
(gait-phase)

Knee
3.17 ± 0.69 3.58 ± 0.88 2.96 ± 0.81 2.93 ± 1.03 4.08 ± 0.81 3.28 ± 0.82
0.85 0.90 0.84 0.79 0.71 0.85

Ankle
2.34 ± 0.69 2.36 ± 0.55 2.33 ± 0.51 2.06 ± 0.96 2.64 ± 0.66 2.34 ± 0.6
0.84 0.91 0.63 0.84 0.75 0.81

Knee &
Ankle

2.83 ± 0.59 3.08 ± 0.62 2.71 ± 0.58 2.58 ± 0.81 3.48 ± 0.6 2.89 ± 0.62
0.94 0.94 0.94 0.94 0.84 0.94

Accuracy 81.6 85.13 90.98 83.82 99.35 86.64

MTL-based
Att-Model
(gait-phase)

Knee
2.87 ± 0.78 3.46 ± 0.86 2.93 ± 0.85 2.77 ± 0.88 3.48 ± 0.85 3.09 ± 0.84
0.87 0.91 0.84 0.84 0.82 0.87

Ankle
2.16 ± 0.7 2.3 ± 0.53 2.32 ± 0.5 1.94 ± 0.097 2.29 ± 0.61 2.23 ± 0.6
0.87 0.91 0.64 0.86 0.82 0.83

Knee &
Ankle

2.58 ± 0.62 2.99 ± 0.62 2.7 ± 0.59 2.44 ± 0.76 2.98 ± 0.62 2.74 ± 0.62
0.88 0.95 0.95 0.95 0.90 0.94

Accuracy 81.75 85.3 90.98 84.8 98.69 86.78

Bold entries denote the lowest average RMSE, maximum R
2, and best accuracy over all limbs having a given disease.

7.3 Discussion and Conclusion

In this chapter, we explored the MTL to improve prediction of post-treatment gait trajectories. Three
experiments were performed, and in each experiment, two models were designed to see the performance.
Each model has two outputs, one is our primary task (prediction of post-treatment gait trajectories),
and the other tasks are auxiliary (prediction of presence/absence of MTD or dosage of MTD or gait-
phase prediction). After analyzing results in Tables 7.2, 7.3, and 7.4, it can be noted that there is a
minor difference in the őnal results of our primary task. Models 2 and 3 get the best R2 scores of 0.95
when predicting both joints (the knee and ankle). Model 3 also outperformed other models in terms
of RMSE (2.68 ± 0.59).

If we compare the results of this chapter with previous chapters, then we can see the best results
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we got in Chapter 6 by MTD-GM-Att model were a little bit better (RMSE: 2.69 ± 0.58 and R2 score:
0.95).

However, in this chapter, models perform other predictions in addition to pos-treatment gait pre-
dictions, and yet results remain comparable to the best of Chapter 6. Moreover, the dosage of MTD
is very important to predict. In Model 4, the input was pre-treatment gait trajectories and the pres-
ence/absence of MTD. The outputs were the dosage of MTD and post-treatment gait trajectories.
Models 5 and 6 were responsible for predicting the proportion of the stance and swing phase along
with the primary task. As we know, we don’t have a regular proportion of stance and swing phases
among patients. So, it can also be helpful for clinicians to see if, after treatment, there is any improve-
ment in the proportion of both phases.
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Chapter 8

Conclusions and perspectives

8.1 Conclusions

Over the past few years, there has been notable advancement in the őeld of QGA, thanks to ML
techniques. QGA and gait prediction are areas where DL techniques gained popularity, as discussed
in detail in Chapter 2. Although there has been a signiőcant amount of attention from the scientiőc
community to the application of DL techniques for healthy gait prediction, there is a noticeable ab-
sence of treatment outcome prediction for pathological gait. We have proposed different DL models
for predicting how BTX-A treatment affects a patient’s gait in different diseases, such as MS, CP,
stroke, TBI, and SCI, using supervised machine learning. In this framework, pre-treatment gait and
treatment information were used to predict post-treatment gait kinematics. We explored a variety of
DL techniques to predict post-treatment gait, including LSTM, Bi-LSTM, ensemble learning, atten-
tion mechanisms, and MTL. We used regression analyses to look at the relationship between kinematic
features following treatment and kinematics before treatment using clinician-provided treatment in-
formation. Treatment information consists of different injected muscles with BTX-A injections from
both sides of the limbs.

To the best of our knowledge, the utilized database is the only database consisting of pre-treatment
CGA, post-treatment CGA, and MTD. Indeed, most studies considering pathological gait use propri-
etary datasets with relatively few patients and lack external validation.

Chapter 2 gives background on QGA and talks about the latest DL strategies for QGA. It also
presents the main datasets used in QGA and their strengths and weaknesses. The őndings of Chapter
2 were divided into two major parts: classiőcation and regression studies. Most classiőcation studies
focused on classifying healthy and pathological gait and on gait event detection. On the other hand,
regression studies span future sub-sequence forecasting, sensor-to-sensor sequence estimation, condi-
tion/joint translations, and clinical score prediction. CNN and LSTM have been mostly used as DL
methods in these studies.

Chapter 3 presents in detail the data collection protocol and dataset preparation.
Chapter 4 has addressed two different approaches to predicting the post-treatment gait of knee

and ankle joints (serial and parallel processing). We developed seven different DL models, consisting
of LSTM and BiLSTM. Parallel models outperformed serial models. MTD was fed into models in two
different ways: (1) within the Bi-LSTM network’s hidden layers and (2) through a gating mechanism.
These architectures aim to model interactions among various treatment combinations when multiple
muscles are injected simultaneously. Our őndings after this chapter were: (a) the number of patients
and type of disease did not directly affect the model’s performance; (b) inter- and intra-subject variabil-
ity affected the model’s performance more than the number of patients (samples) and type of disease;
and (c) parallel Bi-LSTM models were highly effective at increasing the total quantity of information
accessible to the model and enhancing the context provided to the algorithm. Furthermore, the main

113



limitation of the proposed models was the relatively small size of the database. DL models usually need
large amounts of data to be trained appropriately. Unfortunately, this is rarely the case in biomedical
databases.

In Chapter 5, we proposed splitting the learning process into each phase of the cycle rather than the
complete cycle to increase the size of the dataset. The models proposed in Chapter 4 were working on
a complete gait cycle, but in Chapter 5, the full cycle was segmented into two phases (stance and swing
phase). This technique increased the number of samples in the database. The two best models from
Chapter 4 were chosen to process both gait cycle phases. Each model processed both phases separately.
The results were combined to compare with the old results of Chapter 4. The őndings of Chapter 5
were: (a) after the segmentation of the gait cycle into phases, the prediction of post-treatment gait
kinematics (knee and ankle joint) was improved with a lower RMSE and higher R2 score compared
to the previous chapter and that for all the considered pathologies (relative improvement of around
55% on both joints); and (b) treatment data as initialization of hidden variables in each Bi-LSTM sub-
model is not enough to cope with the strong variance encountered in the data, especially in the swing
phase. Moreover, the limitation of Chapter 5 was that we do not address the segmentation between
phases of gait cycles and focus on the prediction quality of our models by exploiting the segmentation
of pre-treatment gait cycles on post-treatment gait cycles.

Chapter 6 has dealt with the limitations of the previous chapter. The chapter exploited the atten-
tion mechanism to cope with high-variance problems in the swing phase and segmentation process. We
introduced an architecture incorporating attention mechanisms to predict post-BTX-A treatment gait
trajectories in patients with musculoskeletal and neurological disorders. By leveraging CGA data and
treatment speciőcs, the proposed models, MTD-DM-Att and MTD-GM-Att, demonstrated signiőcant
enhancements in post-treatment forecasting of knee and ankle joint movements. The results of the
chapter showcased the efficacy of these models across various pathologies, with both demonstrating
comparable predictive performance but excelling in speciőc patient cohorts, thanks to the introduction
of the self-attention mechanism. Compared to previous approaches, our proposed methods in Chapter
6 were much better at predicting kinematic trajectories after treatment, showing signiőcant accuracy
improvements, mainly when predicting abnormal gait cycles after BTX-A treatment. Although tested
on a relatively small sample, the chapter’s őndings encouraged more precise and personalized treat-
ment strategies for individuals with musculoskeletal and neurological impairments, offering a promising
avenue for enhancing rehabilitation outcomes. The model proposed in chapter 6 MTD-GM-Attention
model (MTD-GM-Att) outperformed all other proposed models in this thesis, with the best RMSE of
2.69 ± 0.58 and R2 score of 0.95. This model consists of őve BiLSTM sub-models and has an atten-
tion mechanism. MTD information in that model was processed using a gating mechanism; typically,
LSTM has been used to process long-term sequences. However, the attention mechanism concentrates
on essential time steps, making this mechanism superior to an LSTM. This model outperformed other
models due to using both BiLSTM and attention mechanisms.

MTL has been exploited in Chapter 7. The previous chapters only focused on prediction and
improvement in performance of post-treatment gait using pre-treatment gait and MTD information.
But in Chapter 7, we explored the prediction of two tasks instead of just one task (prediction of
post-treatment gait trajectories). Three different types of experiments, with two models each, were
performed in the chapter. The main task of predicting post-gait trajectories was the same, but auxiliary
tasks were changed. Each model had two outputs; one was our primary task (prediction of post-
treatment gait trajectories), and the other tasks were (prediction of presence/absence of MTD or
dosage or MTD or gait-phase prediction). If we compare the results of this chapter with those of
previous chapters, we can see there was very little improvement in the prediction of post-treatment
gait. However, in this chapter, models perform other predictions besides post-treatment gait predictions
(RMSE: 2.68 ± 0.58 and R2: 0.95), yet results remain comparable to the best of Chapter 6 (RMSE:
2.69 ± 0.58 and R2: 0.95). Moreover, the dosage of MTD is very important to predict. We got very

114



good prediction accuracy in predicting dosage of MTD.
The principal contributions of this study could be resumed with the following points:

• Development of a database with pre-treatment gait, post-treatment gait kinematics, and MTD
information

• It gives a quantiőed prediction (estimated post-treatment gait kinematics)

• It simultaneously considers several treatments of BTX-A injections (and their combinations)

• It considers multiple gait patterns in different diseases (MS, CP, SCI, TBI, stroke)

• It can predict multiple tasks using MTL (main task with auxiliary task).

This study holds signiőcant scientiőc and societal importance, as it explores the medical application
of BTX-A treatment for adults with neurological gait difficulties. Firstly, the predictive models provide
clinicians and gait analysts with kinematic curves, which they can use to assess the most probable
treatment outcome.

Indeed, the prediction of gait outcomes based on treatment can assist clinicians in making informed
decisions regarding various treatment combinations. For instance, when doctors evaluate treatments,
they can test the model with and without the treatments in question and make a őnal decision by
comparing the probable outcomes. The preview of the anticipated post-treatment gait will also assist
the medical team in their treatment discussions, as there may be differing professional opinions on the
expected outcome among team members (i.e. two different doctors within the same team).

Furthermore, when evaluating the effectiveness of a treatment, the prediction provides an estimate
of the patient’s potential for functional improvement, which typically varies. This could serve as a
source of inspiration for the patient to pursue a speciőc treatment. Enhancing psychological motivation
can increase patient engagement in recovery and rehabilitation, resulting in a more favorable outcome.
If the optimal treatment is identiőed, we can estimate the maximum potential for improvement in the
patient.

Globally, this research serves as a foundation for predicting post-treatment gait, although its effec-
tiveness is limited by the complex nature of the problem and the limited size of the database. Even
though there is still a long way to go, this study is a signiőcant step towards improving the evaluation
of BTX-A treatment.

8.2 Limitations

A major drawback of this study is the limited number of samples concerning the numerous parameters
that need to be estimated and the small number of patients who underwent pre-treatment and post-
treatment CGA compared to the multitude of kinematic variables and treatments being considered.
In this particular context, we have used leave-one-person out cross-validation to cope with the limited
size of the dataset.

Additionally, in the future the proposed models do not consider other commonly used CGA data
for treatment assessment, such as kinetics or electromyography, among others. However, the absence
of such data can pose a signiőcant challenge as it may lead to a major missing data problem due to
their unavailability. For instance, when a patient relies on a technical walking aid such as canes or a
K-Walker, it becomes challenging to calculate kinetic data accurately.

However, without external validation, it is best to restrict the use of the proposed methods to pa-
tients and treatments that closely resemble those in the database being considered. No other databases
with MTD were available to test our models.

Given that the methods used are purely statistical, there are no mechanical limitations when
predicting gait. However, this lack of constraints can sometimes lead to physically impossible solutions.
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Nevertheless, considering the inherent limitations of the training data, it is possible to mitigate the
potential drawbacks of these solutions.

8.3 Perspectives

The approaches developed in this work serve as a foundation for future advancements in predict-
ing post-treatment gait analysis. This section offers recommendations to enhance and broaden the
methodologies presented and overcome their primary limitations.

• Since it is a highly complex mathematical problem, it is crucial in this era of big data to expand
the databases by including pre-treatment and post-treatment CGA data, along with MTD. One
of the primary challenges in building and managing these databases is the absence of post-
treatment CGA. Clinicians typically rely on the CGA to determine the appropriate treatment
rather than using it to assess the treatment’s effectiveness. Furthermore, we strongly encourage
laboratories worldwide that have addressed this research question to collaborate and exchange
their data. Nevertheless, sharing data raises concerns regarding the legal aspects surrounding
medical and personal information, even if the data is anonymized. Establishing agreements
regarding the CGA and treatment data, such as the kinematic model, data representation, and
preprocessing methods, is also necessary.

• In this work, we only consider two joints (knee and ankle) and one plane (sagittal) due to limited
treatment information. One can enhance this work in the future by processing all the joints and
all three planes of the lower limb and seeing how it performs using all joints.

• One can generate synthetic data of pre-treatment, post-treatment CGA, and MTD to increase
the size of the database. Our proposed methods can be validated using synthetic data or other
databases.

• These predicted post-treatment gait kinematic curves can be utilized to animate a 3-D avatar,
demonstrating the potential gait to individuals unfamiliar with analyzing kinematic signals. This
can help the clinician and the patient better understand the possible results. Without a thorough
preview of the most probable outcome, there is a higher chance that the patient may misinterpret
the qualitative explanation provided by the medical team. This is undoubtedly a signiőcant issue
in today’s world.
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