Thèse Année : 2024

On the complexity of regular languages

Sur la complexité des langages réguliers

Résumé

Regular languages, languages computed by finite automata, are among the simplest objects in theoretical computer science. This thesis explores several computation models: parallel computing with Boolean circuits, structured document streaming processing, and information maintenance on a structure subject to incremental updates. For the latter, auxiliary structures are either stored in RAM or represented by databases updated by logical formulae.This thesis investigates the resources required to compute classes of regular languages in each of these models. The methods employed rely on the interaction between algebra, logic, and combinatorics, notably exploiting the theory of finite semigroups. This approach of complexity has proven extremely fruitful, particularly in the context of Boolean circuits, where regular languages play a central role. This research angle was crystallised by Howard Straubing in his book "Finite Automata, Formal Logic, and Circuit Complexity", where he conjectured that any regular language definable by an arbitrary formula from a logic fragment can be rewritten to use only simple, regular predicates.The first objective of this manuscript is to prove this conjecture in the case of the Sigma2 fragment of first-order logic with a single alternation of quantification. A second result provides a description of space complexity, in the streaming model, for verifying regular properties on trees. Special attention is given to properties verifiable in constant and logarithmic space. A third objective is to describe all regular tree languages that can be incrementally maintained in constant time in RAM. Finally, a last part focuses on the development of efficient logical formulae for maintaining all regular languages in the relational model.
Les langages réguliers, langages calculés par automates finis, sont parmi les objets les plus simples de l'informatique théorique. Cette thèse étudie plusieurs modèles de calculs: le calcul parallèle avec les circuits booléens, le traitement en flot de documents structurés, et la maintenance d'information sur une structure soumise à des mises à jour incrémentales. Pour ce dernier modèle, les structures auxiliaires sont soit stockées en RAM, soit représentées par des bases de données mises à jour par des formules logiques.Cette thèse étudie les ressources nécessaires pour calculer des classes de langages réguliers dans chacun de ces modèles. Les méthodes employées exploitent l'interaction entre algèbre, logique et combinatoire, en mettant notamment à profit la théorie des semigroupes finis. Cette approche de la complexité s'est notamment montrée extrêmement fructueuse dans le cadre des circuits booléens, où les langages réguliers jouent un rôle central. Cette angle de recherche a été cristallisé par Howard Straubing dans son livre "Finite Automata, Formal Logic, and Circuit Complexity'', où il émet la conjecture que tout langage régulier définissable par une formule arbitraire d'un fragment de logique peut être réécrite en utilisant uniquement des prédicats simples, c'est-à-dire réguliers.Le premier but de ce manuscrit est de prouver cette conjecture dans le cas du fragment Sigma2 de la logique du premier-ordre avec une seule alternance de quantification. Un deuxième résultat propose une description de la complexité en espace, dans le modèle de flot, pour vérifier des propriétés régulières sur des arbres. Une attention particulière est portée aux propriétés vérifiables en espace constant et logarithmique. Un troisième objectif est de décrire tous les langages réguliers d'arbres pouvant être maintenus incrémentalement en temps constant en RAM. Enfin, une dernière partie porte sur le développement de formules logiques efficaces pour maintenir tous les langages réguliers dans le modèle relationnel.
Fichier principal
Vignette du fichier
These_BARLOY_Corentin.pdf (1) Télécharger le fichier
Origine Version validée par le jury (STAR)

Dates et versions

tel-04820899 , version 1 (05-12-2024)

Identifiants

  • HAL Id : tel-04820899 , version 1

Citer

Corentin Barloy. On the complexity of regular languages. Data Structures and Algorithms [cs.DS]. Université de Lille, 2024. English. ⟨NNT : 2024ULILB012⟩. ⟨tel-04820899⟩
36 Consultations
16 Téléchargements

Partager

More