next up previous contents
Next: 9. Modélisation et auto-caractérisation Up: 8. Méthodes de reconstruction Previous: 8.4 Comparaison des méthodes


8.5 Article : comparaison de méthodes d'inversion régularisées pour les radiomètres imageurs à synthèse d'ouverture

La comparaison des méthodes régularisées a fait l'objet d'un article soumis à IEEE Transaction on Geoscience and Remote Sensing, en cours de parution. Le chapitre suivant reprendra les principaux résultats contenus dans cet article. Ces derniers ont été actualisés pour des instruments réalistes de type MIRAS et HUT2D.


























Biographie(s) TIKHONOV, Andrei Nikolaevich
(30 Octobre 1906, Gzhatska, Russie - 1993)tikhonov.eps

Andrei Tikonov entre à l'université à l'âge de 16 ans. A 19 ans, il publie son premier article, alors qu'il n'a pas encore achevé son cycle universitaire. Ses travaux sur les espaces compacts lui valent un renommée mondiale avant même de commencer une véritable carrière de chercheur.
Loin de s'endormir sur ses lauriers, il oriente ses recherches sur l'analyse fonctionnelle et établi un célèbre théorème de point fixe en 1935. Tikhonov a su allier la recherche fondamentale et la recherche appliqué. Une caractéristique de son travail consistait à partir d'un problème concret, pioché dans les sciences naturelles, d'en déduire un problème de physique type et d'en donner une solution mathématique claire. Il généralisait ensuite cette approche pour toute une classe de problèmes mathématiques. Il a ainsi procédé à des avancées importantes en géophysique, électrodynamique, en analyse numérique et en physique théorique. C'est dans les années 60 qu'il publie une série d'articles fondamentaux sur les problèmes mal posés. Il définit une classe de problème pouvant être régularisés et introduit le concept d'opérateur de régularisation. [bibli]
next up previous contents
Next: 9. Modélisation et auto-caractérisation Up: 8. Méthodes de reconstruction Previous: 8.4 Comparaison des méthodes
nous
2005-03-31