Skip to Main content Skip to Navigation
New interface

Equation d'Euler tronquée : de la dynamique des singularités complexes à la relaxation turbulente.

Abstract : This theoretical work presents numerical simulations of Euler equation by spectral methods that conserves energy and usually enables to study complex singularities dynamic. The study of Kida-Pelz flow enables to point out interferences of complex singularities and to extend usual analysis methods. Approximation of a continuous flow by ordinary differential equations leads to a validity limit of temporal integration. Beyond, the system converges to a statistical equilibrium, known as absolute equilibrium.

The study of relaxation to absolute equilibrium shows a spontaneous scale separation due to a progressive thermalisation of the flow, and a pseudo-dissipative effect on large scales. Studying characteric time-scales of equilibrium, analytically and by Monte-Carlo simulations, leads to a scale law. A Fluctuation-Dissipation relation enables a dissipative estimation of the scale separation. The behavior of large scales is finally compatible with a Kolmogorov Turbulence.
Complete list of metadata

Cited literature [91 references]  Display  Hide  Download
Contributor : Cyril Cichowlas Connect in order to contact the contributor
Submitted on : Saturday, May 20, 2006 - 10:37:18 PM
Last modification on : Thursday, March 17, 2022 - 10:08:09 AM
Long-term archiving on: : Sunday, April 4, 2010 - 9:57:14 PM


  • HAL Id : tel-00070819, version 1


Cyril Cichowlas. Equation d'Euler tronquée : de la dynamique des singularités complexes à la relaxation turbulente.. Analyse de données, Statistiques et Probabilités []. Université Pierre et Marie Curie - Paris VI, 2005. Français. ⟨NNT : ⟩. ⟨tel-00070819⟩



Record views


Files downloads