Cryogenic AFM-STM for mesoscopic physics
Un AFM-STM cryogénique pour la physique mésoscopique
Résumé
Electronic spectroscopy based on electron tunneling gives access to the electronic Density of States (DoS) in conductive materials, and thus provides detailed information about their electronic properties.
During this thesis work, we have developed a microscope in order to perform spatially resolved (10 nm) tunneling spectroscopy, with an unprecedented energy resolution (10 µeV), on individual nanocircuits. This machine combines an Atomic Force Microscope (AFM mode) together with a Scanning Tunneling Spectroscope (STS mode), and functions at very low temperatures (30mK). In the AFM mode, the sample topography is recorded using a piezoelectric quartz tuning fork, which allows locating and imaging nanocircuits. Tunneling can then be performed on conductive areas of the circuit.
With this microscope, we have measured the local DoS in a hybrid Superconductor-Normal metal-Superconductor (S-N-S) structure. In such circuit, the electronic properties of N and S are modified by the superconducting proximity effect. In particular, for short N wires, we have observed a minigap in the DoS of the N wire, independent of position. Moreover, when varying the superconducting phase difference between the S electrodes, we have measured the modification of the minigap, and its disappearance when the phase difference equals p.
Our experimental results for the DoS, and its dependences (with phase, position, N length) are quantitatively accounted for by the quasiclassical theory of superconductivity. Some predictions of this theory are observed for the first time.
During this thesis work, we have developed a microscope in order to perform spatially resolved (10 nm) tunneling spectroscopy, with an unprecedented energy resolution (10 µeV), on individual nanocircuits. This machine combines an Atomic Force Microscope (AFM mode) together with a Scanning Tunneling Spectroscope (STS mode), and functions at very low temperatures (30mK). In the AFM mode, the sample topography is recorded using a piezoelectric quartz tuning fork, which allows locating and imaging nanocircuits. Tunneling can then be performed on conductive areas of the circuit.
With this microscope, we have measured the local DoS in a hybrid Superconductor-Normal metal-Superconductor (S-N-S) structure. In such circuit, the electronic properties of N and S are modified by the superconducting proximity effect. In particular, for short N wires, we have observed a minigap in the DoS of the N wire, independent of position. Moreover, when varying the superconducting phase difference between the S electrodes, we have measured the modification of the minigap, and its disappearance when the phase difference equals p.
Our experimental results for the DoS, and its dependences (with phase, position, N length) are quantitatively accounted for by the quasiclassical theory of superconductivity. Some predictions of this theory are observed for the first time.
La spectroscopie électronique basée sur l'effet tunnel donne accès à la densité d'états des électrons (DoS) dans les matériaux conducteurs, et renseigne ainsi en détail sur leurs propriétés électroniques.
Au cours de cette thèse, nous avons développé un microscope permettant d'effectuer la spectroscopie tunnel résolue spatialement (10 nm) de nanocircuits individuels, avec une résolution en énergie inégalée (10 µeV). Cet appareil combine les fonctions de Microscopie par Force Atomique (mode AFM) et de spectroscopie Tunnel locale (mode STM), et fonctionne à 30 mK. Dans le mode AFM, la topographie de l'échantillon est imagée grâce à un diapason en quartz piézoélectrique, ce qui permet de repérer les circuits. La spectroscopie tunnel peut ensuite être faite sur les zones conductrices.
Avec ce microscope, nous avons mesuré la DoS locale dans une structure hybride Supraconducteur-métal Normal-Supraconducteur (S-N-S). Dans un tel circuit, les propriétés électroniques de N et de S sont modifiées par l'effet de proximité supraconducteur. Notamment, pour des fils N courts, nous avons pu observer -comme prédit- la présence d'un gap dans sa DoS, indépendant de la position dans la structure : le “minigap”. De plus, en modulant la phase supraconductrice entre les deux S, nous avons mesuré la modification de ce gap, et sa disparition lorsque la différence de phase vaut π.
Nos résultats expérimentaux pour la DoS, ainsi que ses dépendances en phase, en position, et en longueur de N sont en accord quantitatif avec les prédictions de la théorie quasiclassique de la supraconductivité. Certaines de ces prédictions sont observées pour la première fois.
Au cours de cette thèse, nous avons développé un microscope permettant d'effectuer la spectroscopie tunnel résolue spatialement (10 nm) de nanocircuits individuels, avec une résolution en énergie inégalée (10 µeV). Cet appareil combine les fonctions de Microscopie par Force Atomique (mode AFM) et de spectroscopie Tunnel locale (mode STM), et fonctionne à 30 mK. Dans le mode AFM, la topographie de l'échantillon est imagée grâce à un diapason en quartz piézoélectrique, ce qui permet de repérer les circuits. La spectroscopie tunnel peut ensuite être faite sur les zones conductrices.
Avec ce microscope, nous avons mesuré la DoS locale dans une structure hybride Supraconducteur-métal Normal-Supraconducteur (S-N-S). Dans un tel circuit, les propriétés électroniques de N et de S sont modifiées par l'effet de proximité supraconducteur. Notamment, pour des fils N courts, nous avons pu observer -comme prédit- la présence d'un gap dans sa DoS, indépendant de la position dans la structure : le “minigap”. De plus, en modulant la phase supraconductrice entre les deux S, nous avons mesuré la modification de ce gap, et sa disparition lorsque la différence de phase vaut π.
Nos résultats expérimentaux pour la DoS, ainsi que ses dépendances en phase, en position, et en longueur de N sont en accord quantitatif avec les prédictions de la théorie quasiclassique de la supraconductivité. Certaines de ces prédictions sont observées pour la première fois.
Mots clés
Ricatti parameterisation
very low temperatures
cryogenic filters
low noise measurement
stick-slip motor
AFM microscope
force sensor
piezoelectric quartz tuning fork
phase-locked loop
FM detection
STM microscope
tunneling spectroscopy
local density of states
inhomogeneous superconductivity
proximity effect
S-N-S weak-link
Andreev reflection
Usadel equations
quasiclassical theory
Très basses températures
moteur à entraînement inertiel
moteur « stick-slip »
filtres cryogéniques
mesures bas bruit
microscope AFM
senseur de force
diapason quartz piézoélectrique
PLL
boucle à verrouillage de phase
détection FM
microscope STM
spectroscopie tunnel
densité d'état locale
supraconductivité inhomogène
effet de proximité
jonction S-N-S
minigap
NS-QUID
réflexion d'Andreev
équations d'Usadel
théorie quasiclassique
paramétrisation de Ricatti
Loading...