Tunable coupling between a charge qubit and a phase qubit
Couplage variable entre un qubit de charge et un qubit de phase
Résumé
We have studied the quantum dynamics of a superconducting circuit based on a dc-SQUID coupled to a highly asymmetric Cooper pair transistor (ACPT). The dc-SQUID is a phase qubit controlled by a bias current and magnetic field. The ACPT is a charge qubit controlled by a bias current, magnetic flux and gate voltage.
We have measured by microwave spectroscopy the lowest quantum levels of the coupled circuit as a function of the bias parameters. Quantum state measurements of the phase and charge qubit are achieved by an escape measurement on the dc SQUID with a nanosecond flux pulse applied to it. The measurement of the ACPT state consist of a new quantum process: the excited state of the ACPT is adiabatically transferred to the excited state of the SQUID during the flux pulse.
Our circuit enables the independent manipulation of each qubit as well as the entanglement of the quantum states of the two circuits. We observe avoided level crossings between the two qubits when they are put in resonance. The coupling strength is measured over a large frequency range and varies from 60 MHz to 1.1 GHz. In this coupled circuit, we succeed to realize a tunable coupling between the charge and the phase qubit. We have analyzed theoretically the quantum dynamics of our circuit. This analysis explains well the measured tunable coupling strength by a combination of a capacitive and a Josephson coupling between the two qubits.
We have measured by microwave spectroscopy the lowest quantum levels of the coupled circuit as a function of the bias parameters. Quantum state measurements of the phase and charge qubit are achieved by an escape measurement on the dc SQUID with a nanosecond flux pulse applied to it. The measurement of the ACPT state consist of a new quantum process: the excited state of the ACPT is adiabatically transferred to the excited state of the SQUID during the flux pulse.
Our circuit enables the independent manipulation of each qubit as well as the entanglement of the quantum states of the two circuits. We observe avoided level crossings between the two qubits when they are put in resonance. The coupling strength is measured over a large frequency range and varies from 60 MHz to 1.1 GHz. In this coupled circuit, we succeed to realize a tunable coupling between the charge and the phase qubit. We have analyzed theoretically the quantum dynamics of our circuit. This analysis explains well the measured tunable coupling strength by a combination of a capacitive and a Josephson coupling between the two qubits.
Nous avons étudié la dynamique quantique d'un circuit supraconducteur constitué d'un SQUID dc couplé à un transistor à paires de Cooper fortement asymétrique (ACPT). Le SQUID dc est un qubit de phase contrôlé par un courant de polarisation et un champ magnétique. L'ACPT est un qubit de charge contrôlé par un courant de polarisation, un champ magnétique et une tension de la grille.
Nous avons mesuré par spectroscopie micro-onde les premiers niveaux d'énergie du circuit couplé en fonction des paramètres de contrôle. Les mesures des états quantiques des qubits de charge et de phase sont réalisées par une mesure d'échappement du SQUID dc avec une impulsion de flux nanoseconde appliquée dans celui-ci. La mesure de l'ACPT utilise un nouveau processus quantique : l'état excité de l'ACPT est transféré adiabatiquement vers l'état excité du SQUID durant l'impulsion de flux.
Notre circuit permet de manipuler indépendamment chaque qubit tout comme il permet d'intriquer les états quantiques des deux circuits. Nous avons observé des anti-croisements des niveaux d'énergie des deux qubits lorsqu'ils sont mis en résonance. Le couplage a été mesuré sur une large gamme de fréquence, pouvant varier de 60 MHz à 1.1 GHz. Nous avons réussi à obtenir un couplage variable entre le qubit de charge et le qubit de phase. Nous avons analysé théoriquement la dynamique quantique de notre circuit. Cette analyse a permis de bien expliquer le couplage variable mesuré par une combinaison entre un couplage Josephson et un couplage capacitif entre les deux qubits.
Nous avons mesuré par spectroscopie micro-onde les premiers niveaux d'énergie du circuit couplé en fonction des paramètres de contrôle. Les mesures des états quantiques des qubits de charge et de phase sont réalisées par une mesure d'échappement du SQUID dc avec une impulsion de flux nanoseconde appliquée dans celui-ci. La mesure de l'ACPT utilise un nouveau processus quantique : l'état excité de l'ACPT est transféré adiabatiquement vers l'état excité du SQUID durant l'impulsion de flux.
Notre circuit permet de manipuler indépendamment chaque qubit tout comme il permet d'intriquer les états quantiques des deux circuits. Nous avons observé des anti-croisements des niveaux d'énergie des deux qubits lorsqu'ils sont mis en résonance. Le couplage a été mesuré sur une large gamme de fréquence, pouvant varier de 60 MHz à 1.1 GHz. Nous avons réussi à obtenir un couplage variable entre le qubit de charge et le qubit de phase. Nous avons analysé théoriquement la dynamique quantique de notre circuit. Cette analyse a permis de bien expliquer le couplage variable mesuré par une combinaison entre un couplage Josephson et un couplage capacitif entre les deux qubits.
Loading...