Synchronisation de grammaires de graphe - Archive ouverte HAL Access content directly
Theses Year : 2009

Synchronisation de grammaires de graphe

(1)
1

Abstract

The regular languages have been studied for quite a long time, specially from their closure point of view : the set of regular languages (for a given alphabet) is a boolean algebra which is also closed by concatenation and the Kleene star operation. These properties do not generalize to the set of context-free languages which strictly contains the regalar languages. One can cite the fact that the context-free langages are not closed by intersection. To generate these languages, we use the deterministic graph grammars. A graph grammar is a finite set of rules defining a finite hypergraphs rewrite relation. By iterative application of this relation, we build a regular graph whose traces are a context-free language. By definition of a binary relation between grammars, the synchronisation relation, we show that one can define strict subsets of non-ambiguous context-free languages forming effective boolean algebras containing the regular languages. We also give sufficient conditions for these algebras to be closed by concatenation and the Kleene star operation.
Les langages réguliers sont des langages qui ont été largement étudiés, notamment du point de vue de leurs propriétés de clôture ensembliste : l'ensemble des langages réguliers (pour un alphabet donné) forme une algèbre de Boole close par concaténation et étoile de Kleene. Ces propriétés ne se généralisent pas toutes à l ensemble des langages algébriques qui est un sur-ensemble de l'ensemble des langages réguliers. Notamment les langages algébriques ne sont pas clos par intersection. Pour engendrer ces langages, nous utilisons les grammaires déterministes de graphes. Une grammaire de graphes est un système fini de récriture d'hypergraphes finis. Par récriture itérée à partir d'un non-terminal, la grammaire engendre un graphe régulier dont les traces forment un langage algébrique. En définissant une relation de synchronisation entre ces grammaires, on montre que l'on peut définir des sous-ensembles stricts de langages algébriques non-ambigus qui forment des algèbres de Boole effectives contenant les langages réguliers. Nous donnons également des conditions suffisantes pour que ces algèbres booléennes soient closes par concaténation et étoile de Kleene.
Fichier principal
Vignette du fichier
2009lare0001_hassen.pdf (1.22 Mo) Télécharger le fichier

Dates and versions

tel-00462032 , version 1 (08-03-2010)

Identifiers

  • HAL Id : tel-00462032 , version 1

Cite

Stéphane Hassen. Synchronisation de grammaires de graphe. Informatique [cs]. Université de la Réunion, 2009. Français. ⟨NNT : ⟩. ⟨tel-00462032⟩
206 View
127 Download

Share

Gmail Facebook Twitter LinkedIn More