Silicon Nanowires : Metallic catalyst assisted chemical vapor deposition and beginnings of integration
Nanofils de Silicium : Dépôt chimique en phase vapeur assisté par catalyseurs métalliques et prémices d'intégration.
Résumé
Microelectronics has its back to the wall. One of the possible ways to pursue its development is the “bottomup” approach, whose philosophy can be enounced as follows : “grow the device you want where you want”. The unidimensionnal structures, and more precisely the semiconductor nanowires, belong to this topic. In the present manuscript, we study the growth of silicon nanowires by metallic particles assisted chemical vapor deposition. First of all, we study the growth of silicon nanowires with gold as catalyst and silane as precursor gas, via the vapor-liquid-solid growth mechanism (VLS). We are more particularly interested in the impact of the growth parameters (reactant gas partial pressure, temperature, deposition time, catalyst size) on the nanowires morphology and their growth kinetics. The addition of HCl to the reactant mixture is investigated. In a second time, we focus on the growth of branched nanostructures. First, an experimental approach coupled with a thermodynamic one, has enabled us to determine the necessary condition to the growth of the nanobranches (and nanowires) of small diameters (i.e. < 10 nm), by VLS. Then we present the growth of these branched structures obtained at temperature going down to 100 °C below the macroscopic eutectic of the Au-Si system. Since gold is an undesirable material for many microelectronics applications, due to the fact it induces deep level traps in silicon, we have investigated the growth of Si NWs using CMOS compatible catalysts: metallic silicide particles (platinum, nickel and palladium silicides). In this case, the Si NWs grow via the vapor-solid-solid growth mechanism. Finally, we give some examples of technological integration, with the growth of localized Si NWs fields, and the realization of Si NWs based MOSFET-like devices, which have been electrically caracterized.
La microélectronique est au pied du mur. Pour continuer son développement, l'une des voies à l'étude est l'approche "bottom-up", dont la philosophie peut être résumée comme suit : "faire croître où l'on veut le dispositif tel qu'on le souhaite". C'est dans cette problématique que s'inscrivent les structures unidimensionnnelles, et plus précisément les nanofils semiconducteurs. Dans la présente thèse, nous étudions la croissance des nanofils de silicium par dépôt chimique en phase vapeur, assisté de particules métalliques, appelées catalyseurs. Dans un premier temps, nous étudions la croissance des nanofils de Si, obtenus avec l'or comme catalyseur et le silane comme gaz réactif, via le mécanisme de croissance vapeur-liquide-solide (VLS). Nous nous intéressons plus particuli`erement `a l'impact des paramètres de croissance (pressions partielles des réactifs, température, durée, taille du catalyseur) sur la morphologie des nanofils et la cinétique de croissance de ces derniers. L'ajout de HCl au mélange réactif est étudié. Dans un second temps nous portons notre attention à la croissance de structures branchées. D'abord, une étude expérimentale, couplée à une approche thermodynamique, nous a permis de déterminer une condition nécessaire à la croissance de nanobranches (et de nanofils) de faible diamètre (i.e. < 10 nm), par croissance VLS. Ensuite, nous présentons la croissance de structures branchées obtenues à des températures allant jusqu'à 100 °C sous l'eutectique macroscopique du système Au-Si. L'or étant un matériau indésirable pour de nombreuses applications microélectroniques du fait qu'il provoque au sein du silicium des pièges de niveau profond, nous nous sommes attaché à réaliser la croissance de nanofils de silicium en utilisant des catalyseurs compatibles CMOS. En occurrence, il s'agit de siliciures métalliques (siliciures de platine, de nickel, de palladium). Les nanofils croissent par le mécanisme de croissance vapeur-solide-solide. Enfin, nous illustrons notre travail par des études davantage orientées vers l'intégration technologique, avec des réalisations de champs de fils localisés et de dispositifs, de type MOSFET, à base de nanofils, caractérisés électriquement.