Capteurs optiques minimalistes & réflexes oculomoteurs biomimétiques. Application à la robotique aérienne - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2009

Minimalist optical sensors & biomimetic oculomotor reflexes. Application to aerial robots

Capteurs optiques minimalistes & réflexes oculomoteurs biomimétiques. Application à la robotique aérienne

Résumé

Visual navigation in autonomous robots is usually based on video-cameras using several hundred thousands of pixels with sequential reading. Real time processing of such incoming data flows require major computing resources that would be hard to embed on a micro aerial vehicle of several grams or tens of grams. There already exist, however, lots of flying agents whose navigation performance in unknown environments is remarkable, even though they operate on a quite different basis. Birds and insects, in particular, show a unique ability to avoid obstacles and pursue preys or conspecifics. This amazing ability is due to their unique perception of the environment. Insects with their low cognitive abilities perceive their environment quite efficiently thanks to minimalist sensors. Some insects, like flies, improve their perception of the environment by stabilizing their visual system through de-coupling their head from the body and using an inertial reflex, similar to the mammalian “vestibulo-ocular reflex”. Stabilization of the “visual platform” is beneficial in that it simplifies the subsequent visual processing and enables efficient navigational strategies to be implemented. The first part of this work, dedicated to “visual sensors”, focuses on an elementary eye composed of only two photoreceptors (two pixels). We first improved the performance of a bio-inspired angular speed sensor, and revisited the working principle of the OSCAR sensor, both previously built at our laboratory. We then developed and constructed a new visual sensor, called VODKA, which allows the angular position of a contrasting edge or bar to be localized with utmost accuracy. In the second part, dedicated to visuo-inertial reflexes, we developed a micro aerial robot, called OSCAR II. Equipped with our visual sensors and an inertial sensor, OSCAR II, which weighs only 100 grams, is able to maintain its gaze locked onto a stationary target, and to pursue a moving target in yaw, even in the presence of strong aerial disturbances. With its added ability to perform eye saccades, OSCAR II bodes well for tomorrow's micro-aerial vehicles, whose heading will follow the gaze.
La navigation visuelle des robots mobiles s'appuie traditionnellement sur des imageurs de type « caméra », dotés de plusieurs centaines de milliers de pixels lus séquentiellement. Le traitement de tels flux d'images nécessite une puissance de calcul qu'il serait difficile d'embarquer à bord d'un micro-aéronef de quelques grammes ou dizaines de grammes. Il existe pourtant déjà quelques agents aériens dont les performances de navigation en milieu inconnu sont remarquables, et qui pourtant fonctionnent de toute autre façon. Les oiseaux et les insectes, en particulier, montrent une capacité inégalée à éviter les obstacles et à poursuivre leurs proies ou leurs congénères. Cette capacité étonnante découle de leur perception particulière de l'environnement. Si les insectes, aux faibles capacités cognitives, perçoivent leur environnement de manière si efficace, c'est grâce aux capteurs minimalistes qu'ils embarquent. Certains insectes comme la mouche améliorent encore leur perception de l'environnement en stabilisant leur système visuel avec à un découplage tête-corps associé à un réflexe inertiel, équivalent au réflexe vestibulo-oculaire des mammifères. Cette stabilisation de la « plate-forme visuelle » permet de simplifier les traitements visuels subséquents et de mettre en œuvre des stratégies efficaces de navigation. Toute la première partie (« capteurs visuels ») de ce travail prend appui délibérément sur un œil élémentaire composé de seulement deux photorécepteurs (deux pixels). Nous avons d'abord amélioré les performances d'un capteur de vitesse angulaire bio-inspiré et revu le principe du capteur OSCAR, tous deux construits précédemment au laboratoire. Puis, nous avons développé et construit un nouveau type de capteur visuel, appelé VODKA, qui localise de manière ultrafine la position angulaire d'une cible visuelle. Dans la seconde partie (« réflexes visuo-inertiels »), nous avons développé un robot aérien miniature, appelé OSCAR II. Equipé de nos capteurs visuels et d'un réflexe « vestibulo-oculaire », OSCAR II, qui ne pèse que 100 grammes, est capable non seulement de fixer du regard une cible visuelle stationnaire, mais aussi de la poursuivre en lacet si elle vient à se déplacer, et ce même lors de fortes perturbations aérodynamiques. Avec sa capacité additionnelle de faire des saccades oculaires, OSCAR II préfigure les micro-véhicules aériens de demain, qui se dirigeront là où portera leur regard.
Fichier principal
Vignette du fichier
Kerhuel_2009_PhD.pdf (12.22 Mo) Télécharger le fichier

Dates et versions

tel-00559101 , version 1 (24-01-2011)

Identifiants

  • HAL Id : tel-00559101 , version 1

Citer

Lubin Kerhuel. Capteurs optiques minimalistes & réflexes oculomoteurs biomimétiques. Application à la robotique aérienne. Automatique / Robotique. Université Montpellier II - Sciences et Techniques du Languedoc, 2009. Français. ⟨NNT : ⟩. ⟨tel-00559101⟩
462 Consultations
202 Téléchargements

Partager

Gmail Facebook X LinkedIn More