KIMONO, a descriptive agent-based modelling method for the exploration of complex systems: an application to epidemiology. - TEL - Thèses en ligne Access content directly
Theses Year : 2011

KIMONO, a descriptive agent-based modelling method for the exploration of complex systems: an application to epidemiology.

KIMONO: une méthode de modélisation descriptive centrée agent pour l'explication des systèmes complexes, une application en épidémiologie

Abstract

Since a few years, in many different domains (e.g. sociology, ecology or economy), there is a growing trend in designing models that can be used for exploratory purposes rather than purely predictive ones. Loosely following a "complex systems" paradigm, exploratory models are often based on explicit and detailed representations of the components of the systems studied, and offer a large degree of freedom in the parameter or structural adjustments available to their final users (researchers, decision-makers or stakeholders). They are intended to be used as a support of "as-if experiments" as they allow, through these adjustments, for the formulation of detailed hypotheses at various levels of description of the system. These hypotheses then lead to the generation of scenarios whose outcomes are explored and compared by way of repeated simulations. Epidemiology is an interesting example of this situation. Its long modelling history can be characterised as a search for simple predictive models, but recent examples like the outbreaks of avian influenza in South-East Asia have shown their limits: without properly taking into account the interplays between social, ecological and biological dynamics to understand how this pandemic evolves, these models become useless as far as prediction goes. And when some of these dynamics are tentatively taken into account, the resulting models often become dependent on incomplete or qualitative data (for instance, the decision-making processes of social actors or the behaviours of birds), which prevents them to be used for any serious predicting purposes. As a consequence, there has been a recent shift of focus of the community on the design of exploratory models, which are meant to allow understanding the links between these dynamics, generating and studying various hypotheses, and measuring, with respect to these hypotheses, the impact of local or global policies in complex scenarios. However, designing and using such models gives rise to serious methodological issues and existing modelling and simulation methodologies do not cope very well with this new type of models. When they are adapted to take their peculiarities into account, this often results in ad hoc solutions, which can barely be reused for other models in the same domain, let alone in different domains. The objective of this thesis is to propose a domain-independent methodology (KIMONO) to facilitate the design and use of such exploratory models. Based on a series of examples from various domains (road traffic, social segregation, soil dynamics and more extensively epidemiology), I proceed from an account of the design requirements (taking conflicting and evolving hypotheses into account during the modelling process, producing highly-modular models, enabling an iterative modelling cycle, allowing for the collaboration of different experts and the combination of different formalisms, etc.) to a concrete proposal involving dedicated computer tools and a common accessible formalism, both aimed at facilitating the collaboration, communication and the implementation of "world models" (the name given in this proposal to open exploratory models). The methodology I propose focuses on two elements: the implication of the experts and a detailed representation of the system. Experts are at the centre of the modelling process, which starts with extensive descriptions of their knowledge, possibly reusing their formalism, and further proceeds through iterative amendments (of increasing or decreasing complexity) that they are able to evaluate and validate in interaction with the modellers. The iterative process comes to an end when the experts estimate that they have a sufficient insight of the system or when further investigations require field experiments. Regarding the kind of representation suitable for supporting this process, I propose an adaptable and modular combination of two implementation systems: Agent-Based Modelling (ABM) and Geographical 3 DRAFT 26/09/11 Information Systems (GIS). I show that this combination provides for an arbitrary level of description of the components of a system, that it allows both qualitative and quantitative knowledge to be equally represented and that it supports a high level of evolution of the hypotheses during the modelling process. The interactions between modellers and experts are based on two abstractions of these implementation details, using both the ODD (Overview, Design concepts, Details) protocol for communication purposes, and the GAML modelling language for the collaborative programming of the model. The methodology proposed has been applied and validated in the context of a large study undertaken in South-East Asia (especially North-Vietnam) by epidemiologists and veterinarians to understand the role of various hypotheses in explaining the recurring outbreaks of the avian influenza epidemics among domestic poultry. During a four years long interdisciplinary collaboration, several "world models" have been co- designed, implemented on the GAMA platform and used as "virtual laboratories" by experts. This collaboration, and its unique outcomes, have allowed them to test a broad range of hypotheses (especially on the local conditions of persistence), better understand the role of various spatial, ecological or social factors in the survival and propagation of the virus and reorient some of their field studies in consequence.
Depuis plusieurs années, on peut observer une tendance, dans de nombreux domaines (Sociologie, Ecologie, Economie, etc.), à construire des modèles vers l'exploration des systèmes qu'ils représentent que vers la prédiction ou l'explication. S'inscrivant dans le paradigme des "systèmes complexes", ces modèles exploratoires utilisent généralement une représentation explicite et détaillée des composants du système étudié. Ils offrent aussi aux utilisateurs finaux (chercheurs, décideurs, parties prenantes) une grande liberté d'adaptation en termes de paramètres et de structure du modèle. Ces modèles servent de support à des expériences "as-if" en permettant, au travers de ces ajustements, la formulation d'hypothèses détaillées et ce à différents niveaux de descriptions du système. A partir de ces hypothèses, des scénarios sont construits, dont les résultats sont explorés et analysés grâce à des simulations répétées. L'épidémiologie est exemplaire de cette situation. Elle a une longue histoire de modélisation qui peut être caractérisée comme la recherche de modèles essentiellement prédictifs. Cependant, certaines situations, comme l'émergence de foyers épidémiques de grippe aviaire en Asie du Sud Est, montre la limite d'une telle approche: sans une prise en compte adéquate des interactions entre les dynamiques sociales, écologiques et biologiques, l'utilisation de modèles prédictifs est sans fondement. De plus, dès lors que l'on tente de prendre en compte ces dynamiques, les modèles deviennent dépendants de données incomplètes ou qualitatives (le processus de décision des acteurs sociaux ou bien le comportement des oiseaux, par exemple). En conséquence, on assiste actuellement à un changement d'orientation de la communauté épidémiologique vers la conception de modèles plus exploratoires, mieux adaptés à la génération et à l'étude d'hypothèses variées, et mieux à même d'aider à mesurer, par rapport à ces hypothèses, l'impact des politiques locales et globales de lutte contre les épidémies dans le cadre de scénarios complexes. Cependant, concevoir et utiliser de tels modèles souligne les sérieux problèmes méthodologiques auxquels ne peuvent réellement répondre les méthodologies de modélisation et simulation existantes. Et quand celles-ci ont été adaptées pour prendre ces spécificités en compte, il en résulte des solutions ad hoc qui ne peuvent être réutilisées ni dans le domaine en général, ni dans d'autres domaines. L'objectif de cette thèse est de proposer une méthodologie (KIMONO) qui, sans être spécifique à un domaine particulier, facilite la conception et l'utilisation de ces modèles exploratoires. En partant d'une série d'exemples tirés de différents domaines (trafic routier, ségrégation sociale, dynamique du sol, mais aussi, et de façon plus extensive, épidémiologie), je commence par une caractérisation des besoins de conception (prise en compte d'hypothèses contradictoires et évolutives lors du processus de modélisation, génération de modèles extrêmement modulaires, rendant possible un cycle de modélisation itératif, permettant la collaboration entre différents experts et la combinaison de différents formalismes, etc.) pour aboutir à une proposition concrète impliquant un outil informatique dédié et un formalisme commun et accessible, orienté aussi bien vers la facilitation de la collaboration, la communication et l'implémentation de "modèles monde" (le nom donné dans ce document à ces modèles exploratoires ouverts). La méthodologie que je propose se concentre sur deux éléments: l'implication des experts et la représentation détaillée du système. Les experts sont au coeur de processus de modélisation. Celui-ci s'appuie sur une description étendue de leurs connaissances, potentiellement exprimées dans leurs propres formalismes, description qui est ensuite amendée de façon itérative (soit pour la complexifier, soit pour la simplifier) dans un dialogue continu avec les modélisateurs et en utilisant le modèle pour support. Ce processus itératif s'arrête quand les experts estiment qu'ils ont obtenu suffisamment de précisions sur le système ou lorsque la poursuite de ces itérations nécessite des expériences ou données de terrain. Concernant les types de représentations qui soient adaptées à un tel processus, je propose une combinaison modulaire et adaptable de deux systèmes d'implémentation: les modèles à base d'agent (MBA) et les Systèmes d'Information Géo-référencées (SIG). Je montre que cette combinaison offre une très grande souplesse de description des composants d'un système (réel), qu'elle permet de représenter de façon équivalente les 5 DRAFT 26/09/11 connaissances qualitatives et quantitatives des experts, et qu'elle supporte un haut niveau d'évolution des hypothèses au cours du processus de modélisation. Les protocoles d'interaction proposés entre modélisateurs et experts se basent sur deux abstractions de cette implémentation: ODD (Overview, Design concepts, Details, un protocole de communication de modèle) et GAML (un langage de modélisation pour la programmation collaborative du modèle). La méthodologie proposée a été appliquée et validée dans le contexte d'une étude détaillée située en Asie du Sud Est (essentiellement au Nord Vietnam) par des épidémiologistes et des vétérinaires. Ceux-ci voulaient pouvoir évaluer, en l'absence de données de terrain ou de résultats d'expérimentation, l'effet de différentes hypothèses expliquant la réapparition récurrente de foyers épidémiques de grippe aviaire parmi la population domestique de volailles. Au cours de cette coopération interdisciplinaire, qui a duré quatre ans, plusieurs "modèles monde" ont été co-conçus et implémentés au sein de la plate-forme GAMA, et utilisés comme "laboratoires virtuels" par les experts. Cette collaboration, et ces résultats, ont permis de tester un large champ d'hypothèses (en particulier sur les conditions locales de persistance), d'avoir une meilleure compréhension du rôle de l'environnement spatial, des facteurs écologiques et sociaux dans la survie et la propagation du virus et ont également permis de réorienter certaines des études de terrains.
Fichier principal
Vignette du fichier
26_10_11_manuscript_complet.pdf (7.34 Mo) Télécharger le fichier
Loading...

Dates and versions

tel-00630779 , version 1 (05-12-2011)

Identifiers

  • HAL Id : tel-00630779 , version 1

Cite

Edouard Amouroux. KIMONO, a descriptive agent-based modelling method for the exploration of complex systems: an application to epidemiology.. Modeling and Simulation. Université Pierre et Marie Curie - Paris VI, 2011. English. ⟨NNT : ⟩. ⟨tel-00630779⟩
574 View
1039 Download

Share

Gmail Facebook X LinkedIn More