Image denoising beyond additive Gaussian noise - Patch-based estimators and their application to SAR imagery - TEL - Thèses en ligne
Thèse Année : 2011

Image denoising beyond additive Gaussian noise - Patch-based estimators and their application to SAR imagery

Débruitage d'images au-delà du bruit additif gaussien - Estimateurs à patchs et leur application à l'imagerie SAR

Résumé

Noise in images often limits visual and automatic interpretation of the scene. Speckle in synthetic aperture radar (SAR) imagery and shot noise in photon-limited imagery are two examples of strong corruptions that require the use of denoising techniques. Patches are small image parts that capture both textures and local structures. Though being crude low-level features (compared to higher level descriptors), they have led to very powerful image processing approaches by exploiting the natural redundancy of images. Patch-based methods achieve state-of-the-art denoising performance. The classical patch-based denoising technique non-local (NL) means is designed for images corrupted by an additive Gaussian noise (i.e., fluctuations being symmetrical, signal-independent without outliers). NL means cannot be applied directly on images corrupted by a non-Gaussian process especially with non-symmetrical distribution, signal-dependence and heavy-tail such as speckle and shot noise. The goal of this thesis is to bridge the gap between patch-based denoising methods restricted to Gaussian noise and techniques dedicated to SAR despeckling. After reviewing image denoising techniques for Gaussian noise and for non-Gaussian noise, we propose an extension of the NL means that adapts to a given noise distribution. Besides the problem of image denoising, we study the problem of patch comparison under non-Gaussian conditions. Many tasks in computer vision require matching image parts. We introduce a similarity criterion grounded on the generalized likelihood ratio test and illustrate its effectiveness on different applications including detection, stereo-vision and motion-tracking. This criterion is at the heart of the proposed patch-based estimator. An iterative scheme is proposed to deal with strong noise corruptions and we develop an unsupervised method for parameter setting. Our approach leads to state-of-the-art denoising results in SAR imagery for amplitude images, as well as interferometric or polarimetric data. The proposed technique is applied successfully to one of the latest aerial SAR sensor: F-SAR from the German Aerospace Center (DLR). Images with strong contrasts suffer from denoising artefacts known as noise halo due to the absence of similar patches in the vicinity of some structures. This residual noise can be reduced by considering patches with shapes of various scales and orientations. Local selection of relevant shapes leads to an improved denoising quality, especially close to edges.
Le bruit dans les images limite souvent l'interprétation visuelle ou automatique de la scène. Le chatoiement ou "speckle" en imagerie radar à synthèse d'ouverture (RSO) et le bruit de grenaille ou "shot noise" en imagerie à faible luminosité sont deux exemples de fortes corruptions qui nécessitent l'utilisation de techniques de débruitage. Les vignettes ou "patchs" sont de petites imagettes qui capturent à la fois les textures et les structures locales. Bien qu'étant assez rudimentaires (comparées à des descripteurs de plus haut niveau), elles ont mené à de puissantes approches de traitement d'images tirant parti de la redondance naturelle des images. Les méthodes à patchs représentent l'état-de-l'art des méthodes de débruitage. La technique classique de débruitage à patchs, les moyennes non-locales (NL), est conçue pour les images corrompues par du bruit additif gaussien (c-à-d., pour des fluctuations symétriques, indépendantes du signal et sans valeurs extrêmes). Les moyennes NL ne peuvent pas être appliquées directement sur des images corrompues par un bruit non-gaussien surtout pour des distributions asymétriques, dépendantes du signal et à queues lourdes telles que le bruit de chatoiement et le bruit de grenaille. Le but de cette thèse est de combler le fossé entre les méthodes de débruitage à patchs, restreintes au bruit gaussien, et les techniques dédiées aux images RSO. Après avoir examiné les techniques de débruitage d'image pour le bruit gaussien puis non-gaussien, nous proposons une extension des moyennes NL qui s'adapte à la distribution d'un bruit donné. Au-delà du problème du débruitage d'image, nous étudions le problème de la comparaison de patchs sous conditions non-gaussiennes. La plupart des tâches de vision par ordinateur requièrent de mettre en correspondance des parties d'images. Nous introduisons un critère de similarité fondé sur le rapport de vraisemblance généralisé et nous illustrons son efficacité sur différentes applications dont la détection, la vision stéréoscopique et le suivi de mouvement. Ce critère est au coeur de l'estimateur à patchs proposé. Un schéma itératif est élaboré pour faire face aux fortes corruptions de bruit et nous développons une méthode non-supervisée pour le réglage des paramètres. Notre approche mène à des résultats de débruitage état-de-l'art en imagerie RSO pour les images d'amplitude, ainsi que les données interférométriques ou polarimétriques. La technique proposée est appliquée avec succès sur l'un des derniers capteurs aérien RSO: F-SAR de l'agence aérospatiale allemande (DLR). Les images avec de forts contrastes souffrent d'un artéfact de débruitage de type "halo de bruit" dû à l'absence de patchs similaires dans les environs de certaines structures. Ce bruit résiduel peut être réduit en considérant des patchs avec des formes d'échelle et d'orientation variées. La sélection locale des formes pertinentes permet d'améliorer la qualité du débruitage, surtout à proximité des contours.
Fichier principal
Vignette du fichier
deledalle_these_120124.pdf (81.02 Mo) Télécharger le fichier

Dates et versions

tel-00662520 , version 1 (24-01-2012)
tel-00662520 , version 2 (27-01-2012)

Identifiants

  • HAL Id : tel-00662520 , version 2

Citer

Charles-Alban Deledalle. Image denoising beyond additive Gaussian noise - Patch-based estimators and their application to SAR imagery. Signal and Image Processing. Telecom ParisTech, 2011. English. ⟨NNT : ⟩. ⟨tel-00662520v2⟩
1089 Consultations
299 Téléchargements

Partager

More