Modelisation macroscopique de mouvements de foule - Archive ouverte HAL Access content directly
Theses Year : 2011

## Modelisation macroscopique de mouvements de foule

Aude Roudneff
• Function : Author

#### Abstract

In this work, we aim at modelling crowd motion in emergency situations. We propose a macroscopic model (where people are represented as a density) following two basic principles. First, each individual has a spontaneous velocity (typically, the one which leads to the nearest exit) which would be fulﬁlled in the absence of other people. On the other hand, the crowd has to respect a congestion constraint, and its density must remain underneath a critical density. This constraint prevents people from following their desired velocity. The actual velocity we consider is the closest, in a mean square sense, to the desired one, among the velocities which respect the maximal density constraint.The mathematical formulation writes as a transport equation which cannot be studied with classical methods, since the real velocity ﬁeld has no a priori regularity, even if the desired velocity is smooth. Thanks to the optimal transport theory, we prove an existence result, ﬁrst in the case where the desired velocity is the gradient of a given function, and then in the general framework. We also propose a numerical scheme which follows the catching-up principle: at each time step, we move the density according to the spontaneous velocity, and then project it onto the space of admissible densities. The numerical results we obtain reproduce qualitatively the experimental observations
Nous étudions dans ce travail les mouvements de foule intervenant dans les situa- tions d’urgence. Nous proposons un modèle macroscopique (la foule est représentée par une densité de personnes) obéissant à deux principes très simples. Tout d’abord, chaque personne possède une vitesse souhaitée (typiquement celle qui la mène vers la sortie), qu’elle adopterait en l’absence des autres. Ensuite, la foule doit respecter une contrainte de congestion, et la densité de personnes doit rester inférieure à une valeur ﬁxée. Cette contrainte impose une vitesse de déplacement différente de la vitesse souhaitée. Nous choisissons de prendre comme vitesse réelle celle qui est la plus proche, au sens des moindres carrés, de la vitesse souhaitée, parmi les champs de vitesses admissibles, au sens où ils respectent la contrainte de densité maximale. Le modèle obtenu s’écrit sous la forme d’une équation de transport impliquant une vitesse peu régulière a priori, et qui ne peut être étudiée par des méthodes classiques. Nous démontrons un résultat d’existence grâce à la théorie du transport optimal, tout d’abord dans le cas d’une vitesse donnée comme le gradient d’une fonction, puis dans le cas général. Nous mettons également en œuvre un schéma numérique de type catching-up : à chaque pas de temps, la densité est déplacée selon le champ de vitesse souhaitée, puis est projetée sur l’ensemble des densités admissibles. Les résultats obtenus fournissent des temps d’évacuation dont l’ordre de grandeur est proche de la réalité.

#### Domains

Mathematics [math] General Mathematics [math.GM]

### Dates and versions

tel-00678596 , version 1 (13-03-2012)

### Identifiers

• HAL Id : tel-00678596 , version 1

### Cite

Aude Roudneff. Modelisation macroscopique de mouvements de foule. Mathématiques générales [math.GM]. Université Paris Sud - Paris XI, 2011. Français. ⟨NNT : 2011PA112304⟩. ⟨tel-00678596⟩

### Export

BibTeX TEI Dublin Core DC Terms EndNote Datacite

1232 View