Morphologie mathématique, systèmes dynamiques et applications au traitement des images - TEL - Thèses en ligne
Hdr Année : 2006

Mathematical Morphology, dynamic systems and image processing applications

Morphologie mathématique, systèmes dynamiques et applications au traitement des images

Résumé

Ce mémoire résume une quinzaine d'années de recherche dans le monde industriel et universitaire. Il est divisé en trois parties, traitant respectivement de la théorie de la morphologie mathématique, des systèmes dynamiques et enfin des applications au traitement des images. En morphologie mathématique, nos travaux ont porté principalement sur le filtrage et la segmentation d'images. En ce qui concerne le filtrage, nous avons proposé un algorithme quasi-linéaire pour calculer l'arbre des composantes, une des structures d'organisation naturelles des ensembles de niveaux d'une image. En segmentation, nous nous sommes principalement intéressé à la ligne de partage des eaux. Nous en avons proposé une définition continue. En nous servant du formalisme récemment introduit par Gilles Bertrand, nous avons comparé les propriétés de plusieurs définitions discrètes et nous avons proposé un algorithme quasi-linéaire permettant de calculer la ligne de partage des eaux topologique. Notre algorithme repose en partie sur celui de l'arbre des composantes. Enfin, nous avons proposé des schémas hiérarchiques pour utiliser la ligne de partage des eaux, et en particulier, nous avons proposé de valuer les contours produits par un critère de saillance donnant l'importance du contour dans la hiérarchie. Ces études nous ont conduit à proposer des classes de graphes adaptés pour la fusion de région, mettant en particulier en évidence l'équivalence existant entre une de ces classes de graphes et la classe des graphes pour lesquels toute ligne de partage des eaux binaire est mince. En ce qui concerne les systèmes dynamiques, nous avons utilisé les outils issus du cadre de l'analyse multivoque et de la théorie de la viabilité pour proposer un algorithme (dit des "Montagnes Russes") qui permet de converger vers le minimum global d'une fonction dont on connaît l'infimum. L'association du cadre algébrique des treillis complets, de l'algèbre et de la théorie des inclusions différentielles nous a permis de donner des propriétés algébriques et de continuité d'applications agissant sur des ensembles fermés, comme l'ensemble atteignable ou le noyau de viabilité. Nous avons utilisé le cadre des équations mutationnelles, permettant de dériver des tubes de déformations de formes dans des espaces métriques, pour prouver de manière rigoureuse et sans hypothèse de régularité sur la forme, l'intuition selon laquelle la dilatation transforme la forme dans la direction des normales à celle-ci en chacun de ses points. Nous avons adapté au cadre des équations mutationnelles le théorème d'Euler, qui permet d'approcher une solution à une équation mutationnelle par une s'equence de points dans un espace métrique. Enfin, nous avons proposé une approche générique de simulation, fondée sur les systèmes de particules, qui a prouvé son efficacité par sa mise en œuvre en milieu industriel, en particulier, pour la simulation de foules, pour la synthèse d'images, ou encore pour la simulation du déploiement d'airbags. Nous pensons que de bonnes études théoriques aident à réaliser des applications de qualité. Inversement, de bons problèmes théoriques peuvent trouver une source dans de bons problèmes applicatifs. On trouvera dans ce mémoire le résumé d'un certain nombre de travaux dont l'intérêt industriel a été prouvé par des brevets ou des logiciels. Citons par exemple un outil de segmentation 4D (3D+temps) en imagerie cardiaque utilisé par des médecins dans le cadre de leur pratique. Nous avons travaillé pendant plusieurs années dans le domaine du traitement d'images de documents. Nous avons proposé un outil basé sur la morphologie mathématique permettant d'estimer l'angle d'inclinaison d'un document scanné. Plus particulièrement, nous avons étudié des problèmes liés à l'indexation et à la reconnaissance de dessins techniques.
Fichier principal
Vignette du fichier
morphologie.pdf (2.36 Mo) Télécharger le fichier
Loading...

Dates et versions

tel-00715406 , version 1 (06-07-2012)

Identifiants

  • HAL Id : tel-00715406 , version 1

Citer

Laurent Najman. Morphologie mathématique, systèmes dynamiques et applications au traitement des images. Mathématique discrète [cs.DM]. Université de Marne la Vallée, 2006. ⟨tel-00715406⟩
430 Consultations
746 Téléchargements

Partager

More