Coarse Ricci curvature of Markov processes
Courbure de Ricci grossière de processus markoviens
Résumé
The coarse Ricci curvature of a Markov process on a Polish space is defined as a local contraction rate of the W1 Wasserstein distance between the laws of the process starting at two different points. The first part of this thesis deals with results holding in the case of general Polish spaces. The simplest of them is that the infimum of the coarse Ricci curvature is a global contraction rate of the semigroup of the process for the W1 distance between probability measures. Though intuitive, this result is diffucult to prove in continuous time. The proof of this result, and the following consequences for the spectral gap of the generator are the subject of Chapter 1. Another interesting result, using the values of the coarse Ricci curvature at different points, and not only its infimum, is a concentration result for the equilibrium measures, only holding in a discrete time framework. That will be the topic of Chapter 2. The second part of this thesis deals with the particular case of diffusions on Riemannian manifolds. A formula is given, allowing to get the coarse Ricci curvature from the generator of the diffusion. In the case when the metric is adapted to the diffusion, we show the existence of a coupling between the paths starting at two different points, such that the coarse Ricci curvature is exactly the decreasing rate of the distance between these paths. We can then show that the spectral gap of the generator is at least the harmonic mean of the Ricci curvature. This result can be generalized when the metric is not the one induced by the generator, but it needs a very restricting hypothesis, and the curvature we have to choose is smaller.
La courbure de Ricci grossière d’un processus markovien sur un espace polonais est définie comme un taux de contraction local de la distance de Wasserstein W1 entre les lois du processus partant de deux points distincts. La première partie de cette thèse traite de résultats valables dans le cas d’espaces polonais quelconques. On montre que l’infimum de la courbure de Ricci grossière est un taux de contraction global du semigroupe du processus pour la distance W1. Quoiqu’intuitif, ce résultat est difficile à démontrer en temps continu. La preuve de ce résultat, ses conséquences sur le trou spectral du générateur font l’objet du chapitre 1. Un autre résultat intéressant, faisant intervenir les valeurs de la courbure de Ricci grossière en différents points, et pas seulement son infimum, est un résultat de concentration des mesures d’équilibre, valable uniquement en temps discret. Il sera traité dans le chapitre 2. La seconde partie de cette thèse traite du cas particulier des diffusions sur les variétés riemanniennes. Une formule est donnée permettant d’obtenir la courbure de Ricci grossière à partir du générateur. Dans le cas où la métrique est adaptée à la diffusion, nous montrons l’existence d’un couplage entre les trajectoires tel que la courbure de Ricci grossière est exactement le taux de décroissance de la distance entre ces trajectoires. Le trou spectral du générateur de la diffusion est alors plus grand que la moyenne harmonique de la courbure de Ricci. Ce résultat peut être généralisé lorsque la métrique n’est pas celle induite par le générateur, mais il nécessite une hypothèse contraignante, et la courbure que l'on doit considérer est plus faible.
Origine | Version validée par le jury (STAR) |
---|
Loading...