Coupling between hydrodynamic and biomass in fixed biomass process : Local approach of microscale mecanisms of growth, adhesion and detachment of microorganisms on solid supports.
Couplage hydrodynamique-biomasse dans les procédés de dépollution. Approche locale des mécanismes de croissance et d'adhésion/détachement de micro-organismes sur substrats solides
Résumé
The biofilms, mainly composed of micro-organisms and exopolymers, develop themself on nonsterile wet surfaces. They are of considerable importance in many industrial and environmental applications, among which biofilters used in water treatment. The strong interaction between the flow and the biofilm development in this type of processes returns very difficult their modelling without drastic progress in the comprehension of phenomena appearing on various scales (biofilm, pore, biofilter). This thesis aims to bring a better comprehension of the mechanisms which control the biofilm growth on a local scale. A flow chamber characterized by a laminar flow profile was developed to allow the in-situ observation and the analysis of cell adhesion, detachment and the growth of P. putida bacteria under sheared flow. The results also showed that the growth kinetics measured in batch was not applied, for low Reynolds number in the case of a biomass fixed to solid support and subjected to a shear stress. The study revealed also, as already shown before in certain research tasks, the biofilms organization in response to the sheared flow. The technique of 3d-reconstruction developed and implemented in complement to the direct optical microscopy allowed a better interpretation of global biofilm architecture and have explained how the microstructure can influence the biofilm friction toward fluid flow. We have simulated the distribution of the local velocity profiles in biofilm microstructure and our estimation of permeability has highlighed the importance of local distribution of biomass in this parameter.
Cette thèse a pour objectif d'apporter une meilleure compréhension des mécanismes qui gouvernent le bon fonctionnement et les performances des procédés de dépollution à biomasse fixée et d'en développer leur modélisation. Ces procédés pourraient voir leur efficacité intensifiée si les couplages entre les divers mécanismes locaux qui les gouvernent étaient mieux compris. L'interaction forte écoulement / biofilm dans ces procédés rend très difficile leur modélisation sans des progrès drastiques dans la compréhension de phénomènes intervenant à diverses échelles (biofilm, pore, bioréacteur). En conséquence, un des premiers verrous à lever est d'apporter une meilleure compréhension des mécanismes locaux responsables de l'adhésion, du détachement et de la croissance de micro-organismes sous écoulement. Dans ce but une chambre d'écoulement a été mise au point pour permettre l'observation microscopique et la caractérisation in-situ de ces phénomènes sous conditions hydrodynamiques contrôlées. Le système étudié est une bactérie de Pseudomonas putida et le polluant modèle est du phénol. En conditions non limitantes, nous montrons que les paramètres de la loi de Monod, pour les instants initiaux de croissance du biofilm et les conditions hydrodynamiques en régime très diffusif, sont dépendants du cisaillement imposé, ce qui n'est pas pris en compte dans la plupart des modèles. Des expériences mettant en œuvre l'observation de la croissance du biofilm sous écoulement (à bas Reynolds) ont ensuite permis de montrer la nature hétérogène de la structure du biofilm (structures filamenteuses, distribution de protubérances sur le support solide). Ces structures pourraient entre autre expliquer comment la croissance du biofilm influence le frottement. Pour étudier l'influence de la microstructure sur cette quantité, une technique de reconstruction 3D du biofilm a été développée et mise en œuvre en complément de la microscopie optique directe. La simulation de l'écoulement dans la microstructure ainsi reconstituée et l'ordre de grandeur des perméabilités calculées montrent bien l'importance de la distribution locale de la biomasse sur ce paramètre.
Origine | Version validée par le jury (STAR) |
---|
Loading...