DYNAMICS OF ION-SCALE COHERENT MAGNETIC STRUCTURES AND COUPLING WITH WHISTLER WAVES DURING SUBSTORMS. - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2012

DYNAMICS OF ION-SCALE COHERENT MAGNETIC STRUCTURES AND COUPLING WITH WHISTLER WAVES DURING SUBSTORMS.

DYNAMIQUE DES STRUCTURES COHERENTES MAGNETIQUES A L'ECHELLE IONIQUE ET COUPLAGE AVEC LES ONDES DE SIFFLEMENT PENDANT LES SOUS-ORAGES.

Résumé

A new model of the self-consistent coupling between low frequency, ion-scale coherent magnetic structures and high frequency whistler waves is proposed in order to interpret space data gathered by Cluster satellites during substorm events, in the night sector of the Earth's magnetosphere. The coupling provides a mechanism to spatially confine and transport whistler waves by means of a highly oblique, propagating nonlinear carrier wave. The present study relies on a combination of data analysis of original in situ measurements, theoretical modeling and numerical investigation. During substorms, the magnetosphere undergoes strong magnetic and electric field fluctuations ranging from low frequencies, of the order or less than the typical ion-time scales, to higher frequencies, of the order or higher than the typical electron time-scales. To understand basic plasma physical processes which characterize the magnetosphere dynamics during substorms an analysis of whether, and by which mechanism, waves occurring at these different time scales are coupled, is of fundamental interest. Low frequency magnetic structures are commonly detected in environments such as the magnetosheath and the solar wind, as well as in the dusk magnetosphere, possibly correlated with higher frequency whistler waves. In this Thesis it is shown that similar magnetic structures, correlated with whistler waves, are observed in the magnetospheric plasma sheet during substorms. The interesting question arises as to how the inhomogeneity associated with such magnetic structures affects the propagation of higher frequency waves. The Cluster mission, thanks to its four satellites in tetrahedron configuration and high temporal resolution measurements, provides a unique opportunity on the one hand to explore the spatial structure of stationary and propagating perturbations observed at low frequencies and on the other hand to study dynamics occurring at higher temporal scales, via whistler mode waves. With regard to this, I will describe the Cluster spacecraft detection of large amplitude whistler wave packets inside coherent ion-scale magnetic structures embedded in a fast plasma flow during the August 17th 2003 substorm event. In this period the Cluster satellites were located in the plasma sheet region and separated by a distance which is less than the magnetotail typical ion-scale lengths, namely the ion gyroradius and the ion inertial length. The observed whistler emissions are correlated with magnetic field structures showing magnetic depletions associated with density humps. As a first step, the latter have been modeled as one dimensional nonlinear slow waves which spatially confine and transport whistlers, in the framework of a two-fluid approximation. This schematic model is investigated through a theoretical and numerical study by means of a two-fluid code, and it is shown that the proposed model goes quite well with data interpretation. Its possible role in substorm dynamics is also discussed. This new trapping mechanism, studied here by using a highly oblique slow magnetosonic soliton as a guide for whistler waves, is of more general interest beyond the specific context of the observations reported in this Thesis. Other nonlinear structures showing similar features, for example highly oblique nonlinear Alfvén waves or kinetic Alfvén waves in high beta plasmas, can in principle act as wave carriers. The model proposed provides an explanation for the recurrent detection of whistlers inside ion-scale magnetic structures which is alternative to usual models of stationary magnetic structures acting as channels. Moreover, the study described in this Thesis addresses more general questions of basic plasma physics, such as wave propagation in inhomogeneous plasmas and the interaction between wave modes at different temporal scales.
Dans cette thèse, on propose un nouveau modèle de couplage auto-cohérent entre des structures magnétiques cohérentes sur les échelles ioniques et des ondes dites de sifflement (whistlers, en anglais) à plus hautes fréquences, afin d'interpréter les données expérimentales recueillies par les satellites Cluster pendant un sous-orage magnétique dans la région nocturne de la magnétosphère terrestre. Le couplage fournit un mécanisme pour confiner et transporter les ondes whistlers par l'intermédiaire d' une onde nonlinéaire qui se propage obliquement par rapport au champ magnétique. Cette étude s'appuie sur une analyse des données expérimentales, sur une modélisation théorique ainsi que sur des simulations numériques. Pendant les sous-orages magnétiques, la magnétosphère est soumise à de fortes perturbations magnétiques et électriques dans une vaste gamme de fréquences, qui vont des basses fréquences, inférieures ou de l'ordre de l'échelle temporelle typique ionique, aux hautes fréquences, supérieures ou de l'ordre de l' échelle temporelle typique électronique. Afin de connaître les processus physiques qui déterminent la dynamique de la magnétosphère pendant les sous-orages, il est fondamental de comprendre si, et avec quel méchanisme, des couplages peuvent se produire entre des ondes qui se propagent sur des temps caractéristiques différents. Des structures magnétiques à basse fréquence ont déjá été obsérvées dans des régions comme la magnétogaine et le vent solaire, éventuellement associées à des ondes whistlers à plus haute fréquence. Dans cette thèse, on montre que des structures similaires sont obsérvées dans la couche de plasma à l'intérieur de la magnétosphère. On s'intérroge ensuite sur la façon dont l'inhomogénéité de telles structures peut influencer la propagation des ondes à plus haute fréquence. Grâce à ses quatre satellites en configuration tetraédrique et à ses mésures à haute résolution temporelle, la mission Cluster nous offre une occasion unique de pouvoir analyser la structure spatiale des perturbations stationnaires (ou se propageant) et d'étudier la dynamique du plasma sur des échelles temporelles plus courtes, telles que celles des ondes whistlers. Ainsi, je décrirai les émissions d'ondes whistlers détectées par les satellites Cluster à l'intérieur de structures magnétiques cohérentes situées dans un écoulement de plasma rapide pendant le sous-orage du 17 Août 2003. Au cours de cette période, les satellites Cluster sont situés dans la couche de plasma, séparés d'une distance de l'ordre des échelles spatiales typiques ioniques (le rayon de giration ou la longueur d'inertie des ions). Les ondes whistlers sont corrélées avec des structures magnétiques characterisées par un minimum du module du champ magnétique et un maximum de densité du plasma. Ces dernières ont été modélisées comme des ondes planes nonlinéaires de type lent qui piègent et transportent les ondes whistlers. A partir d'une étude théorique et numérique en utilisant une approche bi-fluide, on peut alors reproduire les données observationnelles. Le rôle possible de telles structures couplées dans la physique des sous-orages est aussi discuté. Ce nouveau mécanisme de piégeage, étudié ici en utilisant comme guide pour les whistlers une onde oblique de type magnétosonique, est d'intérêt plus général par rapport au contexte spécifique des observations présentées dans cette thèse. En effet, d'autres ondes nonlinéaires, comme par exemple les ondes d' Alfvén obliques ou d' Alfvén cinétiques dans les plasmas à beta fort (où beta est le rapport de la pression thermique du plasma sur la pression magnétique), pourraient aussi transporter les whistlers. Ce modèle de piégeage constitue aussi une explication alternative aux modèles existants qui considèrent une inhomogénéité stationnaire sous la forme d'un canal de densité. Enfin, l'étude décrite dans cette thèse concerne des problématiques fondamentales en physique des plasmas, comme la propagation d'ondes dans les milieux inhomogènes et l'interaction entre modes sur des échelles temporelles différentes.
Fichier principal
Vignette du fichier
Tesi_PhD.pdf (17.7 Mo) Télécharger le fichier
Loading...

Dates et versions

tel-00789137 , version 1 (15-02-2013)

Identifiants

  • HAL Id : tel-00789137 , version 1

Citer

Anna Tenerani. DYNAMICS OF ION-SCALE COHERENT MAGNETIC STRUCTURES AND COUPLING WITH WHISTLER WAVES DURING SUBSTORMS.. Plasma Physics [physics.plasm-ph]. Université Pierre et Marie Curie - Paris VI, 2012. English. ⟨NNT : ⟩. ⟨tel-00789137⟩
427 Consultations
282 Téléchargements

Partager

Gmail Facebook X LinkedIn More