How do the large-scale dynamics of galaxy interactions trigger star formation in the Antennae galaxy merger?
Comment la dynamique à grande échelle de rencontre des deux galaxies déclenche la formation d'étoiles dans les galaxies des Antennes?
Résumé
The Antennae (22 Mpc) is one of the most well-known mergers in the nearby Universe. Its distance allow us to observe and study the gas at the scales of stellar cluster formation. It is an ideal source to understand how the galaxy dynamics in mergers trigger the formation of stars. Most of the stars in the Antennae are formed in compact and massive stellar clusters, dubbed super-star clusters (SSCs). The most massive (>106 M⊙) and youngest (<6 Myr) SSCs are located in the overlap region, where the two galaxies collide, and are associated with massive (several 108 M⊙) and super-giant (few hundred of pc) molecular complexes (SGMCs). The formation of SSCs must involve a complex interplay of merger-driven gas dynamics, turbulence fed by the galaxy interaction, and dissipation of the kinetic energy of the gas. Within SGMCs, a hierarchy of structures must be produced, including dense and compact concentrations of molecular gas massive enough to form SSCs, pre-cluster clouds (PCCs). For star formation to occur, the mechanical energy of PCCs must be radiated away to allow their self-gravity to locally win over their turbulent gas pressure. Specific tracers of turbulent dissipation are therefore key inputs to test the validity of this theoretical scenario. In my thesis, I studied the Antennae overlap region. My work is based on observations with the SINFONI spectro-imager at the VLT, which includes H2 rovibrational and Brγ line emission, and with ALMA, which includes the CO(3-2) line and dust continuum emission. Both data-sets have the needed sub-arcsecond angular resolution to resolve the scales of SSC formation. The spectral resolutions are enough to resolve motions within SGMCs. Combining CO and H2 line emission is key in my PhD work. I use CO as a tracer of the distribution and kinematics of the molecular gas, and H2 as a tracer of the rate at which the gas mechanical energy is dissipated.My thesis focuses on diverse sources in the Antennae overlap region which trace different stages of star formation: the gathering of mass necessary to form SGMCs, the formation of PCCs within SGMCs and the disruption of a parent cloud by a newly formed SSC. I show that at each stage turbulence plays a key role. I found that the kinetic energy of the galaxies is not thermalized in large scale shocks, it drives the turbulence in the molecular ISM at a much higher level than what is observed in the Milky Way. Near-IR spectral diagnostics show that, outside of SSCs embedded in their parent clouds, the H2 line emission is powered by shocks and traces the dissipation of the gas turbulent kinetic energy. I relate the H2 emission to the loss of kinetic energy required to form gravitationally bound clouds. This interpretation is supported by the discovery of a compact, bright H2 source not associated with any known SSC. It has the largest H2/CO emission ratio and is located where the data show the largest velocity gradient in the interaction region. To our knowledge, this is the first time that an extragalactic source with such characteristics is identified. We would be witnessing the formation of a cloud massive enough to form a SSC. The data also allow us to study the disruption of a parent molecular cloud by an embedded SSC. Its matter is loosely bound and its gravity would be supported by turbulence, which makes it easier for feedback to disrupt the parent cloud. I end my manuscript presenting two projects. I propose to establish additional energy dissipation tracers observable with ALMA, which gives us the high spatial and spectral resolution needed to isolate scales at which clusters form. This is a Cycle 1 proposal accepted in first priority. I also plan to expand my work to other nearby extragalactic sources by investigating the turbulence-driven formation of stars in different extragalactic sources by combining near-IR and submillimeter observations.
Les Antennes sont une des fusions de galaxies les plus connues dans l’Univers proche. Sa proximité nous permet d’observer et d’étudier ses gaz à l’échelle de la formation des amas stellaires. C’est une source idéale pour comprendre comment la dynamique dans les fusions de galaxies déclenche la formation d’étoiles. La plupart des étoiles dans les Antennes sont formées dans des amas stellaires compacts et massifs, surnommés super-star clusters (SSC). Les SSC les plus massifs (>106 M⊙) et les plus jeunes (<6 Myr) sont situés dans la région de collision entre les deux galaxies et sont associés aux complexes moléculaires massifs (~108 M⊙) et super-géants (des centaines de pc) (super-giant molecular clouds, SGMCs). La formation de SSC doit impliquer une intéraction complexe entre la dynamique des gaz et une turbulence entraînée par la fusion des galaxies, et la dissipation de l’énergie cinétique des gaz. Dans les SGMC, une hiérarchie de structures doit être produite, incluant des concentrations denses et compactes de gaz moléculaires qui sont suffisamment massifs pour former un SSC, des nuages pre-cluster clouds (PCC). La formation des étoiles se produira si l’énergie mécanique des PCC est émise dans le lointain, permettant à l’auto-gravité de gagner localement les pressions thermique et turbulente du gaz. Des diagnostics spécifiques de dissipation turbulente sont donc des éléments essentiels pour tester la validité de ce scénario.J’étudie la région d’intéraction des Antennes. J’utilise des observations avec le spectro- imageur SINFONI sur le VLT (raies rovibrationnelles de H2) et ALMA (raie CO(3–2) et l’émission du continuum de la poussière). Les données ont des résolutions angulaires pour résoudre les échelles de la formation des SSC et des résolutions spectrales pour résoudre les mouvements à l’intérieur du SGMC. La combinaison des raies CO et H2 est essentielle dans mon travail. J’utilise le CO comme traceur de la distribution et de la cinématique du gaz moléculaire, et H2 comme traceur du taux de dissipation d’énergie mécanique de gaz.Ma thèse se concentre sur des sources traçant des différentes étapes de la formation d’étoiles : le rassemblement des gaz pour former des SGMCs, la formation des PCC dans les SGMCs et la destruction des nuages moléculaires par les SSC. Je montre que la turbulence joue un rôle essentiel à chaque étape. J’ai trouvé que l’énergie cinétique de rencontre des deux galaxies n’est pas thermalisée dans les chocs aux échelles où elle est injectée. Elle entraîne une turbulence dans l’ISM moléculaire à un niveau beaucoup plus élevé que celui observé dans la Voie Lactée. Sauf dans les SSC encore intégrés dans les nuages moléculaires, la raie de H2 est produite par des chocs et trace la dissipation de l’énergie cinétique turbulente du gaz. J’associe l’émission de H2 à la perte d’énergie cinétique nécessaire pour former des nuages gravitationnellement liés. Cette interprétation est étayée par la découverte d’une source lumineuse et compacte en H2, qui n’est associée à aucun SSC connu, située là où les données montrent le plus grand gradient de vitesse. À notre connaissance, c’est la première fois qu’une source extragalactique avec ces caractéristiques est identifiée. Nous observons la formation d’un nuage suffisamment massif pour former un SSC. Les données montrent également la destruction d’un nuage moléculaire par un SSC récemment formé. Sa matière est faiblement liée. Sa gravité serait soutenue par la turbulence, ce qui rend plus facile pour les mécanismes de rétroaction de perturber le nuage parent.Enfin, je présente deux projets. Je propose d’établir d’autres traceurs de dissipation d’énergie observables avec ALMA, proposition du Cycle 1 acceptée en première priorité. Je propose également d’étendre mon travail pour étudier la formation des étoiles entraînées par la turbulence dans différentes sources extragalactiques en combinant les observations dans le proche infrarouge et submillimétrique.
Origine | Version validée par le jury (STAR) |
---|
Loading...