Contributions to statistical learning in sparse models
Contributions à l'apprentissage statistique dans les modèles parcimonieux
Résumé
The aim of this habilitation thesis is to give an overview of my works on high-dimensional statistics and statistical learning, under various sparsity assumptions. In a first part, I will describe the major challenges of high-dimensional statistics in the context of the generic linear regression model. After a brief review of existing results, I will present the theoretical study of aggregated estimators that was done in (Alquier & Lounici 2011). The second part essentially aims at providing extensions of the various theories presented in the first part to the estimation of time series models (Alquier & Doukhan 2011, Alquier & Wintenberger 2013, Alquier & Li 2012, Alquier, Wintenberger & Li 2012). Finally, the third part presents various extensions to nonparametric models, or to specific applications such as quantum statistics (Alquier & Biau 2013, Guedj & Alquier 2013, Alquier, Meziani & Peyré 2013, Alquier, Butucea, Hebiri, Meziani & Morimae 2013, Alquier 2013, Alquier 2008). In each section, we provide explicitely the estimators used and, as much as possible, optimal oracle inequalities satisfied by these estimators.
Ce mémoire d'habilitation a pour objet diverses contributions à l'estimation et à l'apprentissage statistique dans les modeles en grande dimension, sous différentes hypothèses de parcimonie. Dans une première partie, on introduit la problématique de la statistique en grande dimension dans un modèle générique de régression linéaire. Après avoir passé en revue les différentes méthodes d'estimation populaires dans ce modèle, on présente de nouveaux résultats tirés de (Alquier & Lounici 2011) pour des estimateurs agrégés. La seconde partie a essentiellement pour objet d'étendre les résultats de la première partie à l'estimation de divers modèles de séries temporelles (Alquier & Doukhan 2011, Alquier & Wintenberger 2013, Alquier & Li 2012, Alquier, Wintenberger & Li 2012). Enfin, la troisième partie présente plusieurs extensions à des modèles non param\étriques ou à des applications plus spécifiques comme la statistique quantique (Alquier & Biau 2013, Guedj & Alquier 2013, Alquier, Meziani & Peyré 2013, Alquier, Butucea, Hebiri, Meziani & Morimae 2013, Alquier 2013, Alquier 2008). Dans chaque section, des estimateurs sont proposés, et, aussi souvent que possible, des inégalités oracles optimales sont établies.
Loading...