Some contributions to the estimation of extreme quantiles. Applications to environmental data. - Archive ouverte HAL Accéder directement au contenu
Thèse Année : 2013

Some contributions to the estimation of extreme quantiles. Applications to environmental data.

Contributions à l'estimation de quantiles extrêmes. Applications à des données environnementales

(1)
1

Résumé

This thesis can be viewed within the context of extreme value statistics. It provides two main contributions to this subject area. In the recent literature on extreme value statistics, a model on tail distributions which encompasses Pareto-type distributions as well as Weibull tail-distributions has been introduced. The two main types of decreasing of the survival function are thus modeled. An estimator of extreme quantiles has been deduced from this model, but it depends on two unknown parameters, making it useless in practical situations. The first contribution of this thesis is to propose estimators of these parameters. Plugging our estimators in the previous extreme quantiles estimator allows us to estimate extreme quantiles from Pareto-type and Weibull tail-distributions in an unified way. The asymptotic distributions of our three new estimators are established and their efficiency is illustrated on a simulation study and on a real data set of exceedances of the Nidd river in the Yorkshire (England). The second contribution of this thesis is the introduction and the estimation of a new risk measure, the so-called Conditional Tail Moment. It is defined as the moment of order a>0 of the loss distribution above the quantile of order p in (0,1) of the survival function. Estimating the Conditional Tail Moment permits to estimate all risk measures based on conditional moments such as the Value-at-Risk, the Conditional Tail Expectation, the Conditional Value-at-Risk, the Conditional Tail Variance or the Conditional Tail Skewness. Here, we focus on the estimation of these risk measures in case of extreme losses i.e. when p converges to 0 when the size of the sample increases. It is moreover assumed that the loss distribution is heavy-tailed and depends on a covariate. The estimation method thus combines nonparametric kernel methods with extreme-value statistics. The asymptotic distribution of the estimators is established and their finite sample behavior is illustrated both on simulated data and on a real data set of daily rainfalls in the Cévennes-Vivarais region (France).
Cette thèse s'inscrit dans le contexte de la statistique des valeurs extrêmes. Elle y apporte deux contributions principales. Dans la littérature récente en statistique des valeurs extrêmes, un modèle de queues de distributions a été introduit afin d'englober aussi bien les lois de type Pareto que les lois à queue de type Weibull. Les deux principaux types de décroissance de la fonction de survie sont ainsi modélisés. Un estimateur des quantiles extrêmes a été déduit de ce modèle mais il dépend de deux paramètres inconnus, le rendant inutile dans des situations pratiques. La première contribution de cette thèse est de proposer des estimateurs de ces paramètres. Insérer nos estimateurs dans l'estimateur des quantiles extrêmes précédent permet alors d'estimer des quantiles extrêmes pour des lois de type Pareto aussi bien que pour des lois à queue de type Weibull d'une façon unifiée. Les lois asymptotiques de nos trois nouveaux estimateurs sont établies et leur efficacité est illustrée sur des données simulées et sur un jeu de données réelles de débits de la rivière Nidd se situant dans le Yorkshire en Angleterre. La seconde contribution de cette thèse consiste à introduire et estimer une nouvelle mesure de risque appelé Conditional Tail Moment. Elle est définie comme le moment d'ordre a>0 de la loi des pertes au-delà du quantile d'ordre p appartenant à ]0,1[ de la fonction de survie. Estimer le Conditional Tail Moment permet d'estimer toutes les mesures de risque basées sur les moments conditionnels telles que la Value-at-Risk, la Conditional Tail Expectation, la Conditional Value-at-Risk, la Conditional Tail Variance ou la Conditional Tail Skewness. Ici, on s'intéresse à l'estimation de ces mesures de risque dans le cas de pertes extrêmes c'est-à-dire lorsque p tend vers 0 lorsque la taille de l'échantillon augmente. On suppose également que la loi des pertes est à queue lourde et qu'elle dépend d'une covariable. Les estimateurs proposés combinent des méthodes d'estimation non-paramétrique à noyau avec des méthodes issues de la statistique des valeurs extrêmes. Le comportement asymptotique de nos estimateurs est établi et illustré aussi bien sur des données simulées que sur des données réelles de pluviométrie provenant de la région Cévennes-Vivarais.
Fichier principal
Vignette du fichier
TheseElmethni.pdf (4 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)
Loading...

Dates et versions

tel-00924293 , version 1 (06-01-2014)

Identifiants

  • HAL Id : tel-00924293 , version 1

Citer

Jonathan El Methni. Contributions à l'estimation de quantiles extrêmes. Applications à des données environnementales. Mathématiques générales [math.GM]. Université de Grenoble, 2013. Français. ⟨NNT : 2013GRENM035⟩. ⟨tel-00924293⟩
1062 Consultations
2840 Téléchargements

Partager

Gmail Facebook Twitter LinkedIn More