Procédés laser pour la réalisation de cellules photovoltaïques en silicium à haut rendement - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2012

Laser processing for high efficiency silicon solar cells

Procédés laser pour la réalisation de cellules photovoltaïques en silicium à haut rendement

Résumé

Silicon solar cells still require cost reduction and improved efficiency to become more competitive. New architectures can provide a significant increase in efficiency, but today most of the approaches need additional fabrication steps. In this context, laser processing offers a unique way to replace technological steps like photolithography that is not compatible with the requirements of the photovoltaic industry. This PhD thesis will present two promising laser processes for silicon solar cells: selective laser doping and selective laser ablation. Laser-assisted diffusion of dopants is a promising way to produce at low cost advanced silicon solar cells with high efficiency. Indeed, selective emitters, which rely on high dopant concentration localized under the front electrical contacts are an effective way to reduce power losses at the front surface of silicon solar cells. Several laser-based techniques are competing to optimise the emitter geometry. One of the main approaches is to take advantage of the doping glass (usually P2O5 for p-type silicon solar cells) that is formed during the standard diffusion process. Selective laser ablation is an effective way to open the antireflection layer (SiNx) in order to perform alternative front side metallization. Indeed, in the industrial production of standard silicon solar cells, the front side metallization is made by screen printing of metal paste. This process scheme is very cost efficient but it leads to serious limitations of the solar cell efficiency. Electrochemical metallization avoids these issues but requires a selective opening of SiNx, which is usually done by photolithography. Direct laser ablation allows to consider this approach at an industrial level. These processes are presented illustrated by research conducted during this PhD at INL in laser technologies for photovoltaics. An innovative and potentially self-aligned process is also discussed, where the laser is used to open locally the antireflection and passivation coating, and at the same time, achieve local phosphorus diffusion. Moreover solar cells results above 18% have been obtained thanks to a selective emitter structure achieved with selective laser doping.
L'énergie photovoltaïque est promise à une forte croissance dans les prochaines années. Propre et renouvelable, elle possède en effet de sérieux atouts pour répondre aux grands enjeux posés par le réchauffement climatique et l'appauvrissement des ressources en énergie fossile. Elle reste néanmoins une énergie chère en comparaison des autres formes de production électrique. D'importants efforts de R&D doivent être mis en œuvre pour abaisser son coût et la rendre plus compétitive. Il existe d'ores et déjà dans les laboratoires des technologies permettant d'augmenter significativement le rendement des cellules solaires en silicium (qui représentent aujourd’hui l'essentiel du marché). Mais elles font appel le plus souvent à des procédés, comme la photolithographie, qui restent chères pour l'industrie photovoltaïque. Les technologies laser sont une voie envisagée pour répondre à ce problème. Sélectifs, sans contact et autorisant de hautes cadences, les procédés laser permettent de réaliser des structures avancées de cellules à moindre coût. Il existe ainsi une forte dynamique de recherche autour de ces procédés. Les traitements laser permettent d’usiner ou de modifier la matière, de façon rapide et fiable. Il est ainsi possible d’ablater sélectivement certains matériaux, de réaliser des tranchées ou des trous, ou encore de modifier des profils de dopage. Des architectures complexes deviennent ainsi accessibles sans recourir aux couteuses technologies de la microélectronique. C'est dans ce contexte que se déroule ce travail de thèse, financé par l'ADEME et la société SEMCO Eng., et s'inscrivant également dans le projet de l'Agence National pour la Recherche PROTERRA. Deux objectifs principaux ont motivé sa mise en place : développer un savoir-faire au laboratoire INL sur les technologies laser avec l'ambition de rejoindre les instituts leaders sur ces thématiques et transférer les procédés développés à l'équipementier SEMCO Eng. pour lui donner accès à une technologie aujourd'hui inédite dans l'industrie photovoltaïque française. Ces recherches ont porté sur les cellules photovoltaïques en silicium, dites de première génération, et se sont articulées autour de trois axes principaux : la modélisation de l'interaction laser matière, l'ablation sélective de diélectriques (notamment de la couche antireflet afin de permettre de nouvelles techniques de métallisation) et la réalisation de dopages localisés. Des cellules de grandes dimensions fabriquées en collaboration avec SEMCO Eng. et tirant parti de ces procédés ont permis d’obtenir des rendements en accord avec l’état de l’art (proche de 18 %).
Fichier principal
Vignette du fichier
these.pdf (11.21 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)
Loading...

Dates et versions

tel-00932583 , version 1 (17-01-2014)

Identifiants

  • HAL Id : tel-00932583 , version 1

Citer

Gilles Poulain. Procédés laser pour la réalisation de cellules photovoltaïques en silicium à haut rendement. Autre. INSA de Lyon, 2012. Français. ⟨NNT : 2012ISAL0099⟩. ⟨tel-00932583⟩
669 Consultations
2264 Téléchargements

Partager

Gmail Facebook X LinkedIn More