Apprentissage par renforcement pour la généralisation des approches automatiques dans la conception des systèmes de dialogue oral - TEL - Thèses en ligne
Thèse Année : 2011

Statistical methods for a oral human-machine dialog system

Apprentissage par renforcement pour la généralisation des approches automatiques dans la conception des systèmes de dialogue oral

Résumé

Dialog managers (DM) in spoken dialogue systems make decisions in highly uncertain conditions, due to errors from the speech recognition and spoken language understanding (SLU) modules. In this work a framework to interface efficient probabilistic modeling for both the SLU and the DM modules is described and investigated. Thorough representation of the user semantics is inferred by the SLU in the form of a graph of frames and, complemented with some contextual information, is mapped to a summary space in which a stochastic POMDP dialogue manager can perform planning of actions taking into account the uncertainty on the current dialogue state. Tractability is ensured by the use of an intermediate summary space. Also to reduce the development cost of SDS an approach based on clustering is proposed to automatically derive the master-summary mapping function. A implementation is presented in the Media corpus domain (touristic information and hotel booking) and tested with a simulated user.
Les systèmes de dialogue homme machine actuellement utilisés dans l’industrie sont fortement limités par une forme de communication très rigide imposant à l’utilisateur de suivre la logique du concepteur du système. Cette limitation est en partie due à leur représentation de l’état de dialogue sous la forme de formulaires préétablis.Pour répondre à cette difficulté, nous proposons d’utiliser une représentation sémantique à structure plus riche et flexible visant à permettre à l’utilisateur de formuler librement sa demande.Une deuxième difficulté qui handicape grandement les systèmes de dialogue est le fort taux d’erreur du système de reconnaissance vocale. Afin de traiter ces erreurs de manière quantitative, la volonté de réaliser une planification de stratégie de dialogue en milieu incertain a conduit à utiliser des méthodes d’apprentissage par renforcement telles que les processus de décision de Markov partiellement observables (POMDP). Mais un inconvénient du paradigme POMDP est sa trop grande complexité algorithmique. Certaines propositions récentes permettent de réduire la complexité du modèle. Mais elles utilisent une représentation en formulaire et ne peuvent être appliqués directement à la représentation sémantique riche que nous proposons d’utiliser.Afin d’appliquer le modèle POMDP dans un système dont le modèle sémantique est complexe, nous proposons une nouvelle façon de contrôler sa complexité en introduisant un nouveau paradigme : le POMDP résumé à double suivi de la croyance. Dans notre proposition, le POMDP maitre, complexe, est transformé en un POMDP résumé, plus simple. Un premier suivi de croyance (belief update) est réalisé dans l’espace maitre (en intégrant des observations probabilistes sous forme de listes nbest). Et un second suivi de croyance est réalisé dans l’espace résumé, les stratégies obtenues sont ainsi optimisées sur un véritable POMDP.Nous proposons deux méthodes pour définir la projection du POMDP maitre en un POMDP résumé : par des règles manuelles et par regroupement automatique par k plus proches voisins. Pour cette dernière, nous proposons d’utiliser la distance d’édition entre graphes, que nous généralisons pour obtenir une distance entre listes nbest.En outre, le couplage entre un système résumé, reposant sur un modèle statistique par POMDP, et un système expert, reposant sur des règles ad hoc, fournit un meilleur contrôle sur la stratégie finale. Ce manque de contrôle est en effet une des faiblesses empêchant l’adoption des POMDP pour le dialogue dans l’industrie.Dans le domaine du renseignement d’informations touristiques et de la réservation de chambres d’hôtel, les résultats sur des dialogues simulés montrent l’efficacité de l’approche par renforcement associée à un système de règles pour s’adapter à un environnement bruité. Les tests réels sur des utilisateurs humains montrent qu’un système optimisé par renforcement obtient cependant de meilleures performances sur le critère pour lequel il a été optimisé.
Fichier principal
Vignette du fichier
pdf2star-1548238512-Florian_Pinault_new_compressed.pdf (3.18 Mo) Télécharger le fichier
Origine Version validée par le jury (STAR)
Loading...

Dates et versions

tel-00933937 , version 1 (24-01-2019)

Identifiants

  • HAL Id : tel-00933937 , version 1

Citer

Florian Pinault. Apprentissage par renforcement pour la généralisation des approches automatiques dans la conception des systèmes de dialogue oral. Autre [cs.OH]. Université d'Avignon, 2011. Français. ⟨NNT : 2011AVIG0188⟩. ⟨tel-00933937⟩
335 Consultations
523 Téléchargements

Partager

More