Utilisation des modèles de co-clustering pour l'analyse exploratoire des données - TEL - Thèses en ligne Access content directly
Theses Year : 2013

The Application of Co-clustering in Exploratory Data Analysis

Utilisation des modèles de co-clustering pour l'analyse exploratoire des données

Abstract

Co-clustering is a clustering technique aiming at simultaneously partitioning the rows and the columns of a data matrix. Among the existing approaches, MODL is suitable for processing huge data sets with several continuous or categorical variables. We use it as the baseline approach in this thesis. We discuss the reliability of applying such an approach on data mining problems like graphs partitioning, temporal graphs segmentation or curve clustering. MODL tracks very fine patterns in huge data sets, that makes the results difficult to study. That is why, exploratory analysis tools must be defined in order to explore them. In order to help the user in interpreting the results, we define exploratory analysis tools aiming at simplifying the results in order to make possible an overall interpretation, tracking the most interesting patterns, determining the most representative values of the clusters and visualizing the results. We investigate the asymptotic behavior of these exploratory analysis tools in order to make the connection with the existing approaches. Finally, we highlight the value of MODL and the exploratory analysis tools owing to an application on call detailed records from the telecom operator Orange, collected in Ivory Coast.
Le co-clustering est une technique de classification consistant à réaliser une partition simultanée des lignes et des colonnes d'une matrice de données. Parmi les approches existantes, MODL permet de traiter des données volumineuses et de réaliser une partition de plusieurs variables, continues ou nominales. Nous utilisons cette approche comme référence dans l'ensemble des travaux de la thèse et montrons la diversité des problèmes de data mining pouvant être traités, comme le partitionnement de graphes, de graphes temporels ou encore le clustering de courbes. L'approche MODL permet d'obtenir des résultats fins sur des données volumineuses, ce qui les rend difficilement interprétables. Des outils d'analyse exploratoire sont alors nécessaires pour les exploiter. Afin de guider l'utilisateur dans l'interprétation de tels résultats, nous définissons plusieurs outils consistant à simplifier des résultats fins afin d'en avoir une interprétation globale, à détecter les clusters remarquables, à déterminer les valeurs représentatives de leurs clusters et enfin à visualiser les résultats. Les comportements asymptotiques de ces outils d'analyse exploratoire sont étudiés afin de faire le lien avec les approches existantes. Enfin une application sur des comptes-rendus d'appels de l'opérateur Orange, collectés en Côte d'Ivoire, montre l'intérêt de l'approche et des outils d'analyse exploratoire dans un contexte industriel.
Fichier principal
Vignette du fichier
these_guigoures.pdf (9.33 Mo) Télécharger le fichier
Loading...

Dates and versions

tel-00935278 , version 1 (23-01-2014)

Identifiers

  • HAL Id : tel-00935278 , version 1

Cite

Romain Guigourès. Utilisation des modèles de co-clustering pour l'analyse exploratoire des données. Applications [stat.AP]. Université Panthéon-Sorbonne - Paris I, 2013. Français. ⟨NNT : ⟩. ⟨tel-00935278⟩
1442 View
5332 Download

Share

Gmail Mastodon Facebook X LinkedIn More