Accélération matérielle pour l'imagerie sismique : modélisation, migration et interprétation - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2013

Hardware accelerator for seismic imaging: modelling, migration and interpretation

Accélération matérielle pour l'imagerie sismique : modélisation, migration et interprétation

Résumé

This work deals with the use of GPU to speedup large calculation arising in geoscience.
La donnée sismique depuis sa conception (modélisation d'acquisitions sismiques), dans sa phase de traitement (prétraitement et migration) et jusqu'à son exploitation pour en extraire les informations géologiques pertinentes nécessaires à l'identification et l'exploitation optimale des réservoirs d'hydrocarbures (interprétation), génère un volume important de calculs. Lors de la phase d'imagerie, ce volume est d'autant plus important que les différentes simulations mises en jeu se veulent fidèles à la physique du sous sol. Une puissance de calcul importante est donc nécessaire pour réduire le temps, et donc le coût, des études en imagerie sismique et pour améliorer le résultat final de ces études en reproduisant plus fidèlement les phénomènes physiques mis en jeu et en considérant de plus larges plages de fréquences. Lors de la phase d'interprétation, le calcul d'attributs sismiques (type : cohérence, lissage, analyse spectrale, etc.) offre une aide de choix à l'interprétateur. Ces calculs se font usuellement selon un cycle itératif pour sélectionner les paramètres les plus adaptés. Ce cycle est rendu fastidieux par la complexité et donc le temps des calculs. L'exploitation optimale des ressources de calcul disponibles dans la station d'interprétation est nécessaire pour raccourcir ce cycle ainsi que pour la mise en œuvre d'algorithmes de traitements plus performants. Les technologies accélératrices permettent de déléguer certains types de calculs à des unités puissantes (GPGPU, FPGA, MIC) dans le cadre de plateformes hétérogènes en alternative au CPU utilisé habituellement. La puissance de calcul accessible par ce biais dépasse de plusieurs ordres de grandeur ce que peuvent proposer les architectures généralistes utilisées traditionnellement en calcul hautes performances. Ces nouvelles architectures sont une alternative très intéressante pour augmenter la puissance de calcul sans augmenter pour autant la puissance électrique consommée et thermique dissipée. Néanmoins, les contraintes d'utilisation font qu'à l'heure actuelle ces nouveaux types de calculateurs sont difficiles à programmer et à optimiser dans le cadre du calcul scientifique et conduisent à des codes dédiés à une architecture particulière. Les simulations reposant sur la résolution de l'équation des ondes en 2D ou 3D discrétisée sur des grilles (utilisées pour la modélisation et la migration sismiques), ainsi que les algorithmes de traitement d'images (utilisés lors de l'interprétation des données sismiques) sont des candidats potentiels pour une implémentation très efficace sur ces nouvelles architectures. Dans cette thèse, nous proposons une étude de l'apport, des contraintes ainsi que des limites éventuelles de ces technologies accélératrices pour l'imagerie et l'interprétation sismiques. Dans la première partie du manuscrit, après une brève introduction à l'imagerie sismique dans le premier chapitre, nous passons en revue dans le deuxième chapitre les algorithmes utilisés dans ce cadre pour mettre en exergue la complexité de ces algorithmes et les besoins en puissance de calcul qui en découlent. Nous exposons ensuite dans le chapitre 3 les différentes technologies matérielles et logicielles actuelles permettant de répondre à ces besoins. Dans la deuxième partie de ce manuscrit, nous étudions l'impact de l'utilisation des technologies accélératrices en imagerie sismique (chapitre 4) et dans le cadre de l'interprétation sismique (chapitre 5). Dans le chapitre 4, nous proposons ainsi diverses implémentations d'algorithmes utilisés en imagerie sismique reposant sur la simulation de la propagation des ondes sismiques dans le sous- sol via une discrétisation de l'équation d'onde en 2D et en 3D et sa résolution par différences finies. Nous analysons le comportement de ces implémentations sur divers types d'accélérateurs. Nous montrons qu'une prise en compte fine des ressources disponibles au niveau de l'unité de calcul (bandes passantes, capacité mémoire, organisation des données en mémoire et motifs d'accès à ses différents niveaux) est nécessaire pour tirer partie de chaque type d'architecture et au-delà de cela, de chaque génération d'une architecture donnée. De plus, les communications entre l'accélérateur et la machine hôte ont un coût qu'il est nécessaire de limiter pour ne pas pénaliser les temps de calcul. Nous proposons différentes techniques pour minimiser ces coûts et analysons leur comportement. Ces implémentations reposent sur une décomposition du domaine de simulation global, qui peut être de taille importante, en sous-domaines ce qui induit également des communications entre nœuds dans le cadre de systèmes à mémoire distribuée. Dans le chapitre 5, une étude similaire est proposée pour le calcul d'attributs sismiques. Contrairement aux algorithmes d'imagerie sismique, ce sont les ressources de la station de travail locale qui sont exploitées pour tendre vers un calcul interactif des attributs facilitant ainsi la tâche de l'interprétateur. Une implémentation performante de la transposition de cubes sismiques 3D est proposée. Elle sert de base aux algorithmes étudiés par la suite. Est étudiée ensuite une première classe d'algorithmes basés sur le calcul de la similarité entre traces sismiques voisines : cohérence, calcul de pendage ainsi qu'un algorithme innovant mis au point lors de cette étude. Les calculs sur accélérateur graphique du lissage gaussien par filtres FIR et IIR sont comparés. Des facteurs d'accélération variant entre 8 et 160 par rapport aux processeurs classiques sont reportés. Ces travaux ouvrent la voie à une intégration complète et systématique des accélérateurs de calcul tout le long du cycle de traitement des données sismiques et ce d'autant plus que nous avons démontré que cette intégration ne se fait pas aux dépends de la fiabilité et de la maintenabilité du code existant.
Fichier principal
Vignette du fichier
TheseRachedAbdelkhalek.pdf (12.68 Mo) Télécharger le fichier

Dates et versions

tel-00936989 , version 1 (27-01-2014)

Identifiants

  • HAL Id : tel-00936989 , version 1

Citer

Rached Abdelkhalek. Accélération matérielle pour l'imagerie sismique : modélisation, migration et interprétation. Algorithme et structure de données [cs.DS]. Université Sciences et Technologies - Bordeaux I, 2013. Français. ⟨NNT : ⟩. ⟨tel-00936989⟩
303 Consultations
1093 Téléchargements

Partager

Gmail Facebook X LinkedIn More