Spectrum of Sublaplacians on Strictly Pseudoconvex CR Manifolds
Le spectre du sous-laplacien sur les variétés CR strictement pseudoconvexes
Résumé
The purpose of this thesis is to study the spectrum of sublaplacians on compact strictly pseudoconvex CR manifolds. We prove the discreteness of the Dirichlet spectrum of the sublaplacian $\Delta_b$ on a smoothly bounded domain $\Omega \subset M$ in a strictly pseudoconvex CR manifold M satisfying Poincaré inequality. We study the behavior of the eigenvalues of a sublaplacian $\Delta_b$ on a compact strictly pseudoconvex CR manifold $M$, as functions on the set ${\mathcal P}_+$ of positively oriented contact forms on $M$ by endowing ${\mathcal P}_+$ with a natural metric topology. We establish inequalities for the eigenvalues of $\Delta_b$ on compact strictly pseudoconvex CR manifolds (possibly with nonempty boundary) %$C^2$ semi-isometric maps into a Euclidean space or a Heisenberg group. Our estimates extend those obtained by P-C. Niu \& H. Zhang \cite{NiZh} for the Dirichlet eigenvalues of the sublaplacian on a bounded domain in the Heisenberg group, in the spirit of Payne-P\'{o}lya -Weinberger and Yang inequalities. We establish a new lower bound on the first nonzero eigenvalue $\lambda_1 (\theta )$ of the sublaplacian $\Delta_b$ on a compact strictly pseudoconvex CR manifold $M$ carrying a contact form $\theta$ whose Tanaka-Webster connection has Ricci curvature bounded from below.
Le but de cette thèse est d'étudier le spectre du sous-laplacien sur les variétés CR strictement peusdoconvexes. Nous prouvons que le spectre du sous-laplacien $\Delta_b$ est discret sur un domaine borné $\Omega \subset M$ d'une variété CR strictement pseudoconvexe qui satisfait l'inégalité de Poincaré, sous les conditions de Dirichlet au bord. Nous étudions le comportement des valeurs propres du sous-laplacien $\Delta_b$ sur une variété CR strictement pseudoconvexe compacte $M$, en tant que fonctionnelle sur l'espace ${\mathcal P}_+$ de formes de contact positivement orientées sur $M$ en dotant ${\mathcal P}_+$ d'une topologie métrique naturelle. Nous établissons des inégalités pour les valeurs propres de $\Delta_b$ sur des variétés CR strictement pseudoconvexes ( éventuellement à bord non vide). Nos estimations prolongent les résultats obtenus par P-C. Niu \& H. Zhang \cite{NiZh} pour les valeurs propres du sous-laplacien avec conditions de Dirichlet au bord sur un domaine borné du groupe de Heisenberg, et sont dans l'esprit des inégalités de Payne-P\'{o}lya-Weinberger et Yang. Nous obtenons une nouvelle borne inférieure sur la première valeur propre non nulle $\lambda_1 (\theta )$ du sous-laplacien $\Delta_b$ sur une variété CR strictement pseudoconvexe compacte $M$ munie d'une forme de contact $\theta$ dont la connexion de Tanaka-Webster est à courbure de Ricci minorée.
Mots clés
Sublaplacian
Spectrum
pseudohermitian structure
contact form
Webster metric
Fefferman metric
CR manifold
Heisenberg group
Sobolev type space
subeliptic harmonic map
semi-isometric map
Levi tension field
Bochner-Lichnerowicz formula
universal inequality
Reilly inequality
Sous-laplacien
valeur propre
Structure pseudohermitienne
Forme de contact
Métrique de Webste
Métrique de Fefferman
Variété CR
Groupe de Heisenberg
Espace de type Sobolev sur les variétés CR
Application harmonique sous- elliptique
Application semi-isométrique
Tension de Levi
Formule de Bochner-Lichnerowicz
Inégalité universelle
Inégalité de Reilly
Domaines
Géométrie différentielle [math.DG]
Loading...