Developpement of a lattice Boltzmann model for studying phase change in presence of natural convection and radiation
Développement d'un modèle de Boltzmann sur gaz réseau pour l'étude du changement de phase en présence de convection naturelle et de rayonnement
Résumé
Reduction of greenhouse gas emissions requires reduction of energy consumption. Energy storage on building walls allows reduction in energy consumption. Among storage techniques, latent heat storage offers higher energy storage density than sensible heat storage. INERTRANS project has proposed the development of an innovative facade, coupling transparent insulation and energy storage with a fatty acid phase change materials (PCM). Melting of PCM comprises different phenomena, namely, natural convection in the liquid phase and radiation absorption or transmission. The coupling of all this phenomena is not still studied in scientific literature. In this thesis, a 2D numerical model for studying phase change has been developed. This model uses the lattice Boltzmann method (LBM) with multiple relaxation time (MRT) to resolve velocity field, and finite differences for the temperature field. Phase change is treated with the enthalpy formulation. The original contribution is application of this hybrid approach to the phase change with natural convection, on the one hand, and to the phase change with natural convection and radiation, on the other hand. To verify the model without radiation, a test case taken from literature has been simulated. It concerns the melting of two PCM with a low and high Prandtl number, the tin and octadecane, respectively. Tin melting simulation confirms multiple cells flow, starting with four rolls which merges in three then two rolls. Octadecane simulation shows high convection effect, with a melting front deforming all along the cavity height. Nusselt number plot for octadecane melting with convection is more than three times with conduction only. INERTRANS’ fatty acid simulation shows that convection shall not be neglected, because predicted heat flux with convection may be up to three times that predicted with conduction only. Melted fraction is almost twice than with conduction only. The lattice Boltzmann method applied to radiative heat transfer has also been explored. It turns out that in its current state, this method is not competitive compared to a conventional discrete ordinates method (DOM). Finally, we coupled the DOM for radiation heat flux, with the LBM for velocity field calculation and finite differences for the energy equation to solve the coupling between phase change, convection and radiation. Long wavelength radiation has no noticeable effect on heat transfer. Short wavelength radiation increases heat transfer, however, this increase is not as important as that produced by convection for this kind of material. Since no reference solution exists in the literature, our results can now serve as a basis for future work. An experimental validation would be a necessary perspective.
La réduction des émissions de gaz à effet de serre (GES) passe par la réduction des consommations d’énergie. Le stockage de la chaleur dans les parois des bâtiments permet de réduire la consommation d'énergie. Parmi les techniques de stockage, le stockage latent a la capacité de stocker une quantité d’énergie par unité de volume plus importante qu’un système sensible. Le projet INERTRANS a proposé le développement d’une façade associant une isolation translucide et le stockage latent avec un matériau à changement de phase (MCP). La fusion du MCP s’accompagne de la convection naturelle et l’absorption ou transmission du rayonnement. Le couplage de l’ensemble de ces phénomènes n’a pas été étudié dans la littérature. Dans cette thèse un modèle numérique 2D pour l’étude du changement de phase a été développé. Ce modèle utilise la méthode de Boltzmann sur réseau (LB) à temps de relaxation multiple (MRT), pour la résolution du champ de vitesse et la méthode des différences finies, pour la résolution du champ de températures. Le changement de phase a été traité par la formulation enthalpique. L’originalité est l’application de ce modèle au problème de changement de phase avec convection naturelle, d’une part, et au changement de phase avec convection naturelle et rayonnement, d’autre part. Pour vérifier notre modèle sans rayonnement, un cas de référence de la littérature a été simulé. Il s’agit de la fusion des deux MCP, l’étain et l’octadécane, à faible et fort nombre de Prandtl, respectivement. La simulation de l’étain a confirmé un écoulement multicellulaire. La simulation de l’octadécane a montré une forte influence de la convection avec un front de fusion qui se déforme sur toute la cavité. Le nombre de Nusselt pour l’octadécane avec convection est plus de trois fois le Nusselt sans convection. La simulation de l’acide gras de la brique INERTRANS a montré que la convection ne doit pas être négligée, car le flux prédit avec convection peut être jusqu’à trois fois plus grand que le flux prédit sans convection. La fraction fondue est près du double qu’en conduction seule. La méthode LB appliquée aux transferts radiatifs a été étudiée. Il se trouve, qu’à l’état actuel cette méthode n’est pas compétitive par rapport à une méthode classique des ordonnées discrètes (MOD). Enfin, nous avons couplé la MOD pour le calcul du flux radiatif avec la méthode LB pour le calcul du champ de vitesses et des différences finies pour l’équation de l’énergie. Le rayonnement grande longueur d’onde n’a pas d’influence notable sur les transferts thermiques. Le rayonnement courte longueur d’onde augmente les transferts thermiques, pourtant, cet effet n’est pas aussi important que l’augmentation due à la convection pour le matériau choisi. Puisqu’aucune solution de référence n’existe dans la bibliographie, nos résultats peuvent désormais servir d’éléments de comparaison pour de futurs travaux. Une validation expérimentale constituerait une perspective nécessaire.
Domaines
Autre [cond-mat.other]Origine | Version validée par le jury (STAR) |
---|
Loading...