Petrology and rheology of high pressure planetary ices
Pétrologie et rhéologie des glaces planétaires de haute pression
Résumé
H2O ice is found in a variety of planetary environments, notably in the form of high pressure polymorphs inside icy moons and extrasolar ocean planets. The great diversity of thermodynamic conditions predicted inside such planetary bodies, reveals the need for new experimental and computational data to allow modeling of their internal structure and dynamics.Structural and spectral properties of H2O pure ices have been intensively studied, but surprisingly there is a lack of petrological data on impurities rich ice solid solutions. This Ph.D. thesis work focused on the study of ice VI and ice VII fusion curves in the H2O-NaCl binary, using diamond anvil cell and Raman spectroscopy. We later determined the partitioning of the NaCl analog salt, RbI, between ice VI and VII and the aqueous fluid using X- ray fluorescence and X-ray diffraction techniques at the European Synchrotron Research Facility (Grenoble). Our results enable us to observe a density inversion between ice VI and the salty fluid, and to measure a strong difference in salt partitioning between ice VI and ice VII with a partition coefficient of Kd(VI-VII)=4.5(±2.7)10-2. Inside the largest H2O rich planetary bodies, called ocean planets, the icy mantle, putatively more than 1000 km thick, shelters an ultra high pressure ice form called ice X. This H2O ice phase is unique because of its ionic crystallographic structure, in contrast with lower pressure ices polymorphs, all being molecular solids. This characteristic coupled with the fact that no data are available yet on its mechanical properties, encouraged us to study its elastic and plastic properties. Using ab initio calculations and the Peierls Nabarro model, I showed the strong variation of elastic anisotropy with increasing pressure and determined the dominant slip system inside the structure of ice X over its entire pressure stability range from 100 to 350 GPa. Our calculations suggest that plasticity in ice X is dominated by displacement always occurring on the {110} glide plane. Also, it reveals that the <110>{110} glide system is dominant below 250 GPa and that the <100>{110} slip system controls the plasticity of ice X. Our results also show that, if elastic anisotropy of ice X is strongly increasing with increasing pressure, the plasticity becomes almost isotropic at 350 GPa.
La glace de H2O est présente dans de nombreux environnements planétaires, et notamment sous forme de polymorphe de haute pression au sein des satellites de glaces ainsi que dans le manteau des planètes extrasolaires, dites planètes océan. La diversité des conditions thermodynamiques prédite au sein de ces corps planétaires a souligné le besoin de nouvelles données de laboratoire et de calculs sur les glaces de H2O afin de pouvoir modéliser leur évolution et leur structure interne.Si les propriétés structurales et spectroscopiques des pôles purs de ces glaces sont déjà relativement bien connues, une description pétrologique plus réaliste des solutions solides et des phases riches en impureté, manque encore à la communauté. Ce travail de thèse s’est concentré sur l’étude de la fusion des glaces VI et VII dans le binaire H2O-NaCl grâce aux techniques de cellules à enclumes en diamants et la spectroscopie vibrationelle Raman. Ces données ont été complétées par des mesures du fractionnement du sel analogue RbI entre les glace VI et VII et le fluide aqueux en utilisant la cartographie de fluorescence X et de diffraction des rayons X réalisées à l’European Synchrotron Research Facility (Grenoble). Ceci as permis de mettre en évidence une inversion de densité entre le fluide riche en sel et la glace VI et de révéler une forte différence de partage du sel entre la glace VI et la glace VII avec un coefficient de partage du RbI estimé à Kd(VI-VII)=4.5(±2.7)10-2.Au sein des plus gros corps riches en H2O appelés planète océan, le manteau de glace potentiellement épais de plus de 1000 km abrite un type de glace de ultra haute pression appelé glace X. Cette phase de la glace d’eau est unique de part sa structure cristallographique ionique, contrairement aux autres glaces de plus basse pression, toutes de structure moléculaire. Cette caractéristique structurale et l’absence de données concernant ses propriétés mécaniques ont motivé l’étude de ses propriétés élastiques et plastiques. Ainsi à partir de calcul ab initio et du modèle de Peierls Nabarro, j’ai pu déterminer une forte variation de l’anisotropie élastique avec la pression, les différentes structures de cœurs des dislocations vis et coin et les systèmes de glissement préférentiels au sein de la glace X dans son champ de stabilité de 100 à 350 GPa. Nos calculs suggèrent que la déformation de la glace X est toujours localisée sur le plan {110} et que le système <110>{110} contrôle la déformation plastique en dessous de 250 GPa et que le système <100>{110} est dominant à plus haute pression. Nos résultats montrent aussi que si l’anisotropie élastique augmente rapidement avec la pression, la plasticité de la glace X devient quasi-isotrope à 350 GPa.
Origine | Version validée par le jury (STAR) |
---|