Contribution to the control of redundantly actuated cable-driven parallel robots
Contribution à la commande des robots parallèles à câbles à redondance d'actionnement
Résumé
Cable-driven parallel robots (CDPR) are particularly well adapted for some applications such as handling of heavy payloads over large workspaces. However, in order to fully control all the degrees of freedomof the mobile platformand to obtain large workspace to footprint ratios, redundant actuation may be required, which implies the determination of feasible cable tension distributions. In this thesis, in the case of CDPR with two degrees of actuation redundancy, real-time compatible algorithms capable of efficiently calculating various continuous tension distribution are introduced. Furthermore, efficient control schemes are proposed in order to increase the CDPR tracking performances. First, an dual-space feedforward control scheme is introduced to compensate for the plate-formeand whinches dynamics. In order to deal with parametric variations and incertainties in the models, an adaptive dual-space motion control scheme for CDPR is finally presented. Experimental results validate the reel-time efficiency of the proposed tension distribution algorithmand control schemes as well as their stability along the tracked trajectory.
Les Robots Parallèles à Câbles (RPC) sont particulièrement adaptés pour des applications telles que le transport de charges lourdes au travers de grands espaces de travail. Afin de contrôler l'ensemble des degrés de liberté de la plate-forme tout en optimisant la taille de l'espace de travail du robot par rapport au volume de sa structure, la redondance d'actionnement est nécessaire. Dans cette thèse, un algorithme de distribution des tensions des câbles compatible temps-réel est introduit. Il permet de calculer efficacement différentes solutions optimales au problème de la distribution des tensions des RPC à deux degrés de redondance. Des schémas de commande adaptés aux RPC, intégrant l'algorithme de distribution des tensions, sont ensuite proposés. Un schéma de commande en espace double est introduit pour compenser la dynamique de la plate-forme et des enrouleurs. Afin de pallier les incertitudes et les variations des paramètres des modèles, une commande adaptative en espace double est finalement proposée. Des résultats expérimentaux prouvent la compatibilité temps-réel des algorithmes et des lois de commande développés dans cette thèse, ainsi que leur stabilité le long de la trajectoire suivie.
Origine | Version validée par le jury (STAR) |
---|