Skip to Main content Skip to Navigation
New interface

Etude de la fragmentation lors de la réaction 12C+12C à 95 MeV/n et 400MeV/n dans le cadre de la hadronthérapie

Abstract : The hadrontherapy is a radiotherapy method using ions (carbon ions here) instead of the more conventional X-rays for cancer treatment. Deep radioresistant tumour areas, as brain carcinoma for example, can be treated thanks to the specific dosedeposition at the end of the ion path. This is an additional method to older classic ones (surgery, X-rays, chemotherapy). Two hadrontherapy centres for treatment and research are planned in France from 2018 (ARCHADE) in order to benefit from the newest progress and to keep improving this method. Carbon ions energy loss in the matter follows the Bethe-Bloch law. The maximum of energy depth is located in a limited area called “Bragg peak”. By adjusting the beam position and energy, the whole volume of the tumor can be irradiated. Nevertheless, nuclear reactions of carbon ion in tissues generate the production of lighter fragments (H, He, Li etc.) that deposit their energy beyond the Bragg peak. Models implemented in hadrontherapy simulation codes (FLUKA, GEANT4 etc.) cannot reproduce angular distributions of the lighter fragments and energy distributions at the same time. These poor estimations affect the treatment planning systems accuracy that are clinically used.Indeed, a bad estimation of fragmentation process induces a bias in the dose calculation concerning healthy cells beyond the Bragg peak. In order to better constraint models, two experiments based on fragmentation cross-sections measurements have been performed. The first one in may 2011 with a beam at 95 MeV/u (GANIL) in collaboration with the LPC Caen and the second one in august 2011 with a beam at 400 MeV/u (GSI) with the FIRST collaboration. E600 experiment is devoted to the study of carbon ions fragmentation at 95 MeV/u in several thin targets (Au, C, , Ti etc.) corresponding to the basic building blocks of human body. Five telescopes are designed for the fragments detection. Each one is a three-stage detector (2 silicon detectors and one CsI scintillator) that allows energy loss and total energy measurements for the ΔE-E identification method.Telescopes were disposed two by two in the reaction chamber with a remote control of the angular position. From the production rate measurements, the double differential fragmentation cross-sections (energy and angle) can be computed.From the experimental data for + reaction at 95 MeV/u on a 250 μm thick carbon target, all cross-sections were deduced.FIRST experiment uses a very different set-up. It is composed of: a beam monitoring, a vertex detector (CMOS), a calorimeter(KENTROS), a magnet (ALADIN), MUSIC (3 ionization chambers and 4 proportional counters) and a TOF-wall. Generated particles trajectory is reconstructed thanks to the vertex detector + TOF-wall for all fragments emitted with an angle lower than 5° and thanks to the vertex detector + KENTROS for higher angles. In the first case, the ALADIN magnet deflects the trajectory of the particles (MUSIC detector ran out). One 8 mm thick target has been used here. Preliminary results concerning production rates of the different charges, angular distributions and reconstruction efficiencies have been obtained. Heavier fragments mass identification is quite difficult because of the non-working MUSIC detector; it degrades the fragments momentumaccuracy.[...]
Document type :
Complete list of metadata
Contributor : ABES STAR :  Contact
Submitted on : Wednesday, September 10, 2014 - 12:57:10 PM
Last modification on : Saturday, June 6, 2020 - 3:24:06 AM
Long-term archiving on: : Friday, April 14, 2017 - 3:26:01 PM


Version validated by the jury (STAR)


  • HAL Id : tel-01062704, version 1



Didier Juliani. Etude de la fragmentation lors de la réaction 12C+12C à 95 MeV/n et 400MeV/n dans le cadre de la hadronthérapie. Médecine nucléaire. Université de Strasbourg, 2013. Français. ⟨NNT : 2013STRAE014⟩. ⟨tel-01062704⟩



Record views


Files downloads