Cooperative people detection and tracking strategies with a mobile robot and wall mounted cameras
Résumé
This thesis deals with detection and tracking of people in a surveilled public place. It proposes to include a mobile robot in classical surveillance systems that are based on environment fixed sensors. The mobile robot brings about two important benefits: (1) it acts as a mobile sensor with perception capabilities, and (2) it can be used as means of action for service provision. In this context, as a first contribution, it presents an optimized visual people detector based on Binary Integer Programming that explicitly takes the computational demand stipulated into consideration. A set of homogeneous and heterogeneous pool of features are investigated under this framework, thoroughly tested and compared with the state-of-the-art detectors. The experimental results clearly highlight the improvements the different detectors learned with this framework bring to the table including its effect on the robot's reactivity during on-line missions. As a second contribution, the thesis proposes and validates a cooperative framework to fuse information from wall mounted cameras and sensors on the mobile robot to better track people in the vicinity. Finally, we demonstrate the improvements brought by the developed perceptual modalities by deploying them on our robotic platform and illustrating the robot's ability to perceive people in supposed public areas and respect their personal space during navigation.
Actuellement, il y a une demande croissante pour le déploiement de robots mobile dans des lieux publics. Pour alimenter cette demande, plusieurs chercheurs ont déployé des systèmes robotiques de prototypes dans des lieux publics comme les hôpitaux, les supermarchés, les musées, et les environnements de bureau. Une principale préoccupation qui ne doit pas être négligé, comme des robots sortent de leur milieu industriel isolé et commencent à interagir avec les humains dans un espace de travail partagé, est une interaction sécuritaire. Pour un robot mobile à avoir un comportement interactif sécuritaire et acceptable - il a besoin de connaître la présence, la localisation et les mouvements de population à mieux comprendre et anticiper leurs intentions et leurs actions. Cette thèse vise à apporter une contribution dans ce sens en mettant l'accent sur les modalités de perception pour détecter et suivre les personnes à proximité d'un robot mobile. Comme une première contribution, cette thèse présente un système automatisé de détection des personnes visuel optimisé qui prend explicitement la demande de calcul prévue sur le robot en considération. Différentes expériences comparatives sont menées pour mettre clairement en évidence les améliorations de ce détecteur apporte à la table, y compris ses effets sur la réactivité du robot lors de missions en ligne. Dans un deuxiè contribution, la thèse propose et valide un cadre de coopération pour fusionner des informations depuis des caméras ambiant affixé au mur et de capteurs montés sur le robot mobile afin de mieux suivre les personnes dans le voisinage. La même structure est également validée par des données de fusion à partir des différents capteurs sur le robot mobile au cours de l'absence de perception externe. Enfin, nous démontrons les améliorations apportées par les modalités perceptives développés en les déployant sur notre plate-forme robotique et illustrant la capacité du robot à percevoir les gens dans les lieux publics supposés et respecter leur espace personnel pendant la navigation.
Loading...