Schémas numérique d'ordre élevé en temps et en espace pour l'équation des ondes du premier ordre. Application à la Reverse Time Migration. - TEL - Thèses en ligne
Thèse Année : 2014

High Order time and space schemes for the first order wave equation. Application to the Reverse Time Migration.

Schémas numérique d'ordre élevé en temps et en espace pour l'équation des ondes du premier ordre. Application à la Reverse Time Migration.

Résumé

Oil engineering uses a wide variety of technologies including imaging wave equation which involves very large computing resources. Very powerful computers are now available that make imaging of complex areas possible, but further progress is needed both to reduce the computational cost and improve the simulation accuracy. The current methods still do not allow to image properly heterogeneous 3D regions because they are too expensive and / or not accurate enough. Finite element methods turn out to be efficient for producing good simulations in heterogeneous media. In this thesis, we thus chose to use a high order Discontinuous Galerkin (DG) method based upon centered fluxes to solve the acoustic wave equation and developed a high-order scheme for time integration which can be coupled with the space discretization technique, without generating higher computational cost than the second-order Leap Frog scheme which is the most widely used . The new scheme is compared to the high order ADER scheme which is more expensive because it requires a larger number of computations for a fixed level of accuracy. In addition, the ADER scheme uses more memory, which also works in favor of the new scheme since producing subsurface images consumes lots of memory and justifies the development of low-memory numerical methods. The accuracy of both schemes is then analyzed when they are included in an industrial code and applied to realistic problems. The comparison highlights the phenomena of numerical pollution that occur when injecting a point source in the DG scheme and shows that spurious waves can be eliminated by introducing a non-dissipative penalty term in the DG formulation. This work ends by discussing the difficulties induced by using numerical methods in an industrial framework, and in pa
L’imagerie du sous-sol par équations d’onde est une application de l’ingénierie pétrolière qui mobilise des ressources de calcul très importantes. On dispose aujourd’hui de calculateurs puissants qui rendent accessible l’imagerie de régions complexes mais des progrès sont encore nécessaires pour réduire les coûts de calcul et améliorer la qualité des simulations. Les méthodes utilisées aujourd’hui ne permettent toujours pas d’imager correctement des régions très hétérogènes 3D parce qu’elles sont trop coûteuses et /ou pas assez précises. Les méthodes d’éléments finis sont reconnues pour leur efficacité à produire des simulations de qualité dans des milieux hétérogènes. Dans cette thèse, on a fait le choix d’utiliser une méthode de Galerkine discontinue (DG) d’ordre élevé à flux centrés pour résoudre l’équation des ondes acoustiques et on développe un schéma d’ordre élevé pour l’intégration en temps qui peut se coupler avec la technique de discrétisation en espace, sans générer des coûts de calcul plus élevés qu’avec le schéma d’ordre deux Leap-Frog qui est le plus couramment employé. Le nouveau schéma est comparé au schéma d’ordre élevé ADER qui s’avère plus coûteux car il requiert un plus grand nombre d’opérations pour un niveau de précision fixé. De plus, le schéma ADER utilise plus de mémoire, ce qui joue aussi en faveur du nouveau schéma car la production d’images du sous-sol consomme beaucoup de mémoire et justifie de développer des méthodes numériques qui utilisent la mémoire au minimum. On analyse également la précision des deux schémas intégrés dans un code industriel et appliqués à des cas test réalistes. On met en évidence des phénomènes de pollution numériques liés à la mise en oeuvre d'une source ponctuelle dans le schéma DG et on montre qu'on peut éliminer ces ondes parasites en introduisant un terme de pénalisation non dissipatif dans la formulation DG. On finit cette thèse en discutant les difficultés engendrées par l'utilisation de schémas numériques dans un contexte industriel, et en particulier l'effet des calculs en simple précision.
Fichier principal
Vignette du fichier
Ventimiglia.pdf (10.14 Mo) Télécharger le fichier
Loading...

Dates et versions

tel-01111039 , version 1 (29-01-2015)

Identifiants

  • HAL Id : tel-01111039 , version 1

Citer

Florent Ventimiglia. Schémas numérique d'ordre élevé en temps et en espace pour l'équation des ondes du premier ordre. Application à la Reverse Time Migration.. Equations aux dérivées partielles [math.AP]. Université de Pau et des Pays de l'Adour, 2014. Français. ⟨NNT : ⟩. ⟨tel-01111039⟩
402 Consultations
1503 Téléchargements

Partager

More