Flat fading channel estimation for multihop relay wireless transmissions
Estimation de canal à évanouissements plats dans les transmissions sans fils à relais multibonds
Résumé
This thesis deals with the estimation of the multihop Amplify-and-Forward relay communications. The various objects (transmitter, relays, receivers) can be fixed or mobile. Each link is modeled by a flat fading Rayleigh channel, with a Doppler spectrum resulting from twodimensional (2D, leading to the U-shape Dopller spectrum) or three-dimensional (3D, leading to a flat Doppler spectrum) scattering environments. The cascade of channel hops is approximated by a first-order autoregressive (AR(1)) model and is tracked by a standard estimation algorithm, the Kalman Filter (KF). The common method used in the literature to tune the parameter of the AR(1) model is based on a Correlation Matching (CM) criterion. However, for slow fading variations, another criterion based on the off-line Minimization of the Asymptotic Variance (MAV) of the KF is shown to be more appropriate. For both the CM and MAV criteria, this thesis gives analytic justification by providing approximated closed-form expressions of the estimation variance in output of the Kalman filter, and of the optimal AR(1) parameter. The analytical results are calculated for given Doppler frequencies and Signal-to-Noise Ratio for both scattering environments, whatever the number and type of transmission hops (Fixed-to-Mobile or Mobile-to-Mobile). The simulation results show a considerable gain in terms of the Mean Square Error (MSE) of the well tuned Kalman-based channel estimator, especially for the most common scenario of slow-fading channel.
Cette thèse traite de l’estimation d’un canal de communication radio-mobile multibond. La communication entre l’émetteur et le récepteur est ainsi faite par l’intermédiaire de relais (de type « Amplify and-Forward ») en série. Les différents éléments (émetteurs, relais, récepteurs) peuvent être fixes ou mobiles. Chaque lien de communication (chaque bond) est modélisé par un canal de Rayleigh à évanouissements plats, avec un spectre Doppler issu de deux
environnements possibles de diffusion : en deux dimensions (2D, amenant le spectre en U de Jakes), ou en trois dimensions (3D, amenant un spectre Doppler plat). L’objectif majeur de la thèse est l’estimation dynamique du canal global issue de la cascade des différents liens. A cette fin, la cascade de canaux est approchée par une modèle auto-régressif du premier ordre (AR(1)), et l’estimation est réalisée à l’aide d’un algorithme standard, le filtre de Kalman. La méthode couramment utilisée dans la littérature pour fixer le paramètre du modèle AR(1) est basée sur un critère de « corrélation matching » (CM). Cependant, nous montrons que pour des canaux à variations lentes, un autre critère basé sur la minimisation de la variance asymptotique (MAV) de la sortie du filtre de Kalman est plus approprié. Pour les deux critères, CM et MAV, cette thèse donne une justification analytique en fournissant des formules approchées de la variance d’estimation par le filtre de Kalman, ainsi que du réglage optimal du paramètre du modèle AR(1). Ces formules analytiques sont données en fonctions des fréquences Doppler et du rapport signal sur bruit, pour les environnements de diffusion 2D et 3D, quel que soit le nombre et le type de bonds (fixe-mobile ou mobile-mobile). Les résultats de simulations montrent un gain considérable en termes de l’erreur quadratique moyenne (MSE) de l’estimateur de canal bien réglé, en particulier pour le scénario le plus courant de canal à évanouissements lents.
Loading...