Spectral properties of random non-self-adjoint operators - TEL - Thèses en ligne
Thèse Année : 2015

Spectral properties of random non-self-adjoint operators

Propriétés spectrales des opérateurs non-auto-adjoints aléatoires

Martin Vogel

Résumé

In this thesis we are interested in the spectral properties of random non-self-adjoint operators. Weare going to consider primarily the case of small random perturbations of the following two types of operators: 1. a class of non-self-adjoint h-differential operators Ph, introduced by M. Hager [32], in the semiclassical limit (h→0); 2. large Jordan block matrices as the dimension of the matrix gets large (N→∞). In case 1 we are going to consider the operator Ph subject to small Gaussian random perturbations. We let the perturbation coupling constant δ be e (-1/Ch) ≤ δ ⩽ h(k), for constants C, k > 0 suitably large. Let ∑ be the closure of the range of the principal symbol. Previous results on the same model by M. Hager [32], W. Bordeaux-Montrieux [4] and J. Sjöstrand [67] show that if δ ⪢ e(-1/Ch) there is, with a probability close to 1, a Weyl law for the eigenvalues in the interior of the pseudospectrumup to a distance ⪢ (-h ln δ h) 2/3 to the boundary of ∑. We will study the one- and two-point intensity measure of the random point process of eigenvalues of the randomly perturbed operator and prove h-asymptotic formulae for the respective Lebesgue densities describing the one- and two-point behavior of the eigenvalues in ∑. Using the density of the one-point intensity measure, we will give a complete description of the average eigenvalue density in ∑ describing as well the behavior of the eigenvalues at the pseudospectral boundary. We will show that there are three distinct regions of different spectral behavior in ∑. The interior of the of the pseudospectrum is solely governed by a Weyl law, close to its boundary there is a strong spectral accumulation given by a tunneling effect followed by a region where the density decays rapidly. Using the h-asymptotic formula for density of the two-point intensity measure we will show that two eigenvalues of randomly perturbed operator in the interior of ∑ exhibit close range repulsion and long range decoupling. In case 2 we will consider large Jordan block matrices subject to small Gaussian random perturbations. A result by E.B. Davies and M. Hager [16] shows that as the dimension of the matrix gets large, with probability close to 1, most of the eigenvalues are close to a circle. They, however, only state a logarithmic upper bound on the number of eigenvalues in the interior of that circle. We study the expected eigenvalue density of the perturbed Jordan block in the interior of thatcircle and give a precise asymptotic description. Furthermore, we show that the leading contribution of the density is given by the Lebesgue density of the volume form induced by the Poincarémetric on the disc D(0, 1).
Dans cette thèse, nous nous intéressons aux propriétés spectrales des opérateurs non-auto-adjoints aléatoires. Nous allons considérer principalement les cas des petites perturbations aléatoires de deux types des opérateurs non-auto-adjoints suivants :1. une classe d’opérateurs non-auto-adjoints h-différentiels Ph, introduite par M. Hager [32],dans la limite semiclassique (h→0); 2. des grandes matrices de Jordan quand la dimension devient grande (N→∞). Dans le premier cas nous considérons l’opérateur Ph soumis à de petites perturbations aléatoires. De plus, nous imposons que la constante de couplage δ vérifie e (-1/Ch) ≤ δ ⩽ h(k), pour certaines constantes C, k > 0 choisies assez grandes. Soit ∑ l’adhérence de l’image du symbole principal de Ph. De précédents résultats par M. Hager [32], W. Bordeaux-Montrieux [4] et J. Sjöstrand [67] montrent que, pour le même opérateur, si l’on choisit δ ⪢ e(-1/Ch), alors la distribution des valeurs propres est donnée par une loi de Weyl jusqu’à une distance ⪢ (-h ln δ h) 2/3 du bord de ∑. Nous étudions la mesure d’intensité à un et à deux points de la mesure de comptage aléatoire des valeurs propres de l’opérateur perturbé. En outre, nous démontrons des formules h-asymptotiques pour les densités par rapport à la mesure de Lebesgue de ces mesures qui décrivent le comportement d’un seul et de deux points du spectre dans ∑. En étudiant la densité de la mesure d’intensité à un point, nous prouvons qu’il y a une loi de Weyl à l’intérieur du pseudospectre,une zone d’accumulation des valeurs propres dûe à un effet tunnel près du bord du pseudospectre suivi par une zone où la densité décroît rapidement. En étudiant la densité de la mesure d’intensité à deux points, nous prouvons que deux valeurs propres sont répulsives à distance courte et indépendantes à grande distance à l’intérieur de ∑. Dans le deuxième cas, nous considérons des grands blocs de Jordan soumis à des petites perturbations aléatoires gaussiennes. Un résultat de E.B. Davies et M. Hager [16] montre que lorsque la dimension de la matrice devient grande, alors avec probabilité proche de 1, la plupart des valeurs propres sont proches d’un cercle. De plus, ils donnent une majoration logarithmique du nombre de valeurs propres à l’intérieur de ce cercle. Nous étudions la répartition moyenne des valeurs propres à l’intérieur de ce cercle et nous en donnons une description asymptotique précise. En outre, nous démontrons que le terme principal de la densité est donné par la densité par rapport à la mesure de Lebesgue de la forme volume induite par la métrique de Poincaré sur la disque D(0, 1).
Fichier principal
Vignette du fichier
these_A_VOGEL_Martin_2015.pdf (2.3 Mo) Télécharger le fichier
Origine Version validée par le jury (STAR)
Loading...

Dates et versions

tel-01219892 , version 1 (23-10-2015)

Identifiants

  • HAL Id : tel-01219892 , version 1

Citer

Martin Vogel. Spectral properties of random non-self-adjoint operators. Spectral Theory [math.SP]. Université de Bourgogne, 2015. English. ⟨NNT : 2015DIJOS018⟩. ⟨tel-01219892⟩
299 Consultations
318 Téléchargements

Partager

More