Quantum point contact in high mobility graphene - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2016

Quantum point contact in high mobility graphene

Contacts ponctuels quantiques dans le graphène de haute mobilité

Katrin Zimmermann
  • Fonction : Auteur

Résumé

In the quantum Hall regime, the charge carriers are conducted within one-dimensional channels propagating at the edge of a two-dimensional electron gas (2DEG). A quantum point contact (QPC) – a narrow constriction confining spatially electron transport – can control the transmission of these quantum Hall edge channels. In conventional 2DEG systems, a negative voltage applied on the electrostatic split gates depletes locally the electrons underneath them forcing the electrons to pass through the constriction. In contrast, due to the absence of a band gap in graphene, a negative gate voltage induces a continuous shift of the doping from electrons to holes. In the quantum Hall regime, electron and hole edge channels propagate along the pn-interface in the same direction while inelastic scattering induces charge transfer and mixing between them.In this PhD thesis, we have fabricated ballistic graphene devices made by van der Waals stacking of hBN/Gr/hBN heterostructures, and equipped with split gates forming a quantum point contact (QPC) constriction. We have studied the effect of the QPC on the propagation of integer and fractional quantum Hall edge channels and the mixing among them. In the quantum Hall regime, we demonstrate that the integer and fractional quantum Hall edge channels can be controlled and selectively transmitted by the QPC. Due to the high mobility of our devices and the resultant full lifting of the degeneracies of the Landau levels in strong magnetic field, equilibration at the pn-interface is restricted to sublevels of identical spins of the N=0 Landau level.A QPC in the quantum Hall regime offers also an ideal system to study the tunnelling of charge carriers between counter-propagating fractional edge channels of highly correlated, one-dimensional fermions described by the theory of Tomonaga-Luttinger. We study the tunnelling between fractional quantum Hall edge channels in our QPC device in graphene and focus on the 7/3-fractional state to explore the temperature dependence of tunnelling characteristics.
Dans le régime de l'effet Hall quantique, les porteurs de charge se propagent le long de canaux unidimensionnels situés au bords d'un gaz d'électron bidimensionel (2D electron gas, 2DEG). Un contact ponctuel quantique (quantum point contact, QPC) - une constriction étroite confinant spatialement le gaz électronique - permet de contrôler la transmission de ces canaux de bords. Dans un 2DEG conventionnel, une tension négative appliquée sur les grilles électrostatiques du QPC engendre la déplétion locale du gaz électronique sous la grille, forçant les électrons à se propager au travers de la constriction. Cependant, dans le graphène, du fait de l'absence de bande interdite, une tension négative provoque la transition continue du dopage d'électrons à trous. Dans le régime de l'effet Hall quantique, électrons et trous se propagent le long de l'interface p-n dans la même direction, et la diffusion inélastique induit un transfert de charge et du mélange entre eux.Au cours de cette thèse, nous avons fabriqué des dispositifs à base de graphène encapsulé dans deux feuillets de hBN, et munis de grilles électrostatiques définissant un QPC. Nous avons étudié l'effet du QPC sur la propagation des canaux de bords entiers et fractionnaires de l'effet Hall quantique, et sur le mélange entre eux. Dans l'effet Hall quantique, nous avons démontré que les canaux entiers et fractionnaires peuvent être contrôlés et sélectivement transmis au travers de la constriction. Du fait de la haute mobilité de nos structures, et de la levée de dégénérescence complète des niveaux de Landau qui en résulte à fort champ magnétique, l'équilibrage à l'interface p-n est réduit aux sous-niveaux de même spin et au niveau de Landau N=0.Un QPC dans le régime de l'effet Hall quantique constitue également un système idéal pour l'étude de l'effet tunnel des porteurs de charge entre canaux de bords fractionnaires, unidimensionnels et fortement corrélés, se propageant dans des directions opposées, décrits par la théorie de Tomonaga-Luttinger. Nous avons étudié l'effet tunnel entre canaux de bords fractionnaires dans notre structure muni un QPC, en nous concentrant sur l'état fractionnaire 7/3 et la dépendance en température de ses propriétés tunnels.
Fichier principal
Vignette du fichier
ZIMMERMANN_2016_archivage.pdf (63.01 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-01369319 , version 1 (21-09-2016)
tel-01369319 , version 2 (16-01-2017)

Identifiants

  • HAL Id : tel-01369319 , version 2

Citer

Katrin Zimmermann. Quantum point contact in high mobility graphene. Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall]. Université Grenoble Alpes, 2016. English. ⟨NNT : 2016GREAY008⟩. ⟨tel-01369319v2⟩

Collections

UGA CNRS NEEL STAR
1118 Consultations
719 Téléchargements

Partager

Gmail Facebook X LinkedIn More