Silica nanoparticles as gene delivery systems for skin tissue repair
Nanoparticules de silice comme systèmes de délivrance de gènes pour la réparation tissulaire de la peau
Résumé
This work is devoted to the evaluation of silica nanoparticles associated to poly-ethyleneimine (PEI) as vectors for gene therapy in the context of skin chronic wounds repair. Nanocomposite materials associating complexes formed by the association of these hybrid particles and DNA with collagen hydrogels cellularized with 3T3 fibroblasts have been prepared. Thanks to the modulation of particle size and polymer molecular weight, it has been possible to achieve fibroblast transfection within the gel, allowing for sustained protein expression over one week. These studies evidence the key role of cell proliferation and migration on transfection efficiency. The transfection process has been further modulated by modification of the silica-PEI interactions. The results suggest that the complex detachment from the particles within the endosomes is a key step in this process. The transfection of human primary cells has also been studied foreseeing in vivo applications. Human fibroblasts and keratinocytes have been successfully transfected in culture and, in the case of fibroblasts, within collagen hydrogels, but with lower efficiency than with 3T3 cells. This has been attributed to the lower proliferation rate of primary cells. Finally the ability of nanocomposites to modulate inflammation has been evaluated on activated human macrophages. These systems have allowed for the sustained production of IL-10 by fibroblasts and the inhibition of TNF-alpha expression by macrophages.
Ce travail concerne l’évaluation de nanoparticules de silice associées à la poly-ethylèneimine (PEI) comme vecteurs de délivrance de gène pour le traitement des plaies chroniques de la peau. Des matériaux nanocomposites associant des complexes formés par l’association de ces particules hybrides et d’ADN avec des hydrogels de collagène colonisés par des fibroblastes 3T3 ont été élaborés. Grâce à la modulation de la taille de la particule et de la masse moléculaire du polymère, il a été possible de réaliser la transfection des fibroblastes au sein du gel, permettant l’expression génique pendant une semaine. Ces études montrent le rôle clé joué par la prolifération et la migration cellulaire sur l’efficacité de la transfection. L’efficacité de la transfection a ensuite été modulée en modifiant les interactions silice-PEI. Les résultats obtenus suggèrent que le détachement du complexe de la particule dans les endosomes est une étape clé de ce processus. La transfection de cellules humaines primaires a aussi été étudiée en vue d’applications in vivo. La transfection a été observée avec des fibroblastes et des keratinocytes humains en culture et avec les fibroblastes au sein des gels, mais avec des efficacités moindres que pour les cellules 3T3. Ceci est attribué au plus faible taux de prolifération des cellules primaires. Enfin la capacité des nanocomposites à moduler l’inflammation a été testée sur des macrophages humains activés. Ces systèmes permettent la synthèse soutenue d’IL-10 par les fibroblastes et l’inhibition de l’expression de TNF-alpha chez les macrophages.
Origine | Version validée par le jury (STAR) |
---|
Loading...