Optimizing the use of SSVEP-based brain-computer interfaces for human-computer interaction
Optimisation de l'utilisation des interfaces cerveau-machine basées sur SSVEP pour l'Interaction homme-machine
Résumé
This PhD deals with the conception and evaluation of interactive systems based on Brain-Computer Interfaces (BCI). This type of interfaces has developed in recent years, first in the domain of handicaps, in order to provide disabled people means of interaction and communication, and more recently in other fields as video games. However, most of the research so far focused on the identification of cerebral pattern carrying useful information, a on signal processing for the detection of these patterns. Less attention has been given to usability aspects. This PhD focuses on interactive systems based on Steady-State Visually Evoked Potentials (SSVEP), and aims at considering the interactive system as a whole, using the concepts of Human-Computer Interaction. More precisely, a focus is made on cognitive demand, user frustration, calibration conditions, and hybrid BCIs.
Cette thèse porte sur la conception et l'évaluation de systèmes interactifs utilisant des interfaces cerveau-machine (BCI pour Brain-Computer Interfaces). Ce type d'interfaces s'est développé dans les années récentes tout d'abord dans le domaine du handicap, afin de fournir aux grands handicapés des moyens d'interaction et de communication, et plus récemment dans d'autres domaines comme celui des jeux vidéo. Néanmoins, la plupart des travaux ont porté sur l'identification des signaux du cerveau susceptibles de porter une information utile, et sur les traitements nécessaires à l'extraction de cette information. Peu de travaux ont porté sur les aspects d'utilisabilité et de prise en compte des facteurs humains dans l'ensemble du système interactif. Cette thèse se concentre sur les systèmes basées sur SSVEP (steady-state visually evoked potentials), et se propose d'étudier l'ensemble du système interactif cerveau-machine, selon les critères de l'interaction homme-machine (IHM). Plus précisément, les points étudiés portent sur la demande cognitive, la frustration de l'utilisateur, les conditions de calibration, et les BCI hybrides.
Origine | Version validée par le jury (STAR) |
---|