Skip to Main content Skip to Navigation
New interface

Syn-to post-rift topographic tectonique and sedimentary evolution of the west African transform margin

Abstract : This PhD thesis presents the first source-to-sink study of the African Atlantic Equatorial margin. We established new Meso-Cenozoic paleogeographic and structural reconstructions, integrating the West African sub-continent and the Equatorial Atlantic Ocean, based on a new mapping method defining both erosion limits of preserved deposits and their minimum original extension. We show the evolution over 200 Myrs of the eroding (sources) and accumulating domains (sinks) at continental scale. We demonstrate in particular that during the Cretaceous, a large Saharan intracratonic basin was exporting sediments toward both the Tethys and the future Atlantic Equatorial Ocean. The fragmentation of this basin occurred in the Oligocene, by the growth of the Hoggar swell that isolated the present-day small residual depot-centers. The development of this specific "basin and swell" topography results from the superimposition of various deformation wavelength at continental scale combining a marginal upwarp along the equatorial margin and a hot spot swell. We then characterized, from the interpretation of seismic data and well logs, the segmentation of the Equatorial Atlantic passive margin and the stratigraphic architecture of the post-rift Upper Cretaceous sedimentary wedge. We show that the proximal parts of the Late Cretaceous sedimentary wedge are only preserved along divergent segments of the margin and not along transform segments. We interpret this differential preservation as the result of a greater uplift, during the early post-rift, in the proximal parts of the transform segments preventing the preservation of the proximal terms of the sedimentary systems. The transform segments are associated with narrow necking zone, resulting in greater flexural uplift than divergent segments showing wider necking zones, in particular during the early post-rift. The characterization of the stratigraphic architecture of the post-rift sedimentary wedge then allowed for the quantification of accumulation history in the passive margin basins. New low-temperature thermochronological data (AFTA and Apatite (U-Th-Sm)/He) acquired at the University of Glasgow on the samples of three regional transects perpendicular to the margin allowed for the quantification of the denudation history and eroded volume on the continental domain. These data shows that the major thermal event recorded by those samples is the cooling phase related to the erosion of a rift-related topography along the margin. Erosion and accumulation budgets fall within the same order of magnitude. During some given periods (Late Cretaceous and since the Late Miocene), excess in accumulation may be associated with the reworking of sediments previously stored within intracontinental basins or on the shelf of the margin.
Document type :
Complete list of metadata
Contributor : ABES STAR :  Contact
Submitted on : Thursday, July 13, 2017 - 11:15:05 AM
Last modification on : Wednesday, November 16, 2022 - 11:46:09 AM
Long-term archiving on: : Thursday, January 25, 2018 - 1:58:05 AM


Version validated by the jury (STAR)


  • HAL Id : tel-01561691, version 1


Jing Ye. Syn-to post-rift topographic tectonique and sedimentary evolution of the west African transform margin. Earth Sciences. Université Paul Sabatier - Toulouse III, 2016. English. ⟨NNT : 2016TOU30218⟩. ⟨tel-01561691⟩



Record views


Files downloads