Quartic Tensor Models
Modèles tensoriels quartiques
Résumé
Tensor models are probability measures for random tensors. They generalise matrix models and were developed to study random geometry in arbitrary dimension. Moreover, they are strongly connected to quantum gravity theories as, additionally to the standard bare-bones models, they encompass the field theoretical approach to loop quantum gravity known as group field theory.In the present thesis, we focus on the restricted case of quartic tensor models, for which a far greater number of rigorous mathematical results have been proven. Quartic models can be re-written as multi-matrix models using the intermediate field representation, and their perturbative expansions can be written as series expansions over combinatorial maps. Using a variety of map expansions, we prove analyticity results and useful bounds for the cumulants of various tensor models : the most general standard quartic model at any rank and the simplest renormalisable tensor field theory at rank 3. Then, we introduce a new class of models, the enhanced models, which perturbative expansions display new behaviour, different to the so called melonic behaviour that characterise most known tensor models so far.
Les modèles de tenseurs sont des mesures de probabilité sur des espaces de tenseurs aléatoires. Ils généralisent les modèles de matrices et furent développés pour l’étude de la géométrie aléatoire en dimension arbitraire. De plus, ils sont fortement liés aux théories de gravité quantique car, en plus des modèles standards très simples, ils incluent les théories de champs sur groupes, qui constituent l’approche « intégrale fonctionnelle » de la gravité quantique à boucle. Dans cette thèse, nous étudions le cas restreint des modèles tensoriels quartiques, pour lesquels un plus grand nombre de résultats mathématiques rigoureux ont pu être démontrés. Grâce à la transformation de champ intermédiaire, les modèles quartiques peuvent être ré-écrits sous forme de modèles de matrices multiples, et leurs développements perturbatifs peuvent être indexés par des cartes combinatoires. En utilisant divers développement en cartes, nous démontrons d’importants résultats d’analycité ainsi que des bornes pour les cumulants du modèle tensoriel standard le plus général et de rang arbitraire, ainsi que du plus simple modèle renormalisable de rang 3. Ensuite, nous introduisons une nouvelle famille de modèles, les modèles améliorés, dont le développement perturbatif se comporte de manière nouvelle, différente du comportement « melonique » qui caractérise les modèles tensoriels précédemment étudiés.
Origine | Version validée par le jury (STAR) |
---|
Loading...