Development of a particle-based model for nonparametric inverse regression - TEL - Thèses en ligne
Thèse Année : 2016

Development of a particle-based model for nonparametric inverse regression

Développement d'un modèle particulaire pour la régression indirecte non paramétrique

Résumé

This dissertation deals with Bayesian nonparametric statistics, in particular nonparametric mixture models. The manuscript is divided into a general introduction and three parts on rather different aspects of mixtures approaches (sampling, asymptotic, inverse problem). In mixture models, the parameter to infer from the data is a function. We set a prior distribution on an abstract space of functions through a stochastic integral of a kernel with respect to a random measure. Usually, mixture models were used primilary in probability density function estimation problems. One of the contributions of the present manuscript is to use them in regression problems.In this context, we are essentially concerned with the following problems :- Sampling of the posterior distribution- Asymptotic properties of the posterior distribution- Inverse problems, in particular the estimation of the Wigner distribution from Quantum Homodyne Tomography measurements.
Cette thèse porte sur les statistiques bayésiennes non paramétriques. La thèse est divisée en une introduction générale et trois parties traitant des aspects relativement différents des approches par mélanges (échantillonage, asymptotique, problème inverse). Dans les modèles de mélanges, le paramètre à inférer depuis les données est une fonction. On définit une distribution a priori sur un espace fonctionnel abstrait au travers d'une intégrale stochastique d'un noyau par rapport à une mesure aléatoire. Habituellement, les modèles de mélanges sont surtout utilisés dans les problèmes d'estimation de densités de probabilité. Une des contributions de ce manuscrit est d'élargir leur usage aux problèmes de régressions.Dans ce contexte, on est essentiellement concernés par les problèmes suivants:- Echantillonage de la distribution a posteriori- Propriétés asymptotiques de la distribution a posteriori- Problèmes inverses, et particulièrement l'estimation de la distribution de Wigner à partir de mesures de Tomographie Quantique Homodyne.
Fichier principal
Vignette du fichier
Naulet_phdthesis.pdf (3.38 Mo) Télécharger le fichier
Origine Version validée par le jury (STAR)
Loading...

Dates et versions

tel-01636362 , version 1 (16-11-2017)

Identifiants

  • HAL Id : tel-01636362 , version 1

Citer

Zacharie Naulet. Development of a particle-based model for nonparametric inverse regression. General Mathematics [math.GM]. Université Paris sciences et lettres, 2016. English. ⟨NNT : 2016PSLED057⟩. ⟨tel-01636362⟩
115 Consultations
103 Téléchargements

Partager

More