Exploitation of non-circularity for transmissions and passive listening
Exploitation de la non-circularité pour les transmissions et l'écoute passive
Résumé
This thesis is devoted to exploit the non-circularity and non-gaussianity properties of signals of interest (SOI) and/or interference for wireless transmissions and passive listening. In the first part of this thesis, we are interested in the extension of conventional SIMO-MLSE receivers to new architectures exploiting the potential second order non-circularity of co-channel interference (CCI), for the demodulation of rectilinear signals (BPSK, ASK), quasi-rectilinear (MSK, GMSK and OQAM) and quadrature amplitude modulation (QAM). The general architecture of the developed receivers is based on a pre-processing with a widely linear (WL) extension of the spatio-temporal matched filter, bringing the demodulation processing back to a scalar problem, a sampling at the symbol rate and then a decision block based on a modified version of the Viterbi algorithm. For the particular case of the quasi-rectilinear signals, a derotation processing is interposed between the sampler and the decision block. A work on equivalent discrete time modeling of SOI, interferers and background noise has been carried out in order to create simulation models as for the validation of the interpretable analytic SINR expressions, by the evaluation of the symbol error rates. In a second part, we are interested to the beamforming through complex Volterra structures of the third order. These structures allow us the exploitation of the non-circularity up to the sixth order as well as the non-gaussian nature of the SOI and/or the interferences. For passive listening applications, we have introduced a third-order Volterra MVDR beamformer using only a priori information of SOI steering vector and implemented by an equivalent GSC structure. We have studied its performance, in particular by interpretable closed-form expressions as functions of statistics of the interference, and by its speed of learning, thus proving its advantages with respect to the conventional linear and WL MVDR beamformers. For wireless communications applications, we have studied an MMSE version of this complex Volterra beamformer of the third order that takes into account of the non-circularity up to the sixth order as well as the non-gaussian nature of the SOI and interference. The last part of this thesis is devoted to the robustness of rectilinearity tests in the presence of frequency offset. These tests are important for adjusting the processing (linear or WL) as a function of the rectilinearity of the signals in order to guarantee the best performance/convergence rate ratio of algorithms
Cette thèse est consacrée à l’exploitation des propriétés de non-circularité et de non-gaussianité des signaux d’intérêt (SOI) et/ou des interférences pour les transmissions sans fil et l’écoute passive. Dans une première partie de cette thèse, nous nous intéressons à l’extension des récepteurs SIMO-MLSE conventionnels vers de nouvelles architectures exploitant la potentielle non-circularité au second ordre des interférences co-canal (CCI), pour la démodulation de signaux rectilignes (BPSK, ASK), quasi-rectilignes (MSK, GMSK et OQAM) et à symboles complexes (QAM). L’architecture générale des récepteurs développés est basée sur un prétraitement avec une extension widely linear (WL) du filtre adapté spatio-temporel, ramenant le traitement de démodulation à un problème scalaire, un échantillonnage au rythme symbole et ensuite un organe de décision basé sur une version modifiée de l’algorithme de Viterbi. Pour le cas particulier des signaux quasi-rectiligne, on intercale un traitement de dérotation entre l’échantillonneur et l’organe de décision. Un travail de modélisation à temps discret des SOI, brouilleurs et du bruit de fond a été mené afin de créer des modèles de simulations pour la validation des expressions SINR analytiques interprétables, via l’évaluation des probabilités d’erreur symboles. Dans une deuxième partie, nous nous intéressons à la formation de voies (Beamforming) non-linéaire à travers des structures de Volterra complexe du troisième ordre. Ces dernières permettent l’exploitation de la non-circularité jusqu’au sixième ordre ainsi que du caractère non-gaussien des SOI et/ou des interférences. Dans le contexte de l’écoute passive, nous avons introduit un beamformer MVDR de Volterra du troisième ordre utilisant la seule information a priori du vecteur directionnel du SOI et implémentable grâce à une structure équivalente GSC. Nous avons étudié ses performances en particulier par l’évaluation analytique des expressions du SINR en fonction des statistiques de l’interférence, et par sa vitesse d’apprentissage, démontrant ainsi sa supériorité par rapport aux beamformers MVDR linéaire et WL classiques. Dans un contexte de radiocommunications, nous avons étudié une version MMSE de ce beamformer de Volterra complexe du troisième ordre qui prend lui en compte les propriétés statistiques de non-circularité jusqu’au sixième ordre et de non-gaussianité du SOI et du CCI. La dernière partie de cette thèse est consacrée à la robustesse de tests de détection de rectilinéarité de signaux en présente d’offsets de fréquence. Ces tests sont importants pour ajuster la nature du traitement (linéaire ou WL) en fonction de la rectilinéarité des signaux, afin de garantir le meilleur rapport performance/temps de convergence des algorithmes
Origine | Version validée par le jury (STAR) |
---|
Loading...