Single photon generation and manipulation with semiconductor quantum dot devices
Génération et manipulation de photons uniques avec boîtes quantiques semi-conductrices
Résumé
Quantum phenomena can nowadays be engineered to realize fundamentally new applications. This is the field of quantum technology, which holds the promise of revolutionizing computation, communication and metrology. By encoding the information in quantum mechanical systems, it appears to be possible to solve classically intractable problems, achieve absolute security in distant communications and beat the classical limits for precision measurements. Single photons as quantum information carriers play a central role in this field, as they can be easily manipulated and can be used to implement many quantum protocols. A key aspect is the interfacing between photons and matter quantum systems, a fundamental operation both for the generation and the readout of the photons. This has been driving a lot of research toward the realization of efficient atom-cavity systems, which allows the deterministic and reversible transfer of the information between the flying photons and the optical transition of a stationary atom. The realization of such systems in the solid-state gives the possibility of fabricating integrated and scalable quantum devices. With this objective, in this thesis work, we study the light-matter interface provided by a single semiconductor quantum dot, acting as an artificial atom, deterministically coupled to a micropillar cavity. Such a device is shown to be an efficient emitter and receiver of single photons, and is used to implement basic quantum functionalities.First, under resonant optical excitation, the device is shown to act as a very bright source of single photons. The strong acceleration of the spontaneous emission in the cavity and the electrical control of the structure, allow generating highly indistinguishable photons with a record brightness. This new generation of single photon sources can be used to generate path entangled NOON states. Such entangled states are important resources for sensing application, but their full characterizatiob has been scarcely studied. We propose here a novel tomography method to fully characterize path entangled N00N state and experimentally demonstrate the method to derive the density matrix of a two-photon path entangled state. Finally, we study the effect of the quantum dot-cavity device as a non-linear filter. The optimal light matter interface achieved here leads to the observation of an optical nonlinear response at the level of a single incident photon. This effect is used to demonstrate the filtering of single photon Fock state from classical incident light pulses. This opens the way towards the realization of efficient photon-photon effective interactions in the solid state, a fundamental step to overcome the limitations arising from the probabilistic operations of linear optical gates that are currently employed in quantum computation and communication.
Les phénomènes quantiques les plus fondamentaux comme la cohérence quantique et l’intrication sont aujourd'hui explorés pour réaliser de nouvelles technologies. C'est le domaine des technologies quantiques, qui promettent de révolutionner le calcul, la communication et la métrologie. En encodant l'information dans les systèmes quantiques, il serait possible de résoudre des problèmes inaccessibles aux ordinateurs classiques, de garantir une sécurité absolue dans les communications et de développer des capteurs dépassant les limites classiques de précision. Les photons uniques, en tant que vecteurs d'information quantique, ont acquis un rôle central dans ce domaine, car ils peuvent être manipulés facilement et être utilisés pour mettre en œuvre de nombreux protocoles quantiques. Pour cela, il est essentiel de développer des interfaces très efficaces entre les photons et les systèmes quantiques matériels, tels les atomes uniques, une fonctionnalité fondamentale à la fois pour la génération et la manipulation des photons. La réalisation de tels systèmes dans l'état solide permettrait de fabriquer des dispositifs quantiques intégrés et à large échelle. Dans ce travail de thèse, nous étudions l'interface lumière-matière réalisée par une boîte quantique unique, utilisée comme un atome artificiel, couplée de façon déterministe à une cavité de type micropilier. Un tel dispositif s'avère être un émetteur et un récepteur efficace de photons uniques, et il est utilisé ici pour implémenter des fonctionnalités quantiques de base. Tout d'abord, sous une excitation optique résonante, nous montrons comment nos composants sont des sources très brillantes de photons uniques. L’accélération de l'émission spontanée de la boîte quantique dans la cavité et le contrôle électrique de la structure permettent de générer des photons très indiscernables avec une très haute brillance. Cette nouvelle génération de sources de photons uniques peut être utilisée pour générer des états de photons intriqués en chemin appelés états NOON. Ces états intriqués sont des ressources importantes pour la détection de phase optique, mais leur caractérisation optique a été peu étudiée jusqu’à présent. Nous présentons une nouvelle méthode de tomographie pour caractériser les états de NOON encodés en chemin et implémentons expérimentalement cette méthode dans le cas de deux photons. Enfin, nous étudions le comportement de nos composants comme filtres non-linéaires de lumière. L'interface optimale entre la lumière et la boîte quantique permet l'observation d'une réponse optique non-linéaire au niveau d'un seul photon incident. Cet effet est utilisé pour démontrer le filtrage des états Fock à un seul photon à partir d’impulsions classiques incidentes. Ceci ouvre la voie à la réalisation efficace d’interactions effectives entre deux photons dans un système à l’état solide, une étape fondamentale pour surmonter les limitations dues au fonctionnement probabilistes des portes optiques linéaires.
Origine | Version validée par le jury (STAR) |
---|